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The supplemental matertial contains three appendices. Appendix A presents the identifi-

cation results when the damage distribution is truncated at the deductible. Appendix B

considers alternative specifications to the CARA function and the Poisson distribution for

the insurees’ utility function and the number of accidents. Appendix C establishes several

lemmas mentioned in the text or used in the appendices. Some can be of independent interest

whereas others are likely known though we have yet found references for them.

Appendix A

This appendix extends the results of Section 3 when not all damages/accidents are observed

because of truncation at the deductible. Not observing all the accidents limits the extent of

identification. In particular, we show that F (·, ·|X) is identified up to the knowledge of the

probability of damage below the lowest deductible, i.e., H(dd2(X)|X). Thus, when one of

the insurance contracts offers full coverage, namely dd2(X) = 0, this probability is known,

and the identification results of Section 3 apply despite truncation for insurees who choose

(t1(X), dd1(X)). To simplify the notation, we let Hc(X) ≡ H(ddc(X)|X), c = 1, 2. Hereafter,

we assume that 0 < dd2(X) < dd1(X) < d(X) so that 0 < H2(X) < H1(X) < 1.

We first derive a relation between 1 − H1(X) and 1 − H2(X), which allows us to focus

on identification in terms of H2(X). Because a claim is filed only when the damage is above

the deductible, from the observed claims, we identify the damage distribution conditional

on the damage being larger than the deductible, i.e., the truncated damage distributions

H∗
c (·|X) ≡ [H(·|X) −Hc(X)]/[1 −Hc(X))] on [ddc(X), d(X)] from the insurees buying the

coverage (tc(X), ddc(X)) for c = 1, 2. Differentiating and taking the ratio show that

λ(X) ≡ h∗2(D|X)

h∗1(D|X)
=

1−H1(X)

1−H2(X)
,

for all D ≥ dd1(X), where 0 < λ(X) < 1 and h∗c(·|X), c = 1, 2 denotes the truncated damage

density conditional on X. In particular, the function λ(·) is identified from the claim data,

while H(·|X) is identified on [dd2(X), d(X)] up to the knowledge of H2(X). We proceed in

steps as in Section 3.

Identification of Fθ|X(·|·)

Let θ̃ ≡ (1 −H2(X))θ which replaces θ. We modify our identification argument as J is

now unobserved. To identify the marginal density fθ̃|X(·|·), we exploit the observed number
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of reported accidents J∗ ≤ J . The moment-generating function of J∗ given (χ,X), where

χ ∈ {1, 2} indicates the insuree’s coverage choice, is

MJ∗|χ,X(t|c, x) = E[eJ
∗t|χ = c,X = x]

= E{E[eJ∗t|J, χ,X]|χ = c,X = x}

= E
{
[Hχ(X) + (1−Hχ(X))et]J |χ = c,X = x

}
= E

{
E[eJ log[Hχ(X)+(1−Hχ(X))et]|θ, a, χ,X]|χ = c,X = x

}
= E

[
eθ[Hχ(X)+(1−Hχ(X))et−1]|χ = c,X = x

]
= Mθ|χ,X [(1−Hχ(X))(et − 1)|c, x], (S.1)

where the third equality uses the moment-generating function of J∗ given (J, χ,X), which is

a Binomial B(J, 1−Hχ(X)) from A2-(iv), and the fifth equality follows from A2-(iii) and the

moment-generating function of the Poisson distribution. Thus,

Mθ|χ,X [u|c, x] =MJ∗|χ,X

[
log

(
1 +

u

1−Hχ(X)

) ∣∣∣c, x] ,
for u ∈ (−1 +Hχ(X),+∞), where Hχ(X) < 1. Hence the distribution of risk θ given (χ,X)

is identified up to the knowledge of Hχ(X).

Since θ̃ = (1−H2(X))θ, its moment-generating function given (χ,X) is

Mθ̃|χ,X(u|c, x) = Mθ|χ,X(u(1−H2(x))|c, x)

=

 MJ∗|χ,X
[
log

(
1 + u

λ(x)

)
|1, x

]
if c = 1,

MJ∗|χ,X [log (1 + u) |2, x] if c = 2,
(S.2)

for all u ∈ (−λ(x),+∞) and u ∈ (−1,+∞), respectively, where λ(x) > 0. Thus, the moment-

generating function of θ̃ given X is the weighted average

Mθ̃|X(u|x) = E{E[euθ̃|χ,X]|X = x}

= MJ∗|χ,X

[
log

(
1+

u

λ(x)

)
|1, x

]
ν1(x) +MJ∗|χ,X [log (1+u) |2, x]ν2(x),

for u ∈ (−λ(x),+∞). Thus fθ̃|X(·|·) is identified as λ(X) is identified while ν1(X) and ν2(X)

are the proportions of insurees choosing coverages 1 and 2 that are observed in the data.

Since fθ|X(θ|x) = (1−H2(x))fθ̃|X((1−H2(x))θ|X), the conditional distribution Fθ|X(·|x) is

identified up to H2(x).

Identification of Fθ|X(·|·)
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Identification of F (θ, a|X)

Following Section 3, we consider the probability that a (θ, a)-insuree with characteristics

X chooses the coverage (t1(X), dd1(X)). Using (5) and 1 − H(D|X) = (1 − H2(X))(1 −

H∗
2 (D|X)), we remark that the indifference frontier between the two coverages in the space

(θ̃, a) is given by

θ̃(a,X) =
t2(X)− t1(X)∫ dd1(X)

dd2(X) e
aD[1−H∗

2 (D|X)]dD
,

leading to the inverse a(θ̃, X), which is identified. From Bayes’ rule, as in (6), we have

Fa|θ̃,X(a(θ̃, x)|θ̃, x) =
fθ̃|χ,X(θ̃|1, x)ν1(x)

fθ̃|X(θ̃|x)
,

where ν1(x) is observed and fθ̃|X(θ̃|x) is identified from the first step. Moreover, fθ̃|χ,X(·|1, x)

is identified because its moment-generating function Mθ̃|χ,X(·|1, x) is identified on (−λ(x, ),

+∞) as shown in (S.2). Thus Fa|θ̃,X(·|θ̃, x) is identified on the frontier a(θ̃, x).

Lastly, we note that Fa|θ̃,X(a(θ̃, x)|θ̃, x) = Fa|θ,X(a(θ, x)|θ, x) thereby identifying the latter

up to H2(x) since θ̃ = (1 −H2(x))θ. Hence under the exclusion restriction and full support

condition in A3, Fa|θ,X(·|·, ·) and hence F (θ, a|X,Z) are identified up to the knowledge of

H2(X). This result is formally stated next.

Proposition 2: Suppose that there are two offered coverages with 0 < dd2(X) < dd1(X) <

d(X), and damages are observed only when they are above the deductible for each insuree.

Under A2–A3, the structure [F (·, ·|X), H(·|X)] is identified up to H2(X).

In the absence of the full support condition A3-(ii), the comments after Proposition 1 still

apply, up to the knowledge of H2(X). We note that having a larger number of coverages

C > 2 can only improve the identification results for two reasons. First, as in Section 3, more

frontiers of the form (5) are more likely to cover the whole support Θ(x) × A(x0) when Z

varies. Second, the lowest deductible ddC(x) among the C coverages might not be binding

as the probability of damage below ddC(x) is small. In practice, this can be assessed by

estimating the conditional damage distribution in the neighborhood [ddC(X), (1+δ)ddC(X)]

with δ small.

A consequence of Proposition 2 is that the structure [F (·, ·|X), H(·|X)] is identified if and

only if H2(X) is identified. The next result shows that H2(X) is not identified.

Proposition 3: Under the conditions of Proposition 2, H2(X) is not identified.
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The proof relies on exhibiting an observationally equivalent structure, as shown below.

Proof of Proposition 3: Given Proposition 2, H2(X) is identified if and only if the

structure [F (·, ·|X), H(·|X)] is. Thus, it suffices to show that the latter is not identified.

Let [F (·, ·|X), H(·|X)] be a structure satisfying A2–A3. We construct a second structure

[F̃ (·, ·|X), H̃(·|X)] as follows. Let κ(·) be a (measurable) function of X that can be arbi-

trarily large as long as κ(x) ≥ 1 − H2(x) for all x ∈ SX . Let θ̃ = κ(X)θ and ã = a. Since

κ(X) > 0 from 1−H2(X) > 0, we have

f̃(·, ·|X) =
1

κ(X)
f

( ·
κ(X)

, · | X
)
.

Let h̃(D|X) = [1/κ(X)]h(D|X) forD ≥ dd2(X). Thus,
∫ d(X)
dd2(X) h̃(D|X)dD = [1−H2(X)]/κ(X)

∈ (0, 1]. ForD ∈ [0, dd2(X)), define h̃(D|X) to be nonnegative as long as
∫ dd2(X)
0 h̃(D|X)dD =

1− [1−H2(X)]/κ(X). In particular, upon evaluating H̃(D|X), it is easy to verify that

1− H̃(D|X) =
1

κ(X)
[1−H(D|X)] (S.5)

for D ≥ dd2(X). Moreover, the second structure [F̃ (·, ·|X), H̃(·|X)] satisfies A2–A3.

We now show that these two structures are observationally equivalent, i.e., they lead to

the same distribution for the observables (J∗, D∗
1, . . . , D

∗
J∗ , χ) given X and (t1, dd1, t2, dd2),

where J∗ and D∗ refer to the number of reported accidents and their corresponding damages,

respectively, while χ indicates the coverage chosen by the insuree. Regarding the distribution

of χ̃ given X, we note that χ̃ = χ. The latter follows from χ̃ = 1 if and only if (θ̃, a) ∈ C̃1(X),

i.e., θ̃ ≤ θ̃(a,X). But θ̃ = κθ while the frontier (5) defining the insurees’ coverage choice for

the second structure satisfies

θ̃(a,X) =
t2(X)− t1(X)∫ dd1(X)

dd2(X) e
aD(1− H̃(D|X))dD

=
t2(X)− t1(X)∫ dd1(X)

dd2(X) e
aD 1

κ(X)(1−H(D|X))dD

= κ(X)θ(a,X)

using (S.3). Hence θ̃ ≤ θ̃(a,X) is equivalent to θ ≤ θ(a,X). That is, χ̃ = 1 if and only if

χ = 1. Thus, the distributions of χ̃ and χ given X are the same, i.e., ν̃c(X) = νc(X) for

c = 1, 2.

Regarding the distribution of J̃∗ given (χ̃,X)=(χ,X), from (S.1), its moment-generating

function is

Mθ̃|χ,X [(1− H̃χ(X))(et − 1)|c, x] = Mθ|χ,X [(1−Hχ(X))(et − 1)|c, x]

= MJ∗|χ,X [t|c, x],
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where the first equality uses Mθ̃|χ,X(u|c, x) = Mθ|χ,X [κ(x)u|c, x], which follows from θ̃ =

κ(X)θ, and 1−H̃c(X) = (1−Hc(X))/κ(X), which follows from (S.3). Hence, the distribution

of J̃∗ given (χ,X) is the same as that of J∗ given (χ,X).

Lastly, regarding the distribution of reported damage D̃∗ given (J̃∗, χ,X) we have

H̃∗
χ(·|X) =

H̃(·|X)− H̃χ(X)

1− H̃χ(X)
=
H(·|X)−Hχ(X)

1−Hχ(X)
= H∗

χ(·|X)

on [dd2(X), d(X)] where we have used 1− H̃χ(·|X) = (1−Hχ(·|X))/κ(X) and (S.3). Hence,

the two structures lead to the same distributions for the observables as desired. 2

Proposition 3 shows that all the information provided by the model and the data have been

exhausted. The nonidentification can be explained as follows. It arises from a compensation

between the increase (decrease) in the number of accidents and an appropriate decrease

(increase) in the probability of damages greater than the deductible. From the insuree’s

perspective, such compensation maintains the relative ranking between the two contracts.

Thus, if a (θ, a)-insuree buys (t1(X), dd1(X)), then the ((1 −H2(X))θ, a)-insuree also buys

the same coverage if there is an appropriate increase in the probability of damages being

greater than dd1(X). From the insurer’s perspective, the decrease in the average number of

accidents is compensated by an appropriate increase in the probability that the damage is

above the deductible so that the expected payment to the insuree remains the same under

either coverage.

Identification Strategies for H2(X)

We discuss identification strategies for the probability H2(X). Any strategy that identi-

fies H2(X) identifies the structure [F (·, ·|X), H(·|X)]. A first strategy is to parameterize the

damage distribution H(·|X) as H(·|X;β) on [0, d(X)] with β ∈ B ⊂ IRq. Observations on re-

ported damagesD∗ identify β and henceH(·|X) on [0, d(X)]. ThusH2(X) ≡ H(dd2(X)|X;β)

is identified. In particular, we can choose a parametrization to fit the estimated truncated

damage distribution H∗(·|X) on [dd2(X), d(X)].

A second strategy is to consider additional data on the average number of accidents.

For instance, suppose that for every x ∈ SX , we know the average number of accidents

µ(x) ≡ E[J |X = x] = E{E[J |θ,X = x]|X = x} = E[θ|X = x] by A2-(iii). For the average

number of reported accidents, we have µ∗c(x) ≡ E[J∗|χ = c,X = x] = E{E[J∗|J, χ = c,X =

x]|χ = c,X = x} = E[J(1−Hc(X))|χ = c,X = x] = [1−Hc(x)]E[θ|χ = c,X = x] for c = 1, 2
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since J∗ given (J, χ,X) is distributed as a Binomial with parameters (J, 1−Hχ(X)). Thus

µ(x) = ν1(x)E[θ|χ = 1, X = x] + ν2(x)E[θ|χ = 2, X = x]

=
1

1−H2(x)

(
ν1(x)

µ∗1(x)

λ(x)
+ ν2(x)µ

∗
2(x)

)
,

identifying H2(x), given that νc(x), µ
∗
c(x), c = 1, 2, and λ(x) are identified from the data.

Alternatively, suppose we know only E[J |X = x∗] for some x∗. Using the same argument

establishes the identification of H2(x∗). This result combined with a support assumption such

as θ(x) = θ for every x identifies H2(x). To see this, note that θ̃(x) = (1−H2(x))θ(x), where

θ̃(x) is the upper boundary of the support of fθ̃|X(·|X = x), which is identified. Applying this

equation at x∗ identifies θ = θ(x∗) = θ̃(x∗)/(1 − H2(x∗)). Applying this equation again at

different values x identifies H2(x). A similar argument applies at the lower bound θ(x) = θ.1

A third strategy is to derive sharp bounds on the probability H2(X). This approach, also

known as partial identification, was developed by e.g. Manski and Tamer (2002), Haile and

Tamer (2003) and Chernozhukov, Hong and Tamer (2007). Our bounds are nonparametric.

Let [F (·, ·|X), H(·|X)] be the structure generating the observables. Fix a value x ∈ SX .

Proposition 2 implies that it is sufficient to determine the identified set for H2(x), i.e., the set

of values H̃2(x) that are observationally equivalent to H2(x). To be precise, this is the set of

values H̃2(x) corresponding to structures [F̃ (·, ·|X), H̃(·|X)] that are observationally equiva-

lent to [F (·, ·|X), H(·|X)]. Indeed, Proposition 2 shows that [F (·, ·|X), H(·|X)] is identified up

to H2(·). The proof of Proposition 3 above shows that any value H̃2(X) = 1−(1/κ)[1−H2(x)]

for κ ∈ (1 − H2(X),∞) is observationally equivalent to H2(x). Thus, the identified set for

H2(x) is (0, 1).
2

To tighten the upper bound, we can use some empirical evidence. From Cohen and Einav

(2007), the estimated damage density decreases when the damage approaches the deductible

from above, suggesting that the density below the deductible is not greater than its value at

1In contrast, information on the average damage is not sufficient. We note that E(D|X = x) =

H2(x)E[D|D ≤ dd2(x), X = x]+ (1−H2(x))E[D|D ≥ dd2(x), X = x], where E[D|D ≥ dd2(x), X = x]

is identified from the data. Thus, identification of H2(x) requires to know both E[D|D ≤ dd2(x), X =

x] and E(D|X = x).
2We can then obtain sharp bounds for the structure [F (·, ·|·), H(·|·)]. Fixing X = x, let H2(x) =

h ∈ (0, 1) leading to a unique structure [Fh(·, ·|x), Hh(·|x)] by Proposition 2. The identified set

for [F (·, ·|x), H(·|x)] is the collection of such [Fh(·, ·|x), Hh(·|x)] when h runs over (0, 1). To derive

bounds, we can follow Haile and Tamer (2003) by taking lower and upper envelopes for each structural

distribution F (·, ·|x) or H(·|x).
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the deductible. Thus we can assume that the damage density satisfies h(D|x) ≤ h[dd2(x)|x]

for every D ≤ dd2(x) and x. Integrating both sides from 0 to dd2(x) we obtain 0 ≤ H2(x) ≤

dd2(x)h(dd2(x)|x). Dividing both sides by 1−H2(x), and using the definition of the truncated

density h∗2(·|x), we obtain

0 ≤ H2(x)

1−H2(x)
≤ dd2(x)h

∗
2(dd2(x)|x).

Solving for H2(x) gives the upper bound

H2(x) ≤
dd2(x)h

∗
2(dd2(x)|x)

1 + dd2(x)h∗2(dd2(x)|x)
≡ H2(x),

which is strictly less than 1. Thus the identified set for H2(x) reduces to (0, H2(x)]. The

upper bound can be estimated from observables.3

The extension of Section 3 applies up to the identification of H2()̇. It is worth noting

that even if damages were not observed below the deductibles, condition (8) would still be

implementable and verifiable. Indeed, upon dividing by [1 −H(ddC)] the ratio in the RHS

is equal to
∫ ddc+1

ddc+2
[1−H∗

C(D)]dD/
∫ ddc
ddc+1

[1−H∗
C(D)]dD where H∗

C(·) = [H(·)−H(ddC)]/[1−

H(ddC)] is the distribution of D conditional on D > ddC . The latter distribution is identified

from the claims of individuals buying the highest coverage (tC , ddC), i.e., the lowest deductible

ddC . Thus the Corollary still applies, and one should observe that the observed coverages

should lie on a convex curve in the (t, dd)-space. The estimation procedure of Section 4

extends to this case with some appropriate adjustments, and the analyst can choose an

estimator for H2(·) in line with the identification strategies discussed above.

Appendix B

This appendix extends the results of Section 3 under alternative specifications to the CARA

function and the Poisson distribution for the insurees’ utility function and the number of

accidents. As before, we assume that heterogeneity across insurees is aracterized by a bidi-

mensional vector (θ, a) of private information. Thus, by necessity parametric assumptions on

the utility function and the distribution of the number of accidents follow. Specifically, we

let the increasing and concave utility function U(·; a) be parameterized by a ∈ IR+ capturing

3The comment in the previous footnote applies with h running over (0, H2(x)].
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the insuree’s risk aversion, while the distribution of the number of accidents P (·; θ) is param-

eterized by θ capturing the insuree’s risk. These need no longer be the CARA utility function

nor the Poisson distribution. We stress that the CARA-Poisson specification is widely used

for its mathematical tractability that we loose under alternative specifications. We still leave

the joint distribution of (θ, a) unspecified. Thus our approach remains semiparametric as we

consider nonparametric mixtures for the utility function and the distribution of the number

of accidents in the population.

We extend A1 by replacing A1-(i,iii) with more general assumptions on the utility function

and the distribution of the number J of accidents.

Assumption A1’: While A1-(ii,iv) remain, A1-(i,iii) are replaced by

(i) The insuree’s utility function U(x; a) is increasing and concave in x, where U(·; a′) is

more risk averse than U(·; a) whenever a′ > a,4

(iii) The number of accidents J given θ is distributed as P (·; θ), where P (·; θ′) First-Order

Stochastically Dominates (FOSD) P (·; θ), i.e., P (·; θ′)
FOSD
≻ P (·; θ), whenever θ′ > θ.

The main role of A1’-(i,iii) is to rank insurees in terms of their risk aversion and risk parame-

ters a and θ, respectively. Beside the CARA utility function, a well-known utility function sat-

isfying A1’-(i) is the Constant Relative Risk Aversion (CRRA) utility function x1−a/[1−a] for

a ∈ (0, 1). More generally, we can consider the Hyperbolic Absolute Risk Aversion (HARA)

utility function which nests ARA and RRA as special cases. It is defined as

U(x;α, β, γ) =
1− α

α

(
γx

1− α
+ β

)α

,

where α ̸= 0, γ > 0 and [γx/(1 − α)] + β > 0. In general, we expect α < 1 since α > 1

would correspond to implausible Increasing ARA (IARA) while β ∈ IR. The family of

HARA utility functions has three parameters (α, β, γ), whereas heterogeneity in risk aversion

is one-dimensional in our setting. We can achieve the latter by fixing two of these three

utility parameters, thereby leaving the third one to describe individuals’ heterogeneity in

risk aversion. For instance, the CARA specification U(x; a) = − exp(−ax) corresponds to

β = [1 − (1/α)]−1/α and γ = a[1 − (1/α)]1−(1/α) with α → ±∞. See also Lemma C.4 in

Appendix C. Alternatively, the CRRA specification U(x; a) = x1−a/(1 − a) corresponds to

β = 0 and γ = (1−α)1−(1/α). A strictly negative value of β implies Decreasing RRA (DRRA)

4By definition, this means that there exists an increasing and concave function q(·) possibly de-

pending on (a′, a) such that U(·; a′) = q[U(·; a)].

9



preferences, while a strictly positive value of β implies Increasing RRA (IRRA) preferences.

These specifications satisfy A1’-(i) and allow the nature of risk aversion a to vary across

individuals. Regarding A1’-(iii), several families of distributions satisfy it such as the Poisson

distribution P(·; θ) for θ > 0, the Negative Binomial distribution NB(θ, p) for θ > 0 and fixed

p ∈ (0, 1), and the Binomial distribution B(n, θ) for θ ∈ (0, 1) and fixed n ≥ 1. See Lemma

C.2 in Appendix C.

We can now define the certainty equivalent CE(t, dd; θ, a, w) for a (θ, a)-individual with

wealth w. Following (1) and (2), CE(t, dd; θ, a, w) solves

U(CE; a) ≡ E

U(w − t−
J∑

j=0

min{dd,Dj}; a
)
|θ

 , (S.6)

where J ∼ P (·; θ), Dj
iid∼ H(·) and D0 ≡ 0 by convention. Thus the frontier θc,c+1(·) between

coverages (tc, ddc) and (tc+1, ddc+1) satisfies

CE(tc, ddc; θc,c+1(a), a, w)− CE(tc+1, ddc+1; θc,c+1(a), a, w) = 0 (S.7)

for all a ∈ [a, a]. The frontier θc,c+1(·) actually depends on wealth w. To simplify the notation,

we omit this dependence. We also let CEc(θ, a) ≡ CE(tc, ddc; θ, a, w).

The next lemma extends Lemma 1 while allowing for more than two contracts.

Lemma 1’: Let A1’ hold. Let the coverages (tc, ddc), c = 1, . . . , C ≥ 2 satisfy the RP

condition (7).

(i) When ddc = 0 (full coverage), CEc(θ, a) reduces to w − tc. When ddc > 0, CEc(θ, a)

decreases in both risk θ and risk aversion a.

(ii) Suppose in addition that CEc(θ, a) is supermodular in (c, θ) and (c, a).5 Conditional on

wealth w, the frontier θc,c+1(·) between the coverages (tc, ddc) and (tc+1, ddc+1) is decreasing

in the (θ, a)-space. Every (θ, a)-individual below (resp. above) this frontier prefers coverage

c over coverage c+ 1 (resp. c+ 1 over c).

Proof: (i) When dd = 0, (S.6) reduces to U(CE; a) = E[U(w − t; a)] = U [w − t; a)].

Thus CE(t, dd; θ, a, w) = w − t since U(·; a) is increasing by A1’-(i). Next, consider the

5A function ψ(c, x, y) is supermodular in (c, x) whenever ψ(c′, x′, y) + ψ(c, x, y) > ψ(c′, x, y) +

ψ(c, x′, y) for all c′ > c, x′ > x and y. If ψ(c, x, y) is differentiable in x this is equivalent to

∂ψ(c, x, y)/∂x increasing in c for all (c, x, y), or ∂ψ(c′, x, y)/∂x− ∂ψ(c, x, y)/∂x > 0 for all c′ > c and

(x, y). If ψ(c, x, y) was differentiable in (c, x), this would be also equivalent to ∂2ψ(c, x, y)/∂c∂x > 0.

See Topkis (1978).
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case dd > 0. Let J ′ ∼ P (·; θ′) and J ∼ P (·; θ) where θ′ > θ so that P (·; θ′)
FOSD
≻

P (·; θ) by A1’-(iii). Setting Xj ≡ min{dd,Dj} for j ∈ {0, 1, 2, . . .} in Lemma C.6, we

have
∑J ′

j=0min{dd,Dj}
FOSD
≻

∑J
j=0min{dd,Dj}. Hence w − t −

∑J
j=0min{dd,Dj}

FOSD
≻

w − t−
∑J ′

j=0min{dd,Dj}. Because U(·; a) is increasing by A1’-(i), it follows from e.g. Gol-

lier (2001) that E
[
U(w − t−

∑J
j=0min{dd,Dj}; a)

]
> E

[
U(w − t−

∑J ′
j=0min{dd,Dj}; a)

]
.

That is, the certainty equivalent CE(t, dd; θ, a, w) defined by (S.6) is decreasing in θ. It

remains to verify that CE(t, dd; θ, a, w) is decreasing in a. Indeed because the a′-individual

is more risk averse than the a-individual when a′ > a by A1’-(i), it follows that the former

is worse off than the latter when offered the same lottery w − t −
∑J

j=0min{dd,Dj}. See

Rothschild and Stiglitz (1970) or e.g. Gollier (2001).

(ii) The frontier between the two coverages (tc, ddc) and (tc+1, ddc+1) is the locus of (θ, a)

pairs satisfying the indifference condition (S.7), i.e.,

CEc(θ, a)− CEc+1(θ, a) = 0. (S.8)

Let (θ, a) and (θ′, a′) be two points on this locus with a′ > a. We want to show that

θ′ < θ. Because CEc(θ, a) is supermodular in (c, a), we have CEc(θ, a
′) − CEc(θ, a) <

CEc+1(θ, a
′)− CEc+1(θ, a) or upon rearranging terms

CEc(θ, a
′)− CEc+1(θ, a

′) < CEc(θ, a)− CEc+1(θ, a) = 0 (S.9)

using (S.8). In particular, (S.9) shows that θ′ ̸= θ since (θ′, a′) being on the indifference locus

satisfies CEc(θ
′, a′)−CEc+1(θ

′, a′) = 0. Moreover, subtracting the latter equation from (S.9)

gives upon rearranging terms

CEc+1(θ
′, a′)− CEc+1(θ, a

′) < CEc(θ
′, a′)− CEc(θ, a

′).

Because CEc(θ, a) is supermodular in (c, θ), we would obtain the reverse inequality if θ′ > θ.

Thus θ′ ≤ θ and hence θ′ < θ since θ′ ̸= θ as shown earlier.

It remains to show the second part of (ii). It suffices to show that any individual above

or equivalently to the right of the indifference locus prefers coverage c+ 1. Let (θ′, a′) be

such an individual and (θ′, a) be the corresponding pair on the indifference locus with a < a′.

Similarly to (S.9) with θ replaced by θ′ we obtain CEc(θ
′, a′)− CEc+1(θ

′, a′) < 0. Thus the

(θ′, a′)-individual prefers coverage 2 as desired.6 2

6An alternative proof uses the differentiability of CEc(θ, a) in (θ, a) for c = 1, 2. Specifically, the
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Part (i) of Lemma 1’ conforms with intuition. If an individual has a larger risk θ, he/she

will likely be involved in more accidents that will reduce his/her net wealth and thus his/her

certainty equivalent. Likewise, an individual with a higher risk aversion a will have a lower

utility and hence lower certainty equivalent for the coverage (t, dd) ceteris paribus. Regarding

(ii), supermodularity captures the idea that a better coverage is more valuable to insurees

with higher θ (resp. higher a) than to insurees with lower θ (resp. lower a). Supermodularity

conditions are widely used in economic theory. See Milgrom and Roberts (1990), Vives (1990),

and Athey (2002) among others. In our case, this condition involves the terms of the cover-

ages, the utility function, the distribution of the number of accidents, and the distribution of

damages since the expectation in (S.6) is taken with respect to (J,D1, . . . , DJ).
7

The next lemma extends Lemma 2 by relaxing the CARA-Poisson assumptions. As in

Lemma 2, it ensures that the C frontiers θc,c+1(·) do not cross and lie on top of each other

as c increases from 1 to C − 1.

Lemma 2’: Let A1’ hold. Let the coverages (tc, ddc), c = 1, . . . , C ≥ 2 satisfy the RP

condition (7), and CEc(θ, a) be supermodular in (c, θ) and (c, a). Suppose that

∂CEc(θc+1,c+2(a),a)
∂a − ∂CEc+1(θc+1,c+2(a),a)

∂a
∂CEc+1(θc+1,c+2(a),a)

∂a − ∂CEc+2(θc+1,c+2(a),a)
∂a

>
∂CEc(θc+1,c+2(a),a)

∂θ − ∂CEc+1(θc+1,c+2(a),a)
∂θ

∂CEc+1(θc+1,c+2(a),a)
∂θ − ∂CEc+2(θc+1,c+2(a),a)

∂θ

(S.10)

for a ∈ [a, a] and c = 1, . . . , C − 2. Then the frontiers θc,c+1(·) between coverages (tc, ddc)

and (tc+1, dc+1) for c = 1, . . . , C − 1 satisfy θ1,2(·) < . . . < θC−1,C(·) on [a, a] if and only if

CEc(θc+1,c+2(a), a) < CEc+1(θc+1,c+2(a), a) (S.11)

for c = 1, . . . , C − 2.

Proof: Fix c = 1, . . . , C − 2. We want to show that θc,c+1(·) < θc+1,c+2(·) on [a, a]. From

(S.7) θc,c+1(·) satisfies

CEc(θc,c+1(a), a)− CEc+1(θc,c+1(a), a) = 0. (S.12)

first part of (ii) can be proved by totally differentiating (A.3) to obtain the derivative θ′(a) of the

frontier and using the differentiable version of the supermodularity of CEc(θ, a) in (c, θ) and (c, a).

To prove the second part of (ii), we can use CEc(θ
′, a′) − CEc(θ

′, a) =
∫ a′

a
∂CEc(θ

′, ã)/∂a dã where

∂CEc(θ
′, ã)/∂a is increasing in c.

7As a matter of fact, Lemma C.3 in Appendix C establishes the supermodularity of CEc(θ, a) in

the CARA-Poisson specification of Section 2 irrespective of the damage distribution. When the utility

function is HARA, the difficulty arises from the non-explicit form of the certainty equivalent even

when the distribution of the number of accidents is Poisson. See Lemma C.4.
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Because CEc(θ, a) is supermodular in (c, θ), the derivative ∂CEc(θ, a)/∂θ is increasing in c.

Thus ∂CEc(θ, a)/∂θ − ∂CEc+1(θ, a)/∂θ < 0. Hence CEc(·, a) − CEc+1(·, a) is decreasing.

Thus, using (S.12), we have θc,c+1(a) < θc+1,c+2(a) if and only if

CEc(θc+1,c+2(a), a)− CEc+1(θc+1,c+2(a), a) < 0. (S.13)

We show that the LHS of (S.13) decreases in a under condition (S.10). Its (total) deriva-

tive with respect to a is

d

da

[
CEc(θc+1,c+2(a), a)− CEc+1(θc+1,c+2(a), a)

]
=

[
∂CEc(θc+1,c+2(a), a)

∂θ
− ∂CEc+1(θc+1,c+2(a), a)

∂θ

]
θ′c+1,c+2(a)

+

[
∂CEc(θc+1,c+2(a), a)

∂a
− ∂CEc+1(θc+1,c+2(a), a)

∂a

]
, (S.14)

where θ′c+1,c+2(·) is the derivative of the frontier θc+1,c+2(·). Because this frontier satisfies

CEc+1(θc+1,c+2(a), a) − CEc+2(θc+1,c+2(a), a) = 0 by definition, differentiation with respect

to a gives

θ′c+1,c+2(a) = −
∂CEc+1(θc+1,c+2(a),a)

∂a − ∂CEc+2(θc+1,c+2(a),a)
∂a

∂CEc+1(θc+1,c+2(a),a)
∂θ − ∂CEc+2(θc+1,c+2(a),a)

∂θ

.

Hence (S.14) gives upon rearranging terms

d

da

[
CEc(θc+1,c+2(a), a)− CEc+1(θc+1,c+2(a), a)

]
= −

[
∂CEc+1(θc+1,c+2(a), a)

∂a
− ∂CEc+2(θc+1,c+2(a), a)

∂a

]

×

 ∂CEc(θc+1,c+2(a),a)
∂θ − ∂CEc+1(θc+1,c+2(a),a)

∂θ
∂CEc+1(θc+1,c+2(a),a)

∂θ − ∂CEc+2(θc+1,c+2(a),a)
∂θ

−
∂CEc(θc+1,c+2(a),a)

∂a − ∂CEc+1(θc+1,c+2(a),a)
∂a

∂CEc+1(θc+1,c+2(a),a)
∂a − ∂CEc+2(θc+1,c+2(a),a)

∂a


The term within the first pair of brackets is negative since CEc(θ, a) is supermodular in

(c, a), so that ∂CEc(θ, a)/∂a is increasing in c. The term within the second pair of brackets

is negative by condition (S.10). Thus the derivative of the LHS of (S.13) with respect to a is

negative as desired. Because CEc(θc+1,c+2(a), a) − CEc+1(θc+1,c+2(a), a) is decreasing in a,

(S.13) holds for all a ∈ [a, a] if and only if it holds at a. 2

Because CEc(θ, a) is supermodular in (c, θ) and (c, a), numerators and denominators in

(S.10) are negative. Note that (S.10) is evaluated at the frontier θc+1,c+2(·). Thus, a sufficient

condition for (S.10) is

∂CEc(θ,a)
∂a − ∂CEc+1(θ,a)

∂a
∂CEc(θ,a)

∂θ − ∂CEc+1(θ,a)
∂θ

>
∂CEc+1(θ,a)

∂a − ∂CEc+2(θ,a)
∂a

∂CEc+1(θ,a)
∂θ − ∂CEc+2(θ,a)

∂θ

(S.15)
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for (θ, a) ∈ [θ, θ]× [a, a] and c = 1, . . . , C − 2.8 Moreover, it follows from (S.7) that the LHS

and RHS of (S.15) are the slopes in absolute values of the frontiers θc,c+1(·) and θc+1,c+2(·),

respectively, at (θ, a). If these frontiers intersect at (θ, a), (S.15) implies that they would

intersect at most once. As a matter of fact, under (S.10), condition (S.11) ensures that the

C frontiers θc,c+1(·), c = 1, . . . , C − 1 do not intersect.

Condition (S.11) generalizes condition (8) of Lemma 2 to the case when the utility function

and the distribution of the number of accidents are no longer CARA and Poisson, respectively.

Indeed, using (2) to evaluate the difference CEc(θ, a)−CEc+1(θ, a) at (θc+1,c+2(a), a), where

the frontier θc+1,c+2(·) is given by (3), it is easy to verify that condition (S.11) reduces to

condition (8). Moreover, from (S.6), condition (S.11) is equivalent to

E

U(w−tc−
Jc+1,c+2(a)∑

j=0

min{ddc, Dj}; a
)<E

U(w−tc+1−
Jc+1,c+2(a)∑

j=0

min{ddc+1, Dj}; a
)

for c = 1, . . . , C − 2, where Jc+1,c+2(a) ∼ P (·; θc+1,c+2(a)). Since U(·; a) is increasing and

concave, it follows that a sufficient condition for (S.11) is

−tc −
Jc+1,c+2(a)∑

j=0

min{ddc, Dj}
SOSD
≺ −tc+1 −

Jc+1,c+2(a)∑
j=0

min{ddc+1, Dj} (S.16)

by definition of Second-Order Stochastic Dominance (SOSD). See Rothschild and Stiglitz

(1970), or e.g., Gollier (2001). In particular, (S.16) is independent of wealth w. Fur-

thermore, upon taking expectations and invoking A1-(iv), (S.16) requires that tc+1 − tc <

E[Jc+1,c+2(a)]E
[
min{ddc, D} −min{ddc+1, D}

]
, i.e.,

tc+1 − tc < E[Jc+1,c+2(a)]

∫ ddc

ddc+1

[1−H(D)]dD, (S.17)

where we have used the identity min{ddc, D} = min{ddc+1, D} + [min{ddc, D} − ddc+1]

1I(ddc+1 ≤ D) since ddc > ddc+1. Because the expectation E[Jc+1,c+2(a)] depends on the

distribution of damage H(·), the lowest risk aversion a as well as the terms (tc+1, ddc+1) and

(tc+2, ddc+2) of the coverages c+1 and c+2, (S.17) is related to reverse nonlinear pricing as

for the CARA-Poisson case.9

8Condition (S.15) and hence (S.10) are satisfied by the CARA-Poisson specification of Section 2

irrespective of the damage distribution. See Lemma C.5 in Appendix C.
9In the latter case, E [Jc+1,c+2(a)] = θc+1,c+2(a). From (3), it follows that (S.17) reduces to

condition (9) by letting a approaching zero.
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Lastly, we show how to extend the identification results of Section 3. In line with A2, we

make the following assumption.

Assumption A2’: While A2-(ii,iv) remain, A2-(i,iii) are replaced by A1’-(i,iii). In addition,

the family of distributions P (·; θ) is additively closed.10

The distribution of accidents given X is a mixture of the distribution of the number J of acci-

dents given θ with mixing distribution given by Fθ|X(·|·), i.e., Pr[J ≤ ·|X] =
∫
P (·|θ)dF (θ|X)

using A2’-(iii). The additive closedness of P (·; θ) then ensures the identification of the dis-

tribution Fθ|X(·|·) from the distribution of the number J of accidents given X. See Teicher

(1961) and Rao (1992). Several families of discrete distributions are additively closed. For

instance, the Poisson distribution P(θ) for θ > 0 and the Negative Binomial distribution

NB(r, p) for r > 0 and fixed p ∈ (0, 1) mentioned earlier are additively closed. In contrast,

the Binomial distribution B(n, p) for p ∈ (0, 1) and fixed n ≥ 1 is not.11 Given the identifica-

tion of Fθ|X(·|·) under A2’, we use steps 2 and 3 of Section 3.12 Hence the joint distribution

F (θ, a|X) of risk and risk aversion is identified under the exclusion and support assumption

A3. As noted above, the latter can be weakened as it suffices that the combined variations

of the C − 1 frontiers span the Θ(X)×A(X0) space.

Appendix C

This appendix establishes several lemmas mentioned in the text or used in Appendix B

above. Some can be of independent interest. Others are likely known though we have yet

found references for them.

Lemma C.1: Let H(·) be a distribution function with support (0, y). For any y† ∈ (0, y),

the function ψ(x, y) ≡
∫ y
y†
exz[1−H(z)]dz is log-supermodular in (x, y) ∈ (0,+∞)× (y†, y).

10A family of distributions {P (·; θ); θ ∈ IR} is additively closed if their characteristic functions ϕ(·; θ)
satisfy ϕ(·; θ1)ϕ(·; θ2) = ϕ(·; θ1 + θ2) for every (θ1, θ2) ∈ IR2. This is equivalent to ϕ(·; θ) = ϕ(·; 1)θ.
See Rao (1992).

11When n = 1, i.e., when one only observes whether an individual has an accident or not, Aryal,

Perrigne and Vuong (2012) show that our insurance model with CARA utility function is not identified

despite exploiting all the restrictions of the model.

12The car value as a proxy for wealth w is included in X.
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Proof of Lemma C.1: Following Topkis (1978), the function ψ(x, y) is log-supermodular

if ∂2 logψ(x, y)/∂x∂y > 0. Taking derivatives, we obtain

∂ logψ(x, y)

∂y
=

exy[1−H(y)]

ψ(x, y)

∂2 logψ(x, y)

∂x∂y
=

yexy[1−H(y)]ψ(x, y)− exy[1−H(y)]
∫ y
y†
zexz[1−H(z)] dz

ψ(x, y)2
.

But
∫ y
y†
zexz[1 −H(z)] dz < y

∫ y
y†
exz[1 −H(z)] dz = yψ(x, y) since z ≤ y and y† < y. Thus

the numerator of ∂2 logψ(x, y)/∂x∂y is positive as desired. 2

Lemma C.2: The Poisson distribution P(θ) for θ > 0, the Negative Binomial distribution

NB(r, p) for r > 0 and fixed p ∈ (0, 1), and the Binomial distribution B(n, p) for p ∈ (0, 1) and

fixed n ≥ 1 are families of increasingly FOSD distributions as θ, r and p increase respectively.

Proof of Lemma C.2: From e.g., Johnson, Kemp and Kotz (2005), the Poisson cdf with

parameter θ is given by Pr[X ≤ j] = 1− Pr[Gamma(j + 1) ≤ θ] which is decreasing in θ for

every j = 0, 1, . . .. Thus P(θ′)
FOSD
≻ P(θ) whenever θ′ > θ. Similarly, the cdf of NB(r, p) is

given by Pr[X ≤ j] = Pr[Beta(r, j + 1) ≤ p], which is decreasing in r for every j = 0, 1, . . ..

To see the latter, we note that Beta(a, b)
d
= 1−Gamma(b)/[Gamma(a) + Gamma(b)] where

Gamma(a) is independent of Gamma(b). Since Gamma(a′)
d
= Gamma(a) + Gamma(a′ − a)

where Gamma(a) is independent of Gamma(a′ − a) ≥ 0, it follows that Gamma(a′)
FOSD
≻

Gamma(a) for a′ > a implying that Pr[Beta(r′, j+1) ≤ p] < Pr[Beta(r, j+1) ≤ p] for r′ > r.

That is, NB(r′, p)
FOSD
≻ NB(r, p) whenever r′ > r. Lastly, the cdf of B(n, p) is given by

Pr[X ≤ j] = Pr[Beta(n− j, j + 1) ≤ 1− p] which is decreasing in p for every j = 0, 1, . . . , n.

Thus B(n, p′)
FOSD
≻ B(n, p) whenever p′ > p. 2

Lemma C.3: Let the coverages (tc, ddc), c = 0, 1, . . . , C ≥ 2, satisfy the RP condition (7).

The certainty equivalent CEc(θ, a) of contract c is supermodular in (c, θ) and (c, a) when

U(·; a) and P (·; θ) are the CARA utility and the Poisson distribution, respectively.

Proof of Lemma C.3: We want to show that

∂CEc′(θ, a)

∂θ
− ∂CEc(θ, a)

∂θ
> 0 and

∂CEc′(θ, a)

∂a
− ∂CEc(θ, a)

∂a
> 0

for c < c′. To prove the first inequality, we note that (2) gives

∂CEc′(θ, a)

∂θ
− ∂CEc(θ, a)

∂θ
= −1

a
[ϕa(dd

′)− ϕa(dd)].
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Because ϕa(·) is increasing and dd′ < dd, the desired inequality follows. Regarding the second

inequality, we show that ∂CEc(θ, a)/∂a increases in c or equivalently decreases in dd. From

(2) this is equivalent to showing that

∂CEc(θ, a)

∂a
= −θ ∂

∂a

[
ϕa(dd)− 1

a

]
is decreasing in dd. But [ϕa(dd)− 1]/a =

∫ dd
0 eaD[1−H(D)]dD by (A.1). Thus,

∂2

∂dd∂a

[
ϕa(dd)− 1

a

]
=

∂

∂a

[
eadd[1−H(dd)]

]
= aeadd[1−H(dd)] > 0.

Hence ∂CEc(θ, a)/∂a is decreasing in dd as desired. 2

Lemma C.4: Let U(x; a, ϕ, δ) = −δ(1 − ϕax)1/ϕ for a > 0, ϕ < 1, δ > 0 and 1 − ϕax > 0.

Then the following holds

(i) U(·; a, ϕ, δ) is a HARA utility. The CARA utility is obtained as (ϕ, δ) → (0, 1).

(ii) For any fixed ϕ < 1 and δ > 0, U(x; a, ϕ, δ) satisfies Assumption 1’-(i).

Moreover, let Assumption A1’-(ii,iii,iv) holds with P (·; θ) as the Poisson distribution and the

coverages (tc, ddc), c = 0, 1, . . . , C ≥ 2, satisfy the RP condition (7).

(iii) The certainty equivalent CEc(θ, a, ϕ) of contract c does not depend on δ. Further-

more, CEc(θ, a, ϕ) is ϵ-supermodular in (c, θ) and (c, a) in the sense that for every ϵ > 0 there

exists η = η(ϵ) > 0 such that

CEc′(θ
′, a, ϕ)− CEc(θ

′, a, ϕ)− CEc′(θ, a, ϕ) + CEc(θ, a, ϕ) > 0 (S.18)

CEc′(θ, a
′, ϕ)− CEc(θ, a

′, ϕ)− CEc′(θ, a, ϕ) + CEc(θ, a, ϕ) > 0 (S.19)

for all c′ > c, θ′ ≥ θ + ϵ, a′ ≥ a+ ϵ, (θ, a) ∈ [θ, θ]× [a, a] and |ϕ| < η whenever CEc(·, ·, ·) is

continuous in (θ, a, ϕ).13

Proof of Lemma C.4: (i) As is well known, the CARA utility with parameter a > 0 is a

special case of the HARA utility by setting β = [1− (1/α)]−1/α, γ = a[1− (1/α)]1−(1/α) and

letting α→ ±∞. Indeed, upon substituting, we obtain after some algebra

U(x;α, β, γ) = −
[
1− ax

α

]α
−→ − exp(−ax)

as α→ ±∞. To avoid dealing with a divergence to infinity and to obtain the CARA utility,

we reparameterize the HARA utility function when 1/α < 1 and β > 0 by letting ϕ = 1/α,

13Supermodularity in (c, θ) and (c, a) replaces θ′ ≥ θ+ ϵ and a′ ≥ a+ ϵ for any ϵ > 0 by θ′ > θ and

a′ > a, respectively. See footnote 5.
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a = γ/{β[1− (1/α)]} and δ = [1− (1/α)]βα. Hence

U(x;α, β, γ) = U(x; a, ϕ, δ) = −δ(1− ϕax)1/ϕ

for a > 0, ϕ < 1, δ > 0 and 1−ϕax > 0. Because it is a HARA utility, U(·; a, ϕ, δ) is increasing

and concave on (−∞, 1/(ϕa)) if ϕ > 0 and on (1/(ϕa),+∞) if ϕ < 0. In particular, the CARA

utility with parameter a is obtained when (ϕ, δ) → (0, 1).

(ii) Fix ϕ < 1 and δ > 0. Let a′ > a. We show that U(x; a′, ϕ, δ) = q[U(x; a, ϕ, δ)] for

some increasing and concave function q(·). See footnote 5. We have

U(x; a′, ϕ, δ) = −δ
(
1− a′

a
ϕax

)1/ϕ

= −δ
{
1− a′

a

[
1−

(−U(x; a, ϕ, δ)

δ

)ϕ
]}1/ϕ

using the definition of U(x; a, ϕ, δ), which is negative. Thus,

q(u) = −δ
{
1− a′

a

[
1−

(−u
δ

)ϕ
]}1/ϕ

.

Hence, after some algebra its first derivative is

q′(u) =
a′

a

(−u
δ

)ϕ−1
{
1− a′

a

[
1−

(−u
δ

)ϕ
]}(1/ϕ)−1

> 0.

Thus, q(.) is increasing as desired. Its second derivative is

q′′(u) =
a′

a

(−u
δ

)ϕ−2
{
1− a′

a

[
1−

(−u
δ

)ϕ
]}(1/ϕ)−2

×
(
−ϕ− 1

δ

{
1− a′

a

[
1−

(−u
δ

)ϕ
]}

+

(
1

ϕ
− 1

)
a′

a

(−ϕ
δ

)(−u
δ

)ϕ
)

=
1− ϕ

δ

(
1− a′

a

)
a′

a

(−u
δ

)ϕ−2
{
1− a′

a

[
1−

(−u
δ

)ϕ
]}(1/ϕ)−2

< 0

since 0 < a < a′, ϕ < 1 and δ > 0. Thus, q(·) is concave as desired.

(iii) It follows from (S.6) that the certainty equivalent CEc(θ, a, ϕ) of contract c does

not depend on δ when the utility is U(x; a, ϕ, δ) = −δ(1 − ϕax)1/ϕ. Let ∆c′c(θ, a, ϕ) ≡

CEc′(θ, a, ϕ)− CEc(θ, a, ϕ). Thus (S.18) and (S.19) become

∆2
c′c(θ

′, θ, a, ϕ) ≡ ∆c′c(θ
′, a, ϕ)−∆c′c(θ, a, ϕ) > 0

∆2
c′c(θ, a

′, a, ϕ) ≡ ∆c′c(θ, a
′, ϕ)−∆c′c(θ, a, ϕ) > 0.

In particular, CEc(θ, a, 0) is the certainty equivalent of contract c when U(·; a, ϕ, δ) is the

CARA utility. It follows from Lemma C.3 that (S.18) and (S.19) hold for all c′ > c, θ′ > θ,

a′ > a and (θ, a) ∈ [θ, θ]× [a, a] when ϕ = 0.
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Consider (S.18). For ϵ > 0 small, let Kϵ ≡ {(θ′, θ) ∈ [θ, θ]2 : θ′ ≥ θ + ϵ}. Also, consider

[ϕ, ϕ] with −∞ < ϕ < 0 < ϕ < 1. Fix c′ > c. Because CEc(θ, a, ϕ) is continuous in (θ, a, ϕ) ∈

[θ, θ] × [a, a] × [ϕ, ϕ], then ∆2
c′c(θ

′, θ, a, ϕ) is continuous and hence uniformly continuous in

(θ′, θ, a, ϕ) ∈ Kϵ × [a, a]× [ϕ, ϕ]. Thus, for every ϵ̃ > 0 there exists η = η(ϵ, ϵ̃) independent of

(θ′, θ, a) such that

|ϕ| < η ⇒ |∆2
c′c(θ

′, θ, a, ϕ)−∆2
c′c(θ

′, θ, a, 0)| < ϵ̃

for all (θ′, θ, a) ∈ Kϵ × [a, a]. But ∆2
c′c(θ

′, θ, a, 0) is positive and continuous in (θ′, θ, a) ∈

Kϵ × [a, a]. Thus, ∆2
c′c(·, ·, ·, 0) > m on Kϵ × [a, a] for some m = m(ϵ) > 0. Hence, letting

ϵ̃ = m/2 there exists η = η(ϵ) independent of (θ′, θ, a) such that

∆2
c′c(θ

′, θ, a, ϕ) = ∆2
c′c(θ

′, θ, a, 0) +
[
∆2

c′c(θ
′, θ, a, ϕ)−∆2

c′c(θ
′, θ, a, 0)

]
> m/2 > 0

for all (θ′, θ, a) ∈ Kϵ × [a, a] and |ϕ| < η. Because there is a finite number of pairs (c, c′) such

that c′ > c, this argument shows that (S.18) also holds for all c′ > c. A similar argument

with Kϵ ≡ {(a′, a) ∈ [a, a]2 : a′ ≥ a+ ϵ} establishes (S.19). 2

Lemma C.5: Let the coverages (tc, ddc), c = 0, 1, . . . , C ≥ 2 satisfy the RP condition (7).

The certainty equivalent CEc(θ, a) associated with coverage c satisfies condition (S.10) when

U(·; a) and P (·; θ) are the CARA utility and the Poisson distribution, respectively.

Proof of Lemma C.5: From the proof of Lemma C.3, we have

∂CEc(θ, a)

∂θ
− ∂CEc+1(θ, a)

∂θ
= −1

a
[ϕa(ddc)− ϕa(ddc+1)] = −

∫ ddc

ddc+1

eaD[1−H(D)]dD,

∂CEc(θ, a)

∂a
− ∂CEc+1(θ, a)

∂a
= −θ ∂

∂a

[∫ ddc

ddc+1

eaD[1−H(D)]dD

]
.

Thus upon simplifying and rearraging terms, condition (S.10) is equivalent to

∂

∂a

[
log

∫ ddc

ddc+1

eaD[1−H(D)]dD

]
>

∂

∂a

[
log

∫ ddc+1

ddc+2

eaD[1−H(D)]dD

]
,

which is equivalent to

∂

∂a

[∫ ddc

ddc+1

eaD[1−H(D)]dD/

∫ ddc+1

ddc+2

eaD[1−H(D)]dD

]
> 0,

i.e., that the ratio within brackets is increasing in a. Because∫ ddc
ddc+2

eaD[1−H(D)]dD∫ ddc+1

ddc+2
eaD[1−H(D)]dD

= 1 +

∫ ddc
ddc+1

eaD[1−H(D)]dD∫ ddc+1

ddc+2
eaD[1−H(D)]dD

,
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it follows that condition (S.10) is equivalent to the LHS increasing in a. This is true because∫ dd
ddc+2

eaD[1 − H(D)]dD is log-supermodular in (a, dd) by Lemma C.1 upon letting x = a,

y = dd and y† = ddc+2.

Lemma C.6: Let J and J ′ be random variables distributed as P (·) and P ′(·) on IN ≡

{0, 1, 2, . . .}. Let X0 ≡ 0 and X1, X2, . . . be i.i.d. random variables independent of (J, J ′) with

support (0, x), 0 < x ≤ +∞. Suppose that P ′(·)
FOSD
≻ P (·). Then

∑J ′
i=0Xi

FOSD
≻

∑J
i=0Xi.

Proof of Lemma C.6: By definition,
∑J ′

i=0Xi
FOSD
≻

∑J
i=0Xi is equivalent to

Pr

[
J∑

i=0

Xi ≤ x

]
≥ Pr

 J ′∑
i=0

Xi ≤ x

 (S.20)

for all x ≥ 0 with strict inequality for some x > 0. Let FSj (·) be the cdf of Sj ≡
∑j

i=0Xi =∑j
i=1Xi for j ∈ IN. Note that FS0(x) = 1 for x ≥ 0. Thus, we have

Pr

[
J∑

i=0

Xi ≤ x

]
= E

{
Pr

[
J∑

i=0

Xi ≤ x|J
]}

= P (0) +
+∞∑
j=1

FSj (x)P (j) =
+∞∑
j=0

FSj (x)P (j)

for x ≥ 0. A similar expression holds when J is replaced by J ′ with P (j) replaced by P ′(j).

Thus (S.20) is equivalent to

+∞∑
j=0

FSj (x)P (j) ≥
+∞∑
j=0

FSj (x)P
′(j).

Let U(j;x) ≡ −FSj (x) for j ∈ IN and x ≥ 0. Hence we want to show that

E[U(J ′;x)] ≥ E[U(J ;x)] (S.21)

for all x ≥ 0 with strict inequality for some x > 0 whenever P ′(·)
FOSD
≻ P (·).

To this end, we show that U(·;x) is nondecreasing on IN and increasing on (0, x). To see

this, we note that FSj+1(·)
FOSD
≻ FSj (·) for j ≥ 0 because Sj+1 = Sj +Xj+1 with Xj+1 ≥ 0

and x > 0. Specifically, for j ∈ IN and x ≥ 0, we have FSj (x) ≥ FSj+1(x) with strict inequality

for {j = 0 and x ∈ [0, x)} or {j ≥ 1 and x ∈ (0, (j + 1)x)}. Hence U(j;x) is nondecreasing

in j ∈ IN for every x ≥ 0. Moreover, it is easy to verify that U(·;x) is increasing on IN when

x ∈ (0, x). Now, because P ′(·)
FOSD
≻ P (·), it follows that (S.21) holds for all x ≥ 0 with strict

inequality for x ∈ (0, x). 2
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