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Double robust inference for continuous updating GMM

Frank Kleibergen
Amsterdam School of Economics, University of Amsterdam

Zhaoguo Zhan
Coles College of Business, Kennesaw State University

We propose the double robust Lagrange multiplier (DRLM) statistic for testing hy-
potheses specified on the minimizer of the population continuous updating ob-
jective function. The (bounding) χ2 limiting distribution of the DRLM statistic is
robust to both misspecification and weak identification, hence its name. The min-
imizer is the so-called pseudo-true value, which equals the true value of the struc-
tural parameter under correct specification. To emphasize its importance for ap-
plied work where misspecification and weak identification are common, we use
the DRLM test to analyze: the risk premia in Adrian et al. (2014) and He et al.
(2017); the structural parameters in a nonlinear asset pricing model with constant
relative risk aversion.
Keywords. Weak identification, misspecification, robust inference, Lagrange
multiplier.

JEL classification. C12, C18, G12.

1. Introduction

A little more than 20 years ago, inference procedures for analyzing possibly weakly
identified structural parameters using the generalized method of moments (GMM) of
Hansen (1982) were mostly lacking. Since then, huge progress has been made to develop
such procedures; see, for example, Staiger and Stock (1997), Dufour (1997), Stock and
Wright (2000), Kleibergen (2002, 2005, 2009), Moreira (2003), Andrews and Cheng (2012),
Andrews and Mikusheva (2016a, 2016b), and Han and McCloskey (2019). At present, we
therefore have a variety of so-called weak identification robust inference methods. Given
the prevalence of weak identification in applied work, a lot of emphasis has also been
put in raising awareness among practitioners; see, for example, Kleibergen and Mavroei-
dis (2009), Beaulieu, Dufour, and Khalaf (2013), Mavroeidis, Plagborg-Moller, and Stock
(2014), Andrews, Stock, and Sun (2019), and Kleibergen and Zhan (2020).

When there is no so-called true value of the structural parameters where the GMM
moment conditions exactly hold, the structural model is rendered misspecified, and
GMM estimators provide inconsistent estimates of the true value. Early research on
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misspecification focused on inference on the true value by characterizing expressions
for the bias and standard errors of inconsistent estimators; see, for example, Maasoumi
and Phillips (1982) and Maasoumi (1990). Instead of focusing on the unattainable true
value, recent work on misspecification analyzes the so-called pseudo-true value, which
is the minimizer of the population objective function; see, for example, White (1994). For
practical relevance of the pseudo-true value see, for example, Kan, Robotti, and Shanken
(2013) who use the pseudo-true value for evaluating asset pricing models. The pseudo-
true value depends on the population objective function at hand, so different objective
functions can lead to distinct pseudo-true values. Hall and Inoue (2003), for example,
develop inference methods for the pseudo-true value of the two-step GMM estimator,
while Hansen and Lee (2021)do so for an iterated GMM estimator. We use the minimizer
of the population continuous updating estimator (CUE) objective function of Hansen,
Heaton, and Yaron (1996) as the pseudo-true value because of its invariance properties
and since weak identification robust inference procedures lead to inference that is cen-
tered around it.

In case of misspecification, weak identification robust inference procedures for test-
ing hypotheses specified on the pseudo-true value however become size distorted for
just small amounts of misspecification. This would not sound as much of a problem if
it was possible to efficiently detect such misspecification. This is not so since misspeci-
fication tests, like the Sargan–Hansen test (Sargan (1958) and Hansen (1982)), are virtu-
ally powerless in settings of joint misspecification and weak identification; see Gospodi-
nov, Kan, and Robotti (2017). Weak identification robust inference procedures thus came
about to overcome the general critique of nonrobustness of traditional inference proce-
dures to varying identification strengths (see, e.g., Staiger and Stock (1997) and Dufour
(1997)), but are similarly nonrobust to misspecification.

While weak identification robust inference procedures are size distorted when mis-
specification is present, the misspecification robust inference procedures proposed by,
for example, Hall and Inoue (2003), Kan, Robotti, and Shanken (2013), Lee (2018), and
Hansen and Lee (2021), provide misspecification robust covariance matrix estimators
to conduct Wald-based inference. Because the covariance matrix estimators are finite
by construction, the resulting Wald-based tests cannot lead to unbounded confidence
sets, which as shown by Dufour (1997), is a necessary condition for size correct testing
in settings with potential identification failure. Hence, except for certain specifications
of the structural parameter (see, e.g., Gospodinov, Kan, and Robotti (2014)),1 these mis-
specification robust tests are potentially size distorted under weak identification.

One of the first to emphasize the empirical relevance of misspecification in the pres-
ence of weak (or no) identification were Kan and Zhang (1999). With the surge in applied
work on structural estimation, awareness of misspecification has grown further. In asset
pricing models, for example, it is now generally accepted that misspecification, along-
side weak identification, is an important empirical issue; see, for example, Kan, Robotti,

1Gospodinov, Kan, and Robotti (2014) show that the Wald/t test for a zero risk premium in a linear asset
pricing model with useless partialled out factors, which uses their adjusted standard error, is bounded by a
χ2 distribution and, therefore, size correct for the hypothesis of interest.
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and Shanken (2013) and Kleibergen and Zhan (2020). Kan, Robotti, and Shanken (2013)
therefore developed misspecification robust t-statistics for the Fama–MacBeth (1973)
two-pass estimator, that is, the most commonly used estimator of the risk premia in
linear asset pricing models. Similarly, in case of heterogeneous treatment effects, the
local average treatment effects that result for different instruments can be distinct (see
Imbens and Angrist (1994)), making the overidentified linear instrumental variables re-
gression model that uses all instruments misspecified. Evdokimov and Kolesar (2018)
and Lee (2018) therefore analyze misspecification robust tests on the treatment effect
resulting from using such multiple instruments. These misspecification robust tests are
however not robust to weak identification, so identical to the weak identification robust
inference procedures, they cannot deal with the empirically relevant setting of both mis-
specification and weak identification. Yet the aforementioned weak identification and
misspecification literature highlight that these two issues have to be taken into account
in order to conduct valid inference on the structural parameters of interest.

We extend the weak identification robust score or Lagrange multiplier (KLM) test
from Kleibergen (2002, 2005, 2009) to a double robust Lagrange multiplier (DRLM) test,
which can also be interpreted as the misspecification robust version of the KLM test.
The DRLM test is size correct and robust to both misspecification and weak identifi-
cation, hence its name. The DRLM statistic is a quadratic form of the score function,
which equals zero at all stationary points of the CUE sample objective function. This
is also the case for the KLM statistic and explains the power problems of the KLM test;
see, for example, Andrews, Moreira, and Stock (2006). To overcome the power problems
of the KLM test, the KLM statistic can be combined in a conditional or unconditional
manner with the Anderson–Rubin (1949, AR) statistic; see, for example, Moreira (2003)
and Andrews (2016). Andrews, Moreira, and Stock (2006) show that the conditional like-
lihood ratio (LR) test of Moreira (2003) provides the optimal manner of combining these
statistics for the homoskedastic linear instrumental variables regression model with one
included endogenous variable. In case of misspecification, it is however not obvious how
to improve the power of the DRLM test by such combination arguments, since the statis-
tics with which the DRLM statistic is to be combined to improve power, have non-central
limiting distributions with parameters that cannot be consistently estimated under mis-
specification. We therefore show that the power of the DRLM test can be improved by
exploiting the derivative property of the DRLM statistic.

The rest of the paper is organized as follows. In Section 2, we discuss continuous
updating GMM with misspecification and propose the DRLM test. To illustrate the size
correctness of the DRLM test, we conduct a simulation experiment using linear moment
equations in Section 3. A power study of the DRLM test and weak identification robust
tests is also presented in Section 3. It shows that weak identification robust tests on the
pseudo-true value of the structural parameters are size distorted for just small amounts
of misspecification while the DRLM test is not. It also proposes power improvement
and shows that the resulting test has generally good power. Section 4 applies the DRLM
test to risk premia using asset pricing data from Adrian, Etula, and Muir (2014) and He,
Kelly, and Manela (2017). Section 5 extends the DRLM test to subvector inference, strong
misspecification, which is dealt with by an additional component in the weight matrix,
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and nonlinear moment equations from a nonlinear asset pricing model with constant
relative risk aversion. Section 6 concludes. Technical details and additional results are
relegated to the Supplemental Appendix (Kleibergen and Zhan (2024b)) .

2. DRLM test for possibly misspecified GMM

2.1 Setup

We analyze them×1 parameter vector θ= (θ1 � � � θm )′ whose parameter region is the Rm.
The kf ×1 dimensional function f (θ,Xt ) is a continuously differentiable function of the
parameter vector θ and a Borel measurable function of a data vector Xt , which is ob-
served for time/individual t. Since we focus on misspecification, the model is overiden-
tified, that is, there are more moment equations than structural parameters so kf > m.
The population moment function of f (θ,Xt ) equals μf (θ):

EX
(
f (θ,Xt )

) = μf (θ), (1)

with μf (θ) a kf -dimensional continuously differentiable function. Unlike regular GMM
(see Hansen (1982)) , we do not request that there is a specific value of θ, say θ0, at which
μf (θ0 ) = 0. Our analysis thus differs from a recent one proposed by Cheng, Dou, and
Liao (2022), who construct a model selection procedure for evaluating potentially mis-
specified models with possibly weakly identified structural parameters, which explicitly
uses a set of base moments contained in all considered models that are guaranteed to
hold.

We analyze θ using the continuous updating setting of Hansen, Heaton, and Yaron
(1996). We use it because of its invariance properties and since it leads to inference based
on identification robust statistics in standard GMM; see, for example, Stock and Wright
(2000) and Kleibergen (2005). For asset pricing studies, in particular, Peñaranda and Sen-
tana (2015) recommend the continuous updating setting over two-step or iterated GMM
procedures. The accompanying population continuous updating objective function is

Qp(θ) = μf (θ)′Vff (θ)−1μf (θ), (2)

with Vff (θ) the covariance matrix of the sample moment:2 fT (θ,X ) = 1
T

∑T
t=1 f (θ,Xt ),

Vff (θ) = lim
T→∞

E
[
T

(
fT (θ,X ) −μf (θ)

)(
fT (θ,X ) −μf (θ)

)′]
, (3)

so fT (θ,X ) is the sample analog ofμf (θ) for a data set ofT observations:Xt , t = 1, � � � , T .
We define the pseudo-true value of θ, θ∗ as the minimizer of the population objective
function:

θ∗ = arg min
θ∈RmQp(θ). (4)

2Throughout the paper, we use recentered covariance matrices while the continuous updating estimator
is identical under a recentered or uncentered version of the same covariance matrix estimator; see Hansen
and Lee (2021).
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Thus, the pseudo-true value θ∗ equals the true value of θ in correctly specified models.
In misspecified models, the interpretation of θ∗ depends on the context: for example, in
asset pricing studies, Kan, Robotti, and Shanken (2013) interpret the pseudo-true value
of risk premia as the value that minimizes pricing errors.

The sample objective function for the CUE is

Q̂s(θ) = fT (θ,X )′V̂ff (θ)−1fT (θ,X ), (5)

with V̂ff (θ) a consistent estimator of Vff (θ), V̂ff (θ) →
p
Vff (θ), so the CUE, θ̂ is

θ̂= arg min
θ∈Rm Q̂s(θ). (6)

At the CUE, the score or derivative of the CUE objective function equals zero:3

ŝ(θ) = 1
2
∂

∂θ′ Q̂s(θ) = fT (θ,X )′V̂ff (θ)−1D̂(θ), (7)

where

D̂(θ) =qT (θ,X ) − [
V̂q1f (θ)V̂ff (θ)−1fT (θ,X ) � � � V̂qmf (θ)V̂ff (θ)−1fT (θ,X )

]
, (8)

with qT (θ,X ) = ∂fT (θ,X )
∂θ′ |θ = (q1T (θ) � � � qmT (θ)), J(θ) = ∂

∂θ′μf (θ) = (J1(θ) � � � Jm(θ)),

V̂qif (θ) is a consistent estimator of Vqif (θ) = limT→∞E[T (qiT (θ) − Ji(θ))(fT (θ,X ) −
μf (θ))′], i= 1, � � � ,m. Correspondingly, the population counterpart of the sample score
ŝ(θ) in (7) is

s(θ) = 1
2
∂

∂θ′Qp(θ) = μf (θ)′Vff (θ)−1D(θ), (9)

whereD(θ) is the recentered Jacobian:

D(θ) =J(θ) − [
Vq1f (θ)Vff (θ)−1μf (θ) � � � Vqmf (θ)Vff (θ)−1μf (θ)

]
. (10)

Our proposed double robust Lagrange multiplier statistic on the pseudo-true value
equals a quadratic form of the sample score ŝ(θ) in (7), which involves the product of
the sample moment and a recentered estimator of its Jacobian. While the sample mo-
ment fT (θ,X ) is driven by the magnitude of misspecification, the recentered Jacobian
estimator D̂(θ) reflects the strength of identification. Thus, both misspecification and
weak identification are to be accounted for when we develop the explicit expression of
the double robust Lagrange multiplier statistic based on ŝ(θ) in (7).

We focus on weak (local) misspecification in the sense that at the pseudo-true value
θ∗, there exists

μ̃f
(
θ∗) = lim

T→∞
√
Tμf

(
θ∗), (11)

3The construction of the derivative is in Kleibergen (2005) and also in Lemmas 3 and 4 in the Supple-
mental Appendix.
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for μ̃f (θ∗ ) a finite valued kf -dimensional vector, which could equal zero. Thus, μf (θ∗ )
is allowed to depend on T with the dependence kept implicit for the purpose of no-
tational simplicity. This treatment thus differs from a strong misspecification case for
which μf (θ∗ ) is considered a fixed nonzero vector. We discuss the strong misspecifi-
cation case later in Section 5.2 as an extension. The proposed double robust Lagrange
multiplier test (for a properly specified weight matrix) applies to both of these cases.

Analogous to the treatment ofμf (θ∗ ) in (11), the weak identification literature widely
uses the so-called weak instrument asymptotics (see, e.g., Staiger and Stock (1997)),
which in our context amounts to using a local to zero sequence forD(θ∗ ):

D̃
(
θ∗) = lim

T→∞
√
TD

(
θ∗), (12)

for D̃(θ∗ ) a finite valued kf ×m dimensional matrix, which could be of lower rank. Al-
though we initially use (12) for ease of exposition, it is worth noting that the double
robust Lagrange multiplier test is equally applicable under strong identification as we
show when simultaneously discussing strong misspecification in Section 5.2. Put differ-
ently, whether D(θ∗ ) is local to zero or fixed makes no difference to the double robust
Lagrange multiplier statistic, so we allow for all strengths of identification.

2.2 Example: The linear IV regression model

For illustration, we use a linear instrumental variables (IV) regression model:4

yt =β′xt + εt ,
xt =�′zt + vt ,

(13)

where β and � are m × 1 and kf × m dimensional matrices containing unknown pa-
rameters, yt and xt are the scalar andm× 1 dimensional endogenous variables, zt is the
kf × 1 dimensional instrumental variables, εt and vt are the scalar and m × 1 dimen-
sional errors.

Its population moment function reads

μf (β) = σzy −
zxβ
= μf (0) + J(0)θ, (14)

where, assuming that the observations over the individuals are i.i.d., σzy = E((zt −
μz )(yt − μy )), 
zx = E((zt − μz )(xt − μx )′ ) = Qzz�, Qzz = E((zt − μz )(zt − μz )′ ), μy =
E(yt ), μx = E(xt ), μz = E(zt ). The last line of (14) uses the GMM notation from (1) and
(10) so μf (0) = σzy , J(0) = −
zx, and θ= β. Misspecification occurs when the structural
error εt is correlated with the instruments zt . There is then no value of β at which the

4For expository purposes, we only discuss a simplified version of the linear IV regression model without
so-called, included exogenous variables. We specify the linear IV regression model, and also the linear asset
pricing model discussed later, using the notation generically used in the literature, and also show their
connection to our earlier generic GMM notation.
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population moment function (14) is equal to zero. On the other hand, weak identifica-
tion occurs when instruments zt are only weakly correlated with the endogenous xt , so
the full rank condition of 
zx is at risk.

The population objective function of the CUE for the linear IV model with ho-
moskedastic errors is

Qp(β) = 1

ωuu − 2ωuvβ+β′�vvβ
(σzy −
zxβ)′Q−1

zz (σzy −
zxβ), (15)

where �uv = ( ωuuωvu
ωuv
�vv

) = cov(ut , vt ), for ut = εt + v′
tβ. The CUE then corresponds with

the so-called, limited information maximum likelihood (LIML) estimator, so we can use
the well-known k-class notation of the LIML estimator (see, e.g., Hausman (1983) and
Andrews (2019)) to express the pseudo-true value as

β∗ = arg min
β∈RmQp(β) = (


′
zxQ

−1
zz 
zx − τmin�vv

)−1(

′
zxQ

−1
zz σzy − τminωvu

)
, (16)

with τmin = minβ∈Rm Qp(β).5 We note that different from the usual k-class notation for
τmin = 0 the pseudo-true value corresponds with the pseudo-true value of the two-stage
least squares estimator; similarly for τmin = −1, the pseudo-true value corresponds with
that of the least squares estimator.

For the linear IV regression model, the double robust Lagrange multiplier test is de-
signed for testing hypotheses on β∗, and it addresses weak identification and misspec-
ification simultaneously. The test is based on the score or derivative of Qp(β), which
equals zero at β∗. The quadratic form of the sample score constitutes the test statis-
tic, whose explicit expression will be provided using the generic GMM notation in Sec-
tion 2.4.

2.3 Assumptions

We state the assumptions needed for constructing the large sample behavior of test
statistics centered around the CUE for the generic GMM setting. These assumptions
concern the components of the sample score ŝ(θ) = fT (θ,X )′V̂ff (θ)−1D̂(θ).

We first make Assumption 1 as in Kleibergen (2005) except that it concerns the large
sample behavior of the sample moments and their derivative at the pseudo-true value
θ∗ instead of the true value.

Assumption 1. The kf × 1 dimensional derivative of ft(θ) = f (θ,Xt ) with respect to θi,

qit(θ) = ∂ft(θ)
∂θi

: kf × 1, i= 1, � � � ,m (17)

is such that the joint limit behavior of the sums of the series f̄t(θ) = ft(θ) − E(ft(θ)) and
q̄t(θ) = (q̄1t(θ)′ � � � q̄mt(θ)′ )′, with q̄it(θ) = qit(θ)−E(qit(θ)), accords with the central limit

5The minimal value τmin equals the smallest root of |τ�uv − (σzy
...
zx )′Q−1

zz (σzy
...
zx )| = 0.
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theorem at θ= θ∗, where θ∗ is the minimizer of the continuous updating population ob-
jective function:

1√
T

T∑
t=1

(
f̄t

(
θ∗)

q̄t
(
θ∗)

)
→
d

(
ψf

(
θ∗)

ψq
(
θ∗)

)
∼N(

0, V
(
θ∗)), (18)

where ψf : kf × 1, ψq : kθ × 1, kθ =mkf , and V (θ∗ ) is a positive semidefinite symmetric
(kf + kθ ) × (kf + kθ ) matrix,

V
(
θ∗) =

(
Vff

(
θ∗) Vfq

(
θ∗)

Vqf
(
θ∗) Vqq

(
θ∗)

)
, (19)

with Vqf (θ∗ ) = Vfq(θ∗ )′ = (Vq1f (θ∗ )′ � � � Vqmf (θ∗ )′ )′, Vqq(θ∗ ) = (Vqiqj (θ
∗ )) : i, j = 1, � � � ,m;

Vff (θ∗ ), Vqif (θ∗ ), Vqiqj (θ
∗ ) are kf × kf dimensional matrices for i, j = 1, � � � ,m, and

V
(
θ∗) = lim

T→∞
var

(√
T

(
fT

(
θ∗,X

)
vec

(
qT

(
θ∗,X

))))
. (20)

Assumption 1 requests a joint central limit theorem to hold at the pseudo-true value
for the sample moments and their derivative. It is satisfied under mild conditions, which
are listed in Kleibergen (2005) like, for example, finite rth moments for r > 2 in case of
i.i.d. data, mixing conditions for the sample moments in case of time-series data. Al-
lowing for a positive semidefinite covariance matrix V (θ∗ ) is important for applications
like, for example, dynamic linear panel data models. We next also use Assumption 2 from
Kleibergen (2005), which concerns the convergence of the covariance matrix estimator.

Assumption 2. The convergence behavior of the covariance matrix estimator V̂ (θ) to-

ward V (θ) is such that (i) V̂ (θ) →
p
V (θ), and (ii)

∂ vec(V̂ff (θ))
∂θ′ →

p

∂ vec(Vff (θ))
∂θ′ .

Assumption 2(i) requests a consistent covariance estimator for V (θ). For Assump-
tion 2(ii), the covariance matrix estimator V̂ff (θ) has to be such that the V̂qf (θ), which

results from the derivative of V̂ff (θ) with respect to θ, is also a consistent estimator of
Vqf (θ). When using the same covariance matrix estimator for all elements of V (θ), As-
sumption 2 holds under the conditions for consistency of (heteroskedastic autocorre-
lation consistent) covariance matrix estimators; see, for example, White (1980), Newey
and West (1987). Lemma 11 in the Supplemental Appendix provides the low-level regu-
larity conditions under which Assumption 2 holds in the leading i.i.d. case.

The score of the CUE objective function in (7) factorizes as the product of the sample
moment and a recentered estimator of its Jacobian (8). Under Assumptions 1 and 2,
the limit behaviors of the sample moment and this recentered Jacobian estimator are
independent at the pseudo-true value θ∗:

√
T

(
fT

(
θ∗,X

) −μf
(
θ∗)) →

d
ψf

(
θ∗) ∼N(

0, Vff
(
θ∗)),

√
T vec

(
D̂

(
θ∗) −D(

θ∗)) →
d
ψθ

(
θ∗) ∼N(

0, Vθθ
(
θ∗)),

(21)
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with ψf (θ∗ ) independent of ψθ(θ∗ ), and Vθθ(θ∗ ) = Vqq(θ∗ ) − Vqf (θ∗ )Vff (θ∗ )−1Vfq(θ∗ ).
This asymptotic independence is an extension of Lemma 1 in Kleibergen (2005) and
further stated as Lemma 5 in the Supplemental Appendix. It provides the base for the
weak identification robust statistics and similarly for our misspecification robust score
or LM statistic.

Because of the misspecification, the sample moment is however not centered at zero
at the pseudo-true value. Consequently, we cannot use any of the weak identification ro-
bust statistics that request the sample moment to converge to zero, like the score, GMM-
Anderson–Rubin and extensions of the conditional likelihood ratio statistic of Moreira
(2003); see Stock and Wright (2000), Kleibergen (2005), Andrews (2016), and Andrews
and Mikusheva (2016a, 2016b). The population score is equal to zero at the pseudo-true
value though. When combined with the asymptotic independence of the sample mo-
ment and its recentered Jacobian, we then have that the (appropriately scaled) expected
value of the limit of the score (7) equals zero at the pseudo-true value.6 We can therefore
use the quadratic form of the sample score to construct a double robust score or LM
statistic.

2.4 DRLM test for weak misspecification

We focus on the case of weak misspecification, that is, the magnitude of μf (θ∗ ) is small
such that there exists μ̃f (θ∗ ) = limT→∞

√
Tμf (θ∗ ) as in (11). This treatment is anal-

ogous to the weak instrument asymptotics (see, e.g., Staiger and Stock (1997)) with
D̃(θ∗ ) = limT→∞

√
TD(θ∗ ) as in (12), which leads to weak identification robust tests.

Later in Section 5.2, we discuss potential strong misspecification.

Definition 1. The double robust Lagrange multiplier (DRLM) statistic for testing H0 :
θ∗ = θ∗

0 with θ∗
0 the hypothesized pseudo-true value is

DRLM
(
θ∗

0
) = T × ŝ(θ∗

0
)
Ŵ

(
θ∗

0
)−1
ŝ
(
θ∗

0
)′

, (22)

with

Ŵ
(
θ∗

0

) = (
Im ⊗ V̂ff

(
θ∗

0

)−1
fT

(
θ∗

0,X
))′
V̂θθ

(
θ∗

0

)(
Im ⊗ V̂ff

(
θ∗

0

)−1
fT

(
θ∗

0,X
))

+ D̂(
θ∗

0
)′
V̂ff

(
θ∗

0
)−1
D̂

(
θ∗

0
)
, (23)

where V̂θθ(θ) = V̂qq(θ) − V̂qf (θ)V̂ff (θ)−1V̂qf (θ)′, V̂qf (θ) = (V̂q1f (θ)′ � � � V̂qmf (θ)′ ), ′ and

V̂qq(θ) is a consistent estimator of Vqq(θ) = limT→∞E[T vec(qT (θ) − J(θ)) vec(qT (θ) −
J(θ))′].

The DRLM statistic in (22) is the quadratic form of the sample score in (7) and not
just of the moment function. In this respect, the DRLM statistic differs from the GMM
Anderson–Rubin statistic, which results from the quadratic form of the moment func-
tion. The DRLM statistic provides an extension of the KLM statistic from Kleibergen
(2005), which tests hypotheses on θ in correctly specified GMM. The KLM and DRLM

6We formally show this in Lemma 6 of the Supplemental Appendix.
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statistics are both quadratic forms of the sample score in (7), but differ with respect to
the involved weight matrix. The weight matrix of DRLM in (23) explicitly accounts for
misspecification, while the weight matrix of KLM does not since the KLM test assumes
correct model specification. More specifically, the weight matrix of DRLM in (23) equals
the sum of two components, where the last of these two, D̂(θ∗

0 )′V̂ff (θ∗
0 )−1D̂(θ∗

0 ), consti-
tutes the weight matrix of the KLM statistic. Thus, the DRLM statistic has an additional
component, (Im ⊗ V̂ff (θ∗

0 )−1fT (θ∗
0,X ))′V̂θθ(θ∗

0 )(Im ⊗ V̂ff (θ∗
0 )−1fT (θ∗

0,X )), in the weight
matrix to account for misspecification. In case of correct model specification, the sam-
ple moment fT (θ∗

0,X ) asymptotically reduces to zero; in contrast, under misspecifica-
tion, fT (θ∗

0,X ) is not centered at zero, so the (Im ⊗ V̂ff (θ∗
0 )−1fT (θ∗

0,X ))′V̂θθ(θ∗
0 )(Im ⊗

V̂ff (θ∗
0 )−1fT (θ∗

0,X )) component is to explicitly take misspecification into account.
Hall and Inoue (2003) provide an expression for deriving the covariance of the GMM

estimator, which also contains a separate part that is associated with misspecification.
Yet Hall and Inoue (2003)’s focus is on the GMM estimator, whose asymptotic normal
distribution relies on strong identification. In contrast, our interest lies in the sample
score, and the validity of the resulting DRLM test does not require strong identification.
On the one hand, the DRLM statistic is built on the score, whose population value under
the null equals zero regardless of the strength of identification. On the other hand, the
variance of the score, as in Definition 1, explicitly accounts for misspecification. Thus, by
construction, the DRLM statistic is robust to weak identification and misspecification,
as shown in Theorem 1.

Theorem 1. When Assumptions 1 and 2 hold and for finite valued kf and kf ×m di-
mensional continuously differentiable functions of θ∗,

μ̃f
(
θ∗) = lim

T→∞
√
Tμf

(
θ∗),

D̃
(
θ∗) = lim

T→∞
√
TD

(
θ∗),

(24)

the limit behavior of DRLM(θ∗ ) under H0 : θ∗ = θ∗
0, for θ∗ the minimizer of the popula-

tion continuous updating objective function, is bounded according to

lim
T→∞

Pr
[
DRLM

(
θ∗

0
)
> cvχ2(m)(α)

] ≤ α, (25)

with cvχ2(m)(α) the (1 − α) × 100% critical value for the χ2(m) distribution.

Proof. See the Supplemental Appendix.

3. Size and power of DRLM in linear models

To illustrate the size and power of the DRLM test as well as its empirical relevance, in ad-
dition to the previously discussed linear IV regression model, we also consider the linear
asset pricing model in this section. A nonlinear example is discussed in Section 5.3. For
more examples of misspecified models that are potentially weakly identified see, for ex-
ample, Hall and Inoue (2003) and Hansen and Lee (2021).
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3.1 Size of DRLM in the linear asset pricing or IV model

The linear asset pricing model describes the return process by

Rt = μR +β(Ft −μF ) + ut , t = 1, � � � , T , (26)

where a kf -dimensional vector of asset returns Rt is related to m risk factors present
in the m-dimensional vector Ft , with μR = E(Rt ), μF = E(Ft ), β= cov(Rt , Ft ) var(Ft )−1,
and ut is a kf -dimensional vector of mean zero errors. The linear asset pricing model
has the mean of Rt spanned by the betas ofm risk factors in Ft . It can be reflected by the
population moment function:

μf (λF ) = μR −βλF
= μf (0) + J(0)θ, (27)

where λF is the risk premium. The last line of (27) again uses the GMM notation from (1)
and (10), so μf (0) = μR, J(0) = −β, and θ= λF .

The linear asset pricing model is correctly specified when there is a value of the risk
premium λF , say λF ,0, for which μR = βλF ,0 so the population moment function equals
zero. Under misspecification, there is no such value and our pseudo-true value λ∗

F of the
risk premium results from minimizing the population continuous updating objective
function associated with (27).7 Weak identification occurs when the full rank condition
of β is at risk.

As indicated by (14) and (27), the linear IV regression model and the linear asset pric-
ing model have similar linear moment functions. Under homoskedasticity, the covari-
ance matrix for the sample moment and its derivative in Assumption 1 has a Kronecker
product structure (KPS):

V (θ∗ ) =
(
Vff (θ∗ )
Vqf (θ∗ )

...
Vfq(θ∗ )
Vqq(θ∗ )

)
=

((
1
θ∗

0
Im

)′



(
1
θ∗

0
Im

)
⊗�

)
,

with� and 
 kf ×kf and (m+1)× (m+1) dimensional matrices, respectively. For a KPS
covariance matrix, the expression of the DRLM statistic for testing H0 : θ∗ = θ∗

0 simplifies
to

DRLM
(
θ∗

0
) =μ̂(

θ∗
0
)∗′
D̂

(
θ∗

0
)∗[
μ̂

(
θ∗

0
)∗′
μ̂

(
θ∗

0
)∗
Im + D̂(

θ∗
0
)∗′
D̂

(
θ∗

0
)∗]−1

D̂
(
θ∗

0
)∗′
μ̂

(
θ∗

0
)∗

, (28)

where

μ̂(θ∗
0 )∗ = √

T V̂ff (θ∗
0 )−

1
2 fT (θ∗

0,X ) = √
T�̂− 1

2 μ̂(θ∗
0 )

((
1
θ∗

0

)′

̂

(
1
θ∗

0

))− 1
2

7A more general specification of the linear asset pricing model is often used, which incorporates a
so-called, zero-beta return, λ0. Its population moment function is μf (λ0, λF ) = E(Rt ) − ιkf+1λ0 − BλF ,
with Rt a (kf + 1)-dimensional vector of asset returns, ιkf+1 a (kf + 1)-dimensional vector of ones,

B = cov(Rt , Ft ) var(Ft )−1. The population moment function in (27) then results by removing the zero-beta
return, which can, for example, be accomplished by subtracting a base asset return, say, the (kf + 1)-
th, to which our results are invariant: Rt = (R1t � � �Rkf t )

′ − ιkfR(kf+1)t , β = (B′
1 � � �B′

kf
)′ − ιkfBkf+1, for

Rt = (R1t � � �R(kf+1)t )′, B = (B′
1 � � �B′

kf+1 )′.
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is the normalized version of the sample moment, and similarly, D̂(θ∗
0 )∗ is the normalized

sample recentered Jacobian with

D̂(θ∗
0 )∗ = √

T�̂− 1
2 D̂(θ∗

0 )

×
⎛⎝(

0
Im

)′

̂

(
0
Im

)
−

(
0
Im

)′

̂

(
1
θ∗

0

)((
1
θ∗

0

)′

̂

(
1
θ∗

0

))−1 (
1
θ∗

0

)′

̂

(
0
Im

)⎞⎠− 1
2

,

and �̂, 
̂ are consistent estimators of � and 
, respectively.
The simplified expression of the DRLM statistic in (28) facilitates the joint discussion

of the size of the DRLM test for the linear IV regression and linear asset pricing models
in Corollary 1 below.

Corollary 1. When Assumptions 1 and 2 hold, and under i.i.d. homoskedastic errors,
the limit behavior of the DRLM statistic under H0 : β∗ = β∗

0 in the linear IV regression
model, or under H0 : λ∗

F = λ∗
F ,0 in the linear asset pricing model is dependent on μ̄ and D̄:

DRLM →
d

[
ψ′
f (D̄+�θ ) + μ̄′�θ

][
(μ̄+ψf )′(μ̄+ψf )Im + (D̄+�θ )′(D̄+�θ )

]−1

× [
(D̄+�θ )′ψf +�′

θμ̄
]

� χ2(m), (29)

with ψf and �θ independent standard normal kf and kf ×m dimensional random vec-

tors/matrices, μ̄′D̄ ≡ 0, and for linear IV: μ̄ = Q
− 1

2
zz μ̃f (β∗ )σ

− 1
2

εε , σεε = ωuu − 2ωuvβ∗ +
β∗′�vvβ∗, D̄=Q− 1

2
zz D̃(β∗ )


− 1
2

vv.ε, 
vv.ε =�vv − (ωvu −�vvβ∗ )σ−1
εε (ωvu −�vvβ∗ )′; while for

linear asset pricing: μ̄ = �− 1
2 μ̃f (λ∗

F )(1 + λ∗′
FQ

−1
F̄ F̄
λ∗
F )−

1
2 , D̄ = �− 1

2 D̃(λ∗
F )(QF̄F̄ + λ∗

Fλ
∗′
F )

1
2 ,

withQF̄F̄ = var(Ft ),�= var(ut ). “�” indicates stochastic dominance, that is, for a contin-
uous nonnegative scalar random variable u � χ2(m): Pr[u > cvχ2(m)(α)] ≤ α as in Theo-
rem 1.

The limit behavior of the DRLM statistic in Corollary 1 for linear moment equations
and a homoskedastic setting shows that it depends on two parameters: the length of μ̄
and the kf ×m matrix D̄, which is orthogonal to μ̄. It is easily seen that the resulting
limiting distribution is dominated by the χ2(m) distribution, which we further illustrate
by simulation in the next subsection.

3.2 Simulated size of DRLM

Figure 1 reports the rejection frequencies of 5% significance DRLM tests using χ2(1)
critical values and the limiting distribution from Corollary 1 as a function of the lengths
of μ̄ and D̄ for the one included endogenous variable/factor setting, so m= 1, and kf =
25.8

8Whenm= 1, D̄ reduces to a vector with the same dimension as μ̄, so their lengths result from the inner
products of the elements in each vector. We use kf = 25, since it corresponds with the twenty-five Fama–
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Figure 1. Rejection frequency of 5% significance DRLM tests of H0 : θ∗ = θ∗
0 using a 95% χ2(1)

critical value as a function of the lengths of μ̄ and D̄,m= 1, kf = 25.

Figure 1 shows that the DRLM test is size correct, since its rejection frequency does
not exceed 5% for any length of μ̄ and D̄. For comparison, Figure 2 presents the rejection
frequencies of the KLM test (see Kleibergen (2005)), as a function of the lengths of μ̄ and
D̄. It shows that the KLM test is only size correct when there is no misspecification, so
μ̄ = 0, and can be severely size distorted for small values of the length of μ̄, especially
when paired with small values of the length of D̄.

Figure 1 also shows that the DRLM test is conservative when the lengths of both
μ̄ and D̄ are small. The conservativeness of the DRLM test at these low values can be
reduced substantially when we calibrate a feasible conditional critical value function

Figure 2. Rejection frequency of 5% significance KLM tests of H0 : θ∗ = θ∗
0 using a 95% χ2(1)

critical value as a function of the lengths of μ̄ and D̄,m= 1, kf = 25.

French size and book-to-market sorted portfolios, which are the default in the asset pricing literature; see
Fama and French (1993).
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for the DRLM test; see the discussion in Section II.E of the Supplemental Appendix and
Guggenberger, Kleibergen, and Mavroeidis (2019).

3.3 Power of DRLM in the linear model withm= 1

For expository purposes, we analyze the power of the DRLM test for a single structural
parameter, so m = 1, with linear moment equations and homoskedasticity. It leads to
the KPS covariance matrix also used in (28). To simplify further, we use that 
 equals the
identity matrix, so 
= I2, which is without loss of generality.

We analyze the power of the DRLM test for testing H0 : θ∗ = θ∗
0 = 0. Therefore, for the

simulation presented later, we use a data generating process for which the pseudo-true
value equals θ∗ while we test for a zero value of it. The rejection frequencies of the DRLM
test using a range of values for θ∗ then map out its power curve for testing H0. Under H0 :
θ∗ = 0, the recentered JacobianD(0) coincides with its uncentered counterpart J(0).

Theorem 2. For testing H0 : θ∗ = 0, with m = 1, linear moment equations and ho-
moskedastic errors where 
= I2, the limit behaviors of μ̂(0) and D̂(0) when the involved
pseudo-true value equals θ∗ are characterized by

√
T�̂− 1

2 μ̂(0) →
d
μ̄

(
1 + (

θ∗)2)− 1
2 − D̄(

1 + (
θ∗)2)− 1

2 θ∗ +ψ∗
f (0),

√
T�̂− 1

2 D̂(0) →
d
D̄

(
1 + (

θ∗)2)− 1
2 + μ̄(

1 + (
θ∗)2)− 1

2 θ∗ +ψ∗
θ.f (0),

(30)

with ψ∗
f (0) and ψ∗

θ.f (0) independent standard normal kf -dimensional random vectors,

μ̄ = �− 1
2 μ̃f (θ∗ ) 1√

1+(θ∗ )2
= limT→∞

√
TVff (θ∗ )−

1
2μf (θ∗ ), μ̃f (θ∗ ) = limT→∞

√
Tμf (θ∗ ),

μf (θ∗ ) = μ(0) + J(0)θ∗, D̄ = �− 1
2 D̃(θ∗ )

√
1 + (θ∗ )2 = limT→∞

√
TVθθ(θ∗ )−

1
2D(θ∗ ),

D̃(θ∗ ) = limT→∞
√
TD(θ∗ ), D(θ∗ ) = J(0) − μf (θ∗ ) θ∗

1+(θ∗ )2 = (μf (0)
...J(0))( −θ∗

1 ) 1
1+(θ∗ )2 ,

μ̄′D̄≡ 0, since μ̃f (θ∗ )′�−1D̃(θ∗ ) ≡ 0.

Proof. See the Supplemental Appendix.

Theorem 2 implies the overall limit behavior of the sample score at the hypothesized
value, as provided in the corollary below.

Corollary 2. Under the conditions of Theorem 2, the limit behavior of the sample score
at the hypothesized value, 0, is

T ŝ(0) = Tμ̂(0)′�̂−1D̂(0) →
d

(
1 + (

θ∗)2)−1
θ∗(μ̄′μ̄− D̄′D̄

)
+ (

1 + (
θ∗)2)− 1

2
[
ψ∗
f (0)′

(
D̄+ μ̄θ∗) +ψ∗

θ.f (0)′
(
μ̄− D̄θ∗)]

+ψ∗
f (0)′ψ∗

θ.f (0). (31)
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The mean of the limit behavior of the sample score in (31) equals zero when the
normalized identification strength measure based on the Jacobian, D̄′D̄, and misspeci-
fication strength measure, μ̄′μ̄, are equal. It shows that the pseudo-true value θ∗ is then
not identified.

3.4 Simulated power of DRLM

Next, we illustrate the power of 5% significance DRLM tests of H0 : θ∗ = 0 compared to
other weak identification robust tests including GMM-AR, KLM, and LR tests; see, for
example, Stock and Wright (2000), Moreira (2003), and Kleibergen (2005).

We consider a simulation setting with kf = 25 moment equations, weak misspecifi-
cation, μ̄′μ̄= 10, and varying identification strength. When there is no misspecification,
Andrews, Moreira, and Stock (2006) show that the LR test is optimal, so we refrain from
using that setting. Figures 3 and 4 show the power curves of KLM (panel 3.1), DRLM
(panel 3.2), LR (panel 4.1), and GMM-AR (panel 4.2) tests of H0 : θ∗ = 0 for various iden-
tification strengths and a fixed amount of misspecification.

The power curves of the different tests in Figures 3 and 4 show that only the DRLM
test is size correct for all settings of the identification strength. The size distortion of
some of the other weak identification robust tests can be quite pronounced, which es-
pecially holds for the LR and GMM-AR tests. For the LR test, the rejection frequency at
zero decreases from 30% to 8% when the identification strength increases, while for the
KLM test, it decreases from 10% to 5%. The rejection frequency of the GMM-AR test at
zero is equal to 36% for all identification strengths.

Corollary 2 shows that the pseudo-true value is not identified when the identification
strength equals the amount of misspecification, D̄′D̄ = μ̄′μ̄. This holds for a value of
around three (≈ √

10) on the “length D̄” axis, which explains why the power curves for
all tests are flat in the opposite direction at this value. For the DRLM test, the power curve
is flat with a rejection frequency, which is proven to be at most 5%, while for the other
tests it exceeds 5%, and for the LR and GMM-AR tests even by a substantial amount.

Figure 3. Power of 5% significance KLM and DRLM tests of H0 : θ∗ = 0 with misspecification,
μ̄′μ̄= 10, kf = 25, 
= I2.
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Figure 4. Power of 5% significance LR and GMM-AR tests of H0 : θ∗ = 0 with misspecification,
μ̄′μ̄= 10, kf = 25, 
= I2.

When D̄′D̄ is less than μ̄′μ̄, the minimal value of the population continuous up-
dating objective function is no longer at θ∗ but at θ1 = − 1

θ∗ .9 The GMM-AR statistic is
the sample analog of the population continuous updating objective function, which ex-
plains why its power is minimal at zero and maximal at infinity when “length D̄” exceeds
three, so D̄′D̄ > μ̄′μ̄, and vice versa when “length D̄” is less than three, so D̄′D̄ < μ̄′μ̄. In
the latter case, the pseudo-true value is not identified because it is at infinity. Kleibergen
and Zhan (2024a) prove that the pseudo-true value of the CUE is not identified when
the population value of the traditional rank statistic of the Jacobian, which they label
IS, equals the minimal value of the CUE population objective function, which they label
MISS and equals the population value of the J-statistic. They also show that IS − MISS
is always nonnegative and provides a measure of the identification strength in misspec-
ified linear GMM whose sample analog is a (quasi-) likelihood ratio no-identification
statistic. When D̄′D̄ is less than μ̄′μ̄, MISS = IS, which further indicates that the pseudo-
true value is then not identified.

Figure 5 shows the distribution function of the misspecification J-statistic, which
equals the minimal value of the GMM-AR statistic when the null hypothesis holds, so
for values of θ∗ equal to zero. It shows the distribution function for three different values
of the identification strength D̄′D̄: 0, 10, and 100. Recognizing that the 95% critical value
of the χ2(24) distribution, since kf − 1 = 24, is about 36.42, Figure 5 shows that we never
reject no misspecification at the 5% significance level when D̄′D̄ equals 0, 7% of the
times when D̄′D̄ = 10, and 33% when D̄′D̄ equals 100. This indicates the difficulty of
detecting misspecification; see also Gospodinov, Kan, and Robotti (2017).

The power curves of the LR and GMM-AR tests in Figure 4 increase when mov-
ing away from the hypothesized value and when the identification strength exceeds

9The first element of the limit behavior of the sample score in (31) equals zero at the two stationary
points of the CUE population objective function: θ∗ and − 1

θ∗ . The sign of the Hessian also results from it
and is indicated by μ̄′μ̄− D̄′D̄. Hence, when μ̄′μ̄− D̄′D̄ < 0, the stationary points at θ∗ and − 1

θ∗ are the min-
imum and maximum, respectively, and vice versa when μ̄′μ̄− D̄′D̄ > 0; see Lemma 2(i) in the Supplemental
Appendix.
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Figure 5. Distribution function of the J-statistic for misspecification when θ∗ = 0 holds, solid
line: D̄′D̄= 0, dash-dot: D̄′D̄= 10 = strength of misspecification, dashed: D̄′D̄= 100.

the measure of misspecification, D̄′D̄ > μ̄′μ̄. This however does not hold for the power
curves of the two LM tests in Figure 3, which are eventually decreasing. To improve the
power of the DRLM test, we propose to use a property of its derivative as discussed next.

3.5 Power improvement withm= 1

The score is equal to zero at all stationary points of the CUE sample objective function,
so the same holds for tests based on a quadratic form of it like, for example, the DRLM
and KLM tests, as well. It explains the power decreasing away from the null hypothesis
for the KLM and DRLM tests in Figure 3. Tests with better power properties therefore ex-
ist in correctly specified GMM that implicitly or explicitly combine the KLM test with an
asymptotically independent J-test in either a conditional or unconditional manner; see
Moreira (2003), Kleibergen (2005), Andrews, Moreira, and Stock (2006), Andrews (2016),
and Andrews and Mikusheva (2016a, 2016b). In our misspecified GMM setting, this is
however not possible since the limiting distribution of the J-statistic is a noncentral χ2

distribution with an unknown noncentrality parameter. Hence, we cannot combine this
limiting distribution with that of the DRLM statistic to obtain the (conditional) critical
values for a combination test.

To improve the power of the DRLM test, we aim to reject hypothesized pseudo-true
values of θ, which are close to a stationary point of the CUE sample objective function
other than the CUE. This would be similar to the conditional or unconditional identifi-
cation robust combination tests in regular GMM, which use that while the KLM test does
not reject at such values of θ, J, and/or GMM-AR tests (see Anderson and Rubin (1949)
and Stock and Wright (2000)) likely do. For hypothesized values of θ close to the CUE,
these combination tests put most weight on the KLM test, but shift the weight toward
the J and GMM-AR tests when θ is close to other stationary points; see Andrews (2016)
and Kleibergen (2007). Since the limiting distributions of the J and GMM-AR statistics
depend on unknown nuisance parameters in our misspecified GMM setting, it is not
clear how we can use these statistics to improve power.
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Stationary points of the sample CUE objective function lead to zero values of the
DRLM statistic. The CUE is one of these stationary points and leads to the smallest value
of the objective function. To improve the power of the DRLM test, we further reject val-
ues of θ that lead to nonsignificant values of the DRLM statistic, which result from sta-
tionary points different from the CUE. We can do so by rejecting values of θ in a closed
set of nonrejected values that does not contain the CUE, for which an illustrative appli-
cation is presented later in Section 4 (see Figure 7; a closed set of nonrejected values is
on the left of Figure 7 as discussed for that figure).

To prove why the above power improvement rule leads to a size correct test proce-
dure, we use the derivative of the DRLM statistic (see Lemma 12 in the Supplemental
Appendix). In line with the previous Section 3.3, we also focus onm= 1 when discussing
power improvement in Theorem 3 below.

Theorem 3. When Assumptions 1 and 2 hold, m= 1, fT (θ,X ) is linear in θ, and testing
H0 : θ∗ = θ∗

0, with θ∗ the pseudo-true value, at the 100 × α% significance level, the power
improved DRLM testing procedure that rejects a pseudo-true value of θ both if:

1. the DRLM statistic is significant at the 100 × α% significance level or

2. the DRLM statistic is not significant but the hypothesized pseudo-true value of θ lies
in a closed set of nonsignificant values, which does not contain the CUE with some
significant values in between the closed set and the CUE,

is a test procedure of H0 : θ∗ = θ∗
0 with size 100 × α%.

Proof. See the Supplemental Appendix.

While the generic specification of the DRLM test is for a stationary point of the pop-
ulation continuous updating objective function, the power improved DRLM test from
Theorem 3 explicitly tests for the minimizer. Later, Section 4 contains an empirical ap-
plication (see Figure 7) that illustrates the power improvement rule from Theorem 3, in
particular, its Step 2. When computing the size of the test at the hypothesized value of,
say, zero, we therefore have to ascertain that it is the minimizer of the population objec-
tive function. For the setup in Figures 1–2, which uses the limit expression of the DRLM
statistic in (29), the population minimizer is at zero if the amount of misspecification is
less than the strength of identification so the length of μ̄ is less than that of D̄. When the
length of μ̄ exceeds that of D̄, the minimizer of the population objective function is at
±∞. In standard GMM, there is no misspecification, so the minimal value of the popu-
lation objective function is equal to zero. The amount of misspecification is then always
less than or equal to the identification strength, so the hypothesized value automatically
corresponds with the minimizer of the population objective function.

3.6 Simulated power of power improved DRLM

Figure 6 shows the rejection frequency and power of the power improved DRLM test.
Panel 6.1 contains the rejection frequency when the minimizer of the population contin-
uous updating objective function equals the hypothesized value, which is zero. It there-
fore does not show the rejection frequency for values where the length of μ̄ exceeds that
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Figure 6. Power improved 5% significance DRLM tests of H0 : θ∗ = 0 using a conditional 95%
critical value as a function of the lengths of μ̄ and D̄ (panel 6.1), μ̄′μ̄ = 10 (panel 6.2), kf = 25,

= I2.

of D̄, since the hypothesized value does then not correspond with the minimizer of the
population objective function, which is at ±∞. The rejection frequencies in panel 6.1
are computed using the calibrated conditional critical values. In line with Theorem 3,
panel 6.1 shows that the power improvement does not affect the size of the DRLM test
when the hypothesized value equals the minimizer of the continuous updating popula-
tion objective function.

Panel 6.2 of Figure 6 shows power curves for the power improved DRLM test. It uses
the same setup as for the power curves in Figures 3 and 4. At first glance, the power
improved DRLM test in panel 6.2 seems minorly-size distorted because its rejection fre-
quency can reach 8% when the length of D̄ is below 3. At these values, the minimizer of
the population CUE objective function is however at ±∞ since the misspecification ex-
ceeds the identification strength, so the 8% is indicative of power and not of size distor-
tion. When the minimizer is at zero, so the identification strength exceeds the amount of
misspecification, that is, the length of D̄ exceeds 3, the rejection frequency of the DRLM
test is at most 5% and reveals no size distortion. For the latter setting, panel 6.2 also
shows that the power curves are (almost) monotonic and the decrease in power that we
observed for the DRLM test in panel 3.2 is no longer present.

4. Applications

To show the importance and relevance of the DRLM test for applied research where lin-
ear moment equations are common, we briefly revisit the linear models considered in
Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017) using our DRLM test
and the identification robust GMM-AR, KLM, and LR tests; see also Kleibergen (2009)
and Kleibergen and Zhan (2020). For the linear IV regression model, the Supplemental
Appendix contains an empirical study using the data of Card (1995).
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Adrian, Etula, and Muir (2014) propose a leverage risk factor (“LevFac”) for asset
pricing. The leverage level is the ratio of total assets over the difference between total
assets and liabilities, and the leverage risk factor equals its log change. The empirical
study of Adrian, Etula, and Muir (2014) uses quarterly data between 1968Q1 and 2009Q4.
Following Lettau, Ludvigson, and Ma (2019), we extend the time period to 1963Q3–
2013Q4 and useN = 25 size and book-to-market sorted portfolios as test assets. Adrian,
Etula, and Muir (2014) show that the leverage factor prices the cross-section of many test
portfolios, as reflected by the significant Fama–MacBeth (FM) (1973) and Kan–Robotti–
Shanken (KRS) t-statistics on the risk premium reported in Table 1. The KRS t-statistic is
robust to misspecification but not to weak identification; see Kan, Robotti, and Shanken
(2013).

He, Kelly, and Manela (2017) propose the banking equity-capital ratio factor
(“EqFac”) for asset pricing. We consider one of their specifications with “EqFac” and
the market return “Rm” as the two factors. The significant FM and KRS t-statistics for
the risk premium on “EqFac” in Table 1 show that this factor is considered to be priced
by the test assets.

DRLM: Adrian, Etula, and Muir (2014)

Using the same data as for Table 1, Figure 7 shows the p-values for testing the risk pre-
mium on the leverage factor (horizontal line) using the DRLM, GMM-AR, KLM, and LR
tests. We also apply the LR no-identification test of Kleibergen and Zhan (2024a), whose
test statistic 3.55 is considerably below its 95% conditional critical value of 83.3 (for con-
ditioning statistic equal to 119), so we cannot reject the hypothesis that the pseudo-
true value is not identified at the 5% (and much larger) significance level. Most of the
p-values in Figure 7 are therefore above the 5% level, which implies that none of the
DRLM, GMM-AR, KLM, and LR tests leads to tight 95% confidence intervals for the risk
premium on the leverage factor as shown in Table 1. Given the smallish p-value of the
J-test, 0.20, and the likely weak identification of the risk premium on the leverage factor
reflected by the unbounded 95% confidence sets, misspecification could be present, so
it would be appropriate to use the DRLM test.

The p-values of the DRLM test in Figure 7 are equal to one at two different points.
The p-values of the GMM-AR test show that one of these two points relates to the min-
imal value of the GMM-AR test and the other one to the maximal value of the GMM-AR
test. Using the power enhancement rule for DRLM stated in Theorem 3, we can reject
nonsignificant values resulting from the DRLM test that lie within the closed interval
indicated by the significant maximizer of the GMM-AR statistic (around the left peak in
Figure 7, which does not contain the CUE), so the nonsignificant p-values of the DRLM
test, which occur around the maximizer of the GMM-AR test can all be categorized as
significant ones according to the power enhancement rule. The resulting 95% confi-
dence set for the DRLM test rejects a zero value of the risk premium of the leverage
factor and is reported in Table 1 alongside the one which results from just applying the
DRLM test. The FM and KRS t-statistics reported in Table 1 also reject a zero value of the
risk premium, but these tests are not reliable because of the potentially weak identifica-
tion of the risk premium of the leverage factor and the likely misspecification reflected
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Figure 7. Adrian, Etula, and Muir (2014). p-value from the DRLM (dashed red), GMM-AR
(dashed blue), KLM (solid black), LR (dash-dotted green), and the 5% level (dotted black).
J-statistic (=minimum GMM-AR) equals 28.42, with p-value of 0.20 resulting from χ2(N − 2),
IS = 31.97.

by the smallish p-value of the J-test. Since the zero risk premium is rejected by DRLM,
the leverage factor does appear to have its pricing ability; on the other hand, since the
confidence set of the risk premium is wide, we cannot precisely infer the leverage risk
premium by using the adopted data.

DRLM: He, Kelly, and Manela (2017)

Figure 8 shows the joint 95% confidence sets (shaded areas) of the risk premia on the
banking equity-capital ratio factor “EqFac” and the market return “Rm,” from using the
DRLM, GMM-AR, KLM, and LR tests. The p-value of the J-test shows that misspecifi-
cation is likely present, so it is appropriate to use the DRLM test for the confidence set
of the minimizer of the population continuous updating objective function. The LR no-
identification statistic of Kleibergen and Zhan (2024a), 0.57 is far below its 95% condi-
tional critical value, 56.3 (for conditioning statistic equal to 114), so we cannot reject the
hypothesis that the pseudo-true value is not identified. The 95% confidence sets of the
DRLM and KLM tests consist of two or three rather disjoint sets. The power enhance-
ment rule for the DRLM test shows that the smaller disjoint closed set can be discarded
for the joint 95% confidence set that results from the DRLM test. The resulting 95% confi-
dence set from the DRLM test includes a zero value for the risk premium on “EqFac” and
is also unbounded, which indicates that the pricing ability of “EqFac” is under doubt.

Gospodinov and Robotti (2021) also criticize the two-factor model of He, Kelly, and
Manela (2017). They warn that “EqFac” and “Rm” are closely related, so jointly using
them could lead to a reduced rank of the beta matrix. To compare with Figure 8, we re-
place the “EqFac” risk factor with the “SMB” (small minus big) factor from Fama and
French (1993) and similarly construct Figure 9. The GMM-AR test now indicates mis-
specification, since it rejects every hypothesized risk premia as shown in panel 9.2,
so the 95% confidence set that results from the GMM-AR test is empty. The LR no-
identification statistic is now 69 with a 5% conditional critical value of 56.4 (for con-
ditioning statistic equal to 214, see Kleibergen and Zhan (2024a)), so we reject the hy-
pothesis that the pseudo-true value is not identified at the 5% significance level. Our
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Figure 8. He, Kelly, and Manela (2017). 95% confidence sets from DRLM, GMM-AR, KLM,
and LR. J-statistic (minimum of GMM-AR) equals 35.32, with p-value of 0.036 resulting from
χ2(N − 3), IS = 35.88.

DRLM test, which allows for misspecification therefore yields a tight confidence set in
panel 9.1. This tight confidence set, in contrast with the wide one in panel 8.1, indicates
that the pricing ability of “EqFac” differs substantially from “SMB,” that is, “SMB” leads
to stronger identification of risk premia than “EqFac.” Because of the misspecification,
the 95% confidence sets resulting from the KLM and LR tests are not representative for
the minimizer of the population objective function.

5. Extensions

We next briefly discuss how the DRLM test can be used for subvector inference. Follow-
ing up, we state the DRLM test that also allows for strong misspecification. Thereafter,
we illustrate the size properties of the DRLM test for a setting with nonlinear moment
equations and discuss an application to it.

5.1 Subvector inference

The expression of the DRLM statistic applies to settings where the structural parameter
vector potentially has multiple elements, so the pseudo-true value θ∗ = (θ∗

1 � � � θ
∗
m )′ with

m≥ 1. Many times, practitioners are interested in constructing confidence sets on a sub-
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Figure 9. Rm and SMB. 95% confidence sets from DRLM, GMM-AR, KLM, and LR. J-statistic
(minimum of GMM-AR) equals 59.34, with p-value of 0.00 resulting from χ2(N− 3), IS = 128.35.

vector or individual element of the structural parameter vector. We discuss how to use
the DRLM test for constructing such a confidence set in the Supplemental Appendix.

5.2 DRLM test for strong misspecification

For the strong misspecification case, that is, μf (θ∗ ) is considered as a fixed nonzero
vector instead of a drifting sequence to zero, the weight matrix involved in the DRLM
statistic needs to be modified. For the general robustness of the DRLM test, we extend
Assumption 1 to Assumption 1∗, which concerns the joint limit behavior of the sample
moment, its derivative, and the covariance matrix estimator.

Assumption 1∗. For a value of θ equal to the minimizer of the continuous updating
population objective function, θ∗, we assume that the joint limit behavior of the sample
moment, its derivative, and the covariance matrix estimator accords with the central limit
theorem:

√
T

⎛⎜⎝ fT
(
θ∗,X

) −μf
(
θ∗)

vec
(
qT

(
θ∗,X

) − J(θ∗))
vech

(
V̂ff

(
θ∗) − Vff

(
θ∗))

⎞⎟⎠ →
d

⎛⎜⎝ψf
(
θ∗)

ψq
(
θ∗)

ψff
(
θ∗)

⎞⎟⎠ ∼N(
0, V

(
θ∗)), (32)
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where the 1
2kf (kf + 1) dimensional vector vech(Vff (θ∗ )) contains the unique 1

2kf (kf + 1)
elements of the symmetric kf × kf dimensional matrix Vff (θ∗ ).

Assumption 1∗ is identical to the result implied by Theorem 2 of Hall and Inoue
(2003) when using Vff (θ∗ ) as the weight matrix. Assumption 1∗ extends Assumption 1

because it also defines the limit behavior of the covariance matrix estimator V̂ff (θ∗ ),
which affects the limit behavior of the sample score in case of strong misspecification. It
applies under the conditions listed in Hall and Inoue (2003), foremost Assumptions A.6–
9, and Hansen and Lee (2021), Assumptions 2–4. Because the covariance between the
limit behaviors of fT (θ∗,X ) and D̂(θ∗ ) equals zero, and the estimator of this covariance
also equals zero, its limit behavior does not affect the sample score in case of strong
misspecification. Theorem 4 provides the appropriate weight matrix for the extended
DRLM statistic that allows for both weak and strong misspecification and states that the
same bounding result (25) holds for more general settings, which cover strong misspec-

ification. To avoid confusion, we label the test statistic in Theorem 4 as D̃RLM(θ∗
0 ), in

contrast with the previous DRLM(θ∗
0 ) in Theorem 1.

Theorem 4. The extended DRLM statistic for testing H0 : θ∗ = θ∗
0 reads

D̃RLM
(
θ∗

0

) = T × ŝ(θ∗
0

)
Ŵ

(
θ∗

0

)−1
ŝ
(
θ∗

0

)′
, (33)

where the weight matrix is given by Ŵ(θ∗
0 ) = Ŵ (θ∗

0 ) + Ŵs(θ∗
0 ), with Ŵ (θ∗

0 ) resulting from
(23) and Ŵs(θ∗

0 ) =⎛⎜⎜⎝
V̂ff

(
θ∗

0
)−1
D̂

(
θ∗

0
)(

Im ⊗ V̂ff
(
θ∗

0

)−1
fT

(
θ∗

0,X
))

−D′
kf

(
V̂ff

(
θ∗

0
)−1
fT

(
θ∗

0,X
) ⊗ V̂ff

(
θ∗

0
)−1
D̂

(
θ∗

0
))

⎞⎟⎟⎠
′ ⎛⎜⎝ 0 0 V̂f ,ff

(
θ∗

0
)

0 0 V̂θ,ff
(
θ∗

0
)

V̂ff ,f
(
θ∗

0

)
V̂ff ,θ

(
θ∗

0

)
V̂ff ,ff

(
θ∗

0

)
⎞⎟⎠

⎛⎜⎜⎝
V̂ff

(
θ∗

0

)−1
D̂

(
θ∗

0

)(
Im ⊗ V̂ff

(
θ∗

0
)−1
fT

(
θ∗

0,X
))

−D′
kf

(
V̂ff

(
θ∗

0

)−1
fT

(
θ∗

0,X
) ⊗ V̂ff

(
θ∗

0

)−1
D̂

(
θ∗

0

))
⎞⎟⎟⎠ , (34)

where V̂f ,ff (θ∗
0 ) = V̂ff ,f (θ∗

0 )′, V̂θ,ff (θ∗
0 ) = V̂ff ,θ(θ∗

0 )′, and V̂ff ,ff (θ∗
0 ) are the consistent es-

timators of the kf × 1
2kf (kf + 1), mkf × 1

2kf (kf + 1), and 1
2kf (kf + 1) × 1

2kf (kf + 1)
dimensional covariances matrices between fT (θ∗

0,X ) and vech(V̂ff (θ∗
0 )), vec(D̂(θ∗

0 )) and

vech(V̂ff (θ∗
0 )), and of vech(V̂ff (θ∗

0 )) itself;Dkf is the k2
f × 1

2kf (kf + 1) dimensional dupli-
cation matrix, so vec(Vff (θ∗

0 )) =Dkf vech(Vff (θ∗
0 )).

Under Assumptions 1∗ and 2, the extended DRLM test using the test statistic in (33)
is size correct as in (25) for all settings of μf (θ∗ ) andD(θ∗ ), that is, local to zero or fixed.

Proof. See the Supplemental Appendix.
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Theorem 4 shows that the additional component Ŵs(θ∗
0 ) in (34) has to be added to

the weak misspecification/identification weight matrix Ŵ (θ∗
0 ) to make the test also ro-

bust to strong misspecification. All components in Ŵ (θ∗
0 ) consist of quadratic forms in

fT (θ∗
0,X ) and D̂(θ∗

0 ), while those in Ŵs(θ∗
0 ) are at least of third order. It explains why

Ŵs(θ∗
0 ) vanishes if fT (θ∗

0,X ) or D̂(θ∗
0 ) is of a lower order, compared to Ŵ (θ∗

0 ). When
fT (θ∗

0,X ) and D̂(θ∗
0 ) converge in probability to a finite population defined constant,

Ŵ (θ∗
0 ) and Ŵs(θ∗

0 ) are of the same order of magnitude, so ignoring Ŵs(θ∗
0 ) would make

the DRLM test size distorted.
To illustrate the effect of strong misspecification on the size of the DRLM test, we

conduct a small simulation experiment where the values of α and δ drive the magnitude
of misspecification and strength of identification, respectively, as in Figure 10.10

Figure 10 presents the rejection frequencies of the 5% significance DRLM test from
Theorem 1, which uses a weight matrix suitable for weak misspecification, and the 5%
significance extended DRLM test resulting from Theorem 4, whose weight matrix also
allows for strong misspecification.

Figure 10. Rejection frequencies of 5% significance DRLM tests of H0 : θ∗ = 1. DRLM test from
Theorem 1 (dashed blue), DRLM test from Theorem 4 (solid red).

10The data generating process uses a single linear factor model with kf = 10, T = 1000, βi = δ√
T

( i−1
kf−1 ),

μR,i = α√
T

, μF = 0, �= Ikf ,QFF = 1. βi and μR,i are the ith element in β and μR, respectively.



Quantitative Economics 16 (2025) Double robust inference for GMM 321

Figure 10 shows that only in panel 10.4, which depicts strong misspecification and
identification, there is a noticeable size distortion of the DRLM test from Theorem 1.
Panels 10.1–10.3 show that the sizes of the two DRLM tests are basically identical while
there is a small power loss when using the more robust DRLM test from Theorem 4.

5.3 Nonlinear moment equations

The DRLM test applies to general nonlinear GMM settings with unrestricted covariance
matrices. In this subsection, we first illustrate the size of the DRLM test using nonlinear
moment equations, for which we also conduct an empirical study afterwards.

5.3.1 Size of DRLM in a nonlinear asset pricing model We illustrate the size of the
DRLM test by using the nonlinear moment equation resulting from a constant relative
rate of risk aversion (CRRA) utility function (see, e.g., Hansen and Singleton (1982)):

E

[
δ

(
Ct+1

Ct

)−γ
(ιkf +Rt+1 ) − ιkf

]
= μf (δ, γ), (35)

with δ the discount factor, which is kept fixed at the value used in the simulation ex-
periment, δ0 = 0.95, γ the relative rate of risk aversion, Ct consumption at time t, Rt+1

a kf -dimensional vector of asset returns, and ιkf a kf -dimensional vector of ones. The
setup of the simulation experiment, which is also used in Kleibergen and Zhan (2020) for
illustrating the GMM-AR test, is laid out in the Supplemental Appendix. Unlike for the
linear moment equations with i.i.d. homoskedastic setting, there is no analytical man-
ner to compute the pseudo-true value, so it has to be done numerically.

Similar to Figures 1–2, Figure 11 shows the rejection frequencies of 5% significance
GMM-AR and DRLM tests of the pseudo-true value of γ denoted by γ∗. The constant c
in Figure 11 reflects the amount of misspecification, while c̃ reflects the identification

Figure 11. Rejection frequencies of 5% significance GMM-AR and DRLM tests of H0 : γ∗ = γ∗
0

withm= 1, kf = 5 as a function of misspecification c, and strength of identification c̃.
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strength; see the Supplemental Appendix for further details. We note that the pseudo-
true value γ∗ is a function of (c, c̃), so the reported rejection frequencies in Figure 11
are for different hypothesized values of γ∗. The left panel of Figure 11 shows that the
GMM-AR test gets size distorted when the misspecification increases. This is unlike the
DRLM test in the right panel of Figure 11, which remains size correct for all values of the
identification and misspecification strengths.

The Supplemental Appendix conducts additional simulation studies for illustrating
the size of the DRLM test including a Monte Carlo study that employs the data genera-
tion process of Hansen and Lee (2021) for the linear IV regression model, and a simu-
lation experiment that jointly tests the pseudo-true values of δ and γ in (35), so m = 2.
Since the resulting findings are in line with Figures 1–2 and 11, we relegate them to the
Supplemental Appendix.

5.3.2 Application: Nonlinear asset pricing model with multiple parameters We next use
the DRLM test to construct the joint 95% confidence set for the discount rate and risk
aversion for the moment function (35) resulting from a CRRA utility function. The data
are yearly consumption and asset returns from 1928–2014. We use the six portfolios
sorted by size and book-to-market from French’s website for asset returns. The con-
sumption series results from Kroencke (2017) and is also used in Kleibergen and Zhan
(2020). For practicality, Figure 12 just reports on the region δ ∈ [0.5, 1] and γ ∈ [0, 50]
since values outside this region are unlikely to be economically meaningful. The shaded
areas in panels 12.1 and 12.2 contain the values of (δ, γ) that are not rejected at the 5%
level by the GMM-AR and DRLM tests, respectively.

Panel 12.1 shows that the GMM-AR test leads to large values for γ. For plausible val-
ues of δ, the 95% confidence set resulting from the GMM-AR test consists of values of γ

Figure 12. 95% confidence regions of (δ, γ) for CRRA utility. Notes: δ, the discount factor; γ,
the relative rate of risk aversion. We focus on the region δ ∈ [0.5, 1], γ ∈ [0, 50]. The shaded areas
contain the values of (δ, γ) that are not rejected at the 5% level by the GMM-AR and DRLM tests,
respectively. The data are yearly consumption and asset returns from 1928–2014; the six portfolio
returns sorted by size and book-to-market are from French’s website, while the consumption
series is from Kroencke (2017).
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that exceed 30. These large values of γ are generally considered unrealistic, since they
lead to the so-called, equity premium-risk-free rate puzzle; see, e.g., Savov (2011). In
contrast with the joint confidence set of (δ, γ) resulting from the GMM-AR test in panel
12.1, panel 12.2 shows that the DRLM test leads to values of γ that are economically
more reasonable: the 95% confidence set resulting from the DRLM test contains val-
ues of γ smaller than 30. More specifically, these plausible values of γ also occur jointly
with reasonable values of δ mostly around 0.9 ∼ 1. Projecting the joint confidence set
of (δ, γ) on the axes of δ and γ however leads to wide confidence sets for each of them,
which therefore indicate the difficulty of precisely identifying these two parameters by
using the adopted yearly data. Kleibergen and Zhan (2020) therefore call for longer time
series and improved consumption measures for consumption-based asset pricing stud-
ies. We also expect to conduct further power improvements for DRLM using nonlinear
moment conditions in future work, which can potentially lead to narrower confidence
sets.

The difference between panel 12.1 and panel 12.2 results since the DRLM test allows
for misspecification while the GMM-AR test does not, while both tests are robust to weak
identification. Once we account for misspecification, the additional uncertainty leads
to an expanded confidence set for (δ, γ) in panel 12.2, which contains economically
meaningful values while panel 12.1 does not.

In the Supplemental Appendix, we extend our empirical analysis to a similar setting
with Epstein–Zin (1989) preferences, which involve more time-consuming grid-search
in the 3-dimensional space. The resulting findings are similar to those in Figure 12.

6. Conclusions

We show that it is generally feasible to conduct reliable inference on the pseudo-true
value of the structural parameters resulting from the population continuous updating
GMM objective function in case of misspecification and weak identification using the
DRLM test. Hence, the DRLM test provides an important tool for conducting trustwor-
thy inference for empirically relevant settings. We use the DRLM test to analyze empir-
ical applications, which are plagued by both weak identification and misspecification
issues: Adrian, Etula, and Muir (2014), He, Kelly, and Manela (2017), and a nonlinear as-
set pricing model with multiple parameters. They show that other inference procedures
can seriously underestimate the uncertainty concerning the structural parameters when
both misspecification and weak identification matter.
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