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In this paper, we address the identification and estimation of insurance models

where insurees have private information about their risk and risk aversion. The

model includes random damages and allows for several claims, while insurees

choose from a finite number of coverages. We show that the joint distribution

of risk and risk aversion is nonparametrically identified despite bunching due to

multidimensional types and a finite number of coverages. Our identification strat-

egy exploits the observed number of claims as well as an exclusion restriction, and

a full support assumption. Furthermore, our results apply to any form of compe-

tition. We propose a novel estimation procedure combining nonparametric esti-

mators and GMM estimation that we illustrate in a Monte Carlo study.
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1. Introduction

Insurance is a long-studied topic in economics and is at the core of recent empirical
research. Rothschild and Stiglitz (1976) and Stiglitz (1977) provide benchmark models
of insurance under private information on insurees’ risk. In empirical studies, testing
adverse selection in risk has generated a large number of papers with mixed results.1

The empirical literature shows that insurance markets involve heterogeneity in both
risk and risk aversion. See, for example, Finkelstein and McGarry (2006) for long-term
care insurance, Cohen and Einav (2007) for automobile insurance, and Fang, Keane, and
Silverman (2008) for health insurance.2 As noted in these papers, heterogeneity in risk
aversion may overturn the prediction of the benchmark adverse selection model that
risk and insurance coverage have a positive correlation. For instance, a low-risk individ-
ual may buy higher coverage because of high risk aversion and conversely. Whether risk
aversion or risk is the primary determinant of the demand for insurance has distinct
welfare implications and policy recommendations. Thus, a model of insurance needs
to incorporate insurees’ heterogeneity in risk aversion resulting in multidimensional
screening and pooling.

Letting each insuree be characterized by two parameters capturing his/her risk pref-
erence and risk, this paper addresses the nonparametric identification and estimation of
the joint distribution of risk and risk aversion from a finite number of coverage choices
with random damages and multiple claims. Allowing for a flexible dependence between
risk and risk aversion is important for policy recommendations. Moreover, our identi-
fication result requires minimal assumptions on the supply side. In particular, it does
not rely either on an insurer’s model of coverage offering or on how insurers compete,
thereby avoiding well-known complexities of optimal contracting with multidimen-
sional types; see, for example, Rochet and Choné (1998) and Rochet and Stole (2003).
Identification is a key step for the econometric and empirical analysis of structural mod-
els. First, it highlights which variations in the data allow one to identify model primitives.
Second, our identification argument is constructive. It provides the basis for our pro-
posed estimation method.

We consider a finite number of automobile coverages of the form “premium and
deductible” although our results apply to other insurance markets and/or other types
of coverages as discussed later. Since there is no one-to-one mapping between the de-
ductible and the insuree’s private information due to multidimensional types (risk and
risk aversion) and a finite number of coverages, the number of claims plays a key role in
identifying the marginal distribution of risk. To identify the joint distribution of risk and
risk aversion, we exploit an exclusion restriction and a support assumption that requires
sufficient variations in some exogenous characteristics.

The previous results are derived with two offered coverages of the form “premium
and deductible” under the widely used specifications of a Constant Absolute Risk Aver-
sion (CARA) utility function and a Poisson distribution for the number of accidents. The

1See Chiappori and Salanie (2000) for the most well-known test and Cohen and Siegelman (2010) for a
survey of empirical findings.

2See also Cutler, Finkelstein, and McGarry (2008) and Einav and Finkelstein (2011) for surveys.
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CARA parameter and the mean of the Poisson distribution then measure the risk prefer-
ence and risk for each insuree, respectively. We show that our identification results ex-
tend to more than two offered coverages and a larger class of models beyond the CARA
attitude toward risk and the Poisson distribution for the number of accidents. Observing
more coverages help identify the joint distribution of risk and risk aversion by alleviat-
ing the full support assumption. Moreover, our results also extend to health insurance
coverages of the form “premium, deductible, and copayment” with a fixed or propor-
tional deductible. Regarding estimation, we develop a new multistep procedure that is
computationally friendly. The procedure combines several nonparametric estimators
(kernel and sieves estimators) and GMM estimation. A Monte Carlo study illustrates our
estimation procedure.

Our paper differs on several aspects from the previous literature on the identifica-
tion and estimation of models under incomplete information. Multidimensional ad-
verse selection leads to bunching or pooling, making model identification a challeng-
ing problem. In particular, identification can no longer rely on the one-to-one equilib-
rium mapping(s) between the agent’s unobserved continuous types and his observed
outcome(s)/action(s).3 A finite number of contracts often leads to pooling with similar
identification issues.4 We develop a different identification strategy relying on the in-
surees’ choice of coverage and the observed number of claims. Given that we do not rely
on the optimality of the offered coverages, our results apply to any form of competition
in the insurance industry. This result contrasts with the previous literature and provides
a novel perspective on the identification of models under incomplete information. In
particular, the estimation of the model primitives can no longer rely on inversion as in
Guerre, Perrigne, and Vuong (2000) or quantiles as in Marmer and Shneyerov (2012) or
Luo, Perrigne, and Vuong (2018). As a consequence, our paper proposes a new estima-
tion procedure.

The paper is organized as follows. Section 2 presents the model, whereas Section 3
studies its identification and an important extension with more than two contracts. Sec-
tion 4 presents our new estimation procedure and a Monte Carlo study. Section 5 con-
cludes. A Supplemental Appendix collects some proofs, auxiliary results, and several ex-
tensions; see Aryal, Perrigne, Vuong, and Xu (2024).

2. A model of insurance

This section presents a model in which insurees have private information about their
risk and risk aversion when buying insurance from a finite number of coverages. In the
presence of multivariate private information and/or a finite number of coverages, pool-
ing arises as individuals of different types choose the same coverage. To fix ideas and

3See Luo, Perrigne, and Vuong (2017) who study identification of nonlinear pricing models with multiple
types relying on the Armstrong (1996) model and Aryal and Zincenko (2023) who study identification of
the Rochet and Choné (1998) model. In contrast, Kong, Perrigne, and Vuong (2022) exploit the bidders’
multiattribute bids in auctions to avoid the complexity of the optimal mechanism.

4Crawford and Shum (2007) and Gayle and Miller (2015) circumvent this issue by considering as many
contracts as agents’ (one-dimensional) discrete types.
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in the spirit of the early literature on adverse selection, we consider automobile insur-
ance throughout the paper although our framework also applies to (say) homeowner
and rental insurance. See the Appendix for a discussion of an application to health in-
surance.

Motivation Our model draws from Stiglitz (1977), wherein insurees are heterogeneous
in their probability of accident (risk), which is their private information, but are homo-
geneous in risk aversion. However, Finkelstein and McGarry (2006) and Cohen and Einav
(2007) find that heterogeneity in risk aversion might be more important than hetero-
geneity in risk across insurees. Thus, we consider that risk aversion is as heterogeneous
and private like the probability of an accident. Consequently, asymmetric information
becomes bidimensional. In addition, Stiglitz (1977) assumes that there can be at most
one accident with fixed damage. In reality, there might be more than one accident dur-
ing the policy period, and ex ante, every accident involves random damage.

Ignoring this bidimensional feature may affect insurance policy design. For instance,
an insuree with a low probability of an accident and a high risk aversion may buy a con-
tract with high coverage, that is, a low deductible. Similarly, an insuree with a high prob-
ability of an accident and a low risk aversion may buy a contract with low coverage,
that is, a high deductible. These two examples contrast with Stiglitz (1977) predictions
as the former should choose a low coverage and the latter a high coverage when in-
surees have homogeneous preferences. Furthermore, when risk and risk aversion are
negatively correlated, this leads to advantageous selection where high coverages are
bought by insurees with low risk but high risk aversion. Using a probit regression for
the choice of deductible and a Poisson regression for the number of claims on a set of
insurees’ characteristics, Cohen and Einav (2007) show, for instance, that married, edu-
cated, and female insurees tend to have fewer accidents while buying a high coverage.
Their structural analysis confirms that these insurees tend to be more risk averse. It is
therefore crucial to consider heterogeneity in risk aversion. Similarly, the distribution
of damages may have an important effect on the insuree’s choice of coverage. For in-
stance, at a given level of risk and risk aversion, a higher expected damage will induce
the insuree to choose more coverage.

In view of this, our model includes multiple accidents with random damages and
heterogeneity in risk and risk aversion. Although insurance contracts may take various
forms, we consider the benchmark case of premium-deductible contracts. Our results,
however, extend to other forms of insurance coverage. For instance the Appendix con-
tains an extension to health insurance with a copayment per claim in addition to a pre-
mium and a deductible for the coverage period.

Model assumptions We make the following assumptions. In our model, the insuree’s
risk θ is the expected number of accidents during the coverage period whereas the pa-
rameter a measures the insuree’s risk aversion. They satisfy the following assumptions.

Assumption A1. (i) An insuree’s utility function exhibits Constant Absolute Risk Aver-
sion (CARA), that is, U(x; a) = −exp(−ax) where a > 0.
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(ii) The types (θ, a) are jointly distributed as F(·, ·) with positive density f (·, ·) on its
support �×A = (θ, θ) × (a, a) ⊂R++ ×R++.

(iii) Conditional on θ, the number J of accidents each insuree may have follows a Pois-
son distribution P(θ), that is, pj(θ) = Pr[J = j|θ] = e−θθj/j! for j = 0, 1, � � �.

(iv) Each accident involves a damage Dj independently distributed as H(·) on (0, d) ⊂
R+ for j = 1, � � � , J.

Individual and car characteristics are introduced later in Assumption A2. By A1(i),
the utility function is increasing and concave. The CARA specification has two main ad-
vantages: (i) it keeps the model tractable, and (ii) the attitude toward risk is independent
of initial wealth. In most empirical settings, the agent’s wealth is not observed, making
the CARA utility specification quite convenient. These properties have made the CARA
utility popular in the theoretical and empirical literature. By A1(ii), each insuree is char-
acterized by a pair (θ, a), which is his/her private information. Assumption A1(iii) speci-
fies the distribution of accidents as Poisson with mean θ. This distribution is widely used
in actuarial science to model the number of accidents for a given individual. The distri-
bution F(θ) of risk is left unspecified, so the distribution of the number of accidents
in the population is a flexible nonparametric mixture of Poisson distributions, namely
Pr(J = j) = ∫

�pj(θ)dF(θ).5

The combination of the CARA utility and the Poisson distribution is convenient to
model the expected utility and the associated certainty equivalent. Relaxing the CARA
and/or Poisson specifications is possible at the cost of obtaining implicit expressions for
the expected utility. We consider alternative specifications for the agent’s utility function
and the distribution of accidents in the Supplemental Appendix. Assumption A1(iii, iv)
imply that the number J of accidents and corresponding damages are independent of a
and (θ, a), respectively. These independence assumptions will be relaxed in Section 3 by
introducing the insurees’ characteristics, such as their driving experience, which then
allows for unconditional dependence between the number J of accidents with a and
damages Dj with (θ, a).

The model primitives are the joint distribution of risk and risk aversion and the dam-
age distribution, that is, [F(·, ·), H(·)]. Each insuree is characterized by a pair of types
(θ, a) from F(·, ·), which is left unspecified. The insuree chooses among a finite menu
of insurance contracts of the form [t, dd], where dd is the deductible per accident. The
insuree chooses the contract that maximizes his expected utility and pays the corre-
sponding premium t. In case of an accident with damage below the deductible, the in-
suree pays for it. Otherwise, the insurer pays the damage above the deductible, and the
insuree pays the deductible.

5Using a mixture of Poisson distributions to model the number of accidents in a population dates back
to Greenwood and Yule (1920) where the mixing distribution is a Gamma distribution thereby leading to a
Negative Binomial distribution for the population. Cohen and Einav (2007) consider a log normal mixture
of Poisson distributions.
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Insuree’s choice of coverages Let C be the number of available contracts. To simplify the
presentation, we consider C = 2. Extending the analysis to C > 2 is presented in Sec-
tion 3. Let (t1, dd1 ) and (t2, dd2 ) denote two coverages with 0 < t1 < t2 and d > dd1 >

dd2 ≥ 0 so that no contract dominates the other. This ordering is the only requirement
we make on the observed coverages. It is related to rational offering and choice. Oth-
erwise, we would have t1 < t2 and dd1 ≤ dd2 making contract 1 the natural choice for
insurees. These coverage terms do not need to satisfy profit maximizing conditions for
the insurer(s) allowing us to be agnostic about the market structure of the insurance in-
dustry. We note that our setting can include full coverage, which corresponds to dd2 = 0.
Moreover, the highest deductible dd1 should be smaller than the maximum damage d to
rationalize buying some insurance. Indeed, the no insurance option, which corresponds
to (t0, dd0 ) = (0, d), would dominate (t1, dd1 ) if dd1 = d since t1 > 0.

For a (θ, a)-individual with wealth w, his expected utility with coverage (t, dd) for t ≥
0 and 0 ≤ dd ≤ d is V (t, dd; θ, a, w) ≡ E[U(w − t − ∑J

j=0 min{dd, Dj }; a)|θ] where D0 ≡ 0
by convention. Under A1, we obtain

V (t, dd; θ, a, w) = p0(θ)U(w − t; a) +p1(θ)E
[
U

(
w − t − min{dd, D1}; a

)]
+p2(θ)E

[
U

(
w − t − min{dd, D1} − min{dd, D2}; a

)] + · · ·
= −p0(θ)e−a(w−t ) −p1(θ)e−a(w−t )E

[
eamin{dd,D1}]

−p2(θ)e−a(w−t )E
[
eamin{dd,D1}]E

[
eamin{dd,D2}] − · · ·

= −e−a(w−t )[p0(θ) +p1(θ)φa(dd) +p2(θ)φ2
a(dd) + · · · ]

= −e−a(w−t )e−θ

(
1 + θφa(dd)

1! + θ2φ2
a(dd)
2! + · · ·

)

= −e−a(w−t )+θ[φa(dd)−1], (1)

with φa(dd) ≡ E[eamin{dd,D}] < ∞ where the expectation is with respect to the random
damage D. In particular, φa(dd) ≥ 1 with equality only if dd = 0, as a > 0. The expression
φa(dd) can be interpreted as the expected loss in utils of an accident with deductible dd

for an individual with risk aversion a. The first equality in (1) considers all the possible
number of accidents and their respective costs for a (θ, a)-individual buying insurance
(t, dd). The second equality uses the CARA utility function and A1(i, iv). The third equal-
ity uses that damages are identically distributed by A1(iv). Lastly, the fourth equality re-
lies on the Poisson distribution of accidents by A1(iii).

The (θ, a)-individual chooses the contract that maximizes his expected utility
or equivalently his certainty equivalent. The certainty equivalent CE(t, dd; θ, a, w)
of insurance coverage is defined as the amount of certain wealth for the insuree
that will give him/her the same level of utility when he/she has coverage, that is,
−exp(−aCE(t, dd; θ, a, w)) = V (t, dd; θ, a, w). Thus, by (1) we have for t ≥ 0 and 0 ≤
dd ≤ d,

CE(t, dd; θ, a, w) =w − t − θ
[
φa(dd) − 1

]
a

. (2)
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When comparing different insurance coverages for a (θ, a)-individual, that is, their cer-
tainty equivalents, the individual wealth w then cancels out, which makes the choice of
the CARA and Poisson specifications quite convenient. Therefore, wealth need not be
observed. The next lemma establishes the monotonicity in (θ, a) of the certainty equiv-
alent as well as the frontier that partitions the �×A space into two subsets C1 and C2 of
individuals choosing coverages 1 and 2, respectively.

Lemma 1. Let A1 hold.

(i) When dd = 0 (full coverage), the certainty equivalent (2) reduces to w − t. When
dd > 0, the certainty equivalent (2) decreases in both risk and risk aversion.

(ii) The frontier separating C1 and C2 is given by

θ(a) = a(t2 − t1 )
φa(dd1 ) −φa(dd2 )

= t2 − t1∫ dd1

dd2

eaD
[
1 −H(D)

]
dD

, (3)

which is decreasing in a. Every (θ, a)-individual below (resp., above), this frontier
prefers coverage 1 to coverage 2 (resp., 2 to 1).6

The proof is given in the Appendix. The first part of (i) is expected as wealth is re-
duced only by the premium with full coverage. The second part of (i) is also intuitive
as the certainty equivalent, and the utility move together. Regarding (ii), the frontier
between C1 and C2 is the locus of (θ, a)-insurees who are indifferent between the two
contracts, that is, for whom CE(t1, dd1; θ, a, w) = CE(t2, dd2; θ, a, w). This frontier is in-
dependent of wealth w. The denominator of (3) is the difference in expected utility losses
from an accident between the two coverages for an individual with risk aversion a.

Figure A.1 illustrates the choice between two coverages with a Uniform damage dis-
tribution on [0, 104]. In agreement with Cohen and Einav (2007), the range of the CARA
parameter a is [10−4, 10−3]. The range of the parameter θ is [0.1, 1]. The two coverages
are (t1, dd1 ) = (600, 1000) and (t2, dd2 ) = (850, 500). The bold curve represents the fron-
tier between the two coverages following (3) with individuals above it preferring cover-
age 2 to coverage 1. Considering a point on this frontier (say) (θ, a) = (0.371, 0.005),
Figure A.1 also displays the certainty equivalent isocurves for coverages 1 and 2 in
dashed and dotted curves, respectively. These certainty equivalents decrease as θ or a

increases.7 For completeness, Figure A.1 displays a bold dashed curve in the southwest
corner corresponding to the frontier between no insurance and coverage 1, with indi-
viduals above it preferring coverage 1. This frontier is obtained from (3), by letting the
no insurance corresponds to a zero premium and a deductible at d = 104, that is, to
(t0, dd0 ) = (0, 104 ), where d represents the car value.

6As a matter of fact, Lemma 1 also applies when (t1, d1 ) = (0, d) (no insurance), and (t2, dd2 ) = (t, dd)

with t > 0 and 0 ≤ dd < d.
7The top northeast bold curve labeled “Frontier 2 vs. 3” can be omitted at this time and is discussed in

Section 3.
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We remark that there is no exclusion since all individuals are willing to buy insur-
ance because coverage 1 always dominates no insurance, that is, CE(t1, dd1; θ, a) ≥
CE(0, d; θ, a) for all (θ, a) since the individual rationality constraints are always satis-
fied. Figure A.1 can be interpreted as an illustration that the insurance industry must
serve everyone, that is, it is subject to a universal service requirement. In contrast, if the
premium for coverage 1 goes above 619, the bold dashed curve will shift upward above
the (a, θ) point so that individuals below this curve would prefer no coverage and are
therefore excluded. If insurance is mandatory, individuals below the corresponding bold
curve (frontier between the two coverages) are forced to buy insurance and will choose
coverage 1.

3. Identification

In this section, we study the identification of the joint distribution of risk and risk aver-
sion F(θ, a) and the damage distribution H(·). Although we do not impose any param-
eterization on F(·, ·) or H(·), our identification analysis is semiparametric since the in-
surees’ utility function and their probability of accidents are parameterized by a and θ,
respectively. We discuss in the Supplemental Appendix how to relax the CARA and the
Poisson specifications to other parameterizations. Our identification analysis shows the
key role played by the number of accidents, an exclusion restriction, and a support as-
sumption. The identification problem is to recover uniquely the distributions F(·, ·) and
H(·) from observables. We observe the contract (t, dd) purchased by each insuree, as
well as all his/her J claims with corresponding damages (D1, � � � , DJ ).8 Hereafter, insur-
ance is mandatory as when the insurer is subject to universal service. Otherwise, our
identification results hold conditional on buying insurance. We first consider the case of
two offered coverages and discuss later the benefits of having more coverages.

Introducing covariates We introduce some observed variables X characterizing the in-
suree and his/her car. Variables related to the insuree may contain age, gender, educa-
tion, marital status, location, and driving experience. Variables related to the car may
include car mileage, business use, car value, power, model, and make. The structure be-
comes [F(θ, a|X ), H(D|X )] as such variables may affect the insuree’s risk and risk aver-
sion as well as damages. For instance, damages with an expensive car are likely larger
than those with an inexpensive one, ceteris paribus. The next assumption specifies the
data-generating process. It maintains the CARA and Poisson specifications in A1(i, iii)
while extending A1(ii, iv) to allow for the characteristics X .

Assumption A2. The tuple (θ, a, X , J, D1, � � � , DJ ) are i.i.d. across individuals, and

(i) CARA utility function as in A1(i).

(ii) (θ, a)|X ∼ F(·, ·|X ) with positive density f (·, ·|X ) on its support �(X ) × A(X ) =
(θ(X ), θ(X )) × (a(X ), a(X )) ⊂ R++ ×R++.

8We abstract away from the truncation issue and assume that all the accidents and damages are ob-
served. In the Supplemental Appendix, we consider the case when only J∗ claims with their corresponding
damages (D1, � � � , DJ∗ ) are observed due to the truncation at the deductible dd; see Aryal et al. (2024).
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(iii) Poisson distribution for the number J of accidents as in A1(iii).

(iv) The damages Dj for j = 1, � � � , J are i.i.d. as H(·|X ) on (0, d(X )) ⊂ R+.

Assumption A2 parallels A1. As noted, A2(iii) states that the number of accidents J

depends only on the insuree’s risk θ through the Poisson distribution, with θ being the
expected number of accidents. It implies that J is independent of (a, X ) given θ, that
is, J ⊥ (X , a)|θ. Similarly, A2(iv) implies that damages are independent of (θ, a) given
(J, X ), that is, (D1, � � � , DJ ) ⊥ (θ, a)|(J, X ). It should be noted that utilities and num-
ber of accidents indirectly depend on the insuree/car characteristics X through a and
θ, which depend on X by A2(ii). In particular, A2 allows for unconditional correlations
between the number J of accidents with insurees’s risk aversion a and between damages
Dj and insuree’s types (θ, a).

The offered coverages may also depend on the vector of characteristics X as
(t1(X ), dd1(X )) and (t2(X ), dd2(X )) with 0 < t1(X ) < t2(X ) and d(X ) > dd1(X ) >

dd2(X ) ≥ 0. Following insurance regulations, insurers may not be allowed to use some
of the insurees’ observed characteristics as discriminatory tools in the coverage terms
(t, dd). Thus, (t, dd) may not depend on all the X variables. Hereafter, we let SA de-
note the support of a random vector A and SA|b the support of A conditional on the
value b of a random vector B. Moreover, to simplify, we assume that the upper bounds
θ(x), a(x), and d(x) are finite for every x ∈ SX . Hence, all moments of J exist and its
moment-generating function is well-defined. Otherwise, our identification arguments
hold straightforwardly using characteristic functions.

Hereafter, we show how coverage choices combined with sufficient variations in
some exogenous characteristics nonparametrically identify f (θ, a|X ) thereby offering
flexibility on the dependence between risk and risk aversion.9 To begin, the damage dis-
tribution H(·|X ) is identified on its support (0, d(X )) using A2(iv) since all the accidents
and damages are observed. It remains to identify the joint distribution F(θ, a|X ).

Identification of Fθ|X(·|·) The first step identifies the conditional distribution of risk
Fθ|X(·|·) by exploiting the observed number of accidents/claims J and its nonparametric
mixture. Specifically, the probability of J conditional on the characteristics X = x is

Pr[J = j|x] =
∫ θ(x)

θ(x)
Pr[J = j|θ, x]dFθ|X(θ|x) =

∫ θ(x)

θ(x)
e−θ θ

j

j! dFθ|X(θ|x),

where the mixing distribution Fθ|X(·|x) is left unspecified.
For insurees with characteristics x, the moment-generating function MJ|X(·|x) of the

number of claims is

MJ|X(t|x) = E
[
eJt|X = x

] = E
{

E
[
eJt|θ, X

]
|X = x

}
= E

{
E
[
eJt|θ

]
|X = x

} = E
{
eθ(et−1)|X = x

}
= Mθ|X

(
et − 1|x

)
,

9Using a log-normal joint distribution for (θ, a), Cohen and Einav (2007) find a counterintuitive positive
correlation suggesting that the observed contracts are suboptimal, that is, the insurer could increase his
profit by increasing their low deductibles, which are more compatible with a negative correlation.
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where the third and fourth equalities follow from A2(iii) and the moment-generating
function of the Poisson distribution with parameter θ. In particular, this equation shows
that MJ|X(·|x) exists on R because the moment-generating function Mθ|X(·|x) of θ given
X = x exists on R as θ has compact support given X = x. Moreover, letting u = et − 1
gives

Mθ|X(u|x) =MJ|X
(
log(1 + u)|x

) = E
[
(1 + u)J|X = x

]
(4)

for all u ∈ (−1, +∞). Hence, Mθ|X(·|x) is identified in a neighborhood of 0, thereby iden-
tifying the density fθ|X(·|·) of θ given X ; see, for example, Billingsley (1995, p.390).10 This
result exploits the fact that the Poisson distribution belongs to the class of additively
closed distributions whose nonparametric mixture is identified; see Rao (1992) and the
Supplemental Appendix.

Identification of Fa|θ,X[a(θ, X )|θ, X] The second step considers the probability that a
θ-insuree with characteristics X chooses the coverage (t1(X ), dd1(X )). We define a dis-
crete variable χ, which takes values 1 and 2 depending on whether the insuree chooses
the coverage (t1(X ), dd1(X )) or (t2(X ), dd2(X )), that is, whether his/her pair (θ, a) be-
longs to the regions C1(X ) or C2(X ) of individuals choosing contract 1 or 2, respectively,
given characteristics X . Thus, from Lemma 1(ii), χ = 1 is also equivalent to a ≤ a(θ, X )
where a(·, X ) is the inverse of the frontier θ(·, X ) with

θ(a, X ) = t2(X ) − t1(X )∫ dd1(X )

dd2(X )
eaD

(
1 −H(D|X )

)
dD

(5)

from (3). Our identification strategy exploits variations of this frontier in X . In particular,
even if the deductible does not vary with X , the premium and/or the damage distribu-
tion likely depend on some X .

To ensure that the frontier (5) partitions �(X ) × A(X ) into the two nonempty sets
C1(X ) and C2(X ), we assume that θ(X ) < θ(a(X ), X ) and θ(a(X ), X ) < θ(X ). In partic-
ular, C1(X ) includes the lowest type individual (θ(X ), a(X )) while C2(X ) includes the
highest type individual (θ(X ), a(X )). For j = 1, 2, let νj(X ) denote the proportion of in-
surees with characteristics X choosing the coverage (tj(X ), ddj(X )). Thus, νj(X ) > 0 for
j = 1, 2. Such proportions are identified from the data.

The probability Pr[χ = 1|θ, X = x] that a (θ, x)-individual chooses the lowest cover-
age contract (t1, dd1 ) is

Fa|θ,X
[
a(θ, x)|θ, x

] = fθ|χ,X(θ|1, x)ν1(x)

fθ|X(θ|x)
(6)

10Alternatively, because Mθ|X (·|x) exists in a neighborhood of 0, then all the moments of θ given X =
x are identified by the kth derivatives M(k)

θ|X (0|x) = E[θk|X = x] for k = 0, 1, � � � , ∞. Since θ given x has a
bounded support, we are in the class of Hausdorff moment problems, which are always determinate, that
is, the distribution of θ given x is uniquely determined by its moments. For a comprehensive treatment of
the moment problem, see Shohat and Tamarkin (1943).
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by Bayes’ rule. Since fθ|X(·|·) is identified from the first step and ν1(x) is identified from
the data, it remains to identify fθ|χ,X(·|1, x). Applying the same argument as in step 1,
but now conditioning on χ= 1 as well, we obtain

MJ|χ,X[t|1, x] = E
[
eJt|χ= 1, X = x

] = E
{

E
[
eJt|θ, a, X

]
|χ= 1, X = x

}
= Mθ|χ,X

[
et − 1|1, x

]
,

where the second equality follows from the equivalence between conditioning on
(θ, a, χ, X ) and conditioning on (θ, a, X ), while the third equality follows from A2(iii)
as before. Thus, for every x ∈ SX , fθ|χ,X(·|1, x) is identified by its moment generating
function

Mθ|χ,X(u|1, x) =MJ|χ,X
(
log(1 + u)|1, x

)
for all u ∈ (−1, +∞). Hence, by (6), Fa|θ,X[a(θ, x)|θ, x] is identified for every θ ∈
(θ(x), θ(x)). That is, we identify the conditional distribution of a given θ on the fron-
tier a(θ, x) separating the two subsets C1(x) and C2(x) that partition the set �(x) ×A(x).

Identification of F(θ, a|X ) For policy counterfactuals, the analyst needs to identify
F(·, ·|x) on the whole support �(x) × A(x). This constitutes the third step of identi-
fication in which we make an exclusion restriction and a support assumption involv-
ing some characteristics Z included in X to achieve identification of the distribution
Fa|θ,X(·|·, ·) on its support.

We partition the vector of the insuree or car characteristics X into (X0, Z ).

Assumption A3. We assume that X satisfies the following conditions:

(i) a ⊥Z|(θ, X0 );

(ii) ∀(a, θ, x0 ) ∈ SaθX0 , there exists z ∈ SZ|θx0 such that a(θ, x0, z) = a.

Assumption A3(i) is an exclusion restriction. It requires that some variable Z is inde-
pendent of risk aversion conditionally on the other variables X0 (and risk θ). Assump-
tion A3(ii) is a full support assumption that requires the frontier a(θ, X0, Z ) to vary suf-
ficiently with Z. In particular, Z needs to be continuous since a is continuous.

In the case of automobile insurance, several variables are potential candidates for
Z. For instance, controlling insurees’ characteristics such as age and others, Cohen and
Einav (2007) empirically find that the engine size and the years of license are not re-
lated to risk aversion. Under the CARA specification, the car value, which acts as a proxy
for wealth, could also be a good candidate since CARA risk aversion is independent of
wealth. Nonetheless, these variables affect the frontier (5) through the premia, the de-
ductibles, and the distribution of damages. Indeed, variations in the frontier arise from
variations in premia but also through the difference in expected losses. For instance, a
large engine or car value is less likely to lead to damage in the interval [dd2, dd1]. Thus,
a large engine or car value will give a larger value in the denominator of (5) than a low
engine or car value.
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The combination of an exclusion restriction and a full support assumption is not
new in the econometrics literature; see, for example, Matzkin (2003) and Imbens and
Newey (2009). In empirical industrial organization, this includes Berry and Haile (2014)
in the nonparametric identification of a demand and supply model for differentiated
products. In auctions with selective entry, Gentry and Li (2014) and Chen, Gentry, Li,
and Lu (forthcoming) assume the existence of a continuous entry cost shifter with full
support that affects entry but not the private value distribution. In an application to
oil tract lease auctions, Kong (2018) finds that the amount of land offered for auction
outside the area is an entry cost shifter satisfying such requirements.

Given A3, for any (a, θ, x0 ) ∈ SaθX0 we have

Fa|θ,X0 (a|θ, x0 ) = Fa|θ,X0

[
a(θ, x0, z)|θ, x0

] = Fa|θ,X0,Z
[
a(θ, x0, z)|θ, x0, z

]
,

where the first equality uses A3(ii) and the second equality uses A3(i). Note that a(·, ·, ·) is
identified from (5) since the premia and deductible are observed while the distribution
of damage H(·|·) is identified from claim data. Identification of F(θ, a|x0, z) follows from
the identification of Fa|θ,X[a(θ, x)|θ, x] in step 2 where x= (x0, z). This result is formally
stated in the next proposition.

Proposition 1. Suppose two offered coverages and damages are observed for each in-
suree. Under A2–A3, the structure [F(·, ·|X ), H(·|X )] is identified.

Despite pooling, due to multidimensional types and a finite number of coverages,
Proposition 1 shows that the model primitives are identified by exploiting the number
of accidents and sufficient variations in some exogenous variable Z conditionally in-
dependent of risk aversion. In particular, our identification argument does not require
optimality of the offered coverages. This argument is novel in the identification of mod-
els under incomplete information.

In the absence of the full support assumption A3(ii), the previous argument shows
that we can still point identify Fθ|X(·|·) on SθX as well as the conditional distribu-
tion Fa|θ,X(a|θ, x) = Fa|θ,X0 (a|θ, x0 ) on the range of a(θ, x0, ·) when z varies, that
is, on {(a, θ, x0 ) : a = a(θ, x0, z), z ∈ SZ|θx0 , (θ, x0 ) ∈ SθX0 }; see also Section 4. More-
over, assuming that this range is an interval [a∗(θ, x0 ), a∗(θ, x0 )], where a∗(θ, x0 ) =
infz∈SZ|θx0

a(θ, x0, z) and a∗(θ, x0 ) = supz∈SZ|θx0
a(θ, x0, z), we can bound the conditional

distribution F(a|θ, x0 ) by

0 ≤ Fa|θ,X0 (a|θ, x0 ) ≤ Fa|θ,X0

(
a∗(θ, x0 )|θ, x0

)
and

Fa|θ,X0

(
a∗(θ, x0 )|θ, x0

) ≤ Fa|θ,X0 (a|θ, x0 ) ≤ 1

for a(x0 ) ≤ a ≤ a∗(θ, x0 ) and a∗(θ, x0 ) ≤ a ≤ a(x0 ), respectively. These bounds are sharp
as there is no information on [a(x0 ), a∗(θ, x0 )) and (a∗(θ, x0 ), a(x0 )].11 It should also be

11Formally, let F̃a|θ,X0 (·|θ, x0 ) be another distribution that differs from Fa|θ,X0 (·|θ, x0 ) only on
(a(θ, x0 ), a∗(θ, x0 )) ∪ (a∗(θ, x0 ), a(θ, x0 )). These two distributions lead to the same probability Pr(χ =
1|θ, X = x0, Z = z) = Pr(a≤ a(θ, x0, z)|θ, X = x0 ) since the frontier a(·, x0, z) does not depend on this con-
ditional distribution by (5).
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noted that having a larger number of coverages C > 2 can only improve the identifica-
tion results as a larger number of frontiers of the form (5) is more likely to cover the
whole support �(x) ×A(x0 ) when Z varies as discussed next.

Beyond two coverages We now consider more than two offered coverages. Let (tc , ddc ),
c = 1, � � � , C ≥ 2, be C offered contracts. We omit the insuree/car characteristics to sim-
plify the notation. As before, we require that no observed coverage dominates the others:

0 < t1 < · · · < tC and d > dd1 > · · · > ddC ≥ 0. (7)

We refer to (7) as the revealed preference (RP) condition, since otherwise some contracts
will be irrelevant. It extends the condition that we have for C = 2. Moreover, this condi-
tion is easily verifiable in the data. Let θc,c+1(a) define the frontier or indifference locus
between coverages (tc , ddc ) and (tc+1, ddc+1 ). It is given by an equation similar to (3). By
Lemma 1(i), each frontier is decreasing and (θ, a)-individuals below (resp., above) the
curve θc,c+1(·) prefers coverage (tc , ddc ) over coverage (tc+1, ddc+1 ) (resp., (tc+1, ddc+1 )
over (tc , ddc )).

The next lemma ensures that the C − 1 frontiers θc,c+1(·) do not cross and lie on top
of each other as c increases from 1 to C − 1.

Lemma 2. Let A1 hold and the coverages (tc , ddc ), c = 1, � � � , C ≥ 2 satisfy the RP con-
dition (7). The frontiers θc,c+1(·) between coverages (tc , ddc ) and (tc+1, ddc+1 ) for c =
1, � � � , C − 1 satisfy θ1,2(·) < · · · < θC−1,C(·) on [a, a] if and only if

tc+2 − tc+1

tc+1 − tc
>

∫ ddc+1

ddc+2

eaD
[
1 −H(D)

]
dD

∫ ddc

ddc+1

eaD
[
1 −H(D)

]
dD

(8)

for c = 1, � � � , C − 2.

Condition (8) depends on the terms of the offered contracts as well as on the damage
distribution. In contrast, it does not depend on the distribution of risk and risk aversion
except through the lower bound a of risk aversion.

Interestingly, if a approaches zero, condition (8) becomes

tc+2 − tc+1

tc+1 − tc
>

∫ ddc+1

ddc+2

[
1 −H(D)

]
dD

∫ ddc

ddc+1

[
1 −H(D)

]
dD

for c = 1, � � � , C − 2. Applying the mean value theorem gives

tc+2 − tc+1

tc+1 − tc
> κc+1

ddc+1 − ddc+2

ddc − ddc+1
,
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where κc+1 = [1 − H(D∗
c+1 )]/[1 − H(D∗

c )] > 0 with D∗
c+1 ∈ (ddc+2, ddc+1 ) and D∗

c ∈
(ddc+1, ddc ). In particular, because 1 −H(D) is decreasing in D, we have κc+1 > 1. Thus,
the increments in premia should increase proportionally more than the decrements in
deductibles. This relates to a well-known property of reverse nonlinear pricing as noted
by Stiglitz (1977). The next corollary formalizes this result.

Corollary. Let A1 hold and the coverages (tc , ddc ), c = 1 � � � , C ≥ 2 satisfy the RP condi-
tion (7). When a approaches zero, a necessary and sufficient condition for (8) is

tc+2 − tc+1

|ddc+2 − ddc+1| > κc+1
tc+1 − tc

|ddc+1 − ddc| , (9)

for some κc+1 > 1 and c = 1, � � � , C.

This corollary says that the observed coverages (tc , ddc ), c = 1, � � � , C should lie on a
convex curve in the (t, dd)-space. This convexity is easily verifiable in the data. It should
be noted that such a theoretical property is obtained here despite nonoptimal contracts
and bidimensional incomplete information; see also Luo, Perrigne, and Vuong (2017,
2018).

When either (8) or (9) holds, any individual whose type (θ, a) lies between the fron-
tiers θc,c+1(·) and θc+1,c+2(·) chooses the coverage (tc+1, ddc+1 ), for c = 1, � � � , C − 2.
Indeed, from Lemma 1, this individual prefers (tc+1, ddc+1 ) to (tc+2, ddc+2 ), which is
preferred to (tc+3, ddc+3 ), etc. Similarly, this individual prefers (tc+1, ddc+1 ) to (tc , ddc ),
which is preferred to (tc−1, ddc−1 ), etc. Thus, a (θ, a)-individual above the θC−1,C(·)-
frontier chooses the highest coverage (i.e., the lowest deductible) (tC , ddC ). Figure A.1
illustrates the choice among the three contracts (t1, dd1 ) = (600, 1000), (t2, dd2 ) =
(850, 500), and (t3, dd3 ) = (1000, 250), which satisfy condition (9). In contrast to the case
with two coverages, insurees who are on the right of the frontier 2 versus 3 now choose
(t3, dd3 ).

Our previous identification results extend to more than two contracts. Specifically,
under A2, the first step that identifies the marginal distribution Fθ|X(·|·) from the ob-
served number of accidents remains the same as before. The second step identifies the
conditional distribution Fa|θ,X(·|·, ·) at the C − 1 frontiers between coverages c and c+ 1
for c = 1, � � � , C−1 upon introducing the choice variable χ taking values 1, � � � , C and the
corresponding proportions of individuals choosing coverage c = 1, � � � , C. Hence, under
the exclusion and support assumption A3, the distribution F(θ, a|X ) is identified. As a
matter of fact, A3(ii) is stronger than necessary as it suffices that the combined variations
of the C − 1 frontiers cover the �(X ) × A(X0 ) space. Moreover, if this sufficient condi-
tion is not satisfied, Fa|θ,X(a|θ, x) is identified on a larger set through the variations of
the C − 1 frontiers. Thus, having more coverages helps identify the joint distribution of
types (θ, a).

In most of the empirical literature on insurance, such as in Israel (2005), Cohen and
Einav (2007), and Barseghyan, Molinari, O’Donoghue, and Teitelbaum (2013) data are
collected from a single company. In this case, our results immediately apply. If data com-
bine insurees from different firms, our approach requires that the observed coverages
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satisfy the revealed preference condition (7) arising from individuals’ choices. This con-
dition might not hold if switching costs are present, preventing individuals from chang-
ing to their preferred coverages. However, when insurance contracts are differentiated
in other dimensions, such as vehicle replacement, uninsured motorists, or roadside as-
sistance, the analysis can be performed by conditioning on these add-ons. It then suf-
fices to mix the recovered conditional distributions with the proportions of individuals
choosing these add-ons to obtain the joint distribution F(·, ·) of risk and risk aversion.

4. Estimation method and Monte Carlo study

This section presents a computationally friendly three-step nonparametric procedure
for estimating the joint density f (θ, a|X ) of risk θ and risk aversion a given X with sup-
port [θ, θ]×[a, a] = [0, 1]×[0, a].12 To simplify, we omit the covariates X0 in X = (X0, Z ),
which can be entertained by conditioning our estimation procedure on X0 through a
smoothing method such as kernel estimation. Our procedure follows our identifica-
tion argument as the latter is constructive. Hereafter, we consider two coverages. Let
(χi, Ji, D1i, � � � , DJii, Zi ), i = 1, � � � , N be the available data where χi = c if individual
chooses coverage c = 1, 2. The estimation method is implemented in a Monte Carlo
study.

4.1 A three-step estimation procedure

Our estimation procedure consists of three steps:

Step 1: Estimate fθ|Z(·|·) by constrained Generalized Method of Moments (GMM) and
kernel smoothing.

Step 2: Estimate fθ|χ,Z(·|1, ·) by adapting step 1 and conditioning on χ= 1.

Step 3: Estimate fa|θ(·|θ) by plugging-in estimates of ∂θ(a, z)/∂a, ∂θ(a, z)/∂z and
∂Pr(χ = 1|θ(a, z), z)/∂z.

Hereafter, we present these steps in detail.

Estimation of fθ|Z(·|·) Following the identification argument, the first step estimates
the density fθ|Z(θ|z) of risk θ given Z. To fix ideas, we assume that this density does not
depend on Z. The problem then reduces to estimating the mixing distribution in a Pois-
son mixture because the observed numbers of accidents Ji, i = 1, � � � , N are i.i.d. drawn

from Pr(J = j) = ∫ θ
θ [e−θθj/j!]fθ(θ)dθ. The statistical literature views the estimation of

the Poisson mixing density fθ(·) as a Hausdorff moment problem using the empirical
(raw) moments μ̂m, m= 1, � � � , M ≥ 1,

μ̂m = 1
N

N∑
i=1

Ji(Ji − 1) � � � (Ji −m+ 1) for m≥ 1

12The interval [0, 1] is a normalization, whereas a is chosen by the analyst.
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from, for example, Hengartner (1997). Specifically, following Talenti (1987), the estima-
tor for fθ(θ) is

f̂θ(θ; λ̂) = 1 + λ̂1L1(θ) + · · · + λ̂MLM (θ),

where Lm(θ) = cm0 + cm1θ + · · · + cmmθ
m is the shifted Legendre polynomial of degree

m on [0, 1]. The first coefficient is equal to one to satisfy
∫ 1

0 f̂θ(θ; λ)dθ = 1, and λ̂m =
cm0 + cm1μ̂1 + · · · + cmmμ̂m for m= 1, � � � , M . This follows by solving the M equations∫ 1

0
θmf̂θ(θ; λ)dθ = μ̂m, m= 1, � � � , M . (10)

Hengartner (1997) shows that the optimal convergence rate is attained when M = logN/

log(logN ). This rate is slow relative to
√
N , reflecting the difficulty of estimating fθ(·).13

To improve the finite sample properties, we impose that the resulting estimated
density is nonnegative through a constrained GMM estimator.14 Specifically, λ̂ =
(λ̂1, � � � , λ̂M ) is obtained as

λ̂ = argmin
λ=(λ1, ���,λM )

[
μ̂−μ(λ)

]′
V −1[μ̂−μ(λ)

]
,

subject to f̂θ(θ; λ) ≥ 0, where μ̂ = (μ̂1, � � � , μ̂M ) and μ(λ) = (μ1(λ), � � � , μM (λ)) with
μm(λ) = ∫ 1

0 θmf̂θ(θ; λ)dθ. The weighting matrix is V = diag(V̂ar(μ̂m )), where

V̂ar(μ̂m ) = 1

N2

N∑
i=1

[
Ji(Ji − 1) � � � (Ji −m+ 1)

]2 − 1
N

μ̂2
m.

When the marginal density of θ depends on Z, we adapt the estimator by condition-
ing on Z = z upon considering the empirical conditional moment μ̂m(z) obtained
from a nonparametric regression of Ji(Ji − 1) � � � (Ji − m + 1) on Zi since E[θm|Z] =
E[J(J − 1) � � � (J −m+ 1)|Z]. This gives f̂θ|Z(θ|z) upon applying the above estimator for
each z value.

Estimation of fθ|χ,Z(·|1, ·) The third step requires an estimator of the conditional
choice probability Pr(χ = 1|θ, z) that an individual with risk θ and covariates Z = z

chooses coverage 1. This probability is given by (6), whose right-hand side involves
fθ|χ,Z(θ|1, z), ν1(z) and fθ|Z(θ|z). The term ν1(z) is the probability of choosing coverage
1 given Z = z, and can be estimated by a nonparametric regression of χi on Zi. The con-
ditional density fθ|Z(θ|z) is estimated by f̂θ|Z(θ|z) obtained in the first step. It remains
to estimate fθ|χ,Z(·|1, z). A natural method would apply the first step estimator on the
subsample of individuals choosing coverage 1. However, this method suffers from a pos-
sible irregularity at θ(a, z) when the latter belongs to (0, 1) as displayed in Figure A.1 or
Cohen and Einav (2007, Figure 2).15

13An alternative estimator consists in inverting the empirical characteristic function of θ by Fourier in-
version; see Aryal, Perrigne, and Quang (2019). The deconvolution estimator implicitly requires that mo-
ments are well estimated. In the case of automobile insurance, the number of accidents tends to be small
rendering estimation of moments above four or five very imprecise.

14We are grateful to Matheus Silva for proposing this method; see Silva (2024).
15A formal proof is available upon request from the authors.
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To address this difficulty, we note that by Bayes’ rule we have fθ|χ,Z(θ|1, z) =
fθ|Z(θ|z)/ν1(z) when θ ∈ [0, θ(a, z)] because all such θ-individuals always choose cov-
erage 1. Thus, from above fθ|χ,Z(·|1, z) is readily estimated on [0, θ(a, z)]. It remains to
estimate this density on [θ(a, z), min{θ(0, z), 1}]. We have

fθ|χ,Z(θ|1, z) =
[

1 − Fθ|Z
(
θ(a, z)|z

)
ν1(z)

]
g(θ|1, z) (11)

when θ ∈ [θ(a, z), min{θ(0, z), 1}], where g(·|1, z) is the conditional density of θ given
{θ > θ(a, z), χ= 1, Z = z}. Thus, the problem reduces to estimating the density g(·|1, z).
The support boundaries θ(a, z) and θ(0, z) are estimated by letting a = a and a = 0, re-
spectively, in the estimated frontier

θ̂(a, z) = t2(z) − t1(z)∫ dd1(z)

dd2(z)
eaD

[
1 − Ĥ(D|z)

]
dD

, (12)

where Ĥ(D|Z ) is a nonparametric estimator of the damage distribution.
To estimate g(θ|1, z), we apply the first-step estimator accounting for its support

[θ(a, z), θ(0, z)].16 Specifically, let

g(θ|1, z) = 1
θ(0, z) − θ(a, z)

×
[

1 +β1zL1

(
θ− θ(a, z)

θ(0, z) − θ(a, z)

)
+ · · · +βMzLM

(
θ− θ(a, z)

θ(0, z) − θ(a, z)

)]
,

where the coefficients (β1z , � � � , βMz ) depend on z. By (11), the mth moment of g(θ|1, z)
is obtained from the mth moment of fθ|χ,Z(θ|1, z) using

E
(
θm|χ= 1, z

) =
∫ θ(a,z)

0
θm

fθ|Z(θ|z)

ν1(z)
dθ+

[
1 − Fθ|Z

(
θ(a, z)|z

)
ν1(z)

]∫ θ(0,z)

θ(a,z)
θmg(θ|1, z)dθ,

for m = 1, � � � , M . The estimated parameters (β̂1z , � � � , β̂Mz ) are obtained by GMM sub-
ject to the constraints

(i) 0 ≤
[

1 − Fθ|Z
(
θ(a, z)|z

)
ν1(z)

]
g(θ|1, z) ≤ fθ|Z(θ|z)

ν1(z)
,

(ii)
[

1 − Fθ|Z
(
θ(a, z)|z

)
ν1(z)

]
g
(
θ(a, z)|1, z

) = fθ|Z
(
θ(a, z)|z

)
ν1(z)

,

upon replacing θ(0, z), θ(a, z), fθ|Z(θ|z), Fθ|Z(θ|z), ν1(z), and E(θm|χ = 1, z) by their

estimated counterparts.17 In particular, Ê(θm|χ = 1, z) is obtained from a nonpara-

16We assume that θ(0, z) ≤ 1 as in Figure A.1 and in Cohen and Einav (2007, Figure 2).
17The first constraint follows from fθ|Z(θ|z) = fθ|χ,Z(θ|1, z)ν1(z)+fθ|χ,Z(θ|2, z)ν2(z) ≥ fθ|χ,Z(θ|1, z)ν1(z)

and (11). The second constraint imposes the continuity of fθ|χ,Z(·|1, z) at θ(a, z). To improve finite sample
properties, we also impose g(θ(0, z)|1, z) = 0 in Section 4.2.
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metric regression of Ji(Ji − 1) � � � (Ji − m + 1) on Zi using the subsample of individ-
uals who choose coverage 1. This gives the estimator ĝ(θ|1, z), and hence the es-
timator f̂θ|χ,z(θ|1, z) using (11). The estimator of Pr[χ = 1|θ, z] is P̂r[χ = 1|θ, z] =
f̂θ|χ,z(θ|1, z)ν̂1(z)/f̂θ|Z(θ|z).

Estimation of fa|θ(·|·) The third step estimates the density fa|θ(a|θ) of risk aversion a,
conditional on risk θ under the exclusion restriction in Assumption A3(i). Our argument
of Section 3 identifies the distribution Fa|θ(·|θ) for those values of a for which a= a(θ, z)
for some z. This is inconvenient for estimating its density fa|θ(·|θ). We exploit instead
the identity Fa|θ[a(θ, z)|θ] = Pr[χ = 1|θ, z]. Differentiate it with respect to z and using
∂a(θ, z)/∂z = −{∂θ[a(θ, z), z]/∂z}/{∂θ[a(θ, z), z]/∂a} give

fa|θ
[
a(θ, z)|θ

] = − ∂θ
[
a(θ, z), z

]
∂a

∂θ
[
a(θ, z), z

]
/∂z

× ∂Pr[χ= 1|θ, z]
∂z

, (13)

where a(·, z) is the inverse of θ(·, z), and dimZ = 1 to simplify. In particular, we iden-
tify fa|θ(·|θ) on the range of a(θ, z) when z varies. Under the full support assumption
A3(ii), this range is [0, a]. To estimate fa|θ(·|θ) at a value a in the range of a(θ, z), we use

numerical derivatives for ∂P̂r[χ = 1|θ, z]/∂z and ∂θ̂(a, z)/∂z, while ∂θ̂(a, z)/∂a is read-
ily available from (5), where H(D|z) is replaced by its estimate Ĥ(D|z).18 With C > 2
contracts, there are C − 1 frontiers θc,c+1(a, z), c = 1, � � � , C − 1. Thus, fa|θ(·|θ) can be
estimated on a larger range of values of a when z varies.

4.2 A Monte Carlo study

This section implements the above estimator on simulated data.

Data-generating process We consider a Monte Carlo setup that captures some basic
features of automobile insurance data. Risk θ and risk aversion a are marginally dis-
tributed as Beta(2,3) on [0, 1] and 10−3Beta(1,3) on [0, 10−3], respectively. The range
of values is similar to those found by Cohen and Einav (2007, Figure 1). In agreement
with the intuition that risk aversion is associated with a tendency to take greater pre-
cautions, we allow for a negative association between risk and risk aversion through a
Gaussian copula with correlation ρ = −0.5; See Finkelstein and McGarry (2006), whose
empirical results support this intuition. Damages are exponentially and independently
distributed with a mean of 5000, whereas the number J of accidents is distributed as
Poisson with parameter θ. We present a simplified version of Assumption A3(i) with
an exogenous variable Z that is uniformly distributed on [100, 200] and independently
of (θ, a). We consider two coverages with fixed deductibles at 1000 and 500 with pre-
mia 3.25Z and 700 for coverages 1 and 2, respectively. Having fixed deductibles is

18The resulting estimator may not be positive. One can take its absolute value. When the range is the full
support, normalizing it by its integral over [0, 1] provides an estimator of fa|θ(·|θ) satisfying the properties
of a density.
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standard among insurance companies. Though Z is independent of (θ, a, J, D), it en-
ters in the insuree’s contract choice as he/she chooses coverage 1 if his/her risk θi is
below the frontier θ(ai, Zi ), where the frontier θ(a, Z ) is given by (12). This frontier
varies in Z through the numerator, which is sufficient for identification and estima-
tion.

We draw a sample of 100,000 triplets (θi, ai, Zi ) from F(θ, a) and U(100, 200). The
value of Zi determines the pair of offered coverages and the frontier (12). Individual i
chooses coverage (1000, 3.25Zi ), that is, χi = 1 if his/her risk θi ≤ θ(ai, Zi ). Given θi, a
number Ji of accidents is drawn from a Poisson with mean θi. Damages D1i, � � � , DJii are
drawn from H(·). Figure A.2 displays the observations (θi, ai ) for one simulated sam-
ple. The frontiers θ(a, z) when z varies from 110 (right curve) to 190 (left curve) provide
the locuses of points (θ, a) for which the z-individuals are indifferent between the two
coverages. If a z-individual has a (θ, a) pair under θ(·, z), then he/she chooses cover-
age 1; otherwise, he/she chooses the second coverage offering a better protection. Fig-
ure A.3 displays the histogram of the number of accidents. A large majority of individuals
have no accident, and the proportions decline sharply to reach values close to zero for
J ≥ 4, in agreement with Cohen and Einav (2007, Table 2B). Using this random sam-
ple, we perform the estimation procedure detailed above. We repeat this exercise 100
times.

Monte Carlo results Figure A.4 shows the estimated marginal density of the expected
number θ of accidents. It displays the true density as well as the 90% confidence inter-
val. The true curve is within the corresponding bounds, which are remarkably narrow.
The constrained GMM estimator is implemented using M = 4 moments, which is the
integer part of logN/(log logN ). To save space, we do not display the results of step 2 be-
cause it is an intermediary step where we use the estimator from (11) since the frontiers
θ(a, z) have an irregularity at θ(a, z) ∈ (0, 1). We apply the constrained GMM estimator
for the density g(θ|1, z) with M = 4 moments on its support [θ(a, z), θ(0, z)]. This step
also requires estimates of the probability ν1(z) of choosing coverage 1 as well the ker-
nel regression of Ji(Ji − 1) � � � (Ji −m+ 1) on Zi with m = 1, � � � , 4. Kernel estimators are
performed using rule-of-thumb bandwidths.

Figure A.5 displays the density f̂a|θ(·|0.4) conditional on θ = 0.4 since θ is distributed
as B(2, 3) with mean 0.4. This density estimator is obtained from (13). Figure A.5 also
provides the 90% confidence interval, which is relatively narrow and contains the true
conditional density. It is worth noting that the range of a(0.4, z) is [0, 10−3] when z

varies. In contrast, Figure A.6 displays f̂a|θ(·|0.6) conditional on θ = 0.6. We observe
that the range of a(0.6, z) is [0, 0.44 × 10−3]. This finding illustrates that the support
assumption partially holds as the variation in z is not sufficient to estimate this condi-
tional density at θ = 0.6 on its full support [0, 10−3]. As discussed previously, this issue
could be alleviated when observing more than two insurance options. Nonetheless, the
90% confidence interval on the identified range contains the true density except at the
leftmost boundary. Boundary effects are typical in nonparametric estimation and can
be corrected.
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5. Conclusion

Our paper addresses the identification and estimation of insurance models where in-
surees have private information about their risk and risk aversion. Our model also in-
cludes random damages and the possibility of multiple accidents. Despite bunching
due to multidimensional types and a finite number of offered coverages, we identify the
model primitives by exploiting the observed number of claims. We also develop a non-
parametric estimation procedure that is computationally friendly. Our results apply to
any form of competition and do not rely on the optimality of offered coverages in con-
trast to the previous literature on the identification and estimation of models with pri-
vate information. Thus, their optimality could be tested upon the specification of an ap-
propriate model of market competition. Beyond optimality, several counterfactuals can
be performed. For instance, we can assess the gain/loss for both parties from (i) reducing
the range of insurees’ characteristics that the insurer can use to discriminate insurees
such as gender, age, or location, (ii) increasing the number of existing coverages and/or
changing their terms, and (iii) implementing other coverages than premium/deductible
with (say) a proportional deductible.

In terms of future lines of research, first, our results extend to a broad range of insur-
ance data, such as in health, provided the analyst observes repeated outcomes, for ex-
ample, insurees’ claims. In particular, we may want to extend our identification results
to allow for some form of moral hazard. Second, in the case of automobile insurance, we
could endogenize the car choice given insuree’s risk and risk aversion. This extension
would lead to a model explaining the car choice, the coverage choice, the number of
accidents, and the damages. Third, several existing data sets on automobile and home
insurance used by Israel (2005), Cohen and Einav (2007), Sydnor (2010), and Barseghyan
et al. (2013) could be analyzed using our empirical framework.

Appendix

The Appendix contains the extension to health insurance as well as the proofs of Lem-
mas 1 and 2.

The case of health insurance Up to some variations, health insurance involves a pre-
mium t as well as a per period deductible dd and a copayment γ per (say) medical visit.
In particular, the deductible is not per visit, while the copayment arises on the first visit
after the deductible is met. In this case, when buying a contract (t, dd, γ), the (θ, a)-
patient has an expected utility

V (t, dd, γ; θ, a, w) = −e−a(w−t )E
[
e−aY (dd,γ)|θ

]
,

where the insuree’s expense beyond the premium (commonly referred as out-of-pocket)
is Y (dd, γ) = (D1 +· · ·+DJ )I(D1 +· · ·+DJ ≤ dd)+ (dd+ (J−J† )γ)I(D1 +· · ·+DJ > dd)
with J the number of visits and J† the number of visits at which the deductible is met,
that is, J† = argminj=1, ���,JD1 + · · · + Dj > dd. The expectation is with respect to the to-
tal expense D1 + · · · + DJ and the number J of visits, which depends on θ. In the case
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of health coverage, the per visit expenses Dj , j = 1, � � � , J may be viewed as indepen-
dent conditional on the patient’s health conditions such as cancer, diabetes, which are
observed by the analyst. Similarly, conditioning on the patient’s health conditions alle-
viates the possible dependence between Dj and the expected number of medical visits
θ; see Assumption A2 in the text for the introduction of insurees’ characteristics. Letting
m(dd, γ; θ, a) = E[e−aY (dd,γ)|θ], the certainty equivalent becomes

CE(t, dd, γ; θ, a, w) =w − t − logm(dd, γ; θ, a)
a

,

which is similar to (2).

Proof of Lemma 1 The first part of (i) is immediate from (2) since φa(dd) = 1 when
dd = 0. When dd > 0, the derivative of (2) with respect to θ is −(φa − 1)/a. Since φa > 1,
CE(t, dd; θ, a, w) is decreasing in θ. For the derivative of (2) with respect to a, we note
that

φa(dd) =
∫ dd

0
eaD dH(D) + eadd

[
1 −H(dd)

]

= 1 + a

∫ dd

0
eaD

[
1 −H(D)

]
dD (A.1)

by integration by parts. Thus, (2) gives

CE(t, dd; θ, a, w) =w − t − θ

∫ dd

0
eaD

[
1 −H(D)

]
dD.

Hence, CE(t, dd; θ, a, w) is decreasing in a.
We now prove (ii). The frontier between C1 and C2 is defined as the locus of

(θ, a)-insurees who are indifferent between the two coverages, that is, for whom
CE(t1, dd1; θ, a, w) = CE(t2, dd2; θ, a, w). Using (2), this gives

t1 + θ
[
φa(dd1 ) − 1

]
a

= t2 + θ
[
φa(dd2 ) − 1

]
a

.

Solving for θ as a function of a gives (3) upon using (A.1). Moreover, from (3) it is easy
to see that θ(a) decreases in a. The last part of (ii) also follows as CE(t1, dd1; θ, a, w) >
CE(t2, dd2; θ, a, w) if and only if θ < θ(a).

Proof of Lemma 2 Fix c = 0, 1, � � � , C − 1. From (3), the frontier θc,c+1(·) between cover-
ages (tc , ddc ) and (tc+1, ddc+1 ) is given by

θc,c+1(a) = a(tc+1 − tc )
φa(ddc ) −φa(ddc+1 )

= tc+1 − tc∫ ddc

ddc+1

eaD
[
1 −H(D)

]
dD

.
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Thus, for any c = 0, 1, � � � , C − 2, θc,c+1(·) < θc+1,c+2(·) on a ∈ [0, a] if and only if

tc+2 − tc+1

tc+1 − tc
>

∫ ddc+1

ddc+2

eaD
[
1 −H(D)

]
dD

∫ ddc

ddc+1

eaD
[
1 −H(D)

]
dD

(A.2)

for all a ∈ [a, a]. For any such c, we first show that the RHS of (A.2) decreases in
a ∈ (0, +∞). Adding 1 to the inverse of the RHS, it is equivalent to showing that the
ratio

∫ ddc
ddc+2

eaD[1 − H(D)]dD/
∫ ddc+1
ddc+2

eaD[1 − H(D)]dD is increasing in a, that is, that∫ dd
ddc+2

eaD[1 − H(D)]dD is log-supermodular in (a, dd) ∈ (0, +∞) × (ddc+2, d) given

ddc+2 since dc+1 < dc .19 The latter holds by Aryal et al. (2024, Lemma C.1) upon letting
x = a, y = dd, y = d, and y† = ddc+2.

We now show that condition (8) is necessary and sufficient for θc,c+1(·) < θc+1,c+2(·)
on [a, a]. Because (A.2) must hold at a, then (8) is necessary. Since the RHS of (A.2) de-
creases in a ∈ (0, +∞), it is bounded above for all a ∈ [a, a] by the RHS of (A.2) evaluated
at a. Thus, (8) implies that (A.2) hold for all a ∈ [a, a] thereby establishing sufficiency.

A.1 Figures

Figure A.1. C = 2 and C = 3 coverages.

19A positive function f (x, y ) is log-supermodular if logf (x, y ) is supermodular.
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Figure A.2. Scatter plot of (ai, θi ).

Figure A.3. Distribution of the number of accidents.
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Figure A.4. Estimated risk density f̂θ(·).

Figure A.5. f̂a|θ(·|0.4).
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Figure A.6. f̂a|θ(·|0.6).
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