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APPENDIX B: PROOFsS

In this Supplemental Appendix, we provide proofs for the results in Fan, Jiang, and Shi
(2024).

B.1 Proofs of results in Section 2

PRrROOF oF LEMMA 2.1. Under Assumptions 2.1-2.5, CCPs are identified up to a label
swapping, which enables us to identify expected payoffs (via F~1(-)) and set up the sys-
tem: G(7) =7 — 'r. Under Assumption 2.6, the systems corresponding to ¢ # cp has
no solution. Note that system corresponding to ¢y always has a solution, as y generates
the system corresponding to c¢g. Under the condition that I'¢, has full column rank, this
o is uniquely determined by 77, and I',. O

B.2 Proofs of results in Section 3

Lemma B.1 is used to prove Theorem 3.1. Lemmas B.2 and B.3 are introduced to prove
Theorem 3.2.

LemMA B.1. Let the result of Lemma 2.1 and the following assumptions hold for the
Simple Game. (i) For any w € Il, Gu(w) = G(m) + O,(n~Y?). (ii) For any c € %,,
Wa(c) = W(c) + op(1) with W(c) being positive definite. (iii) For any c € %y,

mincq ”G"'C(W)”%V,,(c) £ mincp ||Gc(7r)||%V(C). Then it holds that ¢ = cy wp — 1 and

IS mo foranyly € {5, lx+1,...,1}, a1 €(0,1], A e (—=1,0),and A {1, ..., - [1}.
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Proor or LEMMA B.1. For s =1,..., S, let s¢j € .”/¢” denote the subselection vector
whose first 2/; elements are the same as those of ¢y. We first show that Pr(scj € /¢7,) —
lfors=1,...,S. This implies that Pr(cy € ¢,) — 1, because ¢y € ¢, occurs if and only if
scy € S€ occurs.

We first prove the result for s = 1. By Lemma 2.1, we have that G, (m) = 0. To-
gether with Assumption (i) in the lemma, we can obtain that |Gy, ¢, (m)lI> = Op(n™1)
and (e (m0)1I2 = O, (n~1). Therefore, it holds that J, (s¢}) < |G 6(770)”2 =0,(n1).
For any sc! € 7%, if J,(sc') < n*, then sc! € %} occurs. And for any a1 > 0, .7} can
contain sc!’s such that J,,(sc!) > n*. Thus, we obtain that for any A > —1,

n,sc

1> Pr(scy € €)= Pr(Ju(scf) <n*) — 1.

Hence, we obtain that Pr(sc} € 7€) — 1.

Pr(sc3 € /62|53 € %) — 1 and Pr(sc3 € #%?) — 1 together imply that Pr(sc3 e
Y%%) — 1. The convergence of Pr(scg € Y‘gﬂscg € .9%¢%) — 1 follows from the same
argument as Pr(sc} € % 1y—1;and sch € SE€ Limplies that sc; €. 2. Thus, we have
that Pr(sc5 € . %2) — 1. Applying the same argument sequentially, we can obtain that
Pr(scy € #%€}) — 1fors=1,..., S. By the definition of ¢, elements in %, select all pos-
sible combinations of the last 2(/ — /g) moments allowed by %. The event sc(S) € f%ﬁ
occurs if and only if ¢y € €, occurs. Thus, we have that Pr(cp € %) — 1.

Next, we show that if ¢y € ), then Pr(¢ = ¢yp) — 1. Forany ¢ € %, and ¢ # ¢y, Assump-
tion (iii) implies that

. 2 4 .
min | G, (m) |y, () = min| Ge(m) [y ) > 0, (B.1)

where the inequality follows from Lemma 2.1 and Assumption (ii). Again by Lemma 2.1,
we have that G, (7) = 0. Then by Assumption (i), it holds that G, ¢, (7) = 0, (1). There-
fore, we obtain that

. 2 2
min| G, (m) [y, 0 = 1 Gmeo (70) [y, o) = 0 (1) (B.2)

(B.1) and (B.2) together imply that Pr(¢'= co|co € ¢,,) — 1. Combining with Pr(cg € €,,) —
1, we conclude that Pr(c = ¢p) — 1.

It remains to show that 7 5 . Define 7r = argmin gy |G, ¢, (77) ||%Vn(C0) . We have that
7 converges in probability to its population counterpart o by the standard argument
for consistency of a GMM estimator provided that Lemma 2.1 holds. Thus, for any € > 0
and 6 > 0, we can find N; such that Pr(||7 — mol| > 5) < g for n > Nj. Because ¢ = ¢y
implies 77 = 7, we have Pr(7 = 7) > Pr(¢ = ¢p) — 1. Thus, for the given € > 0 and & > 0,
we can find N» such that Pr(||7 —7|| > §) < g for n > N,. Combing the above two results,
we have that for any given € > 0 and § > 0, there exists N = max{N1, N2} such that for
n>N,

Pr(||7 — moll > €) = Pr(|7 — 7 + 7 — mo|| > €)

< Pr<||% —F > %) +Pr(||i7 — ol > g) <.

Therefore, the result 7 £ 7 holds. O
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Proor oF THEOREM 3.1. We prove the theorem by verifying the conditions in Lem-
ma B.1. Lemma 2.1 holds by Assumptions 2.1-2.6. Assumption (ii) in Lemma B.1 is
implied by Assumption 3.2. It remains to the show that Assumptions (i) and (iii) in
Lemma B.1 are satisfied.

Let p be the vector that stores the CCPs of all players on all observed and latent states
(ze{z',..., 7'} and k € {4, B}) and P be its consistent estimator obtained via the eigen-
decomposition method. Because the estimated coefficient matrix in the Simple Game
is a smooth function of p, we write it in the form of I', = e(p) for some smooth func-
tion e(-). Similarly, the estimated expected payoff vector can be written in the form of
77, = F1(p), where F~1(p) stacks F~!(py,«) foranyz e {z!, ..., z/} and k € {4, B}. Thus,
the sample moment functions can be written as G, () = F~1(p) — e(p)#. By differen-
tiability of F~1(-) and e(-), given any 7, the mean value expansion of G, () with respect
to p gives

Vn(Gu(m) = G(m)) = /nDp+(m)(P — P),

Yp*) _ alepH)m

ap’ ap’

tions 2.1-2.6, Lemma C.2 in Xiao (2018) implies that that p is consistent and /n(p — p)

converges to a normal distribution. Under Assumption 2.1(i) and (ii), we have that

Dy () £ Dp(m) = p (p) ﬁ(e(g)’r) where Dy is bounded for any € II. Therefore,

it holds that \/n(G,(m) — G()) = O,(1), which verifies Assumption (i) in Lemma B.1.
For Assumption (iii) in Lemma B.1, it suffices to prove that for any ¢ € %,

where Dy« (7) = oF and p* is a point between p and p. Under Assump-

maﬁc|Gn,c(w)TWc)Gn,c(w) — Ge(m) W (e)Ge(m)| = 0,(1),
me

where max is used rather than sup because Il is compact by Assumption 3.1 and both
Gy, () and G.(-) are continuous in 7. The triangular inequality provides that

maﬁ<|Gn,c(w)TWc)Gn,c(w) — Ge(m) "W (c)Ge(m)|
me
< maﬁciGn,c(w)TWn(c)Gn,c(w) — Gpe(m) "W ()G ()|
me

+maﬁ<|Gn,c(w)TW(c)Gn,c(w) — Ge(m) W (c)Ge(m)|.

By the property of the matrix infinity norm,! the first term on the right-hand side of the
inequality is bounded above by maxcr l|cllol| G, e () 12| Wr () = W (¢)lloo. I is bounded.
Moreover, I';, and 77, are both O, (1) by the continuity of e(-) and F~1(.) and the consis-
tency of p. Therefore, we have max;c |Gy, c(7) 12=0 »(1). By Assumption 3.2, it holds
that |[W,(c) = W(c) |l = 0(1). Thus, the first term is 0, (1). For the second term, it holds
that

maﬁc\Gn,c(w)TW(c)Gn,c(w) — Ge(m) W (c)Ge(m)|
me

For a generic matrix E, ||E||», denotes the matrix infinity norm that equals the maximum absolute row
sum of matrix E.
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=max| Gy, (m) W (€) (Gr,e(m) = Ge(m) + Ge(m) = Ge(m) ' W()Ge ()|
mE
< maﬁ<|Gn,c(w)TW(c)(Gn,c(w) — Ge(m))|
mEe
+max| G, o (m) W () Ge(m) = Ge(m) W () Ge()]
<max||G,c(m) " W(c)| max| Gy c(m) — Ge(m)||
mell mell
+ max |Gy, e (7) — Ge(m) | max||W ()G ()]
mell mell
=o0p(1),

where the first and second inequality follow from the triangular inequality and applying

matrix norm, and last equality holds by I';, and 7, being O,(1) and the compactness
of I1.

Hence, we have verified all the conditions in Lemma B.1. The claimed theorem holds.

O

LEMMA B.2. Let o} =|7%|/|.L6°|. Given I, a1, A, and A, assume that there exists some
st € {2, ..., S} independent of I, such that o* = « for all s =%, ..., S. Then both the time
complexity and space complexities of the MMS procedure are linear in [.

Proor oF LEMMA B.2. We show the time complexity result by counting the elementary
operations (EOs). Note that the values of /1, a1, A, and A are independent of /. In Step s,
the algorithm computes J,, (sc®) for every sc® € #%¢°; and for each sc*, computing J,,(sc*)
is a quadratic programming problem with a fixed number of unknowns and constraint
(from II). By definition, |Gy ses ()12 = G,y ses-1 ()12 + 1G ,, sesr-1 () 12, where s¢$\6—1 s
a subselection vector that selects the moments selected by sc® but not sc*~!. Because
the function ||Gn’scs71(-)||2 is stored in Step (s — 1), the number of EOs in computing
|Gn,ses(-)[1? only depends on that in computing ||G,, ;-1 (-)[|, which depends solely
on A. Therefore, the number of EOs for computing J,, (sc®) for every sc® € #€¢” is B|.7%€”|,
where 8 < oo is a constant independent of /. Next, the algorithm sorts J,,(sc®). The sort-
ing process involves |.#%*|?> number of EOs. The comparison between J,,(sc*) and n* in
each step takes place |.7%"| times at most. Thus, there are (8 + 1)|.7%"| + |.¢*|?> num-
ber of EOsin Step sfors=1, ..., S. The number of EOs in Step (S + 1) can be computed
in the same way, except that the algorithm only searches for the minimum of |%},| values
rather than sorts them. Thus, (B8 + 1)|%,| number of EOs are needed. In total, there are
Y5 L (Y1.FSEC]| + |.76°2) + v|%,| number of EOs, with y = B + 1.

In Step s for s = 1,...,S, the input set %" has cardinality 2/~ ]iZ 11 a;. For
s=1,...,8, Iy =1 + (s — DA. We have | 7% = 21~ and |7%°| = 2671 ] 11 ar <
20 +G-DA-1for ¢ —2 .. sT. Therefore,

)

ST N
Z(7|ycgs| + |<5ﬁ<g3|2) < (,y211+(s71)A71 +411+(s71)A—1) =T).

s=1 s=1
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For s =s',...,S, a® = a = 272, Thus, for s = s 4+ 1,..., S, it holds that |.7%*| <
261571 o = 20+ (s=DA-1 (2-8)6=s") — 2h+("-1A-1_ Aq 4 result, we have that
I )

i=s"

S S
Z (,y|y<gs| + |y<gs|2) < Z (,yzll-‘r(ST—l)A—l+411+(ST—1)A—1)
s=sT+1 s=sT+1

< (8 — sT) (y2liF 6T DAL g gl 61D _ 7

where the second inequality holds because the summands are independent of s. The
input set %, in Step (S + 1) has cardinality 2/-1 ]_[f=1 af. Let Ay =1 — [ + (S — DA]
Because o} = a=2"2fors=s',..., S, 2I"1 [[L_, ar <20 +('=2848/-1 We obtain that

F_ _ f_ _
,y|<€n| < ,y211+(S 2)A+Af 1S ,y211+(s HA IE T3

)

where the inequality holds because Ay < A. The number of EOs is no more than 77 + 7> +
Ts. Since I;, I} <[, and A are fixed, T7 and T3 are constants of /. In fact, only S depends
on /. Because § < % + 1 by definition, we obtain that

T2 < (% + 1— sT) (,y211+(ST—1)A—1 +411+(ST—1)A—1)'

Since s is a constant by assumption, T> grows at most linearly in /. Hence, we have
shown that the number of EOs needed to perform the MMS procedure is linear in /. The
first claim of the lemma follows.

Since in each step, the algorithm stores |.#%”| number of values, the space complex-
ity is Zle |.#%”°|. Following from the similar calculation as above, we obtain that the
space complexity of the MMS procedure is also linear in /. O

LEMMA B.3. Define Q = [0, 1]% as the set of CCPs constituting the moment functions G(-).
Let Assumptions 2.1-2.6 and 3.1 hold. With probability approaching one as n — oo, for
all possible CCPs in Q except for a set of Lebesgue measure zero, both the time complexity
and space complexity of the MMS procedure are linear in I.

ProoFr ofF LEmMA B.3. We prove the lemma by showing that the assumption in Lem-
ma B.2 holds with probability approaching one as n — oo. The assumption holds if
J¢ > n* at Step s for every s = s7, ..., S, because a* = @ whenever J¢ > n*. Since A < 0,
n* — 0 as n — oo. For any sc € R% consisting of zeros and ones, let G () denote the
moment functions selected by sc. The proof for Theorem 3.1 shows that under Assump-
tions 2.1-2.6 and 3.1, Assumption (iii) in Lemma B.1 holds. Following the similar ar-
gument, it holds that J,(s¢) = min ey |G, sc (7)1 £ mingcq || Gse(7)]|2. Therefore, if
mingeq | Gse ()% # 0, then Pr(J,,(sc) > n*) - 1 as n — oo.

For any sc¢® € .Y%°, Gss(m) contains /; number of moments. By (2.10) in Fan,
Jiang, and Shi (2024), Gys () = Tges — Lyesr, where 7yes € Rls, Tges € R5%!7 and [, = 4.
min e || Gses ()12 # 0 if and only if rank([#ses, yes]) > rank(Lses). Define P ={p:p €
[0, 1]1?/s} as the set of CCPs constituting I'ys defined in (2.9). Elements in I'ys can be
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presented as a map M : P — [0, 1]5%!=_ Define another map R(p) = rank(M (p)) for ev-
ery p € P. We aim to show that at any Step s such that /; > [, the set P\P,, where
Pr={p € P:R(p) =I[,}, has Lebesgue measure zero in P.

Partition I'], as [T}, T2,], where I'!; € Ri"*/= and T2, € Ri=*(s=/n), Define a set
Pl = {p! : p! € [0, 1]?/7}. Similar to Ty, I'L can be presented as a map: M! : P! —
[0, 1)/=xI= Let det’ (p!) = det(M (p!)) for every p! € PL. For P! = {p! e P : det’ (p!) %0},
we first to show that the set P!\P} has Lebesgue measure zero in P'. By the Leibniz for-
mula, det’ (p!) defines a polynomial function on [0, 1]2/=. We have that det’ (p'*) 0 for

some

pl* = [pZ(zlr kl): p3(zly kl); PR p2(zlﬂ! k[ﬂ.)v P3(Zlﬂ; qu,.)]—rr

where ki, ..., k;_ are the latent states selected by sc’. In algebraic geometry, the set
PP} is defined as a proper subvariety, and must be of Lebesgue measure zero in P!.
For more discussion on the algebraic geometry, especially the algebraic variety, see Cox,
Little, and O’Shea (2013). In fact, P} is generic in P'. We explore the genericity result for
the rest of the proof.

By the property of generic sets, it holds that

P} x [0, 1P = {(p!, p?) 1 p! € P}, p? € [0, 1125717}

is generic in P. As a result, P, = {(p', p?) € [0, 1]%" : det' (p!) # 0} is generic in P. Since
det(I'L ;) # 0 is equivalent to rank(I'} ;) = I, rank(I'ses) = I holds if det(I'L;) # 0. We
have that P; C P,. Hence, P, is generic in P, which implies that P\P, has Lebesgue mea-
sure zero in P.

Next, we show that the set of CCPs constituting Gy.s(-) such that rank([7scs, Ises]) =
Iz + 1is genericin Q;={q:q € [0, 11351, Assumption 2.1 assumes that F : R — [0, 1] is
absolutely continuous, where F(-) is the distribution function. A function is said to have
the Luzin’s property if the image of any Lebesgue null set has again Lebesgue measure
zero. By Chapter 7 in Saks (1937), for functions with bounded variation, absolute conti-
nuity is equivalent to Luzin’s property. In consequence, it suffices to show that the set

PE={(mp):ime R5, p e [0, 1125, rank([7, M(p)]) =1 + 1}

is generic in PE = {(m,p) : 7w € Rs, p € [0, 11?53, The proof follows the same argument
as proving that P, is generic in P. Thus, we obtain that the set of CCPs such that
rank([7ses, Ises]) > rank(I'ses) is generic in Q. Because rank([7ges, I'ses]) > rank(Iges) is
equivalent to mingey ||Gses(7)|> # 0, and Pr(J,(sc®) > n*) — 1 as n — oo if
min ¢ || Gses () |12 # 0 for any sc® € % and sc® # scg, we conclude that the set of CCPs
such that a* # @ wp — 1 asn — oo for any Step s with s =7, ..., S has Lebesgue measure
zero in Q, the set of all possible CCPs constituting G(-). O

PRrOOF OF THEOREM 3.2. Define Il’ as the parameter space of player 1’s payoffs on z]

and some latent state such that Assumptions 2.1-2.6 hold. Since the space of payoffs for
all three players is a Cartesian product of spaces for each player on each observed and
latent states, it suffices to show that player 1’s “exceptional” payoffs have zero Lebesgue
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measure in I/, Recall the definition of Q in Lemma B.3. Define Q' € Q such that ele-
ments in Q' are CCPs in the Simple Game for all three players holding z; = z! and that
Assumptions 2.1-2.6 are satisfied. By definition, elements in Q' can identify the true
payoffs of player 1 under the correct matching. Lemma B.3 implies that for any s with
Iy > I and sc® # scg, the set of CCPs such that rank([7scs, Ises]) > rank(I'ses) does not
hold has measure zero in Q. Since @/ € Q has nonzero Lebesgue measure, the set of
such CCPs also has measure zero in Q.

Define amap G : 9/ — I/ that maps the CCPs to the true payoff. The map exists be-
cause elements in Q' identify the true payoff. By Lemma 7.25 in Walter (1987), Luzin’s
property holds if the mapping G(p) is differentiable in p. Therefore, it suffices to prove
that G(p) is differentiable in p. The map G is the solution to 77, —I'c,™ = 0 by Lemma 2.1,
where both 7, and I',, are functions of p. In consequence, G(p) = FZ)FCO, where Fz% is
the Moore-Penrose pseudo-inverse of I';,. We show that F;g and 7, are both differen-
tiable in p;(z, k) for each i, z € %, and k € J#. Without loss of generality, we can just
focus on p;(z!, A). Because F(-) is continuously differentiable and f(-) is positive ev-
erywhere in R, the inverse function theorem provides that F~1(-) is continuously differ-
entiable in p;(z!, 4) on [0, 1]. Thus, 77, is differentiable in p;(z!, 4). Since I';, has full
column rank, I'}, = (F;FCO)_IFZ). By the definition of I in (2.9) in Fan, Jiang, and Shi
(2024), T, is differentiable in p;(z', A). Hence, G(p) is differentiable in p. The claimed
result in the theorem holds. O

B.3 Proofs of results in Section 4

Theorem 4.1 is proved based upon Lemmas B.4-B.7.

LEMMA B.4. Let Assumptions 2.1-2.6 and the following assumptions hold for the Sim-
ple Game. For any parameter sequence &, € Br(£) with any & € Bgr: () /n(Gy(w) —
G(m)) —d> N (0, Q()) with some positive definite covariance matrix Q () for any 7 € 11,
(ii) for any c € €, Wu(c) = W(c) + o,(1) with W(c) being positive definite; and (iii)
W(co) = €y 1 for Qo being the asymptotic variance of /n(Gy,¢,(m) — Gy (m0)). Then
limsup,,_, ., supscz, Pre(Ty > X[21—1W+IR],1—a) =a.

ProoFr oF LEmMma B.4. First, we show that limsup,,_, ., supg.z, Pre(co € 6,) — 1. Sec-
ond, we prove that limsup, . ., sups.z, Pre(T, > X[21—17+1R],1—a) =aifcy € 6,.

Fors=1,..., 8, let scj € €5 denote the subselection vector whose first 2/ ele-
ments are the same as cp. We first show that limsup,,_, SUPgex, Prg(scé € Y%}l) — 1.
By Assumptions 2.1-2.6, Lemma 2.1 holds, and we have that G, (m) = 0. Together
with Assumption (i), we can obtain that for any ¢ € Eg and the parameter sequence
{&n} € ER(E), |G co (m0) 1> = Op(n~ 1) and ||Gn’scé(m))||2 = O, (n~1). Therefore, it holds
that J,(sc}) < ||Gn,sc(l)(770)”2 = 0,(n71) for any ¢ € Eg and the parameter sequence
{&€n} € ER(£). We can further obtain that for any A > —1,

1> limsup sup Prg(scé € 5”‘5,11) > limsup sup Prg(Jn(scé) < n") -1,

n—>00 ¢£eHp n—>00 ¢elp
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where the second inequality holds for any «; > 0, because .} can contain sc!’s such
that J,(sc) > n*. Thus, we obtain that limsup,, , . sup;c=, Prs(sc} € %)) — 1.
The convergence limsup,, , ., Sups.z, Pr¢(scj € #¢%) — 1 holds if

limsup sup Pr¢(sc§ € S€3|scs € S€°%) — 1

n—oo fGER

and limsup,,_, ., Supgc=, Pr¢(sc2 € #%?) — 1. The former holds by the same proof as
above and the latter holds because scZ € .#%* occurs if and only if s¢} € 7%, occurs. We
can obtain thatlimsup,,_, ., Supgcz, Prg(sca9 €.7%3) — 1bysequentially applying this ar-
gument. Because the event scbg € 7% occurs if and only if ¢y € %, occurs, it holds that
limsup,,_, o, SUPgez, Prg(co € 6n) — 1.

In the next step, we show that limsup,,_, ., supgcz, Pre(7, > X[21—1W+1R],1—a) =« if the
event ¢y € 6, occurs,. We prove the result in two cases: Ig <[, and [g = [;. When I < I,
the null space of R has dimension /,; — . Let W be a [, x (I — [g) matrix storing a basis
of the null space. Then there exists 7 € R'==!r and w such that any 7 satisfying Hy can
be written as 7 = W7y 4 . By imposing Hy on the sample moment functions, we obtain
that

Gn,c(ﬂ') = Gn,c(\p'ﬂf + ) =Tnc— Fn,Cl‘L - Fn,c\l’ﬂ'f-

Define 7f(c) = argminwf 1Gn,c(V7p + /"")”%V,,(c) for any ¢ € ¢, where W,,(¢) = W(c) +
0p(1) by Assumption (ii). Define Trj’ﬁ(c) = plim,,_, ., 7¢(c). For each given ¢ € ¢, we have
the solution 7¢(c) to the minimum-distance problem with a corresponding “pseudo-
true” value w;(c) defined as its probability limit. The “pseudo-true” value at ¢y deliv-
ers the true value as my = \Ifw}"(co) + un for any parameter sequence &, € Er(£). Our
test statistic 7, is equivalent to minccg, n[|Gp,c(V7r(c) + 1) ”%Vn( o We aim to show that
the test based upon the test statistic 7,, and the critical value X[Zl_ Lo tlg] 1—a controls the
asymptotic size when cg € %,. For this purpose, we derive its asymptotic distribution
under drifting model parameter sequences. To simplify the discussion, we omit “under
any ¢ € Eg and the parameter sequence {£,} € Er(£)” with the understanding that all
the derivations are for any ¢ € Er and the parameter sequence {£,,} € Eg(£).
Apply mean value expansion of G, ¢, (‘If%f(co) + w) at Tr;ﬁ(co). We can obtain that

G,co (P p(c0) + 1) = G,y (Y} (o) + 1) — Lo W (T (co) — 7 (<o) (B.3)
Leta,, ¢, =1, Y. By construction, %f(co) satisfies the following first-order condition:
o Wi (€0) G,y (W p(c0) + 1) =0,
Multiply both sides of (B.3) by al cwWn(co). We obtain that
ey Wi (€0) Gy (W7 () + )
= 0, Wi(€0)Gin,co (Y7} (C0) + 1) — dyy Wi (€0)an,co (T (c0) — 7} (o))

By Assumption 2.6, I'¢, has full row rank. Together with Assumption (i), we obtain that
I',, ¢, has full row rank with probability approaching one for any parameter sequence.
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Thus, a, COW (co)an,c, is invertible with probability approaching one. After rearrange-
ment, we have that

(7 (co) = 7F(€0)) = (oo Wan(€0)an,co) " @y e Wa(€0)Gn,co (W (o) + )
- ( ay, COI’Vn(CO)an co) I_COWn(CO)Gn,co (\P/’ﬁf(CO) +I~L)
= (ay, o, Wn(c0)an o)~ rf o Wa(€0) Gy (70, (B.4)

where the last equality follows from the first-order condition. Multiply both sides of (B.4)
with a,, ., we get that

an,co (71 (c0) — 7f(c0))
= e (a7, o, Wn(€0)atn,c0) ™ g o Wa(€0) G,y (770). (B.5)
Combining (B.3) with (B.5), we have that
V(G0 (P g (c0) + 1) = Gy (0))
= —ap,co/n(7y(co) — 7 (o))
= —dnyco (), o Wi (€0)an )~y oo W (€0) /1 Ginycy (770).
Let I; be the identify matrix of dimension /. It then holds that
VNG, (Y7f(co) + )
= (I = @n,cy W (@, o Win(€0) ) ™y, oo Wia(€0)) /G,y (10).

Because I'y, ¢, =I'¢y + 0,(1) by Assumption (i), we have a, o, = ¢,V + 0,(1) = a¢, +
0,(1). Together with W, (co) = W (cp) +0,(1) = Qal +0,(1) by Assumptions (i) and (iii),
we have that

(Il_an,co(a;l;c()Wn(CO)an,co)_la;lr,COWn(CO)) (Il—aco(a Qy aco) la;Qal)—kop(l).

Since my = \Ifw;(co) + w under the null hypothesis and /nG, ¢, (70) = Op(1) by Assump-
tion (i), we obtain that

\/ﬁGn,co (\I,%f(co) + I-L)
= (I — acy (al, g L acy) " al Q5 )G,y (0) + 0, (1). (B.6)

By Assumptions (ii) and (iii), s symmetric and positive definite. As a result, it
admits a Cholesky decomposition: Q' = 4T A. Thus, it holds that

nGp,¢, (‘P%f(CO) + ,U«)TWn(CO)Gnco (\P%f(co) + M)
=nGp,co(¥7f(co) + M)TQEIGn,co (¥7f(co) + p) + 0p(1)
= (A\/ﬁGn,co (\P%f(co) + M))T(A\/ﬁGn,co (\P%f(co) + I-L)) + Op(l)-
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Since Qg = A~1(AT)~1, Assumption (i) and Lemma 2.1 imply that

VNG e (m0) 5 N(0,Q0) £ A7 Z,

where Z ~ N (0, I;). Together with (B.6), we obtain that

ARG e (T (c0) + 1) > AL — agy(al Qg ag) " al 051471 Z
= (I, — Aacy(al Qg ac))” la;E)AT)Z

It is easy to verify that the matrix in front of Z in the above expression is symmetric and
idempotent. It has the rank / — I, + [ verified by the following derivation:

rank[ (1, — Aacy(al, Qg " ac))” 1aCTOAT)]
= trace[(I; — Aac,(al Qg ac,)” 1aCTAT)]

_trace(ll)—trace(AaCO(a Qy aCO) 1aTAT)

)
= trace(I}) — trace(al A" Aac,(al Q' aco)_l)
=1l- l7T + ZR)

where the first equality follows from the property of idempotent matrix and third equal-
ity follows from the invariance property of trace under cyclic permutations. Thus, we
obtain that for any £ € Eg and the parameter sequence {£,} € Er(£),

. 2 ~ 2 d
Igl;lierﬁG"'CO(ﬂ) ” Wolco) — nH Gn,co (\Pﬂf(c()) + V“) ” Wilco) X[ZI—I,T-HR]'

By the definition of test statistic in (4.2) in Fan, Jiang, and Shi (2024), it holds that
T, < rnme + Iv/nGy, CO(’]T)”W (<) . Therefore, T,, is asymptotically stochastically domi-
nated by X[l—lv-i-lR]' Moreover, for some ¢ € Er and the parameter sequence {£,} € Er(£)

.. .. . d
such that each element in lim,,_, o »/7Gy, () is infinite for every ¢ # ¢y, T,, = X[Zl_ Lyt lg]"

Thus, if ¢y € %, using the (1 — «)th quantile of X[zlf( I _1py denoted as )([217
achieves asymptotic size control:

(z—IR)],1-a’

limsup sup Prg (7, > X[l I

n— oo ge:R

gl 1—al€0 € Cn)=a

The proof for the case where I = [, is the same with = = R~1r. Therefore, combining
with limsup,,_, ., sup ¢emg Pre(co € 6n) — 1, the lemma holds. O

LEMMA B.5. Let Lemma 2.1 and the following assumptions hold for the Simple Game:

(@) for any m € 11, Gu(m) = G(m) + O, (n~V/2); (ii) for any ¢ € €, Wy(c) = W(c) + 0,(1)
with W (c) being positive definite; and (iii) for any c € €, min g ”G”vC(W)”%Vn(c) R
mingcy | Ge (77)||W(C) Then it holds that for any & ¢ Er, lim,_, oo Pre (T, > X[21—1v+1R],1—a) =

1.
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ProoF oF LEMMA B.5. When ¢ ¢ Ep, it is straightforward to see that for all ¢ € ¥,
Ming—, [|v/nGp,c(7) ”2”/11 © diverges to infinity under Lemma 2.1 and Assumption (i)-
(iii). Since X[2171n+lR],17a is finite, it holds that lim,_, oo Prg (7, > X[ZlflerlR],lfa) = 1. Thus,
the lemma follows. O

ProoF oF THEOREM 4.1. We prove the theorem by verifying the conditions in Lemmas
B.4 and B.5. Lemma 2.1 holds by Assumptions 2.1-2.6. It suffices to show that Assump-
tions (i)—(iii) in Lemma B.4 hold for the first part of the theorem and Assumptions (i)—(iii)
in Lemma B.5 hold for the second part of the theorem.

First, we show that the moment functions for the Simple Game admits an asymp-
totic linear representation under drifting sequences. Without loss of generality, we prove
it for player 1. The proof of asymptotic linear representation builds on two lemmas pro-
vided after this proof. We first focus on finding the asymptotic linear representation for
the first observed state z = z!, denoted as G, (7), and then stack the asymptotic linear
representations of G, () for z =z!, ...,z in the end to obtain the asymptotic linear
representation for G, (7). Because we have fixed the player and the observed state vari-
able, from now on we will suppress the subscript i, z;, and z when there is no confusion.
With slight abuse of notation, define the 6 x 1 vector of equilibrium CCPs and its esti-
mator as

Dyl = [pl(zl, k), pl(zl, k'), ...,pg(Zl, k), pg(Zl, k’)]T =[p1,..., ps] and B

ﬁzl = [ﬁlr ceey ﬁ6]T-
Let 7, = [F~'(p1(2!, k), F~Y(p1(z}, k))]T be the 2 x 1 equilibrium expected payoff
vector, and define 77,,1 as the estimated expected payoff vector. The matrix storing
5
the true joint probabilities of opponents’ actionsis I',1 = [p 1z KT, poi(2!, k/)T] .
The estimated matrix for opponents’ actions is denoted as I', ;1. Then G, 1 (7) =71 —
I', 7. Let the 8 x 1 vector a,1 denote the free joint probabilities in the contingency table

(conditional on z = z!), and let the 9 x 1 vector g, denote the free unconditional joint
probabilities that generate the contingency table on z':?

a, =lay, ..., ag]T and g =lq1,..., QQ]T, where (B.8)

ay) = Pr([dlr d2r d3] = [1) 1’ 1]|Z1)’ az = Pr([dlr dz’ d3] = [Or 1) 1]|Z1),

az =Pr([d1, d2, d3] = (1, 0, 11|2"), as =Pr([d1, do] = [1, 1]|2),
EPr([dl, d21=10,1]|2"), ae=Pr(ld1, d3] =1, 1]|z'),
7= Pr([dl, d3]=10,1]|z"), ag=Pr(di=1Jz") and (B.9)
Pr(ldy, d2, d31=1[1,1,1],z=2"),...,
qs = Pr(d1 =1, z:zl), q9 = Pr(z:zl). (B.10)

2Note that in Supplemental Appendix C.1 although there are in total 14 probabilities in the contingency
tables that generate CCPs via eigendecomposition, only 8 of them are free (not linear combinations of other
probabilities): ay, ..., ag.
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Fori=1,...,8,itholds that a; = ql /q9- Note that g,1 includes three probabilities for the
joint actions of three players on z!, two probabilities for the joint actions of player 1 and
player 2 on z!, and two probabilities for the joint actions of player 1 and player 3 on
z!, one probability for the action of player 1 on z!, and the probability of z = z!'. The
estimators g, and @, are calculated as

o~ 1 “ ~ ~ 1T o~ 2I\l Z]\8 T o~ ~ 1T
1= — Nl =141 - 9] and a1=|:r,...,ri| =[ai,...,ag], (B.11)
7 HX_: mt =141, G 2= |7

where 1,1 is defined as
Nmz! = []]-([dlm» dom, dsm] =11, 1,1], 2, :Zl); cee
1(dyn =1, 2, =2"), 1(zn =2")] . (B.12)

By Lemmas B.6 and B.7 below, the second-order Taylor expansion of G,,1 (7) at p,
gives

V(G (1) = G () = /1D s () (P — 1)
+ZZ _’k( )«/_(p, P))(Pk = Pk)>

where

puim= i)
in which
! : dp22 = ! ,

F'(F7!(p1(2, k) F'(F7Y(p1(z', K')))
dpi2 =dpia =dpie =dp21 =dp23 =dprs =0,
dpi3 = (ps(z', k), (1= ps(2', k)), —ps(z', k), (1 = ps(z', k)))m

= (p2(2', k), —p2(2', k), 1 = pa(2', k), —(1 = pa(2', k)))m,
dpa = (ps(2', k'), (1 - ps(z', k'), —ps(2', k), —(1 = p3(2', k'),

(p2(

zl,k’),—pg(zl,k’),l—pz(zl,k’) (l—pz(Z k"))

dpi1 =

First, D pz) () is of full row rank. Second, by Assumption 4.1(i), the denominators in
dp11 and dpy, are bounded away from 0, and all other elements in D pz) (1) are bounded
for any « € II. By Assumption 3.1, D ,,1 () is bounded uniformly over II. There are
only two types of nonzero elements in all Hessian vectors: payoff parameters and

FIE (2, 0)) FIE- LKD)y by Assumption 3.1 and 4.1(i), all ele-

TFETpEE O TEETpE )P ' '
ments in the Hessian vectors are bounded, that is, there exists a absolute constant M*
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such that for any j and &, itholds that } ;> | M | < M*. For large enough n, the
following inequality holds:

—jk( )

————/n(p; — pj)(Pk — pk)

- k( ) *
] HHPZI—PZIH <M*Jnlpp — pall? =o0,(1).

This implies that

V(G (m) — G ()
=D, (M)N1(Pygt — Pyz) +0p(1)
=D 1 (m)D s (V11(Gyn — a ) + 0, (1))
=D ;1 (T)D 41 (D g1 NV1(G gyt — Gg2) + 0(1))

1
IZDpzl(w)Daleqzl(nmzl gn) +0,(1) and

n

1
G, (m) = . Z [Dpzl (M)D 41 D gyt Mzt — qz1) + G (77)] + Op(n_l/z),

m=1

where definitions of D ;1 and D1 can be found in Lemmas B.6 and B.7.

Without loss of generality, Lemmas B.6 and B.7 prove the result for z = z!. The same
result holds for z = 22, ..., 2!, and such asymptotic linear representation of G,z() is
available for every observed state z. Stacking the asymptotic linear representation for z =
z!, ..., 7!, we obtain the asymptotic linear representation for player 1’s moment function
when holding his exclusive observed state at z; = z}. Note thaton Z/, 1(z=2) = 1 —
(Zi;ll 1(z=2%))and Pr(z=2)=1— Zi;% Pr(z = z*). We drop these two elements when
defining ,,; and g,; and delete the correspondinglast column of D ,;, so that elements
in vector n,, — q are free of each other, where 7,, and g are obtained by stacking 1,,,s and
gz togetherfors=1,...,l.Form=1, ..., n, denote Oy, = (dim, d2m, d3m> Z1m, Z2m, Z3m)-

The asymptotic linear representation is expressed as
Go(m) = = Z &(Qm, 0, 7) + 0, (n"1/?), (B.13)
n

where ¢(Qm, 0, m) = D p(71)DyDy(nm — q) + G(). The 6 in ¢ (O, 6, 7) includes ele-
ments in D (), D4, Dy, T, and g, which are obtained by stacking D (), Duz, D gz, I'z,
and g, forz=12!, ..., 7.

The CCPs, contingency tables, and indicator functions are different across z. This
implies that the coefficient matrix in front of [[1,,,1 — g1, ..., [N, — qu171" is block
diagonal. Moreover, since D s (7)Dgzs D gps is of rank 2 for s =1, ...,/ and any 7 € II,

each block has full row rank. Therefore, we obtain that D, (7)D, D, has full row rank and
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E($(Qm, 0, m)d T (Qm, 6, 7)) is nonsingular. Thus, by the Lindeberg central limit theo-
rem, the scaled and demeaned moment function converges in distribution to a normal
distribution with a positive definite variance covariance matrix for any parameter se-
quence &, € Eg(&) with any ¢ € Eg. Assumption (i) in Lemma B.4 is verified. This result
also implies that ()¢ in Assumption 4.1(iv) is nonsingular. Under Assumption 4.1(iii) and
(iv), Assumptions (ii) and (iii) in Lemma B.4 are satisfied. By Lemma B.4, the first part of
the theorem follows.

Assumptions (i)-(iii) in Lemma B.5 are the same as Assumptions (i)—(iii) in Lem-
ma B.1. The proof of Theorem 3.1 shows that Assumptions (i)-(iii) in Lemma B.1 are
implied by Assumptions 2.1-2.6, 3.1, and 3.2. Thus, the second part of the theorem
holds. O

LEmMmA B.6. Under Assumptions 2.3 and 4.1, it holds that for any ¢ € Eg and the param-
eter sequence {£,} € ER(§),

Vn(Gy — qp) =0,(1) and (B.14)
V(@ —azn) = VnDy (Gp — ) +o0p(1),  where (B.15)

qs a3

0o L 0o &

qul = q9 6]523

0 0 e

d

L 99 95 dgx9

in which g, , q,,d,, and a, are defined in (B.8)—(B.11).

Proor or LEMMA B.6. Since each element in 7,,,1 (defined in (B.12)) is less than or
equal to 1, the Lindeberg condition is satisfied. Under Assumption 2.3, by Lindeberg
central limit theorem, (B.14) holds. To obtain (B.15), apply the Taylor expansion of
Vn(a, — ay) around g:

\/—(azl_azl)—\/—qul(QZl QZ1)+\/_ZZ (‘Ij Qj)(/q\k_CIk)y

where D, is defined in the lemma, and Hg:_;x is the Hessian vector that stores the
second-order derivatives with respect to g; and g, evaluated at g,, which is a point

. ~ . .. 2q%
lying between ¢,1 and g,1. Each element in H+_; 4 is either —q%, q%, or 0. Note that
9 9

2
— 4z <.

H\/—ZZ ’k(q, )@k —qi) | <

For any € > 0, there exists N, ; > 0 such that Pr(||g,1 — g, < 2 ') >1—eforn> N, by
triangular array Weak Law of Large Numbers (WLLN); and since g9 = Pr(z = z1)> 8, >0,
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we obtain that Pr(g§ > %) >1— e forn> N¢g. For g5 > %, there exists M; such that
il Hq*zfi'k | < M; < oo. Therefore, by (B.14) and triangular array WLLN, we have

4z |” < Miv/nlGy — gpl?

holds with probability at least 1 — € for n sufficiently large, where € > 0 is arbitrary. Be-
cause [[g, — g |l = O, (n~1/2), (B.15) holds. O

Lemma B.7. Under Assumption 2.1-2.5 and 4.1, it holds that
Nn(Pg — py) =nD gy (G — azn) +0p(1) (B.16)

e e J —~
forany ¢ € Er and the parameter sequence {{,} € Egr(&), where D) = ;Z—Z{, and p, and

P, are defined in equation (B.7).

Proor oF LEMMA B.7. Second-order Taylor expansion of p,: at a provides that

~ . Hyjk A
V(Pp = pp) =Dy (@ —az) +/ny > "2’ (@; — aj)(@ — ax),
j ok

where H,«_; i is the Hessian vector that stores second-order derivatives with respect to
aj and ay evaluated at a,, which is a point between 4,1 and 4, . Under Assumption 2.5,
the eigenvalues in the eigendecomposition are simple, and consequently there exists
a neighborhood around the true value of a such that in this neighborhood the eigen-
vector function of Alzl (Alz) 1 (a matrix whose elements are continuous functions of
a) is analytic. CCPs for player 1 are delivered by the eigenvector function, and CCPs for
other players are a continuously differentiable transformation of player 1's CCPs. Be-
cause a1 £ a,, for large enough n, H;j_j’ « is bounded with probability close to 1. By a
similar reasoning as in the previous lemma, the claim in the lemma holds. O

ProOF OF PrRoOPOSITION 4.1. It suffices to show that Wnb(c) £ Wb (c), where W (c)
is positive definite for any ¢ € %, and Wb(co) = Qy 1. Under Assumption 4.1, T,
is of full column rank and rank(I'(,¥) = I, — Ir. For n sufficiently large, we have
rank (L, W) = I — Ig and argming, |Gy, ¢ (W7 + p)|* is unique. Therefore, Wb(co) =
(2 (co, 7r(c))) ! for large enough n.

Latent states are matched across bootstrap draws with probability approaching one
based on p;(z, k) and p;(z, k'). Under Assumptions 2.1-2.6, 3.1, and 4.1(i) and (ii) the
moment functions for the Simple Game admits an asymptotic linear representation by
the proof of Theorem 4.1. For the vector of functions ¢ defined in (B.13), let ¢, denotes
its elements selected by cg. Thus, it holds that

G (Var(co) + ) = Z% o), 6, Wars(co) + ) +0,(1).

m 1
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Since 7 (co) £ w]*;(co) and my = lI'ﬂ-;‘;(co) + w under the null hypothesis, where w]“;(co) =

argmingery | Ge, (Vrry + w)||?, we have Yarr(co) + p 2 mo. Under Assumptions 2.1-2.6,
3.1, and 4.1(i) and (ii), it holds that

V(Giey (W (€0) + 1) — Gy (W (o) + 1))~ N (0, )

and

f(GEzbZO (¥ f(co) + 1) — Gn,eo (W7f(c0) + 1))

1< ~ Ly = ;
- n(ﬁn;m(Q;i’), 0, WFy(co) + 1) = = > beo(Qmr 6, Wy (<o) +/~'~)) +op(l)

m=1

1 « 1 — *
= n(; > bey (O, 6,70) = — 3 bey(Qm 6, 770)) +05(1) -5 N(0, Q),
m=1 m=1

where the definitions of 0}‘,(1) and f) can be found in Chapter 10 of Hansen (2021). The

first equality holds because conditional on data, the difference between Gf,{’ 2.0 (W7 (co) +
w) and its linear representation is 0, (1), and the difference between G, ¢, (V7 (co) + )
and its linear representation is 0, (1). Conditional on data, convergence in distribution
holds by Theorem 10.8 in Hansen (2021) as ||¢,(Qy, 0, mo)||? is uniformly square inte-
grable by the proof of Theorem 4.1. By Theorem 10.13 in Hansen (2021), 22 (co, Tp(co)) =
Qo + 0,(1) holds if y<?) is uniformly square integrable, where

1 1 ¢
2 = ( > b (O 6.m) = 13 b (@b m)).
m=1 m=1

Because the uniform square integrability of a vector is implied by each element of the
vector being uniformly square integrable, let y,(lb)(i) be its ith element. It holds that

By (i))4 = B2D=30"@) | 354(;) where

n

n 4

. 1 1< .
Ra(D) == |0 (O, 0,m0) =~ 3 ¢ (Qm, 0, m0)|  and
m=1 m=1
n n 2
O b) 1 M)
Uz(l) = E Z gl)(Q( , 0, 770) - ; Z d)co (er 0, mo)
m=1 m=1

with qb (Q(b) 0, m) and qS(i)(Qm, 0, mp) being the ith element in ¢CO(Q£,IZ’), 0, mo) and
$co(Qm, 0, m0), respectlvely Uniform square integrability of |¢>(’)(Qm, 6, m)|> implies
that “4“) = 0,(1) and (i) = O,(1), which imply that I[<1*|ynb)(z)|4 O,(1). Therefore,
y,gb) is unlformly square integrable and 2n(c0, 7¢(co)) = Qo + 0p(1) holds. g is positive

definite, because the asymptotic variance matrix of

V(G (Vs (co) + p) — G(¥7 (<o) + 1))
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is positive definite and € is its submatrix with the corresponding rows and columns
selected by cp.

It remains to prove that for ¢ # ¢y, Wnb(c) converges in probability to some posi-
tive definite matrix. If rank(I',,, W) < [; — IR, then Wnb(c) = Wp, which is positive defi-
nite. If rank(I'. V) = /; — [g, then rank(I',,.¥) = [, — Ig and argminwf 1Gn, (Vs + w2
is unique for sufficiently large n. By a similar argument as the one for W (co), it holds
that W2 (c) = (32(c, ’7?f(c)))_l =371(¢) + 0,(1), where 2(c) is the asymptotic variance
of \/E(Gn'c(‘lfrr;(c) +u)— Gc(‘lfrr]’z(c) + w)) with w;(c) = plim7(c). 2(c) is positive def-
inite, because the asymptotic variance matrix of ﬁ(Gn(qfwji(c) +un)— GV 7T;Z(C) +un))
is positive definite and 3(¢) is its submatrix with the corresponding rows and columns
selected by c. The proposition holds. O

B.4 Proofs of results in Section 5

Proor orF LEMMA 5.1. To prove (i), note that under Assumptions 5.1-5.2, Step 1 identi-
fication is achieved, G () and ¢ are constructed for 4 € {1, ..., [Q,1}. In each ¢", as
rank([7¢, I'¢c]) > rank(I'.) for any c that selects different latent states Assumption 5.3(ii),
%.7" only contains select vectors that select the same latent state. Furthermore, cé’ is
defined as the vector in ¥.#" that selects the most moments, which happens only when

all equilibria corresponding to a latent state is selected. Thus, cé’ is unique. I o has full

column rank implies that the system selected by c(’)’ uniquely determines 77(’}. To prove
(i), it remains to identify |.#'| and the corresponding |.#'| distinct payoff vectors. This
could be done by a pairwise comparison of the payoff vectors. Specifically, if the payoff
vectors || wg 1 776’2 || =0 for h; # hy, then they correspond to the same latent state (or the
same group). The total number of groups gives |.#|; the distinct payoff vectors are the
|#'| true payoff vectors denoted by m-(’)‘ fork=1,...,|7]. O

B.5 Proofs of results in Appendix A

LEMMA B.8. Let the result of Lemma 5.1 and the following assumptions hold for the
General Game. (i) For any m € Il, G,(7) = G(m) + O,(n~Y/2). (i) For any c € 6,
Walc) = W(c) + op(1) with W(c) being positive definite. (iii) For any c € ©y,
mincyy ”G"rC(W)”%V,,(c) £ min ¢y ||GC(7T)||,2,V(C). (iv) p1(-) > 0 is a known strictly increas-

ing function and k1,, — oo with k1,, = o(n). Then it holds that for h =1, ..., |Q,],
¢ = ¢! with probability approaching one and 7" £ al forany h € Iz +1,..., 1},

a1 €(0,1, Ae(=1,0),andAec{l,...,]—11}.

PROOF oF LEMMA B.8. We prove the result for (¢!, #!). The superscript 1 in ¢!, .71,
(cg, ), €}, and (¢!, 7!) are omitted. Other notation that appeared in the proof are the
same as the ones used in Section 5.2.1 and Appendix A.2. Fors =1, ..., §, let s¢j € SES
denote the subselection vector whose first J Zf; 1 1Q| elements are the same as those
of co. First, we show that Pr(scj € #¢5) — 1 for s =1, ..., S. This implies that Pr(co €
%n) — 1, because ¢y € 6, occurs if and only if sc()g € f‘@”ﬁ occurs.
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Lemma 5.1 implies that G, (m) = 0. Combined with Assumption (i) in the lemma,
we obtain that |G, ¢, ()12 = O, (n~!) and 1G e (70) |2 =0, (n"1). Therefore, it holds
that

. 2 2 _
Inseh) = min] Gy (M =[Gy (700 |2 = 0p (7).

For any sc! € 7€, if J,,(sc') < n*, then sc! € 7%} occurs. Therefore, we have that for
any A > —1,

1> Pr(scé € y%}l) > Pr(]n(sc(l)) < n)‘) -1,

which implies that Pr(scé € 5”5}1) — 1. The proof for Pr(scy € /¢75) — 1fors=2,...,S
follows the same argument as the one in the proof of Lemma B.1. Hence, we obtain that
Pr(co € 6,) — 1.

Second, we show that if ¢y € ¢, then Pr(¢c=¢y) — 1. For any c € 4, and ¢ ¢ €.,
Assumption (iii) in the lemma implies that

. 2 P 2
min | Gy, e () [y, () = min| Ge(m) [y, > 0,
where the inequality follows from Lemma 5.1 and Assumption (ii). For any ¢ € ¢, define
. 2
Ti(e) = min| Gre(m) [y, ) = pr(lclo) x1,n/ 7
By Assumption (iv), «1,, = o(n). Thus, for any c ¢ .7,

7€) = min| Gy () I3 e = P1(llclio) 1,0/ > 0. (B.17)

On the other hand, we have that G,(m) = 0 by Lemma 5.1. Then by Assumption (i), it
holds that G, ¢, (m) = 0,(1). Therefore, we obtain that

. 2 2 _
?TEH” G, ()| W(co) = |G,eo (m0) | Wico) — Op(n 1)'
Together with Assumption (iv), it holds that
Th(eo) = min|[ G eo(m) |, o) — P1(Ic0ll0) 10/ 7 = 0(1). (B.18)

(B.17) and (B.18) imply that for any ¢ ¢ €., Pr(J) (co) < J}(¢)) — 1.

At the same time, for any ¢ € ¥.#, we have min, ||Gn,c(77)||§V"(C) = 0p,(n1). As-
sumption (iv) implies that
. 2
minz | Gu,c(m) [y, o)/ k1,0 = 0p (1), (B.19)

for any c € ¢.#. For any ¢ € ¥.# and c # ¢y, Lemma 5.1 implies that ||c||o < ||collo- Then,
by (B.19), we have that

n[Ji(co) =T} ()] =[p1(licllo) — p1(llcollo) ]x1,n + 0p(K1,n) — —00.
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Therefore, for any ¢ € ¥.# and ¢ # ¢y, Pr(],T,(co) < JZ(C)) — 1. Combined with the pre-
vious result, we have that for any ¢ # co, Pr(JZ(co) < JZ(c)) — 1. Thus, if ¢g € %,, then
Pr(c=cy) — 1.

Hence, we have shown that Pr(cg € ¢,) — 1 and Pr(¢ = ¢p) — 1 if ¢g € €,. We
can conclude that Pr(¢ = ¢y) — 1. The proof for 77 2 7y follows the same proof for
Lemma B.1. O

ProoF oF THEOREM A.1. The proof is similar to the proof of Theorem 3.1 with Lem-
ma B.1 replaced by Lemma B.8. Assumption (iv) in Lemma B.8 is imposed by Assump-
tion A.3. .

ProOF OF THEOREM A.2. We have that the numbers of mixing components are in an
ascending order for z!, ..., Z.. Let I, denote the number of observed states where mul-
tiple equilibria exist. We have that there is no multiple equilibria on z!, ..., z"~'; and
there are multiple equilibria on z/~%*1, ... z/. Let s* be the smallest value such that
I} + s*A <1 —1,. Because I, is not a function of / by Assumption A.4, the numbers of
elementary operations from Step (s* + 1) to Step S is not a function of / either. There-
fore, we only need to show that the time complexity of Step 1 to Step s* is linear in /
with probability approaching one as n — oo for all payoffs except for a set of Lebesgue
measure Zero.

Because no multiple equilibria exists on z!, ..., z/~%, all selection vector ¢ € €.7
share the same first (/ — /,)|{),1| components. As a result, from Step 1 to Step s%, there is
only one subselection vector sc® in each step that shares the same first [/ + (s — 1)A]|Q,1 |
components as selection vectors in 4.7 . Then, from Step 1 to Step s*, the MMS proce-
dure works almost the same the MMS procedure for the Simple Game. The only dif-
ference is that in step s = 1, ..., s%, the input set .#%* has cardinality 2/ !=1(2/%| —
1)5-1Ti] af, where o} = |76%|/|.7%"|. Since we set a = (2% — 1)~ following the
same proof as Lemma B.2, we have that the time complexity of the MMS procedure is lin-
ear in / for the first s* steps, assuming that the condition a* = a forall s =5, ..., s* holds
for some s' independent of /. Applying the same argument in the proofs of Lemma B.3
and of Theorem 3.2, it can be shown that the required condition holds for with probabil-
ity approaching one as n — oo for all payoffs except for a set of Lebesgue measure zero.
The result of the space complexity of the MMS procedure follows from the exact same
argument. ([

1

Lemma B.9. Let I, denote the number of observed states with multiple equilibria and
Q| = max(|Q,1, ..., |Qu|). Assume that |, grows with | at a rate slower than logz‘m [Ae(D)]
for some polynomial function h.(-). Then with probability approaching one as n — oo,
for all payoffs except for a set of Lebesgue measure zero, the time complexity of the MMS
procedure for the General Game is at most a polynomial function of l.

Proor oF LEMMA B.9. The same applies to the proof of Theorem A.2, since the num-
bers of mixing components are in an ascending order for z!, ..., Z/; there is no multiple
equilibria on z!, ..., z"le, and there are multiple equilibria on Zlletl gl Following
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the proof of Theorem A.2, the time complexity of the MMS procedure when applying
to z!, ..., 2"~ is upper bounded by a linear function of / — /.. Denote the function as
h(l — 1.). The time complexity of the MMS procedure when applying to z/~*+1, .. 2!
is less than the number of possible combinations of selecting mixing components on
zhletl) 2k ]_[ie: 1 (2/%-te+s1 1) The total time complexity is therefore upper bounded
by

I B
h(l—1o) x [ ] (2" e+! — 1) < k(12 < h(D)he (D),
s=1
where the first equality holds because /() is an increasing function and by the definition
of |, and the second inequality holds by the requirement on /, stated in the lemma.
Because h(/)h.(I) is a polynomial function of /, the claimed lemma holds. O

ProoF oF THEOREM A.3. Define JJ,(K, Sk) as

K
JInK,SK) =Y 3 |7 =k j|° + p2(K) ko n/m.

j=1m%eSk,;

Then (I?, §E) = argminKﬂgz”,sKegK JJ.(K, Sk). Denote S"f%/| as the correct partition.
First, we show that Pr(§| H = ST%‘) — 1, where

/S\|t;g/|=arg min  JJ,(141, S;.7))-

S| €62

Then we prove that Pr(K = |.#|) — 1. At last, we show that rf withk=1,...,K are
consistent estimators.
Given the cardinality of partition ||, the term py(|-#|)k2,,/n is the same for all

possible partitions and converges to zero by Assumption A.5. Theorem A.1 shows that

h

forh=1,...,1Q,]|, we have 7 £ wé’. As a result, given the correct partition S‘*l,l, all

7" within the same set have the same probability limit. Therefore, JJ,(|.%|, STJ/I) 2.
On the other hand, if a partition is incorrect, then |7° — |z, f,ﬂz does not converge in
probability to zero for at least one ;. Thus, we conclude that Pr(S, | =S}, ) — 1.

Based on the above discussion and the properties of p2(-) and «2,, by Assump-
tion A.5, we have that given §|%|' JJn(|%|,’S\|Jg|) £ 0. For any K, define §1< as
argming, s, JJ(K, Sk). By the definition of taX for k = 1,..., |7, tmi' # twngfor
k1 # k. In consequence, if K < |.#|, then there must exist some j such that 7* € S ;
have different probability limits. Because p2(K)k2,,/n — 0 for any K, we have that
JI.(K,Sg) % 8 > 0 for any K < |.#|. Thus, Pr(K < |#]) — 0. On the other hand, if
K> |7,

n[JJn(|Ji/I,§\,%|) —an(K,gK)] =[p2(1#1) — p2(K)]k2,n + 0p(K2,0) = —00,

where the first equality holds because 7" — 7t = 0, (n~'/2). Therefore, Pr(K > |.#]) —
0. Hence, we have Pr(K = |.#'|) — 1. Together with the previous result that Pr(S, | =
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SI*J/I) — 1, we conclude that

Pr(Sg =S7,) = Pr(R = |.¢], S =S7,) — L.

i3 Pt RS U o S P Qi =~n L _h _

By definition, t7’ = 5o thes,?,/.” for j =1,...,K. Since 7" = @y for h =

1,...,|Q,]| by Theorem A.1, there exist one permutation of tﬂ-{)‘ fork=1,...,|.¢| de-
(k)

noted as t7, ’, such that

B4
Pr(Z”ﬁrk —tmy | <818z = STM) o
k=1

for any 6 > 0. Because Pr(glg = STII) — 1, it holds that

g4 B4
Pr(Z“G" R 5) > Pr(Z |77 = 1= | < 8,8 = s%)
k=1 k=1

||
k=1

— 1.

Thus, 777, ..., i7" are consistent estimators for rmf with k=1, ..., |.7]. O

Proor oF THEOREM A.4. The proof is similar to the proof of Theorem 4.1. Assumption
A.6(i) serves the same role as Assumption 4.1(i) for Theorem 4.1. We omit the superscript
s when there is no confusion. Without loss of generality, suppose ¥.# has (¢ + 1) ele-
ments: ¢.¥ = {cp, c1, ..., ¢q}. Following similar arguments in the proof of Lemma B.4, we

| | d
have that any ¢ € Eg and the parameter sequence {¢,} € Er(£), ||\/ﬁGnyc(770)||%V,z(c) —

2
Xilicllo—Lot1] for any ¢ € ¥.#. As aresult,

. 2 d d 2
zre?rlfr“‘/ﬁG”'C(”) [ic) = Fe = Xiielo—tp-+1x1»

d
where F, is some tight limiting distribution and < denotes stochastic dominance. It
holds that for any £ € Er and the parameter sequence {£,} € Er(£),

d 4 . (9 2 d 5
Ty = T = min{X{j 10— ta—tp)1 = Xileglo—Un—t))} = XidI—Un—tr))’

where the last inequality holds because min..¢ s ||c|lo = JI. Thus, using X[zjl_ Ul 1—ar
as the critical value achieves asymptotic size control.

Lemwma B.10. Under Assumptions 5.3 and A.7, the unique solution to G.(m) = 0 for any
c € €77 is the true payoff vector ;.
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Proor oF LEMMA B.10. By Assumption 5.3(ii), G.(7) = 0 has no solution for any c € ¥*
that selects different latent states. As a result, any ¢ € ¥.#° must select the same latent
state. The payoff vector corresponding to the selected latent state is the solution to the
system of linear equations: G () = 0 for any c € ¥.#°. Because G.(7) = 0 for any c €
¢ #° has a unique solution by Assumption A.7, the result in the lemma holds. O

Proor oF THEOREM A.5. The asymptotic properties of G,,.(7) for some given ¢ and =
are the same as that of G,,.(7) in Theorem 4.1 given the assumptions in Theorem A.4.
We omit the superscript s when there is no confusion.

Firstly, by Lemma 5.1 and Assumption A.2, for any ¢ ¢ €.¢, ming ||/nGp, () ”%’Vn(c)
diverges to infinity. Second, by Lemma B.10, G.(7) = 0 has the unique solution m for
any c € €.#. When ¢ ¢ Eg, for all c € €., ming,_, ||\/’7Gnyc(77)||124/,,(c) diverges to infin-
ity. Since X[21171W+IR],1701 is finite, it holds that lim,_, o Prg (7}, > X[21171W+IR],17a) =1. We
conclude the result in the theorem. O

APPENDIX C: X140 (2018)’s CCP ESTIMATOR AND IDENTIFICATION IN THE GENERAL
GAME

In this section, we first present the method developed by Xiao (2018) for Step 1 iden-
tification and estimation for both the Simple Game and the General Game. Then we
discuss the equivalence between Step 2 identification conditions in the General Game
and Aguirregabiria and Mira (2019)’s necessary and sufficient condition.

C.1 Identification of the CCPs in the Simple Game

Recall some notation from Section 2 of the paper. For i = 1,2, 3, p;(z, A) = Pr(d; =
1|z, A), pi(z, B) = Pr(d; = 1|z, B), pA(z) =Pr(k = A|z), and pB(z) = Pr(k = B|z). For
k,k' € {A, B} and k # k', let

| piz k) pi(z, k') -
P, = |:1 Cpim k) 1—pi(z k) fori=1,2,3.

Define the vector of mixing weights as Wiz = ( pk (z), pk/ (z))". Its diagonal form is writ-
ten as Dy, = diag(Wlez). Let the diagonal matrix containing player i’s CCPs of choosing
action d; =0, 1 on two latent states be

D, = diag(pi(z, k), pi(z, k’)) and Dj, = diag(1 — pi(z, k), 1 — pi(z, k')).

Consider identifying CCPs for player 1 on observed state z. Define the following pop-
ulation contingency tables:

A12 _ Pr((dl’ dz» d3) = (1) 1’ 1)|Z), Pr((dl) dz’ d3) = (lr 0» 1)|Z)
1z = Pr((dl’ d2) d3) = (0) 1’ 1)|Z), Pl‘((dl, dz’ d3) = (Or 0» 1)|Z) ’
(
(

A

1
z

2 _ Pr (dl:dZ) - (1» 1)|Z), Pr((dl,dZ) - (1) 0)|Z)
o Pr (dl:dZ)z(O» 1)|Z), Pr((dl,dZ):(O) 0)|Z) ’
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2 = | Pr((d1, d3) = (0, 1)]z), Pr((di,d3) = (0, 0)|z)

13 [Pr((dl, d3)=(1,1)|z), Pr((dy,ds)=(1, 0)|z)}

and A} = [Pr(d = 1|z), Pr(d; = 0|z)]T. The matrices Aj2, A%, A3, and A4} are iden-
tified from data. By construction, the population contingency tables can be written as

products of CCPs and mixing weights:

Ag = PlzD?zDHZPZTz’ A;Z = PlZDk|zP2Tz’
Ay =P1Dy,P3,, and Ay =P Wy,

The CCPs are identified using the eigendecomposition method. First, CCPs for
player 1 are identified as the eigenvectors (of the left-hand side observable matrix) with
column sum being 1: A12(A1%)~! = P,D3,P.! and the vector of mixing weights is iden-
tified as Wy, = (P1,) ' AL. Second, given the recovered P1z, Wy, (and Dyj,), CCPs for
players 2 and 3 are identified as Py, = (A%Z)T(DLZPITZ)—1 and P3, = (AP)T(DZ'ZPITZ)‘I.

Note that if we change the order of the two columns of the eigenvector matrix
Py, and eigenvalue matrix D3, at the same time, equation A412(AL?)~! = Py,D3, P}
still holds and equations Wy, = (P1z) ' A4;, Po, = (A%z)T(DzlzPsz)_l, and P3, =
(AE)T(DZ'ZPITZ)*1 inherit the order of the unobserved states adopted in equation
Al2(AlH)~t = PIZD?ZPI_ZI. Thus, the CCPs for three players are identified up to a com-
mon label swapping.

C.2 Identification of the CCPs in the General Game

The General Game could have more than three players and more than two mixing com-
ponents. In such cases, the identification method developed in Xiao (2018) employs the
eigendecomposition using group actions. Following Xiao (2018), we divide the N play-
ers into three groups, such that the third group has exactly one player for odd N and two
players for even N, and each of the first two groups has N players. Thus, N = 2N + 1
when N is odd, and N = 2N + 2 when N is even. Player group i is denoted as g; for
i = 1,2, 3. By definition, U?:lg,- = {1, ..., N}. For each group, we create a_group ac-
tion variable, denoted by dg,, dg,, and d,,. We have dg,, dg, € {0, ..., (J + 1)V — 1}, and
dg, €10, ..., J} if there is one player in group 3 and dg, € {0, ..., (J + 1)2 — 1} if there are
two players in group 3.

Denote the matrix composed of CCPs for group action dg, for i =1, 2 on each latent
state as

: N_y 1
Pyn= (Pr(dy =iz, k));J:J(r),l/;l b
The assumption needed for identifying CCPs up to a label swapping is stated in the fol-

lowing.

AssumpTioN C.1. (i) N > 3. (i) (J + 1)}\7 > |Qy| for any z. (iii) For each z, there exists a
partition (dg,, dg,, dg,) of joint actions (d, ..., dy) such that Pg,, and Pg,, both have full
column rank.
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Assumption C.1 guarantees the identification of |(),| and the equilibrium CCPs (up
to a label swapping). Define Af;lzgz as the joint contingency table for player groups g1
and g» fixing player group g3’s action at dg, = d. Let Aﬁi and A;g be the joint contin-
gency tables of some generic player group g and individual player i. For each z, CCPs
are identified following Xiao (2018). First, under (ii), Lemma 1 in Xiao (2018) applies to
identify |Q),| as rank(A45'%?) for each observed z. Given |(),|, by summing up rows and
columns of Aélfz (thus collapsing the actions of player group 1 and player group 2), we
can create A5'%? with rank(A45'%?) = |Q|, where 2) and g, denote player group 1 and
player group 2 with collapsed actions. Let Pz, denote the matrix storing CCPs for player
group g; with collapsed actions (each column corresponds to a different ). Second,
we use eigendecomposition to identify Py, as 4515 (A45'5*) ! = Pg,,D% (P3,2) ™!, where
foz is the diagonal matrix storing the conditional choice probabilities of dg, = d for all
o on the diagonal. The vector of mixing weights is identified as W, = (Pglz)*lAgl. De-
fine D, = diag(W,), the equilibrium CCPs for player group 2 with collapsed actions are

then identified as Pg,, = (A5'%*) T (D, Pglz)_l. For equilibrium CCPs of individual player

i € g2|J g3, we obtain P] = (P, 2Dz)"1 A8V . For equilibrium CCPs of individual player
i € g1, we have PZ.TZ = A’Zgz(Dngzz)‘l. In estimation, model implied restrictions can be
incorporated to this procedure to improve accuracy.

C.3 /n-consistency and asymptotic normality of the CCP estimator

Both the root-n consistency and the asymptotic normality require the eigenvalues in the
eigendecomposition be simple. In the Simple Game, such a condition holds automati-
cally under Assumption 2.5, which implies that all players have different CCPs of choos-
ing each action in different latent states. In the General Game, an additional assumption
is needed for the consistency and the asymptotic normality.

AssumpTiON C.2. There exists a known group action for player group gz such that the
corresponding equilibrium CCPs of choosing this group action is different across different
values of w.

Under Assumptions 5.1-5.3 and Assumption C.2, the argument in Xiao (2018) deliv-
ers root-n consistency and asymptotic normality of the CCP estimator.

C.4 Further discussions on Step 2 identification in the General Game

We mentioned that Assumption 5.3 is equivalent to the necessary and sufficient condi-
tion proposed in Proposition 3 of Aguirregabiria and Mira (2019) except that we consider
identification for each pair of player and exclusive state separately. In particular, As-
sumption 5.3(i) holds if and only if foreach 4 =1, ..., |Q,1], there exists some c* € ¥.¥ h
such that I' .« has full column rank (the condition in Proposition 3 of Aguirregabiria and
Mira (2019)). This is due to the following reasoning. On the one hand, if there exists
¢* € €." such that I';~ has full column rank, then FC(;), certainly has full column rank.
This is because if ¢* does not select the most number of rows, adding more rows does not
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decreases the column rank of a matrix; while if ¢* selects the most number of rows, then
o= cé’. On the other hand, if I' » has full column rank, then there exists ¢* = cé‘ €CS
0

such that I'« has full column rank.

APPENDIX D: ADDITIONAL DETAILS ON THE GAMES IN THE SIMULATIONS

In this section, we provide more details on the games used in the simulations.

D.1 Identification of games in the simulation

For the system of moment functions of Game 1, there are two parameters on each latent
state, while the number of correct moments are 18, 27, 64, 100, and 288, respectively
from Design 1 to Design 5. Assumption 2.6 for Step 2 identification is verified for the
parameter values listed in Section D.2.

For Game 2, let the equilibrium CCP vector be

p(z» X, k) = (pl(zy X, k)! PZ(Z» X, k)’ PB(Z; X, k))

forze 2 and x € 2, where for i = 1, 2, 3, p;(z, x, k) =Pr(d; = 1|z, x, k). Step 1 identi-
fication of equilibrium CCPs and mixing weights makes use of the following system of
equations: for (di, d2, d3) € {0, 1} x {0, 1} x {0, 1},

3
pld, dz, dslz, x) = ) |:pk(z’x)1_[(Pi(Z,x,k))di(l—Pi(Z,x,k))l_di]
ke{A,B} i=1

and can proceed in exactly the same way as Step 1 for the Simple Game.
Step 2 identification is similar to that of the Simple Game. Let [, = ]‘[f‘:l | %;| and

z!, ...z} with z = (2, 25, Z) be the I, different values in 27 x 23 x 23. Denote [, =
|2°|and 2" = {x!, ..., x*}. We can obtain the following system for player 1 via stacking
two latent states on each (z, x) forze {z!, ..., z*}and x € 2":

G(m =[] (xY), ..., 7 ()] =[] (1), ..., T] (x*)]"w, where

71(x) = [?1(1, Zl, X, kl), ﬁl(l, Zl, X, kll)r cey fl(l, le, X, klz), fl(l, ZZZ, X, k?z)]—r and

[x Z%(Pz(zl,h)+p3(z1,k1))]T,[x z}(pz(zl,k’l)+p3(z1,k’1))]T,..., !

lz l 1 T lz 1 / l / T
[v 2 (pa(e ki) + pa(e k)| [x 25 (ol k1) + pa(e, k1)

The dimensions for 7 and I' are 2/,/, x 1 and 2/,/, x 2, respectively.

Given some selected latent state for (z!, x!), we could match this latent state across
all exclusive and common observed states with the parameter spaces of the true selec-
tion vectors given by

I'i(x) =

¢! ={lcr,..., el i1 =[1,0land ¢; € {[1,0], [0, 1]} fort € {2, ..., I.[;}} and
¢*=|lc1,..., e, a1 =10,1]and ¢; € {[1,0], [0, 1]} for t € {2, ..., L., }}.
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For ¢ belonging to ¢! or 2, we have | c|¢ = I.l,. Given a parameter space of the true
selection vector with the first selected latent state being k, the unique solution to the
system G, () = 0 gives us (B1x, d1x) ' -

In simulation, /,/, = 24, 36, 54, 81, 162, respectively, for each design specified in Sec-
tion D.2. The number of unknowns in the system is strictly less than the number of cor-
rect moments. The parameter values used in the simulation satisfy Assumption 2.6 for
Step 2 identification.

For Games 3-4, let the equilibrium CCP vector be

p(x, ) = (p1(x, ®), p2(x, w), p3(x, ®), pa(x, ®), p5(x, w))

for x € 27, where for i =1, ..., 5, pi(x, ) = Pr(d; = 1|, x, ). Step 1 identification of
equilibrium CCPs and mixing weights makes use of the following system of equations:
for (dlr dZ) d3) d4, d5) € {0, 1} X {0) 1} X {Ov ]-} X {0» ]-} X {01 1}7

5
Py, da, ds, di, dsl) = ) [p(adx)II(IH(X,aﬂ)m(l-—ln(x,aﬂ)l_¢}

wey i=1

and can proceed in a similar way as Step 1 for the Simple Game. Overidentifying restric-
tions are used to improve estimation accuracy.

Step 2 identification is similar to that of the Simple Game. Denote /, = |.2"| and
2 ={x',..., x!x}. We can obtain the following system for player 1 via stacking compos-
ite latent variables on each x for x € 2":

Gm =[7] ("), ..., 7 ()] = [T (x), ..., ] (x¥)] ", where
7 =[m(Lx, 01, 1), ..., 71 (L x, (] )] and

. T LS
Ii(x)is[|x p(x,w(l,x))] ,...,[x p(x,w(|ﬂx|,x))]] in Game 3 and

[[x (1 +x2)(2p(x, w(l,x)) — 1)]T, e [x (1 +x2)(2p(x, o (1], x)) — 1)]T:|T

in Game 4.

The dimensions for 7 and I are (2(/, — 1) + 3) x 1 and (2(/, — 1) 4+ 3) x 2 when only
observed state 8 has multiple equilibria. The dimensions for 77 and I are (2(/, — 2) +6) x
1 and (2(I; —2) +6) x 2 when both observed state 8 and observed state 16 have multiple
equilibria.

In the simulations, /, = 18. The number of unknowns in the system is strictly less
than the number of correct moments. The parameter values used in the simulation sat-
isfy Assumption 5.3 for Step 2 identification. Given some selected value of the composite
latent variable for x!, we could try to match its underlying latent state k across all com-
mon observed states with the parameter spaces of the true selection vectors specified as
follows:
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Design 1: 3 mixing components on the 8th observed state:

ol lc1,...,c,] tc1e {(1,01,1,1]} and ¢; € {[1, 0], [0, 1], [1, 1]} for ¢ # 8 and
N cg € {[1,0,0],[0,1,0],10,0,1],[0,1,1],[1,0,1], [1, 1, 0], [1, 1, 1]} ’

o2 e ool terel0,11, (1,11} and ¢ € {[1, 0], [0, 1], [1, 1]} for  # 8 and
B cg €{[1,0,01,[0,1,0], (0,0, 11, [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]}

Design 2: 3 mixing components on both the 8th and the 16th observed state:

1 e, oo e 1T e e {1, 01,11, 11} and ¢ € {[1, 01, [0, 1], [1, 1]} for ¢ ¢ {8, 16} and
¢ €{[1,0,0]10,1,0],10,0,1], [0, 1, 1], [1,0,1],[1,1,0], [1, 1, 1]} for r € {8, 16} |’

@2 — e, ..., e 1" 1 €{10,11,[1, 11} and ¢ € {[1, 0], [0, 1], [1, 1]} for ¢ {8, 16} and
| e {l1,0,01,10, 1,01 [0, 0,11, [0, 1, 1], [1, 0, 1], [1, 1, 0], [1, 1, 1]} for £ € {8, 16} |

Given a parameter space of the true selection vector with the first selected underly-
ing latent state being k, the unique solution to the system G¢, () = 0 gives us (0, 8x )T,

D.2 Parameter values in the simulation

For Table I and Table IT in Section 6 of the main paper, the parameter values in the payoff
functions and the values for the observed state variables are set according to Design 1 of
Game 1 below. For Table II1, the parameter values in the payoff functions and the values
for the observed state variables are set according to Designs 1-5 for both games below.
Note that for all designs, the parameter values in the payoff functions stay the same for
both games while the support of the observed state z changes.

Game 1 For Design 1, 29 ={0.1, 0.8}, 2> = {0.1, 0.8, 1.5}, and Z3 = {0.1, 0.8, 1.5}. For
Design 2, 29 = {0.1, 0.8, 1.5}, 25 = {0.1, 0.8, 1.5}, and 23 = {0.1, 0.8, 1.5}. For Design 3,
21 =10.1,0.8,1.3,1.5}, %5 ={0.1,0.8, 1.3, 1.5}, and %3 = {0.1, 0.8, 1.3, 1.5}. For Design
4, 21 =1{0.1,0.8,1.3,1.5}, %5 = {0.1,0.8,1.1, 1.3, 1.5}, and 23 = {0.1,0.8, 1.1, 1.3, 1.5}.
And for Design 5, 29 = {0.1,0.7,0.8,1.2, 1.3, 1.4, 1.5}, 25 = {0.1,0.7,0.8, 1.1, 1.3, 1.5},
and %3 ={0.1,0.7,0.8, 1.1, 1.3, 1.5}. The parameter values in the payoff functions are
set according to Table D.1 below and are the same across Design 1-Design 5.

Game 2 For Design 1, 2" = {0.4,0.7,0.8}, 27 = {0.5,1.2}, 25 = {0.5,1.2}, and 23 =
{0.5, 1.2}. For Design 2, 2" ={0.4, 0.7, 0.8}, 27 ={0.5,0.9, 1.2}, %5 = {0.5, 1.2}, and 23 =
{0.5, 1.2}. For Design 3, 2" = {0.4,0.7,0.8}, 29 = {0.5,0.9, 1.2}, %5 = {0.5, 0.9, 1.2}, and
23 =1{0.5, 1.2}. For Design 4, 2" = {0.4, 0.7, 0.8}, 27 = {0.5, 0.9, 1.2}, %5 ={0.5, 0.9, 1.2},

TaBLE D.1. Parameter values in Game 1.

014 018 024 028 034 03B 014 018 024 028 034 03p

—0.01 -5 —0.02 -5.5 —0.02 -5.5 2.2 0.4 2.5 0.4 2.5 0.4
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TABLE D.2. Parameter values in Game 2.

014 018 024 028 034 03B B1a Bis Baa B2p Bsa Bss

-0.1 -2 —0.2 -1.9 -0.3 —-1.8 3 0.1 2.6 0.2 2.7 0.1

and 23 ={0.5, 0.9, 1.2}. And for Design 5, 2" = {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, 27 ={0.5, 0.9,
1.2}, % ={0.5,0.9, 1.2}, and 23 = {0.5, 0.9, 1.2}. The parameter values in the payoff
functions are set according to Table D.2 below and are the same across Design 1-
Design 5.

For Table VI, the parameter values in the payoff functions and the values for the
observed state variable are set according to Design 1-2 for Game 3 and Game 4 below.

Game 3 For Design 1, x € & = {-1.6,-1.5,-1.4,-1.3,-1.2,-0.8, —0.55, —0.45,
—-0.35, —0.3, —0.25, —0.2, —0.15, —0.1, —0.05, 0.05, 0.1, 0.15}, there are multiple equilib-
ria on latent state A4 for x = —1.5 (in the simulation this is designated as the 8th observed
state). For Design 2, x € 2" = {-1.6, —1.5, -1.4, —-1.3, —1.2, —0.8, —0.55, —0.45, —0.35,
-0.3, —0.25, —0.2, —0.15, —0.1, —0.05, 0.05, 0.1, 0.15} there are multiple equilibria on la-
tent state A for x = —1.5 and x = —1.4 (in the simulation these are designated as the 8th
and 16th observed states, respectively); 6p = 0.1, 65 = —0.2, 6 4 = 1.1, 6 4 = 3.2 for both
designs.

Game 4 For Design 1, x € & = {-1.25,-1.2,-1.15,-1.1, -1.05, -1, —0.95, 0.9,
—-0.8, —0.75, —0.7, —0.65, —0.6, —0.5, 0.4, 0.45, 0.55, 0.85}, there are multiple equilibria
on latent state A for x = 0.85 (in the simulation this is designated as the 8th observed
state). For Design 2, x € 2" = {-1.2, —-1.15, —1.1, —1.05, —1, —0.95, —0.9, —0.8, —0.75,
—0.7, —0.65, —0.6, —0.5, 0.4, 0.45, 0.5, 0.55, 0.85}, there are multiple equilibria on latent
state 4 for x = 0.85 and x = 0.5 (in the simulation these are designated as the 8th and
16th observed states, respectively); 0 = 2.4, 6p = —0.6, 0 4 = 2, 6 4 = 4 for both designs.
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