
Cheela, Bhagath; DeHon, André; Fernández-Villaverde, Jesús; Peri, Alessandro

Article

Programming FPGAs for economics: An introduction to
electrical engineering economics

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Cheela, Bhagath; DeHon, André; Fernández-Villaverde, Jesús; Peri, Alessandro
(2025) : Programming FPGAs for economics: An introduction to electrical engineering economics,
Quantitative Economics, ISSN 1759-7331, The Econometric Society, New Haven, CT, Vol. 16, Iss. 1,
pp. 49-87,
https://doi.org/10.3982/QE2344

This Version is available at:
https://hdl.handle.net/10419/320332

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE2344%0A
https://hdl.handle.net/10419/320332
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Quantitative Economics 16 (2025), 49–87 1759-7331/20250049

Programming FPGAs for economics:
An introduction to electrical engineering economics

Bhagath Cheela
Department of Electrical and Systems Engineering, University of Pennsylvania

André DeHon
Department of Electrical and Systems Engineering, University of Pennsylvania

Jesús Fernández-Villaverde
Department of Economics, University of Pennsylvania

Alessandro Peri
Department of Economics, University of Colorado, Boulder

We show how to use field-programmable gate arrays (FPGAs) and their associ-
ated high-level synthesis (HLS) compilers to solve heterogeneous agent models
with incomplete markets and aggregate uncertainty (Krusell and Smith (1998)).
We document that the acceleration delivered by one single FPGA is comparable to
that provided by using 69 CPU cores in a conventional cluster. The time to solve
1200 versions of the model drops from 8 hours to 7 minutes, illustrating a great
potential for structural estimation. We describe how to achieve multiple accel-
eration opportunities—pipeline, data-level parallelism, and data precision—with
minimal modification of the C/C++ code written for a traditional sequential pro-
cessor, which we then deploy on FPGAs easily available at Amazon Web Services.
We quantify the speedup and cost of these accelerations. Our paper is the first step
toward a new field, electrical engineering economics, focused on designing com-
putational accelerators for economics to tackle challenging quantitative models.
Replication code is available on Github.

Bhagath Cheela: cheelabhagath@gmail.com
André DeHon: andre@acm.org
Jesús Fernández-Villaverde: jesusfv@econ.upenn.edu
Alessandro Peri: alessandro.peri@colorado.edu
We thank Yicheng Li (UPenn, Engineering) for the initial implementation of our hardware design. We thank
Lucas Ladenburger, Marina Leah McCann, and Paro Suh (CU Boulder, Economics) for outstanding research
assistance. We thank Andrew Monaghan and the CU Boulder Research Computing Center for providing
valuable insights. We also thank Giuseppe Bruno and Riccardo Russo (Bank of Italy) for testing an early
version of the tutorial associated with this paper and Victor Duarte, Mahdi E. Kahou, and Jesse Perla for their
comments. This project used: (i) the RMACC Summit supercomputer, supported by the National Science
Foundation (awards ACI-1532235 and ACI-1532236), CU Boulder and Colorado State University; (ii) AWS
Credits awarded under the NSF CC* Hybrid Cloud Award OAC-1925766, Research Computing, CU Boulder,
2022. This project was also supported by the Undergraduate Research Experiences for Diversity Grant, 2021,
Institute of Behavioral Science, University of Colorado, USA.

© 2025 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at http://qeconomics.org. https://doi.org/10.3982/QE2344

http://qeconomics.org/
mailto:cheelabhagath@gmail.com
mailto:andre@acm.org
mailto:jesusfv@econ.upenn.edu
mailto:alessandro.peri@colorado.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
http://qeconomics.org
https://doi.org/10.3982/QE2344

50 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

Keywords. FPGA acceleration, heterogeneous agents, aggregate uncertainty,
electrical engineering economics, cloud computing.

JEL classification. C6, C63, C88, D52.

1. Introduction

Computations play a crucial role in nearly all fields of economics. The over 3000 pages
of the four volumes of the renowned Handbook of Computational Economics (Amman
et al. (2018)) demonstrate this point. Interestingly, economists have paid much less at-
tention to hardware. Except for a few papers (among others, Nagurney (1996), Aldrich,
Fernández-Villaverde, Gallant, and Rubio-Ramírez (2011), Fernández-Villaverde and Va-
lencia (2018), Duarte, Duarte, Fonseca, and Montecinos (2019), and Peri (2020)), re-
searchers have taken hardware as a given.

This lack of interest is unfortunate. While the speeds of single-core central process-
ing units (CPU) are stalling, specialized accelerators (i.e., hardware designed to perform
specific operations) continue to deliver greater performance at inexpensive price points.
Since advanced computation is playing a growing role in all industries and research, the
development and programming of customized accelerator chips have become cheaper
and more accessible.

Fields like biology, genetics, medicine, and physics have been at the vanguard of
this process. Over the years, research in these fields has seen widespread adoption of
a chip whose hardware can be programmed to solve application-specific algorithms:
field-programmable gate arrays (FPGA). FPGAs have been successfully deployed to ac-
celerate a variety of applications: DNA matching (Hoang (1993)), molecular dynamics
(Azizi, Kuon, Egier, Darabiha, and Chow (2004)), Basic Local Alignment Search Tool
(Herbordt, Model, Gu, Sukhwani, and VanCourt (2006)), astrophysics particle simula-
tor (Berczik et al. (2009)), and cancer treatment (Young-Schultz, Lilge, Brown, and Betz
(2020)), among others.

So far, the skills required to implement algorithms in hardware have represented
a significant entry barrier, particularly in disciplines characterized by small research
teams, such as economics. These domain-specific knowledge requirements are appar-
ent in Peri (2020), the only other attempt we are aware of employing FPGA technology
in economics. Following the industry standard for chip design, Peri (2020) employs a
hardware description language to describe a circuit at the register transfer level (RTL)
that solves a Bellman equation via value function iteration on an FPGA. Much like
working with assembly language, this RTL design approach uses an intricate low-level
syntax to configure the hardware, rendering the code hardly accessible to economists.
More importantly, it requires a working knowledge of digital design, a subject that most
economists are unfamiliar with. Our paper describes how to reduce these barriers for
economics.

How do we get higher performance from a chip while retaining a reasonable eas-
iness of programmability? By replacing the lower-level RTL design in Peri (2020) (the
RTL approach) with the more accessible FPGA HLS C-to-gates compilers (the HLS ap-

Quantitative Economics 16 (2025) Programming FPGAs for economics 51

proach).1 Here, we follow a long history of increasingly sophisticated automation in
computer science to map higher-level abstractions down to low-level implementations.
Our HLS approach allows economists to implement complex circuits with minimal to no
knowledge of hardware design and delegate the technical details to the compiler. More
significantly, our approach dramatically reduces the coding and debugging time com-
pared to RTL, facilitating the implementation of far more complicated dynamic models
and the exploration of different model features, both key aspects of practical research.
We illustrate these ideas by accelerating a major workhorse model in economics: the
incomplete markets, heterogeneous agent model with aggregate uncertainty of Krusell
and Smith (1998).

We introduce the concepts of FPGAs’ programming and optimizations in the context
of a simple yet illustrative example: the accumulation of array elements. Here, we intu-
itively showcase all the hardware design techniques deployed to accelerate the Krusell
and Smith (1998) algorithm, illustrating how progressive code modifications translate
into gradually higher-performance FPGA circuits. Along the way, we compile a list of
hardware issues that economists are likely to encounter when accelerating their appli-
cations, including all the performance bottlenecks faced while accelerating the Krusell
and Smith (1998) algorithm. This approach allows us to distill essential hardware de-
sign principles for accelerating dynamic models without necessitating economists to
become hardware designers themselves. In the process, we highlight the remarkable
development advantages over the RTL approach proposed in Peri (2020) in terms of
accessibility, coding, and debugging time. Last, we discuss the portability of our code,
including, among other aspects, how Matlab 2022a and later editions can directly im-
plement the accumulator problem.

We deploy our HLS approach on Amazon Web Services (AWS) to accelerate the solu-
tion of an incomplete markets, heterogeneous agent model with aggregate uncertainty.
After the pioneering work of Krusell and Smith (1998), heterogeneous agent models
have been used to study business cycle fluctuations, monetary and fiscal policy, climate
change, life-cycle decisions, industry dynamics, and international trade. Also, there has
been tremendous interest in the development of solution methods well suited for these
models, such as Algan, Allais, and Den Haan (2008), Reiter (2009), Den Haan and Ren-
dahl (2010), Maliar, Maliar, and Valli (2010), Reiter (2010), Young (2010), Algan, Allais,
Den Haan, and Rendahl (2014), Pröhl (2015), Achdou, Han, Lasry, Lions, and Moll (2021),
Bhandari, Evans, Golosov, and Sargent (2017), Brumm and Scheidegger (2017), Judd,
Maliar, Maliar, and Tsener (2017), Bayer and Luetticke (2018), Childers (2018), Mertens
and Judd (2018), Winberry (2018), Fernández-Villaverde, Hurtado, and Nuño (2019), Au-
clert, Rognlie, and Straub (2020), Bilal (2021), and Kahou, Fernández-Villaverde, Perla,
and Sood (2021), among many others.

More concretely, we work with the canonical heterogeneous agent model in Den
Haan, Judd, and Juillard (2010). The authors proposed this economy as a computational
suite to test the accuracy of solution methods for heterogeneous agent models precisely

1From the earliest demonstrations (Babb et al. (1999)) to the launch of the first commercial compilers
(Streams-C, Frigo, Gokhale, and Lavenier (2001), Snider (2002)), FPGA compilers have steadily improved,
making the programming of FPGAs cost-effective in terms of coding time.

52 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

because of its canonicity. We solve the model employing the Krusell and Smith (1998)
algorithm as implemented by Maliar, Maliar, and Valli (2010). We pick this solution al-
gorithm because of its simplicity and accuracy. A further advantage of this code is that it
was not written to extract performance from custom accelerators, limiting the possible
biases in our analysis. We code our solution in C/C++, the fastest programming environ-
ment for computation in economics (Aruoba and Fernández-Villaverde (2015)).2 For the
FPGA, we employ the industry gold standard Xilinx high-level synthesis (HLS) compil-
ers using Vitis HLS (v2021.2, 64-bit) and the OpenCL interface (Xilinx, Inc. (2020)). For
the CPU, we use the G++ 9.4.0 and mpic++ 4.1.1 (Open MPI) compilers, which im-
plement state-of-the-art sequential and parallel execution run-time optimizations (and
whose importance will be clear momentarily).3

Our first exercise runs the code in one FPGA and one CPU core. The code is exactly
the same in both cases except when we apply the #pragma directives available to the
FPGA designer. The #pragmas instruct the HLS compiler on how to design the FPGA
hardware, that is, on how to connect physical logical resources in the FPGA to exploit
the maximum parallelism, pipelining, and data distribution required to solve our algo-
rithm efficiently.4 The CPU cannot offer this feature because its hardware is not pro-
grammable. The CPU code is compiled using the -O3 flag, the most aggressive standard-
compliant optimization and one that delivers an executable file that is hard to beat via
hand-made optimizations, even for highly experienced programmers. Thus, our code
compares the best performance offered by one FPGA with the best performance offered
by one CPU core, making the comparison meaningful. The FPGA delivers a speedup of
nearly 69 times against an Intel Xeon Scalable Processor (Cascade Lake, second genera-
tion) core. That is, we solve the same heterogeneous agent model 69 times faster in one
FPGA than in one CPU core, reducing the time to solve 1200 economies from 8 hours to
7 minutes.

Our second exercise scales up from one FPGA to eight and from one CPU core to 48
to compare their performance when a researcher has access to multicore acceleration.
In this case, we use Open MPI (the de facto standard for parallelization in large clus-
ters of CPUs) to parallelize our code as deployed in the CPUs. In particular, we ask each
CPU core to solve the same model many times (we call each solution an “economy”).
For example, if we have 48 cores, we ask each CPU core to solve 25 economies for a total
of 1200 economies, and we compare the time required against the time that the FPGAs
require to solve 1200 economies. This research design is the best case scenario for par-
allelization in CPU cores, as it minimizes the communication across CPU cores and its
associated overheads. Other parallelization schemes, such as solving one economy si-
multaneously in several cores (perhaps more relevant in practice because the model to
solve is complex), will deliver worse performance for multicore CPU clusters because

2We code our FPGA kernel functions in C to comply with the FPGA HLS C-to-gates compiler requirement.
Similarly, we code our CPU kernel functions in C to avoid the abstraction penalty that may arise from C++

object-oriented programming. Thus, we give the CPU the best fighting chance against FPGA acceleration.
3All replication codes are available on a Github repository: https://github.com/AleP83/FPGA-Econ.git.
4Our online tutorial Cheela, DeHon, Fernández-Villaverde, and Peri (2023) supplies a detailed guide on

how to utilize #pragmas to accelerate the solution of our model.

https://github.com/AleP83/FPGA-Econ.git

Quantitative Economics 16 (2025) Programming FPGAs for economics 53

of time lost in data transfers. We find that one FPGA solves 1200 economies 1.48times
faster than 48 CPU cores do and that eight FPGAs solve 1200 economies 549 times faster
than one CPU core and 12 times faster than 48 CPU cores.

The FPGA speedups in these exercises are accompanied by large cost savings (less
than 20of the CPU cost) and even more impressive energy savings (less than 6% of the
CPU energy consumption), a growing concern due to environmental goals set up by
universities and research institutions. An additional attractive feature of FPGAs is that
they are easily available either for purchase at economical prices or at commercial cloud
services, such as AWS (the service we use in this paper), at low costs per hour.

Next, we inspect the mechanisms that account for the FPGA speedups. First, we use
pipelining of complex equations to start a new calculation composed of hundreds of
primitive operations in each cycle. In the process, we tune the precision and data rep-
resentation to achieve efficient pipelining and support additional parallelism. Second,
we exploit loop-level data parallelism to perform computations on multiple indepen-
dent pipelines simultaneously. Third, we employ coarse-grained, data-level parallelism
to compute multiple economies in parallel.

While our application is focused on the canonical model in Den Haan, Judd, and
Juillard (2010), the acceleration techniques we describe for its solution can be easily gen-
eralized for solving more complicated heterogeneous agent models. We have in mind,
for example, the classes of HANK (Kaplan, Moll, and Violante (2018), Bayer, Luetticke,
Pham-Dao, and Tjaden (2019)) and climate change models (Cai and Lontzek (2019),
Cruz Álvarez and Rossi-Hansberg (2021), Krusell and Smith (2022)) that have become
so influential in recent years. Both classes of models face a whole new range of com-
putational challenges with respect to the basic framework in Krusell and Smith (1998)
that have prevented their full deployment for policy advising. FPGAs are well suited to
deal with these larger models. Nonetheless, we prefer to illustrate our approach with
the model in Den Haan, Judd, and Juillard (2010) instead of jumping directly to more
complex environments for transparency. Over the last 25 years, we have accumulated
so much knowledge about what works (and what does not) while solving models à la
Krusell and Smith (1998) that the reader can appreciate, more quickly, the novelty of our
work, the speed gains, and its accuracy.

Similarly, the extra speed that FPGAs deliver can also be useful when structurally
estimating the model using micro and macro data or checking for the robustness of the
results with respect to different parameter values. In both cases, we need to solve the
model for many parameter values. Thus, speed is a first-order consideration.

In summary, the design of specialized computational accelerators for specific yet vi-
tal computational tasks in economics at attractive price points and reasonable program-
ming complexity holds much promise. Programming FPGAs to solve heterogeneous
agent models is but a first step into a rich area of research.

The rest of the paper is organized as follows. Section 2 presents the model and its
calibration. Section 3 details the solution algorithm. Section 4 introduces the building
blocks of FPGAs’ programming and optimizations. Section 5 describes the acceleration
schemes. Section 6 reports quantitative results and performs robustness tests. Section 7
isolates the acceleration channels responsible for the speed gains. Section 8 concludes.

54 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

A Supplemental Appendix (Cheela, DeHon, Fernández-Villaverde, and Peri (2024)) and
tutorial (Cheela et al. (2023)) provide further details.

2. The model

This section presents the incomplete markets model in Den Haan, Judd, and Juillard
(2010). This is a production economy with aggregate uncertainty, and a unit mass of
infinitely lived ex ante identical households that experience uninsurable idiosyncratic
shocks to their employment status and are subject to a borrowing constraint.

The household’s problem Households consume ct ∈ R+, supply labor l̄ (paid at a wage
wt), and accumulate capital kt+1 ∈ K ⊆ R+ (which receives a rental rate rt). Households
suffer idiosyncratic shocks to their employment status εt ∈ {0, 1}, which equals one if
employed and 0 if unemployed. We will specify the stochastic process for εt below. Also,
τt is the labor income tax rate, μwt is the (tax-free) unemployment benefit, and δ is the
depreciation rate.5

Thus, households choose sequences of consumption and physical capital to solve:

max
{ct ,kt+1}∞t=0

E0

∞∑
t=0

βt c
1−γ
t − 1
1 − γ

(1)

s.t. ct + kt+1 = [
(1 − τt)l̄εt +μ(1 − εt)

]
wt + (1 + rt − δ)kt (2)

kt+1 ≥ 0. (3)

The firm’s problem A representative, perfectly competitive firm uses per capita capital
Kt ∈ M ⊆R+ and the employment rate Lt ∈R+ to produce a per capita final good with a
technology Yt =AtK

α
t (l̄Lt)1−α, where 0 <α< 1. The aggregate productivity At follows a

two-state Markov process over the support A = {ab, ag}, where ag = (1 +�A) is the good
realization and ab = (1 −�A) is the bad realization.

Competition in the input and output markets implies that:-

rt = αAt

(
l̄Lt

Kt

)1−α

, (4)

and

wt = (1 − α)At

(
Kt

l̄Lt

)α

. (5)

Government The government uses labor income taxes τt to finance unemployment
benefits (in terms of wages) μ,

τt l̄Lt = μ(1 −Lt), (6)

where ut = 1 −Lt is the unemployment rate.

5Our notation follows Den Haan, Judd, and Juillard (2010), except that we drop the subindex for individ-
ual households. We are more explicit about the choice sets than what is standard to facilitate readability.
When unemployment benefits are set to zero, the model coincides with the model in Krusell and Smith
(1998).

Quantitative Economics 16 (2025) Programming FPGAs for economics 55

Table 1. Calibrated parameters.

α 0.36 Output capital share
β 0.99 Quarterly discount factor
γ 1 Relative risk aversion coefficient
δ 0.025 Quarterly depreciation rate
μ 0.15 Unemployment benefits in terms of wages
l̄ 1/0.9 Time endowment
�A 0.01 Aggregate productivity shock size

Aggregate law of motion The cross-sectional distribution of households over capital
holdings and employment status, � , follows the law of motion:

� t+1 = H(� t , At , At+1). (7)

Equilibrium Given an exogenous transition law for {A, ε}, a recursive competitive
equilibrium is the set of prices {w, r}, policy function k′(·), tax rate τ, and law of motion
H(·) for the cross-sectional distribution � such that: (i) given the individual household
state {k, ε; � , A}, prices {w, r} and the laws of motion of {A, ε} and 	, the policy function
k′(·) solves the Bellman equation representation of the household’s sequential problem
in (1)–(3); (ii) given {� , A}, input factor prices {w, r} equal the marginal products (4)–(5);
(iii) given A, τ balances the government budget, (6); (iv) the markets for labor and cap-
ital clear; (v) given {w, r, � , k′, A} and the transition laws for {A, ε}, the law of motion
H(·) satisfies (7).

Calibration To ensure the maximum comparability of results, we replicate the calibra-
tion of Den Haan, Judd, and Juillard (2010). The time unit is a quarter. We discretize
the joint transition of aggregate productivity and idiosyncratic employment status us-
ing the transition matrix in Table 2 in Den Haan, Judd, and Juillard (2010). The transition
probabilities are designed such that the unemployment rate depends only on aggregate
productivity, and they take values ub = u(1 − �A) in bad times and ug = u(1 + �A) in
good times, ub > ug. Table 1 summarizes the rest of the parameters as described in Den
Haan, Judd, and Juillard (2010).

We will refer to the set of parameters θ = {α, β, γ, δ, μ, l̄, �A} calibrated as in Table 1
as the baseline economy. Without loss of generality, we will refer to a generic θ as an
economy.

3. The solution algorithm

We solve the model using the stochastic simulation algorithm described in Maliar,
Maliar, and Valli (2010). Following Krusell and Smith (1998), we assume that households
are boundedly rational and perceive that only a finite set of moments of � affect future
prices. In the numerical exercise, we restrict our attention to the law of motion that de-
scribes the evolution of the first moment of the cross-sectional distribution of the per

56 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

capita stock of capital, m ∈ M among households:

m′ = H
(
m, A, A′)

(notice the change in notation from H(·) to H(·)).

A. Grids We define the intervals on the household’s capital K ≡ [kmin, kmax] = [0, 1000]
and first moment of the cross-sectional distribution M ≡ [mmin, mmax] = [30, 50]. We dis-
cretize them with Nk = 100 and NM = 4 grid points, respectively. Section 6.5 explores
alternative grid sizes.

B. Individual households’ problem (IHP) A stationary solution to the optimization
problem (1) is the saving policy function k′ : K × {0, 1}ε × M × A →R+:

k′ = [
μ(1 − ε) + (1 − τ)l̄ε

]
w + (1 − δ+ r)k

−
{
λ+βE

[
1 − δ+ r ′((

μ
(
1 − ε′) + (

1 − τ′)l̄ε′)w′ + (
1 − δ+ r ′

)
k′ − k′(k′))γ]}−1/γ

, (8)

where k′ ≡ k′(k, ε, m, A), λ ≡ λ(k, ε, m, A), k′(k′) ≡ k′(k′(k, ε, m, A), ε′, m′, A′) and that
satisfies the occasionally binding constraint k′ ≥ 0 and complementary slackness con-
dition λ · k′ = 0, with λ ≥ 0.

We find a solution to the IHP using the following iterative Euler equation algorithm:

(i) Initial guess. Guess an initial policy function k′
0. We set k′

0 ≡ k′
0(k, ε, m, A) =

0.9 · k.

(ii) Iteration step. For each iteration step i ≥ 0 and given the guess k′
i:

k̂′
i+1 =
k′

i (a) Solve (8),

k′
i+1 = ηkk̂

′
i+1 + (1 −ηk)k′

i (b) Update Guess.

(a) For any state (k, ε, m, A) ∈ K × {0, 1}ε × M × A:

• Set the Lagrange multiplier λ(k, ε, m, A) = 0.

• Substitute the guess k′
i and compute the right-hand side of equation (8).

• Update the left-hand side. If k̂′
i+1 falls outside the capital grid set, replace

it with the closest boundary of the individual capital grid, {kmin, kmax}.

(b) After completing step (a), let ηk = 0.7 and set the (i+1)-iteration policy func-
tion guess to

k′
i+1 = ηkk̂

′
i+1 + (1 −ηk)k′

i. (9)

(iii) Convergence criterion. Repeat the iteration step (ii) until convergence of the pol-
icy function in the sup norm:

ρ
(
k′
i+1, k′

i

) = max
(k,ε,m,A)∈K×{0,1}ε×M×A

|k′
i+1 − k′

i| < εk = 1e(−8). (10)

Quantitative Economics 16 (2025) Programming FPGAs for economics 57

C. Aggregate law of motion (ALM) Following Maliar, Maliar, and Valli (2010), we param-
eterize the law of motion of the per capita stock of capital, m ∈ M as

lnm′ = f (a, m; b) = b1(a) + b2(a) lnm, a ∈ {ab, ag}, (11)

where the second equality assumes the conditional expectation of lnm′ to be linear in
lnm and aggregate-state dependent.

D. The fixed-point algorithm We estimate the vector of aggregate state-dependent co-
efficients b (henceforth, ALM coefficients) using a nested fixed-point iterative algo-
rithm:

(i) Initializations. Set initial values for (b1(ag), b2(ag)) = (b1(ab), b2(ab)) = {0, 1}.
Set the size of the cross-sectional distribution to J = 10,000 households and the
length of the stochastic simulation to T = 1100. Use a pseudo-random number
generator to draw the aggregate shocks {at }1100

t=1 and the idiosyncratic shocks to
the employment status {εt,j }T=1100,J=10,000

t=1,j=1 . Set the initial cross-sectional distri-

bution of the households’ capital holdings.6 Use equations (4), (5), and (6) to
compute wt , rt , and τt .

(ii) Iteration step. For each iteration step i ≥ 0:

(a) IHP. Estimate the households’ capital holdings policy functions k′(k, ε, m,A),
by solving the IHP.

(b) Simulation. At each t ∈ {1, � � � , 1100}, given the initial capital holdings distri-
bution, the idiosyncratic and aggregate stochastic processes, and the policy
functions:

(i) Accumulation step. Compute mt , the cross-sectional average of house-
holds’ capital holdings

mt = 1
J

J∑
j=1

kj,t . (12)

(ii) Interpolation step. For each household j ∈ {1, � � � , 10,000}, use linear in-
terpolation to determine the next period household capital holdings,
given the period t idiosyncratic {kt,j , εt,j } and aggregate {mt , At } states.7

6Following Maliar, Maliar, and Valli (2010): (i) we set the initial capital distribution to the steady-state

value of capital in a deterministic model with employment rate L = 1/l̄ = 0.9; (ii) we iteratively update the
initial capital distribution (with the capital distribution associated with T = 1100) if the metric measuring
the convergence of the ALM coefficients in (13) is higher than 1e(−6).

7Maliar, Maliar, and Valli (2010) use a spline interpolation scheme. Because moving the splines to an
FPGA involves some extra work that would distract from the clarity of exposition, we leave the implemen-
tation of this feature for future research. In addition, we precompute aggregate and idiosyncratic shocks to
ensure comparability across different software. These are the only two differences with their original code,
available at https://lmaliar.ws.gc.cuny.edu/codes/.

https://lmaliar.ws.gc.cuny.edu/codes/

58 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

(c) ALM. Estimate b̂i(a) = (b̂i1(a), b̂i2(a)) with a ∈ {ab, ag} by running the OLS
regression associated with (11), after discarding the first 100 observations,
t = 1, � � � , 100.

(d) Let ηb = 0.3. Set the (i+ 1)-iteration ALM coefficients to

bi+1
l (a) = ηbb̂

i
l(a) + (1 −ηb)bil(a), l ∈ {1, 2}, a ∈ {ab, ag}.

(iii) Convergence criterion. Repeat the iteration step (ii)(a)–(ii)(d) until convergence of
the ALM coefficients in the Euclidean norm:√ ∑

l∈{1,2},a∈{ab,ag }

(
bi+1
l (a) − bil(a)

)2
< εb = 1e(−8). (13)

4. Building blocks of FPGAs’ optimizations

Next, we introduce the building blocks of FPGA optimizations: data precision, loop
pipelining, loop unrolling, and memory management.

We do so by focusing on a simple example: the sum of eight numbers,
∑8

i=0 Xi

(“eight” is just for concreteness, nothing essential depends on it). This accumulation
problem, which is equivalent to the problem of computing the cross-sectional average of
individual capital holdings in equation (12) by summing J numbers, allows us to show-
case all the acceleration techniques deployed in our main application. In the process,
we illustrate how these circuit design tools can be exploited with minimal alterations of
existing C code and we highlight the development advantages, namely theRTL approach
proposed in Peri (2020), underscoring the potential of HLS programming for economics.

For expositional convenience, we focus our discussion on the kernel, that is, the al-
gorithm the hardware designer seeks to accelerate by programming the custom logic of
the FPGA (the accumulator in this section; the Krusell and Smith (1998) algorithm, later
on). Our tutorial (Cheela et al. (2023)) delves into the details of the nonkernel boiler-
plate code required to implement our application in hardware. Since the kernel is the
only code changing across the exercises in this section, this choice comes without loss
of generality.

4.1 Programming FPGAs using HLS

Programming an FPGA is the design of a physical circuit by connecting the chip’s cus-
tom logic (CL). Consequently, we will use the term “CL design” interchangeably to refer
to circuit design moving forward. FPGA chips are built on the fundamental idea that
we can implement Boolean combinational functions using memories, also referred to
as lookup tables. By strategically organizing enhanced versions of these lookup tables,
known as configurable logic blocks (CLBs), within a programmable grid, FPGAs enable
the physical implementation of circuits that would otherwise require months to fabri-
cate on traditional silicon chips.

This premise underscores a conceptual difference between hardware and software
programming. While software programming yields an executable application designed

Quantitative Economics 16 (2025) Programming FPGAs for economics 59

to run on existing hardware, FPGA programming creates a circuit. Beyond this concep-
tual difference, software and hardware programming share a historical quest to reduce
implementation costs by raising the level of abstraction. By leveraging the use of com-
pilers, software programming has progressively replaced low-level (assembly) language
with increasingly sophisticated higher-level languages (C/C++, Fortran, Julia, etc.).
The early adoption of compilers was driven by the necessity to take advantage of the
rapid increase in the number of transistors in the late twentieth century (Moore’s law).
The stalling speed of single-core central processing units (CPU) has made the compiler
approach increasingly more attractive in hardware programming, too, as it makes the
design of circuits for customized hardware less time-consuming. After decades of effort,
commercially supported compilers (Xilinx, Inc. (2020), Corporation Intel (2021)) are now
available to replace the widely used low-level register transfer level (RTL) design. Similar
to assembly, RTL coding employs a low-level syntax to design the required hardware
configurations, making the code hardly accessible to trained economists. Our goal is to
explain how FPGA compilers break this barrier.

To make this point, we illustrate the simplicity of implementing the sum of J = 8
numbers in hardware using HLS. This operation requires just compiling existing C code
written to be executed on the CPU with the HLS v++ compiler in place of, say, the g++
compiler,

Listing 1. Sequential accumulator

where array_type is a double-precision floating-point

With this code, the HLS compiler synthesizes a circuit that executes our instructions.
What is remarkable is that we can implement this circuit with little to no knowledge of
hardware design. In contrast, attempting to represent this simple example using the RTL
approach proposed in Peri (2020) cannot abstract from these technicalities. To demon-
strate this point, Listing 1 in Supplemental Appendix A.1 reports the RTL code required
to implement the same circuit above.

Beyond the complexity of the syntax itself, coding in RTL is akin to describing a cir-
cuit. Accordingly, it demands proficiency in digital design, a subject rarely within the
purview of economists. In contrast, theHLS approach delegates these details to the com-
piler. More significantly, the compiler autonomously recognizes and implements many

60 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

of the performance optimizations discussed in the next sections without explicit direc-
tives from the user.

4.1.1 FPGA optimizations Our previous section implemented an accumulator without
any optimization. This approach is often referred to as the “dusty deck” approach, evok-
ing the image of pulling an old deck of punched cards off the shelf and compiling it,
untouched, to the new hardware.

While fully functional, the synthesized circuit is not efficient. Figure 1 illustrates the
associated data flow graph to clarify this point. The vertical axis denotes the passage of
time in clock cycles, while the horizontal axis represents the circuits’ functional units,
consisting of additions and memory accesses in our example. The graph shows that ev-
ery P clock cycles, a new double-precision floating-point addition is performed. Accord-
ingly, the synthesized circuit has a for loop latency of J × P clock cycles: this is the
time (measured in clock cycles) required for a circuit with a single physical adder to se-
quentially execute J = 8 additions (loop iterations) when each one of them takes
P > 1 clock cycles (iteration latency).

We can enhance the efficiency of this circuit by reducing its for loop latency.
The next sections introduce the main tools that economists can leverage in order to as-
sist the HLS compiler to design an effective CL design. We use the word assist deliber-

Figure 1. Data flow of sequential accumulator: Dusty deck approach. Note: Data flow graph of
a sequential accumulator circuit for adding double-precision floating-point elements of an array
st_k of size J = 8. The vertical dimension illustrates in which clock cycles these operations are
performed (scheduling). The circuit consists of one single double-precision floating-point adder,
which performs an addition every P > 1 clock cycles.

Quantitative Economics 16 (2025) Programming FPGAs for economics 61

ately. Unlike in the RTL approach, we do not design the circuit. Simply, we provide clues
about acceleration opportunities that the compiler may not autonomously identify.

We introduce these optimization techniques in an order that aligns with industry
standards for hardware design optimization. Our overarching strategy is to initially es-
tablish an efficient circuit (Sections 4.2 and 4.3) and subsequently enhance its perfor-
mance by harnessing parallel computing opportunities (Section 4.4).

Throughout this process, we address potential bottlenecks that might hinder effi-
cient design. This enables us to compile a list of critical hardware issues that economists
are likely to encounter when accelerating their applications. Most importantly, it pro-
vides the core hardware design principles for accelerating economic models.

4.2 Arbitrary-precision fixed point

We start our optimizations by targeting the iteration latency, P . This is the time
required to execute the instructions in the body of the loop of Listing 1 at any given
iteration. In our application, P consists of the time necessary to perform two operations:
reading an array element and accumulating it (see Figure 1). Here, we illustrate how we
can reduce the execution time of the accumulation from multiple clock cycles to a single
one by transitioning from single or double-precision floating-point data type (hereafter
referred to as floating point) to fixed-precision fixed point (hereafter referred to as fixed-
point) to represent the array elements.

Floating-point operations provide the IEEE754 standard for the finite precision ap-
proximation of real numbers. However, they cost hardware and energy and take multiple
clock cycles to complete. In contrast, integer and fixed-point operations execute within
a single clock cycle and, when properly implemented, deliver high accuracy.8 Among
others, Yates (2009) provides guidelines for employing fixed-point arithmetic, and Sec-
tion 7.2 operationalizes them in our main application using HLS (Xilinx, Inc. (2021)).

Here, we illustrate how a few lines of code can recast floating- into fixed-point arrays
by defining a type fixed_t with the required precision in a header file, along with the
necessary libraries.9

Conversely, the implementation of fixed-point arrays in RTL can be tedious even for
experienced hardware designers. For example, the RTL designer must explicitly manage

8See Supplemental Appendix A.2 for a brief overview of finite-precision fixed-point approximation.
9This is one of the few optimizations that the HLS compiler cannot perform automatically since it re-

quires users to specify the fixed-precision parameters (72 and 21 in line 6). The macro FIXED_ACC allows
flexible toggling between double-precision floating point and fixed point for debugging purposes.

62 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

the proper alignment and interpretation of values with different fixed-point precision
representations.

Besides reducing the iteration latency, recasting our operation in fixed point also ad-
dresses two well-known bottlenecks that hinder the efficient design of an accumulation
with addition operations: (i) memory carry dependency; and (ii) the lack of associativity
property of floating-point additions. Section 4.3 demonstrates how fixed point addresses
the memory carry dependency problem, facilitating the creation of efficient pipelines.
Section 4.4 shows how properties of fixed-point arithmetic enable the implementation
of a parallel reduce tree to solve our accumulation, further reducing the for loop la-

tency.

4.3 Pipelining and the quest for an initiation interval of 1

An ideal CL design keeps the circuit constantly busy (goal 1) and starts new compu-
tations at every clock cycle (goal 2). Here, we present an optimization tool that helps
achieve both goals: hardware pipelining. In this context, we discuss how our solution of
recasting our accumulator from floating to fixed point tackles a key obstacle to the effi-
cient pipelining of our accumulation circuit: the memory carry dependency problem.

4.3.1 Pipelining To understand hardware pipelining, we need to introduce the con-
cept of initiation interval, denoted as II. The II measures the number of clock cycles
elapsed between the launch of two consecutive iterations in a loop. An ideal circuit has
an II = 1, and initiates computations at every clock cycle. The following code listing uses
the #pragma HLS pipeline II = 1 directive to synthesize this design.

Listing 2. Pipelined accumulator

To understand the hardware implications of this optimization technique, Figure 2
reports the data flows associated with four distinct hardware designs of our sequential
accumulator: floating point (Section 4.1), fixed point (Section 4.2), fixed point with II =
1, and floating point with II = 5. These graphs illustrate how the different CL designs
engage their hardware components, often referred to as pipeline stages. They do
so by reporting which data points each pipeline stage (horizontal axis) processes during
each clock cycle (vertical axis).

Quantitative Economics 16 (2025) Programming FPGAs for economics 63

Figure 2. Data flow of sequential accumulator with pipelining. Note: Data flow of four different
hardware designs, from left to right: sequential floating point (double precision), sequential fixed
point, sequential fixed-point pipeline with II = 1, sequential floating-point (double precision)
pipeline with II = 5.

In the case of our sequential accumulator, the pipeline stages associated with the
hardware implementation of the body loop’s instructions (line 5 of Listing 2) consists of
two operations: a reading and an accumulate operation. Later in our main application,
these pipeline stages will consist of the hardware steps required to solve either the IHP
problem in equation (8) or the Simulation step.

The first two data flows on the left side of the figure illustrate how transitioning from
floating to fixed point significantly reduces the execution time of the adder, from five
to a single clock cycle, and thus, the iteration latency from six to two clock cycles.
Consequently, the total for loop latency drops from P · J = 6 · 8 = 48 clock cycles to
2 · 8 = 16 clock cycles.

Listing 2 improves over the sequential fixed-point design by instructing the HLS

compiler to synthesize a fixed-point accumulator that initiates computations every
clock cycle (II = 1). This command generates a circuit that operates as follows. At clock
cycle 0, the circuit starts reading st_k[0] from memory. At clock cycle 1, the circuit
initiates the first fixed-point addition S = S+st_k[0], while simultaneously loading
st_k[1] for a new accumulation. From clock cycle 1 to 7, the circuit reaches its maxi-
mum degree of instruction level parallelism. At this point, all functional units of the cir-
cuit (pipeline stages) are working in parallel (attaining goal 1), yielding an addition

64 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

at every subsequent clock cycle (attaining goal 2). The time required for all pipeline
stages to become active is called pipeline ramp up and equals one clock cycle in our
example. After clock cycle eight, the pipeline stages start to empty, as there are no more
array elements to read. By clock cycle nine, all pipeline stages are empty. The time re-
quired to flush out the pipeline stages is called pipeline ramp down, also equal to one
clock cycle in our application.

As the state space increases, the pipeline ramp-up and ramp-down times become
negligible with respect to the total for-loop latency. For example, when transitioning
from an accumulation of an array of size 8 to an array of size 10,000 in equation (12),
the portion of for loop latency spent on filling and flushing the pipeline shrinks
from 25%, #Stagesramp up + ramp down/J = 2/8, to a negligible 0.02% (2/10,000).

Memory carry dependency problem Add-reduce accumulations inherently suffer from
memory-carry dependencies because adding a new element of the array to the accu-
mulation requires the previous element of the array to have already been incorporated
(Figure 1). In the context of floating-point accumulations, this data dependency may im-
pose a constraint on the lag (in cycles) at which new computations can be initiated (II).

For example, attempting to design a circuit with an II = 1 would result in a synthe-
sis failure, flagging a memory carry dependency violation. The reason becomes evident
when inspecting the behavior of this circuit on the right-hand side of Figure 2. The cir-
cuit must wait until clock cycle 5 for the value S + st_k[0] to become available before
proceeding to the new addition S+ st_k[1]. Consequently, the best initiation interval for
this design is every five clock cycles (II = 5). Transitioning to fixed point effectively ad-
dresses the memory dependency bottleneck by reducing the waiting time for the next
element of the accumulation from five to just a single clock cycle, reaching II = 1.

4.4 Loop unrolling and memory management

So far, we have used HLS to design a circuit that efficiently initiates the necessary com-
putations for a sequential accumulator at every clock cycle. Next, we further enhance its
performance by introducing a powerful HLS tool that allows us to harness parallel com-
puting opportunities: loop unrolling. Alongside this, we address limitations associated
with memory management and provide effective solutions. Furthermore, we discuss a
common performance hurdle faced by the hardware implementation of an accumula-
tor, such as equation (12): the lack of associativity in floating-point additions. We con-
clude by explaining how our solution of recasting our accumulator from floating to fixed
point effectively overcomes this challenge.

4.4.1 Loop unrolling Our prior circuitry executed additions sequentially, overlooking
the opportunity to exploit the data independence of array elements for concurrent par-
allel addition operations. In our accumulation example, and later in the acceleration of
equation (8) and Simulation step of the Krusell and Smith (1998) algorithm, we harness
this parallelism by deploying the #pragma HLS unroll factor = X. This directive
creates multiple physical replicas (X) of the circuit described within the loop’s body (line
6 of Listing 3) and autonomously organizes them to operate in parallel in a reduce-tree

Quantitative Economics 16 (2025) Programming FPGAs for economics 65

pipeline, which we will describe momentarily. Intuitively, the more physical replicas op-
erating in parallel (unroll factor), the fewer iterations are necessary to perform the
final accumulation, lowering the for loop latency. The following listing synthesizes
a pipeline that processes in parallel all elements of the array, J = unroll factor= 8.

Listing 3. Accumulator with loop unrolling of factor 8

Associative reduce tree and fixed-size loop bounds Figure 3 shows that an unroll factor
of 8 prompts the compiler to autonomously generate an associative reduce tree structure
with a pipeline depth of three layers, resulting in an accumulation every three clock
cycles.10 This design is facilitated by the fact that the loop bounds are fixed (0 and J),
and increments of the loop iterator i are constant (and equal to 1). These clues allow the
compiler to aptly determine the required number of layers: O(ln2 unroll factor).

When the array of size J is larger than the unroll factor, this circuit produces
an accumulation every J/unroll factor+ ln2(unroll_factor) + 1 clock cycle. The
first term illustrates how loop unrolling decreases the for loop latency from J to
J/unroll factor by placing enough hardware, as determined by unroll factor.
The second term captures the pipeline ramp-up time.11 As discussed in Section 4.3, the
pipelining performance of this circuit increases with the size of the state space. As J

increases, the pipeline ramp-up time becomes negligible with respect to the total accu-
mulation time, which converges to J/unroll factor.

While the acceleration achieved with loop unrolling resembles the single instruc-
tion, multiple data acceleration exploited by GPUs, it differs in important dimensions.
First, the HLS compiler designs new hardware with the requested level of parallelism,

10In the first clock cycle, the compiler simultaneously reads all elements of the array. In the second clock
cycle, it performs four additions in parallel. In the third clock cycle, it performs two additions and reduces
the accumulation to a final digest. The fourth clock cycle appears when J > unroll_factor, in which
case the accumulation of 8 elements is added to the overall rolling sum. See Supplemental Appendix A.3 for
more details.

11The third term appears when J > unroll factor and captures the time required to incorporate the
result of the reduce tree into the rolling accumulation (clock cycle 4 in Figure 3). Otherwise, the term dis-
appears.

66 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

Figure 3. Data flow of accumulator with loop unroll. Note: Data flow graph of a circuit that
unrolls by a factor of 8 the addition of the fixed-point elements of an array st_k of size J = 8. The
vertical dimension illustrates in which clock cycles these operations are performed (scheduling).
The circuit consists of eight fixed-point adders, which perform an addition every clock cycle.
BRAM #1-#4 denote four local memories used to partition the st_k array.

whereas GPUs exploit existing one. Consequently, while GPUs may experience per-
formance degradation when the required level of parallelism does not effectively en-
gage all their cores (Aldrich et al. (2011)), FPGAs are affected to a much lesser extent.
Second, FPGAs allow the implementation of hardware designs of intricate algorithms,
whereby various facets of the application can exploit different acceleration strategies.
The Krusell and Smith (1998) algorithm exemplifies this complexity, transitioning from
a policy function iteration algorithm that benefits from reduced evaluation latency
through instruction-level parallelism and pipelining (Section 4.3) to a multiparame-
ter exploration or multiple-actor simulation step, which benefits from data-level par-
allelism. While GPUs thrive in the latter, they cannot reduce evaluation latency.

To conclude, note the #pragma HLS array_partition directive at line 2 of List-
ing 3. Next, we discuss how this command addresses a potential issue related to memory
management that may prevent HLS from synthesizing the required circuit.

4.4.2 Memory management Now, we discuss two main limitations regarding memory
management: large memory access latency and array partitioning.

Large memory access latency The FPGA device and host processor share a common
memory referred to as global memory (dynamic random access memory, DRAM). Global
memory is large (tens of gigabytes), and thus, useful for storing input, intermediate, and
output data. In our accumulator design, we initialize our array in double-precision float-

Quantitative Economics 16 (2025) Programming FPGAs for economics 67

ing point in the host processor, st_in, and make it available to the FPGAs by storing it
in global memory. Access to this memory is slow (hundreds of clock cycles).

To solve this problem, we can copy chunks of data from the large global memories to
on-chip local memories, which are small but numerous and can be accessed in a single
clock cycle: block RAMs (BRAMs), ultraRAMs (URAM), LUT RAMs, registers. The follow-
ing listing illustrates how straightforward it is to copy the array from global (st_in) to
local memories (st_k) through the implementation of a simple array assignment.

Listing 4. Store data from global to local memories

Note the type cast operation that converts the floating-point values of the array ini-
tialized by the host, st_in, into the fixed-point array declared in the local memories,
st_k. Without loss of generality, we assume that st_k has been stored in BRAMs in all
our designs.

Array partitioning When transferring data from global to local memory, compilers op-
timize on-chip resource use by storing contiguous elements of st_k in the same BRAM
before moving on to the next. For instance, without further instructions, Listing 4 stores
all the elements of st_in in a single BRAM, which without loss of generality, we refer to
as BRAM #1.

Each BRAM provides two read-write ports, allowing for a maximum of two concur-
rent read–write operations. Accordingly, while resource-efficient, this storage scheme
can lead to a memory bottleneck when the total number of required reads from multi-
ple pipelines (determined by the unroll factormultiplied by the simultaneous reads
per pipeline) surpasses the available reading ports per shared BRAM.

The memory-access bottleneck becomes evident in our example when we instruct
the compiler to synthesize four physical adders in parallel (Listing 3). In this scenario,
during the first clock cycle, we can only read a maximum of two out of the eight st_k
values stored in the single BRAM. Consequently, the synthesis process fails to produce
the required CL design. Instead, it results in a circuit with an accumulation process that
resembles the sequential addition described in Section 4.3 (see also Figure A.3 in Sup-
plemental Appendix A.3.1).

The memory bottleneck can be resolved by strategically distributing the elements
of st_k across multiple BRAMs to accommodate the eight memory accesses re-
quired by the four parallel pipelines. The achieve this, we use the #pragma HLS ar-

ray_partition directive at line 2 of Listing 3. This directive employs a cyclic array

68 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

partitioning with a factor of 4 to interleave the elements of st_k across BRAM #1-#4,
as depicted in Figure 3.12

Automatic optimizations We explain here the emphasis on the word may at the end of
Section 4.4. In our simple accumulator example, for a given unroll factor, the HLS
compiler recognized the need to partition the array st_k without explicit clues from
the array partitioning #pragma. As compiler technology evolves, we anticipate such au-
tomation to expand to even more intricate circuits. Our performance analysis of the
Krusell and Smith (1998) algorithm in Section 7 demonstrates the advanced nature of
these automations already in place.

4.4.3 Nonassociativity of floating-point addition Here, we discuss how using floating-
point additions prevents the compiler from autonomously generating the associative
reduce tree displayed in Figure 3. Computers carry out computation on numbers with
finite representations. When we abandon the field of real numbers (R, +, ×, ≥) for their
IEEE754 floating-point, finite-precision approximation, we lose the associative property
of the addition. Goldberg (1991) provides an example by showing how (x+y)+z and x+
(y + z) give different results when x= 1e30, y = −1e30, and z = 1. The first equals 1, and
the second equals 0 (since y+z rounds to −1e30 before performing the addition with x).
Accordingly, compilers have historically been prevented from rearranging floating-point
additions (like in Figure 3) in order to avoid producing a different result than the original
code. This rule downplays the fact that the source code may have been written in a loop
simply for convenience, without a specific order of additions in mind. As a result, the
compiler still insists on performing the floating-point sum sequentially in J ·P cycles, as
shown in Figure 1, even if we allowed it to use more hardware.

In our accumulator example (later deployed in the Krusell and Smith (1998), appli-
cation), we tackle this issue by performing the accumulation in fixed point, where the
associative property still holds, and the compiler knows it is safe to reassociate the ad-
ditions since the computed result will be the same. For alternative strategies to handle
this issue while maintaining floating-point, we refer to Hrica (2012) and Kadric, Gurniak,
and DeHon (2016). In contrast to these strategies, our fixed-point approach (Section 4.2)
also addresses the long latency of floating-point additions with minimal compromises
in accuracy, as demonstrated by our application.

4.5 Portability, code reusability, and programming languages

C-code designed for FPGA acceleration using HLS exhibits remarkable portability. As our
accumulation example demonstrates, the code compiles and runs on CPUs (including
vector and SIMD computations) without modifications. Non-FPGA compilers ignore the

12Cyclical array partitioning creates factor = 4 smaller arrays from st_k by copying elements cycli-
cally, and storing them in independent BRAMs. For instance, st_k[0] goes into BRAM #1, st_k[1] into
BRAM #2, st_k[2] into BRAM #3, st_k[3] into BRAM #4, st_k[4] into BRAM #1 and so on until com-
pletion. For a discussion of the different array partitioning types (cyclic, block, and complete), we refer to
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition.

https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/pragma-HLS-array_partition

Quantitative Economics 16 (2025) Programming FPGAs for economics 69

HLS #pragmas, eliminating the need to maintain a separate codebase for FPGA accel-
eration.

Furthermore, high-level computational components, such as accumulation (dis-
cussed here), interpolation, and simulation (discussed later) are common in economic
models. Much like economists use function libraries to address recurring algorithms, the
same HLS-enhanced codes and associated hardware components can be repurposed to
accelerate recurring aspects of different models.

While HLS-enhanced C-code is highly portable, FPGA platform-specific optimiza-
tions and design may still require special considerations. First, fine-tuning an applica-
tion for a specific FPGA involves adjusting parameters like loop unrolling or array parti-
tioning, considering both application-specific and platform-specific factors, such as the
execution frequency of particular portions of code and their resource utilization. These
refinements only require changes to specific arguments in the #pragmas, leaving the
base C-code unchanged. Recent advancements in automatic compilation and optimiza-
tion hold great promise for automating these optimizations with solvers and autotuners
(as discussed below), removing the need for manual changes by the developer.13 Second,
interfacing with platform-specific components, like memory interfaces and I/O ports,
super logic regions (SLRs) may be necessary for advanced designs (see Section 5.1.2).
To mitigate these platform-specific concerns, we showcase FPGA acceleration on AWS, a
cloud-based service that offers widespread access to identical high-performance FPGA
devices. In addition, our tutorial provides all the necessary boilerplate code to harness
these platform-specific components.

To conclude, recent years have seen great advances in the incorporation of hardware
design tools among popular programming languages, like Python, Julia, and Mat-

lab (e.g., Quenon and da Silva (2021), Biggs, McInerney, Kerrigan, and Constantinides
(2022)). Our accumulator best exemplifies these efforts. The Matlab suite has incorpo-
rated an HDL coder that generates the RTL code of a variety of functionalities, including
the accumulator we just described in this section.14 Overall, high-level synthesis com-
pilers are bound to become more popular among high-level software languages, further
easing economists’ access to custom accelerators.

5. Our application

This section illustrates how we deploy the FPGAs’ optimization tools introduced in our
previous section to accelerate the Krusell and Smith (1998) algorithm in Section 3. We
present the FPGA acceleration approach in Section 5.1 and the CPU counterpart in Sec-
tion 5.2. Supplemental Appendix B reports the hardware specifications of the different
AWS instances.

13We can determine these tuning parameters as the ones that maximize performance while staying
within the constraints of available FPGA hardware resources. Solvers or autotuners can then automate the
selection of these values, streamlining the optimization process (Whaley and Dongarra (1998), Kapre and
DeHon (2009), Lo and Chow (2016), Zhao, Feng, Sinha, Zhang, Liang, and He (2020)).

14See https://www.mathworks.com/help/fixedpoint/ref/sum.html.

https://www.mathworks.com/help/fixedpoint/ref/sum.html

70 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

5.1 Hardware architecture of FPGA acceleration

The FPGA acceleration approach solves the Krusell and Smith (1998) algorithm as im-
plemented by Maliar, Maliar, and Valli (2010) in Section 3 by using Amazon F1 instances
to deploy three configurations of FPGAs connected to a host: one FPGA (f1.2xlarge), two
FPGAs (f1.4xlarge), and eight FPGAs (f1.16xlarge).

The computational flow is as follows. The host initializes variables, allocates jobs
across available FPGA(s), and transfers the data to the FPGA(s). The FPGA(s) then exe-
cute(s) the kernel: the nested, fixed-point algorithm detailed in Section 3. Subsequently,
the host reads back and saves the results. Unless differently specified, computations em-
ploy the IEEE754 double-precision floating-point format.

5.1.1 FPGA hardware description F1 instances mount (up to eight) Xilinx VU9P FPGAs,
each with 1.2 million 6-input gates (LUTs), 6840 multiply-accumulate units (DSPs), and
346Mb of on-chip memory, given by 76Mb of block RAM (BRAM) and 270Mb of ultra
RAM (URAM). These resources are organized in three dies, referred to as a SLR, con-
nected by a silicon interposer (see Figure 5). The AWS FPGA is further divided into two
partitions: shell and custom logic (CL). The shell is the FPGA platform implementing ex-
ternal peripherals, such as peripheral component interconnect express (PCIe) and dy-
namic random access memory (DRAM). Users’ CL designs can employ up to 895 thou-
sand LUTs, 5640 DSPs, and 284 of on-chip memory, given by 59 Mb of BRAM and 225 Mb
of URAM per FPGA.

5.1.2 Custom logic hardware design Now, we operationalize the FPGA optimization
tools discussed in Section 4 to accelerate the Krusell and Smith (1998) algorithm. In
addition, we show how our CL design exploits platform-specific characteristics of the
F1 instances’ FPGAs: the presence of three SLRs. As mentioned above, the Xilinx VU9P
FPGAs are organized in three dies, whose custom logic can be jointly or independently
used for acceleration purposes. For our application, we tailor our CL design to compute
three economies in parallel, one per SLR, in the same FPGA.15

Cheela et al. (2023) describe in detail how the OpenCL commands organize the com-
putation flow in kernels. Each kernel is assigned a different economy θ and is instanti-
ated in a separate SLR. Kernels are then deployed in parallel. A feature of this hardware
design is that it is easily scalable with minimal modifications of the C/C++ code. OpenCL
commands collect the available SLRs and instantiate the kernels. In the case of one FPGA
(f1.2xlarge), three kernels are instantiated across the available SLRs. In the case of eight
FPGAs (f1.16xlarge), 24 kernels are launched in parallel.

To load and deploy our custom logic hardware design on the EC2 F1 instances, we
create Amazon FPGA Images (AFI) that combine the shell and the CL design for multiple
grid sizes. We accomplish this step by creating.AWSXCLBIN files.

15We could alternatively design the CL to span across the multiple SLRs. This design would require han-
dling inter-SLR connections, complicating the coding, and the management of tighter clock constraints.
Since many of the benefits of accelerators are associated with the estimation of structural parameters that
involve the computation of several thousand economies (each associated with a different set of parame-
ter values), our hardware design is appropriate. The single SLR solution is still 28.38times faster than the
sequential execution in the CPU (Section 6.5).

Quantitative Economics 16 (2025) Programming FPGAs for economics 71

5.1.3 The single-kernel design Our kernel implements in hardware the nested fixed-
point algorithm presented in Section 3. The design organizes the three interdependent
building blocks—IHP, simulation, and ALM—in a sequence, and it performs the compu-
tations until convergence of the ALM coefficients in equation (13).

Following Amdahl’s law, our CL design allocates hardware resources to balance the
time spent on the two time-consuming steps of the algorithm: the IHP and Simulation
design. Our final kernel design starts computations at every clock cycle at 250 MHz and
provides flexibility to study multiple grid sizes.

To reach an II of 1, we address the challenges discussed in Section 4 as follows. First,
we tackle the two memory management bottlenecks: (i) large memory access latency;
and (ii) limited memory ports to access data in parallel. We fix the first issue by copy-
ing data in local memories that can be accessed in a single clock cycle. Our FPGA has
enough local memories to store all of the input data for our application (Table A.3).
Hence, we need to transfer the input data only once per kernel computation. We address
the second issue by deploying the array partitioning #pragma to store multiple copies
of the same data in as many independent local memories as required by the number of
pipelines performed in parallel.

Next, we turn to application-specific interventions essential for achieving an II of 1,
specifically the acceleration of the linear interpolation within the IHP and Simulation
steps. A well-known computational challenge in interpolation is to find the interval of
interpolation. We accelerate this step by implementing an efficiently pipelined (II of 1)
jump search algorithm with fixed-size loop bounds.16 To ensure that the algorithm does
not introduce any unwanted bias, we verify that it outperforms alternative search algo-
rithms in the CPU (Table 2).

The individual household problem (IHP) design The IHP design implements the pre-
vious steps to reach an II of 1 in equation (8) by pipelining the operations involved
in the computation of the expectation as discussed in Section 4.3. We further acceler-
ate the design by using the partial loop unrolling technique discussed before to place
two pipelines to work in parallel on the (sequential) solution of equation (8) at different
states {k, ε, m, A} (more pipelines are hard given the hardware limits). Given the current
guess of individual capital holdings, the IHP design solves equation (8) for every state
and updates the guess according to equation (9), as discussed in Section 3.B.(ii). These
steps are iterated until convergence, as per equation (10).

The simulation design The simulation design in Section 3.D(ii)(b) is divided into two
steps, each accelerated with a custom pipeline. The first step is represented by the ac-
cumulation operation required to compute the cross-sectional average of the individual
household’s capital holdings, mt , in equation (12). To achieve an II = 1 at this step, we
deploy the custom pipelined fixed-point accumulation operator discussed in Section 4.
Indeed, the best acceleration performance for our benchmark model is reached by let-
ting the compiler perform automatic optimizations. The second step is represented by

16As discussed in Section 4.4.1, the presence of fixed interpolation grids’ bound allows the compiler to
autonomously determine the depth of the reduce tree required to find the interpolation interval.

72 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

the interpolation step involved in the computation of next-period household capital
holdings. We reach an II = 1 by implementing the aforementioned jump search algo-
rithm.17

The ALM design The ALM step involves several resource-expensive operations but has
very small latency (1.25 ms in our baseline economy).18 Accordingly, we provide instruc-
tions to the compiler to not perform any pipeline or unrolling and further instruct it to
limit the number of hardware resources used.

5.1.4 The three-kernel design Our CL design is tailored to compute three economies in
parallel by exploiting the three hardware regions available for hardware design: the SLRs.
To reach this goal, we modify our single-kernel design to handle the resource limitations.
Our single-kernel design barely fits in one of the SLRs, slightly leaking into one of the
adjacent SLRs with nontime-critical operations (Figure 4). The Amazon shell—which
provides useful hardware resources to facilitate the HLS kernel design—exacerbates this
problem by consuming part of the resources in two of the three adjacent SLRs. To fit the
three kernels, we provide directives that limit the degree of partial unrolling in the IHP.
The resulting three-kernel design (Figure 5) trades off the single-kernel performance for
the parallel execution speedup.

5.2 Hardware architecture of CPU multicore acceleration

The CPU multicore acceleration approach solves our model using Amazon M5N in-
stances by parallelizing data-independent tasks (economies) across multiple physi-
cal cores: one core (m5n.large), eight cores (m5n.4xlarge), and forty-eight cores (m5n.
24xlarge). Supplemental Appendix B justifies the choice of these instances.

Our benchmark CPU kernel is an optimized C++-version of the original Maliar,
Maliar, and Valli (2010) Matlab code, whose sequential single-core solution of the base-
line economy is ten times as fast as the original Matlab code, an expected speedup
given the results in Aruoba and Fernández-Villaverde (2015). The CPU kernel utilizes
a jump search algorithm in order to determine the interpolation interval over the in-
dividual capital holdings grid. Table 2 shows that this algorithm outperforms standard
alternatives in the CPU, ensuring the best CPU kernel performance.

We operationalize the multicore parallelization by using the open source message
passing interface (Open MPI).19 Open MPI provides easily implementable, off-the-
shelf routines for parallelizing data-independent tasks across multiple cores. In contrast

17To achieve an II = 1 in both steps, we create multiple copies of the input data to avoid memory access
bottlenecks. The simulation requires a large number of individual shocks (10,000 × 1100). To minimize the
memory usage, we encode the {0, 1} shocks (from integers) into bits and pack them in groups of eight into
a single byte of memory (8 bits) in both the FPGA and the CPU. Further, we tell the compiler to store these
shocks in the URAMs, which have wide arrays of 72 bits and allow us to store 64 shocks (of size 1 bit) in each
of these arrays. By doing so, we need to access the memory only once every 64 iterations.

18The ALM step requires 16 BRAM, 133 DSP, 11,494 LUTs, and 15,265 Registers.
19See https://www.open-mpi.org. We use Open MPI: Version 4.1.1.

https://www.open-mpi.org

Quantitative Economics 16 (2025) Programming FPGAs for economics 73

Table 2. Benchmarking the CPU: alternative search algorithms.

Linear Search Binary Search Jump Search

Solution Time 73,657.8 38,392.0 28,452.5
Speedup – 1.92 2.59

Note: Solution time (in seconds) and speedups of alternative interpolation interval
search algorithms. Speedups are computed relative to the linear search algorithm. Results
are obtained by solving 1200 baseline economies sequentially using a single core instance
(m5n.large).

with alternative multicore parallelization (like OpenMP), Open MPI does not require dif-
ferent cores to share the same memory. This feature makes Open MPI particularly ap-
pealing for massive data parallelization, from small clusters up to medium/large-scale
supercomputers.

Our computational flow is as follows. Open MPI routines determine the number of
cores available and uniformly spread the number of (data-independent) economies to
be computed across the different cores. For example, the solution of 1200 economies on
a 48-core machine would have Open MPI allocating 25 economies per core. Each core
will then independently complete the assigned tasks.

6. Quantitative results

We assess the efficiency gains of FPGA acceleration against CPU cores by measuring effi-
ciency gains in solution speedup, AWS costs, and energy savings. We choose as a bench-
mark the CPU rather than the graphic processing units (GPUs) for two reasons. First,
CPUs are still more commonly used in economics than GPUs, making the interpreta-
tion of our results more transparent. Second, differently from the CPU, the effective-
ness of GPU acceleration is heavily dependent on software optimizations (e.g., memory
management), making the benchmark performance more susceptible to software en-
gineers’ choices. Nonetheless, for completeness, we implement the Maliar, Maliar, and
Valli (2010) algorithm in python/1.13 and accelerate it using the Numba Cuda com-

piler on an NVIDIA A100 GPU. Consistent with the finding in Aldrich et al. (2011)
for GPU acceleration on small grids, the GPU is “only” four times as fast as the original
Matlab code. While the implementation of the algorithm with C-cuda and additional
memory optimizations might yield further speedups, it is most unlikely that GPUs can
deliver the same performance as the FPGA for this particular application.

To make our acceleration comparison as meaningful as possible, we proceed as fol-
lows. First, our FPGA and CPU kernel share the same C/C++ code to solve the same al-
gorithm in both platforms. Hence, the observed speedup is the result of a margin avail-
able to the electrical engineer economist (designing hardware) and not to the software
engineer economist (writing better code for CPUs and GPUs). Using the optimization
techniques discussed in Section 4, we program the logic of our FPGA to accelerate the
Krusell and Smith (1998) algorithm. In comparison, the CPU and GPU logic cannot be
programmed. The CPU is premanufactured to optimize the performance of sequential

74 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

instructions needed in daily computer activities, which include not only simulating our
models but also browsing the internet, checking emails, and so forth. As such, it lacks
the gains from hardware specialization that are accessible to FPGAs. That said, the C++-
compiler on a CPU and GPU goes a long way to execute the code as fast as possible by
automatically performing low-level instruction parallelism. We can instruct the com-
piler to do this as much as possible by compiling the code using the aggressive -03 op-
timization flag in our G++ compiler.

Second, our baseline comparison is that of a single FPGA chip against a single CPU
core while computing NE economies (which we will define momentarily). This bench-
mark provides an apple-to-apple comparison of the differential performance of the two
accelerators.

Third, we introduce a multieconomy parallelism to get insights into the potential of
FPGAs to structurally estimate our model by solving it for many different parameter val-
ues. But we do so in a controlled way. A well-known drawback of Open MPI paralleliza-
tion is that the total execution time is determined by the execution time of the slowest
core. To temper this effect, first, we pick a number of economies (NE = 1200) that is
uniformly divisible across the different CPU cores in our AWS instances (1, 8, 48 cores).
Second, we determine the benchmark speedup (Table 3) by solving the same economy
(i.e., the same set of parameter values) multiple times. In this way, we eliminate het-
erogeneity in the solution time attributed to differences in convergence of the iterative
algorithm with different parameter values. Under this setup, we ensure that we use all
CPU cores and that the speedup scales linearly with the number of cores. Incidentally,
this exercise illustrates how easy it is to implement increasingly aggressive acceleration
by deploying multiple FPGAs in parallel, a dimension not explored in Peri (2020).

In summary, our benchmarking strategy eliminates all differences in performance
between FPGAs and CPUs that are not inherently linked to the differences in their ar-
chitecture. If we could rewrite the solution algorithm more efficiently, that better code
would improve the performance of both FPGAs and CPUs and leave the relative perfor-
mance (roughly) unchanged.

Table 3 reports how the relative performance of FPGAs versus CPU cores varies as
we vary the number of CPU cores and FPGA devices. We solve for 1200 times the base-
line economy on AWS instances connected to one (f1.2xlarge), two (f1.4xlarge), and
eight (f1.16xlarge) FPGAs. We compare these results with the ones obtained by solv-
ing the model on AWS instances with one (m5n.large), eight (m5n.4xlarge), and forty-
eight (m5n.24xlarge) cores. Then we measure the relative performance across speedups,
cost savings, and energy savings. To make the comparison as meaningful as possible,
we compute the speedup using the solution time—which is the time required to solve
the algorithm on the FPGA/CPU. This approach abstracts from the time absorbed by
initializations and host-FPGA communications. Supplemental Appendix C.2 details the
reasons behind this choice by also reporting the execution time, that is, accounting for
nonkernel operations. Table A.4 in the Supplemental Appendix complements this infor-
mation by reporting costs and energy consumption by instance.

Quantitative Economics 16 (2025) Programming FPGAs for economics 75

Table 3. Efficiency gains and implementation costs of FPGA acceleration.

Panel A: Efficiency Gains of FPGA Acceleration

CPU-Cores

Speedup Relative Costs (%) Energy (%)

FPGAs FPGAs FPGAs

1 2 8 1 2 8 1 2 8

1 68.54 137.09 548.56 20.23 20.23 20.22 6.02 6.02 6.02
8 8.80 17.61 70.46 19.69 19.69 19.68 5.86 5.86 5.85
48 1.48 2.96 11.83 19.55 19.55 19.54 5.82 5.82 5.81

Panel B: Implementation Costs of FPGA Acceleration

Extra Lines of Code

Kernel Nonkernel

Number Percent (%) Number Percent (%)

75 5.37 128 51

Note: Panel A reports speedups provided by the FPGA and cost and energy usage of the FPGA relative to the CPU. The
results are obtained by solving 1200 baseline economies using AWS instances connected to 1, 2, and 8 FPGAs and using open-
MPI parallelization on AWS instances with 1, 8, and 48 cores (rows). Speedup is obtained by dividing the total solution time
in the CPU by that in the FPGA. Relative costs and energy are calculated using on-demand AWS prices and total energy con-
sumption, and reported as FPGA usage as a percent of CPU usage. Table A.4 in Supplemental Appendix C reports the details.
Panel B estimates implementation costs for both kernel and nonkernel segments of our codebase by reporting the extra lines
of code required by the HLS-enhanced C code when compared to standard C code designed to be executed on the CPU using
Open MPI.

6.1 Speedups of FPGA acceleration

As mentioned before, our baseline comparison is a single FPGA versus a single CPU core
sequential solution. The FPGA acceleration delivers a speedup of 69 times. The compu-
tation time drops from 8 hours in the CPU to 7 minutes in the FPGA (Table A.4).

Next, we document the FPGAs’ performance against that of multicore CPUs. As
many researchers have access to high-end laptops with at least eight cores, we first com-
pare one FPGA with the 8-core acceleration. The computation time is reduced from ap-
proximately 1 hour in the CPUs to 7 minutes in the FPGA (Table A.4). FPGA acceleration
also compares favorably with respect to the CPU multicore parallelization on the AWS
instance with the largest number of cores (48): a single FPGA device is 1.48 times faster
than an Intel Xeon (Cascade Lake, second generation) platform running 48 cores in par-
allel.

Scaling these acceleration gains is easy, as it requires minimal modifications of the
code to deploy multiple FPGAs in parallel. Panel A of Table 3 shows that eight FPGAs in
parallel reduce the solution time by 549x, 70x, and 12x when compared with the 1-core,
8-core, and 48-core acceleration, respectively.

Panel A of Table 3 shows how the differential performance of FPGAs versus CPU
cores scales linearly in the number of FPGA devices and CPU cores. This result corrob-
orates the effectiveness of our benchmarking strategy in eliminating all contamination
due to parallelization.

76 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

6.2 Cost savings of FPGA acceleration

We now turn to cost savings. The AWS cloud pricing schedules provide market-based
measures of the cost of solving an application across different hardware architectures.
We compute these costs by multiplying the total solution time for the AWS instance on-
demand prices (Table A.2). Panel A of Table 3 shows that our application solves in the
FPGA instances at less than a quarter of the cost of the CPU instances. This result is
relevant because the structural estimation of parameters may require computing up to
one million different economies. Hence, moving from CPU to FPGA computing would
reduce the estimation costs by hundreds of dollars (from $784 to $159). Albeit the rental
cost of FPGA instances per hour is higher, the acceleration we document more than jus-
tifies the expense.20

Also, note that the linear speedup performance, combined with Amazon AWS linear
price schedules, yields approximately constant costs and energy efficiency across differ-
ent combinations of FPGA devices and CPU cores.

6.3 Energy savings of FPGA acceleration

We determine the energy consumption (joules) by multiplying the total solution time
for the power consumption (watts) of FPGA and CPU chips. We use the AFI manage-
ment tool to measure the FPGA average power consumption: 33 watts per FPGA device.
We use the procedure discussed in Supplemental Appendix C.2.1 to measure the CPU
power consumption: 8 watts per CPU core. The energy consumed by FPGA chips is less
than 6% of the energy consumed by CPUs.21 This statistic is relevant for organizations
with in-house computational clusters (such as research departments at central banks),
whose computational needs are often constrained by the power limits on the cluster in-
stallation. Moving from CPU to FPGA computing enables more computations with the
same energy.

Furthermore, the back-of-the-envelope calculations in Supplemental Appendix D
suggest that the associated energy savings may also be relevant to reducing the carbon
footprint impact of research computing. As we describe in Supplemental Appendix D,
it has been estimated that the RMACC Summit and Blanca Supercomputers at the CU
Boulder Research Computing Center emit 838.78 metric tons of CO2 in the atmosphere
every year to provide 150 million core hours to their research community. This is equiv-
alent to the CO2 emissions of 168 cars per year. If (a big if) we assume a type of acceler-
ation similar to the one measured in our experiment and the FPGA power consumption
recorded on Amazon Xilinx VU9P, transitioning all of these CPU-intensive computations
to FPGA chips would reduce the CO2 impact of these major supercomputing facilities to
31.07 metric tons of CO2, or sixcars per year.

20Another cost comparison is with an in-house cluster. Even without entering into their purchase
cost, clusters are expensive to maintain. In our application, a single FPGA chip can perform the same
task as a cluster with 69 cores. This is a medium-to-high scale cluster whose maintenance requires an
HPC specialist, with a salary averaging around $89,000 per year in the US circa 2024; see Zip Recruiter
(https://www.ziprecruiter.com/Salaries/HPC-System-Administrator-Salary).

21Since CPU power consumption is proportional to the number of CPU cores, Power(cores) = P · cores,
and the solution time is inversely proportional to the number of CPU cores, Solution Time (cores) =
T/cores, the energy, up to first order, is constant across CPU cores, Energy(cores) = P ·cores ·T/cores = PT .

https://www.ziprecruiter.com/Salaries/HPC-System-Administrator-Salary

Quantitative Economics 16 (2025) Programming FPGAs for economics 77

6.4 Implementation costs of FPGA acceleration

Panel B of Table 3 reports the number of lines required to implement the kernel and
nonkernel portion of our application for FPGAs and CPUs. The kernel portion of the
HLS-enhanced C-code requires 5.37% of additional lines with respect to C-code written
to be executed on the CPU. With 75 extra lines of code (#pragmas), the user can achieve
a 69x speedup with respect to the single-core CPU. The nonkernel portion of the code
requires 128 more lines (51%) to implement the OpenCL communications between host
and device. However, this code barely varies across applications and is available on our
Github repository.

6.5 Robustness

Table 4 reports a battery of robustness tests to study the performance of our hardware
design. Different from the RTL approach proposed in Peri (2020), the compiler approach
allows us to implement these experiments with minimal modifications of the C/C++

code and hardware design configuration file.
In our first exercise (Panel A), we solve the baseline economy using the single-kernel

design in one FPGA and compare its performance with that of the single-core sequen-
tial solution. This result suggests that our single-kernel design can accelerate model
experimentation, a valuable feature in the early stages of a research project when the
ingredients of the final model are not yet determined. The sequential computation of
the 1200 economies using the single-kernel design is relatively faster than that of the
three-kernel design. Theoretically, instantiating three single-kernel designs in the avail-
able SLRs should bestow a speedup of 28.38x · 3 SLR ≈ 85x, yet the three-kernel design
“only” reaches a speedup of 69x (Table 3). This loss in performance is due to the lower

Table 4. Single-kernel FPGA versus single CPU core.

Panel A: Benchmark Model, {Nk, NM } = {100, 4}

FPGA-Time (sec) CPU-Time (sec) Speedup (x) Relative Costs (%) Energy (%)

0.84 23.71 28.38 48.86 7.49

Pabel B: Speedup Across Grid Sizes

Aggregate Capital, NM 4 8

Individual Capital, Nk 100 200 300 100 200 300

Speedup (x) 28.38 34.41 34.31 27.81 31.05 32.06
Relative Costs (%) 48.86 40.30 40.41 49.85 44.65 43.26
Energy (%) 7.49 6.18 6.19 7.64 6.84 6.63

Note: Figures are obtained by comparing the solution of 1200 economies using AWS instances connected to 1 FPGA and
sequential CPU execution on a single core. Panel A focuses on the benchmark economy, {Nk , NM } = {100, 4}. Columns 1–
2 detail the average solution time (in seconds) to compute the benchmark economy in a single-kernel, single-device FPGA
(f1.2xlarge), and a single-core instance (m5n.large), respectively. Columns 3–5 display the efficiency gains of FPGA acceleration
in terms of speedup, costs (in percent), and energy savings (in percent), computed as described in Table 3. The FPGA average
power consumption on a single-kernel design is 17watts. Panel B studies how speedup, relative costs, and energy consumption
vary with the size (columns) of the individual household capital holdings grid (Nk) and aggregate capital grid (NM).

78 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

unrolling of the IHP design performed to save resources to fit the three kernels. The
lower speedup is associated with higher costs than the costs of the three-kernel design,
at still half of the cost. Energy savings remain significant.

In our second exercise (Panel B), we study how the speed gains depend on the size
of the grids. The panel illustrates speedup, cost, and energy savings for increasingly
finer grids on individual capital holdings Nk = {100, 200, 300} and aggregate capital
NM = {4, 8}. To ensure a clear comparison, we keep contrasting the performance of the
single-kernel FPGA design with the sequential single-core CPU execution. The speedup
improves as the grid size of individual capital holdings gets larger, with stronger benefits
when transitioning from 100 to 200 grid points, which then plateau at 300 grid points.
The performance when moving from 4 to 8 grid points is slightly lower but comparable.
Crucially, these results are obtained by keeping the same hardware design—pipelining,
array partitioning, and loop unrolling—as the benchmark model with Nk = 100 and
NM = 4. This analysis suggests the potential for tailored optimizations for larger grid
sizes, currently disabled in our design.

7. Inspecting the mechanism

What explains the observed speedup of FPGA versus CPU multicore acceleration? We
address this question by discussing the performance benefits of gradual modifications
of our code controlling the three critical acceleration channels: pipelining, data paral-
lelism, and recasting data from floating to fixed point. Since the bottlenecks faced in our
design are common to most dynamic programming problems, our acceleration strategy
provides easily transferable tools to accelerate a vast class of economic models.

We start by illustrating the performance of a baseline model, whose hardware im-
age is created by automatic optimization of the HLS compiler (Baseline Model). Next,
we build up the acceleration by resolving problems that prevent us from achieving an
efficiently pipelined loop (Pipelining Channel). Once we achieve a pipelined kernel, we
exploit available resources to instantiate multiple copies of the pipelined loops (Within-
Economy Data Parallelism Channel). We conclude by instantiating the three-kernel
design across available SLRs and FPGA devices to run multiple economies (Across-
Economies Data Parallelism Channel).

7.1 Baseline

Column 1 in Table 5 reports the speedup of solving the model using the single-kernel
FPGA baseline design and the single-core CPU sequential solution. The baseline design
differs from the single-kernel design discussed above because it does not explicitly call
for any user-defined hardware optimizations (pipelining, unrolling, data precision). The
only optimizations present in this design are the ones automatically performed by the
HLS compiler. The compiler indeed tries to optimize the memory layout (to reduce the
memory bottlenecks) and the loop pipelining (by trying to unroll inner loops). To reduce
the latter effect, we use directives to limit the amount of automatic unrolling.

Quantitative Economics 16 (2025) Programming FPGAs for economics 79

Table 5. Speedup gains: acceleration channels accounting.

Baseline Pipelining

Data Parallelism

Within Economy Across Economies

Single-core execution
FPGA Solution 0.21 6.94 28.38 68.54

CL resources utilization (%)
BRAM 6.01 7.14 21.31 44.29
DSP 7.75 9.68 31.13 55.32
Registers 3.99 5.12 12.00 25.71
LUT 5.96 9.20 25.21 57.03
URAM 5.50 5.50 5.38 16.50

Note: Column 1 reports the speedup for a kernel design where all acceleration channels are switched off (baseline).
Columns 2–4 report the speedup associated with implementing efficient pipelines (column 2), introducing data parallelism
in the kernel design (column 3), and instantiating three kernels in the same FPGA (column 4). The speedup (row 1) is com-
puted by dividing the total solution time in the one-core CPU by the solution time in the FPGA. The acceleration in columns
1–3 is performed using a single-kernel, single-device FPGA (f1.2xlarge), where column 4 coincides with the single-kernel de-
sign. The acceleration in column 4 is performed by deploying the three-kernel design in parallel across the three SLRs in a
single FPGA (f1.2xlarge). Averages are computed over 1200 economies, except for the Baseline and Pipeline designs, which for
cost considerations are computed over 120 economies. Resources are measured (using Xilinx Vivado) as a percentage of the Xil-
inx VU9P FPGA’s resources utilized by AWS images associated with the different designs (columns). Available Resources: BRAM
(1680), DSP (5640), Registers (1,790,400), LUTs (895 thousand), URAM (800).

The FPGA solution is reached in 113 seconds, approximately fivetimes slower than
the CPU solution, which is reached in 24 seconds. This result is not surprising. FP-
GAs operate at a slower frequency than CPUs (in our case, 250 MHz vs. 3.5 GHz). Ab-
sent user-defined interventions, the CPU should be faster. That said, the compiler goes
a long way in optimizing the design, as we would have expected the FPGA to be 14x
(3.5 GHz/250 MHz) slower than the CPU, if only due to differences in clock frequency.

This acceleration illustrates how FPGAs’ gains are a by-product of hardware spe-
cialization and not the result of the chip being intrinsically faster. Slower but better-
organized tasks in the FPGA deliver higher performance than faster but “poorly” orga-
nized execution of the same tasks in the CPU. The next subsections discuss how we de-
ploy the optimization tools discussed in Section 4 to efficiently organize these tasks in
assembly lines, and how we improve performance by placing multiple assembly lines in
parallel.

7.2 Pipelining

Next, we discuss the main changes we made in order to pipeline the IHP efficiently and
Simulation steps in the single-kernel design.

Interpolation We accelerate interpolation as follows. First, we declare the loop bounds
of the individual and aggregate capital grids (namely, {0, Nk} and {0, NM }) as fixed con-
stants, allowing the compiler to autonomously physically place the required CL re-
sources. Next, we implement a jump search algorithm to find the interpolation inter-
val over the individual capital grid. The compiler instructs the hardware to pipeline a
parallel reduce tree algorithm with three stages. Each stage determines the index of the

80 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

smallest grid value larger than the interpolation point k′(k, ε, m, A) by performing com-
parisons in parallel. The number of comparisons varies by stage and grid size and en-
sures that the entire grid is examined, i = {0, � � � , Nk}. The winner of each stage deter-
mines the search area of the successive stage. Since the result of this operation is part of
a pipeline where the only dependence on subsequent loop iterations is through a final
accumulation, we achieve an II of 1 in the IHP step.22

Accumulation data precision The efficient design of the interpolation function accel-
erates both the IHP and Simulation steps. While the IHP step attains II = 1, the Sim-
ulation step has an iteration-to-iteration limit in the floating-point computation of the
cross-sectional average of individual capital holdings, mt , and settles at an II of 5. Sec-
tion 4 demonstrates how recasting the pipelined accumulator in fixed point addresses
this issue, yielding an II of 1 in equation (12), and consequently in the Simulation step.
Table 5 records a speedup of 6.94with respect to a single-core CPU. Importantly, cur-
rently available CPUs do not provide access to user-defined fixed-point arithmetic.

Our acceleration strategy trades off the accuracy of results for speed. The precision
of the accumulations that occur in the algorithm can tolerate fixed-point calculations
for the following reasons. First, the inputs to the accumulation are all positive values
such that there will not be cancellation, which can often degrade the precision when
moving from floating-point to fixed-point calculations. Second, since these are accu-
mulations, we expect the accumulator not to hold a small value but rather to converge
to a value in a limited range and magnitude. In our baseline economy, the accumula-
tor sums up to values between 15.371273672208304 and 404851.76387144416. Know-
ing the accumulator’s range, we can determine the required precision. In particular, we
need at least D1 = 6 and D2 = 15 decimal digits above and below the decimal point to
represent 404,851.76387144416 and 15.371273672208304, respectively. That is, we need

log2 10D1� + 1 = 20 binary digits to represent 404,851, and
log2 10D2� + 1 = 50 binary
digits to represent 0.371273672208304. Accordingly, the minimum number of digits to
represent our accumulator range is 50+20 = 70. In order to accommodate a larger range
of values (as may be required when we change economies θ), we set the number of digits
to 72.

Not surprisingly, Table A.6 in Supplemental Appendix C.4 shows that the results are
very accurate. The estimated ALM coefficients are identical up to the ninth decimal
place (R2 are all 0.999, and thus, not reported). The approximations of policy functions
and distribution of individual capital holdings at T = 1100 are very good, as measured
by the mean and max relative difference in the percent of these objects under floating
and fixed point (less than 3.0e−08). Moments of the distribution of individual capital
holdings are identical up to the seventh decimal place. The Euler equation errors reveal
that transitioning from computations in floating point on the CPU to fixed point on the
FPGA has no discernible impact on the accuracy of our policy function’s discretization
(with relative differences lower than 1e−6). The maximum Euler equation errors indi-
cate that the accuracy of our solution increases with the individual capital holdings grid
size, where the benefits of FPGA acceleration are even more pronounced.

22In the CPU, the C++ compiler can autonomously decide to perform these operations in parallel, but
the coder does not control this step.

Quantitative Economics 16 (2025) Programming FPGAs for economics 81

7.3 Within-data parallelism

The interpolation and accumulation designs yield efficient custom pipelines but leave a
considerable amount of CL resources unused in the single SLR (Table 5). Hence, our next
step is to identify parts in the algorithm to parallelize using the loop unrolling technique
described in Section 4.4.1. The computations involved in the interpolation step (Sec-
tion 3.D(ii)(b)) of the Simulation and the policy function iteration (equation (8)) provide
suitable candidates.

Given Amdahl’s law, we perform a trade-off analysis between resource utilization
and the solution speedup. Eight copies of the pipeline work well for our design, as they
bring the solution time of the Simulation step (371 ms) closer to that of the IHP step
(381 ms) when we unroll the latter over the states by a factor of two. Lacking hardware
programmability, the CPU execution is more imbalanced, with 72% of the solution time
spent on the Simulation step and only 28% on the IHP step. Accordingly, our CL design
yields a 46x speedup in the Simulation step and 17x speedup in the IHP step compared
to a single-core CPU, totaling a speedup of 28.38x as shown in Table 5. We call the design
that follows from these changes the single-kernel design.23

Also, it is clear from our acceleration strategy that the speedups at different stages
of the algorithm are endogenous when programming FPGAs, where the hardware is not
taken as given. Thus, FPGA acceleration depends less on the type of algorithms used
compared to CPUs and GPUs. For example, replacing the stochastic simulation algo-
rithm with a faster and more robust algorithm (e.g., Young (2010)) would allow us to free
resources from this time-consuming step and reallocate them to accelerate the individ-
ual households’ problem.

7.4 Across-economies data parallelism

We tailored our CL design to compute three economies in parallel. However, the single-
kernel design consumes more resources than the ones available in the largest SLR, leak-
ing into the adjacent SLRs with nontime-critical operations (blue area in Figure 4). Also,
the AWS shell covers a good share of resources in the adjacent SLRs (orange area in Fig-
ure 4).

So, to fit three kernels, we slightly modify our design by reducing the usage of CL re-
sources at the expense of performance. To do so, we provide directives to the compiler
to halve the amount of unrolling. In particular, we reduce the unrolling in the IHP de-
sign from 2 pipelines working in parallel to a single pipeline. Figure 5 shows the usage of
resources associated with the three-kernel design. Hence, we replicate the three-kernel
design in each SLR and use OpenCL commands to launch one independent kernel in
each of the three SLRs within a single FPGA device (f1.2xlarge). The FPGA design be-
comes 68.54times faster than a single-core CPU. Table 3 shows how we exploit this par-
allelism further to deploy more than one FPGA device in parallel on the f1.4xlarge and
f1.16xlarge instances.

23The recorded performance represents a lower bound to the performance that could be achieved by
optimizing the individual grid size designs.

82 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

Figure 4. Single-kernel design: Resource utilization. Note: Resources utilized by: (i) the sin-
gle-kernel CL design (yellow area); (ii) by the AWS shell (orange area); and (iii) available CL re-
sources (other colors). The image is captured using Xilinx Vivado.

8. Toward electrical engineering economics

This paper proposes the design of FPGAs for the solution of economic models. This ap-
proach requires minimal knowledge of hardware design principles. With small modifi-
cations of standard C/C++ code, a single FPGA can deliver the same performance as 69
CPU cores when solving a canonical heterogeneous agent model. The associated energy
savings make the compiler approach particularly appealing for organizations with in-
house clusters whose computational needs are often constrained by the power limits on
the cluster installation and the need to reduce the carbon footprint.

Our analysis leaves important venues for exploration. First, the recent populariza-
tion of machine learning techniques for the solution of economic models (Fernández-
Villaverde, Hurtado, and Nuño (2019), and Kahou et al. (2021), among many others) may
benefit from decades of research in the electrical engineering literature (Nurvitadhi et al.
(2017)) in terms of the design of efficient FPGAs. A similar argument applies to the ac-
celeration of maximum likelihood estimators.

Figure 5. Three-kernel design: Resource utilization. Note: Resources utilized by: (i) the three-
-kernel CL design (yellow, green, blue areas each corresponding to one kernel); (ii) by the AWS
shell (orange area); and (iii) available CL resources (other colors, of which the pink area serves as
a wrapper). The image is created using Xilinx Vivado.

Quantitative Economics 16 (2025) Programming FPGAs for economics 83

Second, notice that despite their acceleration potentials, FPGAs (like GPUs) still rep-
resent off-the-shelf application-specific integrated circuits (ASICs). Their routing net-
work, logical units, and memory are predesigned by the manufacturer to be config-
urable, but they are not customized to serve any particular algorithm. With a growing
literature and the development of sophisticated heterogeneous agent models to assess
the effect of monetary policy or the economic impact of climate change, we foresee a
not-too-distant future where central banks and other policymaking institutions would
invest in the design of ASICs specialized in the solution of these models. It is hard to give
a precise estimate, but customized silicons could likely improve the current speedup up
to three orders of magnitude, with one order of magnitude only due to the faster clock
cycle. FPGAs represent a first step in this direction, as they are actively used in the in-
dustry to test the functionality of the hardware design of customized chips. Of course,
designing and manufacturing these pieces of silicon is not cheap (on the order of tens to
hundreds of millions of dollars). Yet, the beneficial effects of a better-informed monetary
or climate change policy dwarf these costs.

In conclusion, there is space for a new field, electrical engineering economics, fo-
cused on the design of computational accelerators for economics. Our analysis and suc-
cessful experience in other areas suggest that such a field can provide computational
breakthroughs in the years to come.

References

Achdou, Yves, Jiequn Han, Jean-Michel Lasry, Pierre-Louis Lions, and Benjamin Moll
(2021), “Income and wealth distribution in macroeconomics: A continuous-time ap-
proach.” Review of Economic Studies, 89 (1), 45–86. [0051]

Aldrich, Eric M., Jesus Fernández-Villaverde, A. Ronald Gallant, and Juan F. Rubio-
Ramírez (2011), “Tapping the supercomputer under your desk: Solving dynamic equi-
librium models with graphics processors.” Journal of Economic Dynamics and Control,
35 (3), 386–393. [0050, 0066, 0073]

Algan, Yann, Olivier Allais, and Wouter J. Den Haan (2008), “Solving heterogeneous-
agent models with parameterized cross-sectional distributions.” Journal of Economic
Dynamics and Control, 32 (3), 875–908. [0051]

Algan, Yann, Olivier Allais, Wouter J. Den Haan, and Pontus Rendahl (2014), “Solving and
simulating models with heterogeneous agents and aggregate uncertainty.” In Handbook
of Computational Economics, Vol. 3, 277–324, Elsevier. [0051]

Amman, Hans M., David A. Kendrick, John Rust, Leigh Tesfatsion, Kenneth Judd, Karl
Schmedders, Cars Hommes, and Blake LeBaron (2018), Handbook of Computational
Economics. Elsevier. [0050]

Aruoba, S. Borağan and Jesús Fernández-Villaverde (2015), “A comparison of program-
ming languages in macroeconomics.” Journal of Economic Dynamics and Control, 58,
265–273. [0052, 0072]

https://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Achdou2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Aldrich2011&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Algan2008&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/Aruoba2015&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Achdou2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/Achdou2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Aldrich2011&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Aldrich2011&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/Aldrich2011&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Algan2008&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:3/Algan2008&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/Aruoba2015&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:6/Aruoba2015&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B

84 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

Auclert, Adrien, Matthew Rognlie, and Ludwig Straub (2020), “Micro jumps, macro
humps: Monetary policy and business cycles in an estimated HANK model.” Working
Paper 26647, National Bureau of Economic Research. [0051]

Azizi, Navid, Ian Kuon, Aaron Egier, Ahmad Darabiha, and Paul Chow (2004), “Recon-
figurable molecular dynamics simulator.” In 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 197–206. [0050]

Babb, Jonathan, Martin Rinard, Csaba Moritz, Walter Lee, Matthew Frank, Rajeev Barua,
and Saman Amarasinghe (1999), “Parallelizing applications into silicon.” In Seventh An-
nual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.
PR00375), 70–80. [0051]

Bayer, Christian and Ralph Luetticke (2018), “Solving heterogeneous agent models in
discrete time with many idiosyncratic states by perturbation methods.” Report, Univer-
sity of Bonn. [0051]

Bayer, Christian, Ralph Luetticke, Lien Pham-Dao, and Volker Tjaden (2019), “Precau-
tionary savings, illiquid assets, and the aggregate consequences of shocks to household
income risk.” Econometrica, 87 (1), 255–290. [0053]

Berczik, Peter, Ruth Männer, Guillermo Marcus, Robi Banerje, Andreas Kugel, Ralf
Klessen, and Gerhard Lienhart (2009), “Accelerating astrophysical particle simulations
with programmable hardware (FPGA and GPU).” Computer Science Research and Devel-
opment, 23, 231–239. [0050]

Bhandari, Anmol, David Evans, Mikhail Golosov, and Thomas J. Sargent (2017), “Fis-
cal policy and debt management with incomplete markets.” Quarterly Journal of Eco-
nomics, 132 (2), 617–663. [0051]

Biggs, Benjamin, Ian McInerney, Eric C. Kerrigan, and George A. Constantinides (2022),
“High-level synthesis using the Julia language.” Technical report, Imperial College, Lon-
don. [0069]

Bilal, Adrien (2021), “Solving heterogeneous agent models with the master equation.”
Technical report, University of Chicago. [0051]

Brumm, Johannes and Simon Scheidegger (2017), “Using adaptive sparse grids to solve
high-dimensional dynamic models.” Econometrica, 85 (5), 1575–1612. [0051]

Cai, Yongyang and Thomas S. Lontzek (2019), “The social cost of carbon with economic
and climate risks.” Journal of Political Economy, 127 (6), 2684–2734. [0053]

Cheela, Bhagath, André DeHon, Jesús Fernández-Villaverde, and Alessandro Peri (2023),
A Beginner’s Guide to Programming FPGAs for Economics: An Introduction to Electrical
Engineering Economics. University of Pennsylvania. [0052, 0054, 0058, 0070]

Cheela, Bhagath, André DeHon, Jesús Fernández-Villaverde, and Alessandro Peri (2024),
“Supplement to ‘Programming FPGAs for economics: An introduction to electrical en-
gineering economics’.” Quantitative Economics Supplemental Material, 15, https://doi.
org/10.3982/QE2344. [0054]

https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Bayer2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/BerczikMannerMarcusBanerkeKugelKlessenLienhar2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/Bhandari2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/Brumm2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/Cai2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://doi.org/10.3982/QE2344
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Bayer2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:11/Bayer2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/BerczikMannerMarcusBanerkeKugelKlessenLienhar2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/BerczikMannerMarcusBanerkeKugelKlessenLienhar2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:12/BerczikMannerMarcusBanerkeKugelKlessenLienhar2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/Bhandari2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:13/Bhandari2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:16/Brumm2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:17/Cai2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://doi.org/10.3982/QE2344

Quantitative Economics 16 (2025) Programming FPGAs for economics 85

Childers, David (2018), “Solution of rational expectations models with function valued
states.” Manuscript, Carnegie Mellon. [0051]

Corporation Intel (2021), Intel® High Level Synthesis Compiler Pro Edition User Guide
(UG20037). Intel Corporation. [0059]

Cruz Álvarez, José-Luis and Esteban Rossi-Hansberg (2021), “The economic geogra-
phy of global warming.” Working Paper 28466, National Bureau of Economic Research.
[0053]

Den Haan, Wouter J., Kenneth L. Judd, and Michel Juillard (2010), “Computational suite
of models with heterogeneous agents: Incomplete markets and aggregate uncertainty.”
Journal of Economic Dynamics and Control, 34 (1), 1–3. [0051, 0053, 0054, 0055]

Den Haan, Wouter J. and Pontus Rendahl (2010), “Solving the incomplete markets model
with aggregate uncertainty using explicit aggregation.” Journal of Economic Dynamics
and Control, 34 (1), 69–78. [0051]

Duarte, Victor, Diogo Duarte, Julia Fonseca, and Alexis Montecinos (2019), “Benchmark-
ing machine-learning software and hardware for quantitative economics.” Journal of
Economic Dynamics and Control, 111, 103796. [0050]

Fernández-Villaverde, Jesús, Samuel Hurtado, and Galo Nuño (2019), “Financial fric-
tions and the wealth distribution.” Working Paper 26302, National Bureau of Economic
Research. [0051, 0082]

Fernández-Villaverde, Jesús and David Z. Valencia (2018), “A practical guide to paral-
lelization in economics.” Working Paper 24561, National Bureau of Economic Research.
[0050]

Frigo, Jan, Maya Gokhale, and Dominique Lavenier (2001), “Evaluation of the Streams-
C C-to-FPGA compiler: An applications perspective.” In Proceedings of the 2001
ACM/SIGDA Ninth International Symposium on Field Programmable Gate Arrays, 134–
140. [0051]

Goldberg, David (1991), “What every computer scientist should know about floating-
point arithmetic.” ACM Computing Surveys (CSUR), 23 (1), 5–48. [0068]

Herbordt, Martin C., Josh Model, Yongfeng Gu, Bharat Sukhwani, and Tom VanCourt
(2006), “Single pass, blast-like, approximate string matching on FPGAs.” In 2006 14th An-
nual IEEE Symposium on Field-Programmable Custom Computing Machines, 217–226.
[0050]

Hoang, Dzung (1993), “Searching genetic databases on Splash 2.” In [1993] Proceedings
IEEE Workshop on FPGAs for Custom Computing Machines, 185–191. [0050]

Hrica, James (2012), “Floating-point design with Vivado HLS.” Xilinx Application Note.
[0068]

Judd, Kenneth L., Lillia Maliar, Serguei Maliar, and Inna Tsener (2017), “How to solve
dynamic stochastic models computing expectations just once.” Quantitative Economics,
8 (3), 851–893. [0051]

https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/DenHaan2010model&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/DenHaan2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/Duarte2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/Goldberg1991&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/Judd2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/DenHaan2010model&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:23/DenHaan2010model&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/DenHaan2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:24/DenHaan2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/Duarte2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:25/Duarte2019&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:29/Goldberg1991&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/Judd2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:33/Judd2017&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B

86 Cheela, DeHon, Fernández-Villaverde, and Peri Quantitative Economics 16 (2025)

Kadric, Edin, Paul Gurniak, and André DeHon (2016), “Accurate parallel floating-point
accumulation.” IEEE Transactions on Computers, 65 (11), 3224–3238. [0068]

Kahou, Mahdi E., Jesús Fernández-Villaverde, Jesse Perla, and Arnav Sood (2021), “Ex-
ploiting symmetry in high-dimensional dynamic programming.” Working Paper 28981,
National Bureau of Economic Research. [0051, 0082]

Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante (2018), “Monetary policy accord-
ing to HANK.” American Economic Review, 108 (3), 697–743. [0053]

Kapre, Nachiket and Andre DeHon (2009), “Performance comparison of single-precision
SPICE model-evaluation on FPGA, GPU, cell, and multi-core processors.” In Interna-
tional Conference on Field Programmable Logic and Applications (FPL), 65–72. [0069]

Krusell, Per and Anthony A. Smith (1998), “Income and wealth heterogeneity in the
macroeconomy.” Journal of Political Economy, 106 (5), 867–896. [0049, 0051, 0052, 0053,
0054, 0055, 0058, 0064, 0066, 0068, 0069, 0070, 0073]

Krusell, Per and Anthony A. Smith (2022), “Climate change around the world.” Working
Paper 30338, National Bureau of Economic Research. [0053]

Lo, Charles and Paul Chow (2016), “Model-based optimization of high level synthesis
directives.” In 2016 26th International Conference on Field Programmable Logic and Ap-
plications (FPL), 1–10. [0069]

Maliar, Lillia, Serguei Maliar, and Fernando Valli (2010), “Solving the incomplete mar-
kets model with aggregate uncertainty using the Krusell–Smith algorithm.” Journal of
Economic Dynamics and Control, 34 (1), 42–49. [0051, 0052, 0055, 0057, 0070, 0072, 0073]

Mertens, Thomas M. and Kenneth L. Judd (2018), “Solving an incomplete markets model
with a large cross-section of agents.” Journal of Economic Dynamics and Control, 91,
349–368. [0051]

Nagurney, Anna (1996), “Parallel computation.” In Handbook of Computational Eco-
nomics 1, 335–404. [0050]

Nurvitadhi, Eriko, Ganesh Venkatesh, Jaewoong Sim, Debbie Marr, Randy Huang, Jason
Ong Gee Hock, Yeong Tat Liew, Krishnan Srivatsan, Duncan Moss, Suchit Subhaschan-
dra, and Guy Boudoukh (2017), “Can FPGAs beat GPUs in accelerating next-generation
deep neural networks?” In Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 5–14. [0082]

Peri, Alessandro (2020), “A hardware approach to value function iteration.” Journal of
Economic Dynamics and Control, 114, 1–18. [0050, 0051, 0058, 0059, 0074, 0077]

Pröhl, Elisabeth (2015), “Approximating equilibria with ex-post heterogeneity and ag-
gregate risk.” Research Paper 17-63, Swiss Finance Institute. [0051]

Quenon, Alexandre and Victor R. G. da Silva (2021), “Towards higher-level synthesis and
co-design with Python.” In Proceedings of the Workshop on Languages, Tools, and Tech-
niques for Accelerator Design (LATTE’21), ACM, New York, NY, USA. [0069]

https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/kadric2016accurate&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/Kaplan2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/KrusellSmith1998&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/MaliarMaliarValli2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/Mertens2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/Peri2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:34/kadric2016accurate&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:36/Kaplan2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:38/KrusellSmith1998&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/MaliarMaliarValli2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:41/MaliarMaliarValli2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/Mertens2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:42/Mertens2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:45/Peri2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B

Quantitative Economics 16 (2025) Programming FPGAs for economics 87

Reiter, Michael (2009), “Solving heterogeneous-agent models by projection and pertur-
bation.” Journal of Economic Dynamics and Control, 33 (3), 649–665. [0051]

Reiter, Michael (2010), “Solving the incomplete markets model with aggregate uncer-
tainty by backward induction.” Journal of Economic Dynamics and Control, 34 (1), 28–35.
[0051]

Snider, Greg (2002), “Performance-constrained pipelining of software loops onto recon-
figurable hardware.” In Proceedings of the 2002 ACM/SIGDA Tenth International Sympo-
sium on Field-Programmable Gate Arrays, 177–186. [0051]

Whaley, R. Clint and Jack J. Dongarra (1998), “Automatically tuned linear algebra soft-
ware.” In Proceedings ACM International Conference on Supercomputing, 1–27, Wash-
ington, DC, USA. [0069]

Winberry, Thomas (2018), “A method for solving and estimating heterogeneous agent
macro models.” Quantitative Economics, 9 (3), 1123–1151. [0051]

Xilinx, Inc. (2020), UG1145: Xilinx Vitis Unified Software Platform User Guide. Xilinx, Inc.
[0052, 0059]

Xilinx, Inc. (2021), Overview of Arbitrary Precision Fixed-Point Data Types. Xilinx. Ac-
cessed on 2023/11/02. [0061]

Yates, Randy (2009), “Fixed-point arithmetic: An introduction.” Digital Signal Labs, 81
(83), 198. [0061]

Young, Eric R. (2010), “Solving the incomplete markets model with aggregate uncer-
tainty using the Krusell–Smith algorithm and non-stochastic simulations.” Journal of
Economic Dynamics and Control, 34 (1), 36–41. [0051, 0081]

Young-Schultz, Tanner, Lothar Lilge, Stephen Brown, and Vaughn Betz (2020), “Using
OpenCL to enable software-like development of an FPGA-accelerated biophotonic can-
cer treatment simulator.” In Proceedings of the 2020 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, 86–96. [0050]

Zhao, Jieru, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He (2020),
“Performance modeling and directives optimization for high-level synthesis on FPGA.”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39 (7),
1428–1441. [0069]

Co-editor Morten O. Ravn handled this manuscript.

Manuscript received 22 February, 2023; final version accepted 5 November, 2024; available on-
line 5 November, 2024.

The replication package for this paper is available at https://doi.org/10.5281/zenodo.14013936.
The Journal checked the data and codes included in the package for their ability to reproduce
the results in the paper and approved online appendices. Given the highly demanding nature of
the algorithms, the reproducibility checks were run on a simplified version of the code, which is
also available in the replication package.

https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/Reiter2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/Reiter2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/Winberry2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:55/yates2009fixed&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:56/Young2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/combatrcad2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://doi.org/10.5281/zenodo.14013936
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:48/Reiter2009&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:49/Reiter2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:52/Winberry2018&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:55/yates2009fixed&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:56/Young2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:56/Young2010&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/combatrcad2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/combatrcad2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:58/combatrcad2020&rfe_id=urn:sici%2F1759-7323%282025%2916%3A1%3C49%3APFFEAI%3E2.0.CO%3B2-B

	Introduction
	The model
	The household's problem
	The ﬁrm's problem
	Government
	Aggregate law of motion
	Equilibrium
	Calibration

	The solution algorithm
	A. Grids
	B. Individual households' problem (IHP)
	C. Aggregate law of motion (ALM)
	D. The ﬁxed-point algorithm

	Building blocks of FPGAs' optimizations
	Programming FPGAs using HLS
	FPGA optimizations

	Arbitrary-precision ﬁxed point
	Pipelining and the quest for an initiation interval of 1
	Pipelining
	Memory carry dependency problem

	Loop unrolling and memory management
	Loop unrolling
	Associative reduce tree and ﬁxed-size loop bounds

	Memory management
	Large memory access latency
	Array partitioning
	Automatic optimizations

	Nonassociativity of ﬂoating-point addition

	Portability, code reusability, and programming languages

	Our application
	Hardware architecture of FPGA acceleration
	FPGA hardware description
	Custom logic hardware design
	The single-kernel design
	The individual household problem (IHP) design
	The simulation design
	The ALM design

	The three-kernel design

	Hardware architecture of CPU multicore acceleration

	Quantitative results
	Speedups of FPGA acceleration
	Cost savings of FPGA acceleration
	Energy savings of FPGA acceleration
	Implementation costs of FPGA acceleration
	Robustness

	Inspecting the mechanism
	Baseline
	Pipelining
	Interpolation
	Accumulation data precision

	Within-data parallelism
	Across-economies data parallelism

	Toward electrical engineering economics
	References

