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Supplementary Material

Supplement to “Covariate adjustment in stratified experiments”
(Quantitative Economics, Vol. 15, No. 4, November 2024, 971-998)

MAax CYTRYNBAUM
Department of Economics, Yale University

APPENDIX A: SUPPLEMENTAL APPENDIX
A.1 Experiments with noncompliance

In this section, we extend our main results to the case of experiments with imperfect
compliance. The theorems in this section are simple corollaries of our main results. For
completeness, full proofs are provided in Section A.9.

Previously, Ansel, Hong, and Li (2018) studied covariate adjustment in experiments
with noncompliance and i.i.d. or coarsely stratified treatment assignment. Bai, Guo,
Shaikh, and Tabord-Meehan (2024a) study matched pairs experiments with noncom-
pliance. See also Jiang, Linton, Tang, and Zhang (2024) and Ren (2023) for nonlinear
adjustment in coarsely stratified experiments and completely randomized experiments
with noncompliance, respectively.

Let z € {0, 1} denote a binary instrument. Let D(z) be the potential treatments and
Y(d, z) = Y(d) the potential outcomes, satisfying exclusion. Define the intention-to-
treat (ITT) potential outcomes W;(z) = Y;(D;(z)), so that Y; = Z;W;(1) + (1 — Z;)W;(0)
and D; = Z;D;(1) + (1 — Z;)D;(0). Impose monotonicity D(1) > D(0) and positive com-
pliance 7p = P(D(1) > D(0)) > 0. Define the ITT effect 7y = E[W (1) — W (0)]. Under
these assumptions, the parameter 7;, = 7y /7p = E[Y (1) — Y(0)|D(1) > D(0)] is the lo-
cal average treatment effect (LATE) (Imbens and Angrist (1994)). To estimate 7;,, we con-
sider adjusted Wald estimators of the form

- W1—%—7W(ill—f_lo)cp

Fdi = o A1)
o Dy — Do —¥p(h1 — ho)ep

To analyze 7,4j, we require that Assumption 3.1 holds for both potential outcomes W (z)
and D(z) and covariates 4(X), and also impose Assumption 3.14. Suppose the adjust-
ment coefficients (Yw, ¥p) = (yw, yp) + 0p(1). Our first result is a consequence of
Theorem 3.4. To state the result, we define the modified potential outcomes Q(z) =
W (z) — 1. D(z) for z € {0, 1} and modified adjustment coefficient yp = yw — 7. vp.

THEOREM A.1. If Z1., ~ Loc(, p), then /n(Taq; — 70) = N (0, V(’)/Q)/TIZ)) with

2 2
o1p(X)  ghp(X)
V (yp) = Var(cg) + E[Var(bg — V/Qhwf)] —I—E[ 10 " (I)Q_ : ]
Maum: max.cytrynbaum@yale.edu
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The terms cp(X) = E[Q(1) — Q(0)|X], similarly for by and O'ZZQ, substituting the po-
tential outcomes Q(z) for Y (d) in each formula.

Optimal adjustment Letygp =yw — 7., ¥p and define the adjustment scheme 7,g; to be
efficient if yp £ Y € argmin, V' (y). We construct efficient adjusted Wald estimators us-
ing the generic efficient estimators of Section 3.4. Let 8} . and 0D for k € {PL, GO, TM} be
any of the generic efficient estimators of Section, plugglng in outcomes W or D in place
of Y. For example, ?O\IV)VL is the coefficient on Z; in the regression W; ~ (1, fvti) + Z(1, izi)
and §PL the coefficient on Z; in D; ~ (1, }Vz )+ Z;i(1, }Vz ). Define the LATE estimators
?ﬁ —_e e/ OD for k € {PL, GO, TM}. Our next theorem is a consequence of the efficiency
results in Sectlon 34.

THEOREM A.2. Suppose Zy.,, ~ Loc(ys, p). For each k € {PL, GO, TM}, the estimator?f is
efficient with /n(7k — 10.) = N (0, V*) for V* = min, V ().

Finally, we provide asymptotically exact inference on 77, using the adjusted estima-
tors 7% 7 above. Define the augmented outcomes QY = ?,’f —h,(yw — TL vp). Letv? V],
vo, and 7¢ v}, be the variance estimators in Equation (4. 3) plugglng in Q7 in place of Y.
Define the variance estimator:

~ 1 D; — a
V= (fg‘D)Z |:Var,, (%) —’17‘11 — Uo 2U10i| (A.2)
k

THEOREM A.3. Suppose Z1.,, ~ Loc(s, p). Then V=V*+ op(1).

Theorems A.1 and A.3 show that the confidence interval C = 7% + P12¢_, 2/ /1]
with ¢, = ®~!(a) is asymptotically exact in the sense that P(r, e C) =1 — a + o(1).

A.2 Varying propensities

In this section, we extend our results to fine stratification with varying propensities p ().
To that end, let p(¢) € {a;/ k; : ] € L} with |L| < oo a finite index set. Cytrynbaum (2023)
extends Definition 2.1 to nonconstant p (i) by the following double stratification proce-
dure:

(1) Partition the units {1, ..., n} into propensity strata S; = {i : p(X;) = a;/ k;}.
(2) In each propensity stratum S;, draw samples (D;);es, ~ Loc(y, a;/ k;).

To implement this, we run the algorithm of Cytrynbaum (2023) to match units into
groups of k; separately in each propensity stratum S;, drawing treatment assignments
(Di)ieg ~ CR(a;/ k;) independently for each g € G;. Define ﬁadj(y) to be the AIPW esti-
mator of Section 3.2, with linear models f;(X;) = y;lh(X,-) for d € {0, 1}, so that

[D i(Yi - vlh)}_E [(I—Di)(Yi—vah,-)]
i) ! 1— p(i) '

Badi(¥) = (71 — ¥0) Enlhi] + Ep
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Define y = (vo, y1) and weighted covariates hf = (h; 15;;7,«’ h; %). Under assump-

tion 3.1, Theorem 3.4 may be extended to show that if’y‘—p> v and Dy., ~ Loc(¥, p(¥)),
then \/ﬁ(gadj(?) — ATE) = N (0, V (v)) with variance

2 2
V(y)ZVar(c(X))+E[Var(b—y/hp|¢)]+E[UI(X) + A ]

p() 1—p) ]
The optimal adjustment coefficient is y* = E[Var(hfldfi)]_lE[Cov(hf, bi| )] if the con-

dition £ [Var(hf’ |:)] > 0 is satisfied. Let k; denote the size of the group that unit i be-
longs to. Extending the work in Section 3.4, the estimator

5=E. | P (hPY ki _1 hPyTM ki
Y =En| N ( i ) ki -1 i k _
with weighted outcomes Y™ = DiYi(1 - p)Y2p % 4+ (1 = DyYipl?(1 — p)~32 has
Y =v*+ 0,(1). Then the estimator 6,4;(7) is efficient in the sense of achieving the min-
imal variance min,, V' (y).

A.3 Noninteracted regression adjustment

For completeness, before continuing we describe the asymptotic behavior of the com-
monly used noninteracted regression estimator under stratified designs. Let 6 be the
coefficienton D;inY ~1+ D + h.

THEOREM A.4. Suppose Assumptions 3.1 and 3.14 hold. The estimator has representation
Oy =0— yN(h1 —ho)+0 (n~ Y. IfD1., ~ Loc(, p), then /n(6x —ATE) = N(0, V) with
variance

2 2
V = Var(c(X)) + E[Var(b — vy h|¢)] +E[01;X) L 90 (X)]

I-p

The coefficient yy = argminyeRdh Var(f — y'h) for target function

_ P [1-p
fx)=m(x) > + mo(x) »

with f(x) # b(x) in general. The noninteracted regression estimator is efficient if y = 1
and either p =1/2 or Cov(h, Y (1) — Y (0)) =0.

Theorem A.4 shows that 8 is generally inefficient since it uses the wrong objective
function. In particular, the target function f(x) # b(x) unless p = 1/2. Also, the limit-
ing coefficient yy minimizes marginal instead of conditional variance. The results in
Section 4 show how to construct asymptotically exact confidence intervals for the ATE
using By.
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A.4 Nonlinear adjustment

Alternately, we may consider general nonlinear covariate adjustment strategies. Let h(x)
be a function estimated in some class # and consider the adjusted estimator

PN Y; — h(X})(D; — p;
aadj(h)ZEn[( o) p)]
Pi— P;

For example, the usual AIPW estimator in Section 3.2 can be shown to take this form.
Linear adjustment corresponds to the parametric family H = {h(x)'y: vy € R4}, Simi-
lar to Bai, Jiang, Romano, Shaikh, and Zhang (2024b), suppose that for some function
h(X) € L, the equicontinuity condition holds

(h — h)(X)(D; — p;)
pi—p?

ﬁEn[ j|=0,,(1).

Theorem 3.4 can be extended to show that if Di.,, ~ Loc(¢, p(¢)), then \/ﬁ(aadj (iz\) —
ATE) = N (0, V (h)) with asymptotic variance

o(X) ap(X) }

V(h) = Var(c(X)) + E[Var(b — h/c,()|¢)] + E[ p)  1-p(y)

forc, () =/ p(¥) — p()2. One natural extension of the current work would be to solve
a general version of the optimal adjustment problem over a nonlinear or general non-
parametric function class H:

%iﬁE[Var(b — h/cp,(P)|9)]. (A.3)

This requires new technical tools, the development of which we leave to future work.

A.5 Proofs for Section 3.1

Proor or THEOREM 3.4. First, note that since E[|A]3] < co we may apply Lemma A.2 of
Cytrynbaum (2023) to show that

_ D;— o [(Di— L [Di-
Y (h1 — ho)cp =7En|:ghii| =7 En[ghl} +—-v) En[Mhi]
Jr—p? Jr—r? N
Di—p) h,-] + op(n_l/z) =v/(h — l_zo)cp + op(n_l/z).

NI

Define auxiliary potential outcomes Z(d) = Y (d) — c¢py'h(X) for d € {0, 1} with
Z; = Z(D;). Summarizing, we have shown that lo\adj =Z1— Zy+ o0p(n~'/?). Observe that
E[Z(d)?] <E[Y(d)?] + cf,|y|§E[|h(X)|§] < oo. Then we may apply the general version of
Theorem 3.11 in Cytrynbaum (2023) (Equation (3.7)). Setting ¢ = 1 and ¢; = ¢ and ap-
plying the theorem to the auxiliary potential outcomes Z(d), we have /n (b\adj —ATE) =

= V/Enl:
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N(O, 1),

2 X 2 X
V = Var(cz(X)) + E[Var(bz (X; p)|¥)] +E|:01,Zp( ) + (T(i,z_(p )].

Calculating, we have cz(X) = E[Z(1) — Z(0)|X] = ¢(X) and

1/2 » 1/2
bZ(X)zE[Z(1)|X](T> +E[Z(O)|X](ﬁ> =b(X; p) — Y h(X).

Finally, Uj,Z(X) = Var(Z(d)|X) = Var(Y (d)|X) = ¢5(X). Then the variance } above is

o2 (X) N aé(X)}

V=Var(c(X))—I—E[Var(b—y’hwf)]—l—E[ 1,

as claimed. O

Proor oF THEOREM 3.2. Define W; = (1, fz,-). First, consider the regression Y; ~ D;W; +
(1 — D;)W;, with coefficients (¥1, ¥p). By Frisch-Waugh and orthogonality of regressors,
1 is numerically equivalent to the regression coefficient Y; ~ D;W; and similarly for .
Then consider Y; = D;W/¥1 + e; with E,[e;(D;W;)] =0. Then D;Y; = D;W/¥1 + D;e; and
E,[Dje;(D;W;)] = E,le;(D;W;)] = 0. Then ¥, can be identified with the regression co-
efficient of Y; ~ W; in the set {i : D; = 1}. Let 31 = (¢}, @1). By the usual OLS formula,
@ = EqlYi|D; = 1] — @, Eqh;|D; = 1] and @ = Var,(h;|D; = 1)~ Covy,(h;, Yi|D; = 1).
Similar formulas hold for D; = 0 by symmetry. Next, note that for m = d;, + 1 the original
regressors can be written as a linear transformation:

Wi ) \Im Im) \(L=Dp)W;)

Then the OLS coefficients for the original regression Y; ~ D;W; 4+ W; are given by the

change of variables formula:
Y\ _ (Ie —Ie) (v _ (M-
Yo 0 Ir )\ Yo

()

In particular, the coefficient on D; in the original regression is

-1

o~

6 =01 — 0o = Eg[Yi — @ 1| D; = 1] — En[Y; — @hi| D; = 0]

5_En[a’1ﬁ,~p,~] +En[a;)izi(1 —Di)}

p 1-p
5 En[a/lhi(Di - P)] _En[%hi(l)i - P)i|
P I-p
~ ~ v hi(Di—P)}
—0— (@1 p)+aop)En| 2" P
(@ (1 - p)+aop) [ (1= )
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- (1= [ (-
=0-— (a1 _—Pp + ap L) (h — hO)Cp-
p I-p

The second equality since E,[D;] = p identically. The third equality by expanding D; =
D;— p+ p and using En[fzi] =0and E,[(D;— p)E,[hi]] = 0. The fourth equality is algebra
and collecting terms. The fifth equality since h1 — ho = Eulhi(D; — p)/p(1 — p)] again
using E,[D;] = p and ¢, = \/p(1 — p) by definition.

Next, consider the coefficient @; = Var, (h; |D; =1)"1 Covu(h;, Y |D; = 1). We have
Var, (h;|D; = 1) = p~'E,[Dihih}] — p~2E,[D;hi|E,[D;H)). Let 1 < t, ' < dj. Then we may
compute E,[D;hichir) = Eq[(Di — p)hihiv) + pEnlhichir). Expanding the first term

Eu[(Di — pYhichiv] = Ea[(Di — p)hishiv] — Enlhit)Ea[(D; — p)hir]
- En[hit’]En[(Di - p)hit]
+ Enlhir]EnlhillEn|D; — pl = op(1).

The final equality follows since E,[(D; — p)h;h;#] = 0,(1) by applying Lemma A.2 of
Cytrynbaum (2023), using that E[|h; h;y|] < E[|hi|3] < oo, and similarly for the other
terms. By WLLN, we also have E,,[fzi,fzi,/] £ Var(/). Then by continuous mapping
Var,,(ili|Di =1)"1=var(h) ' + op(1). Similar reasoning shows Covn(ﬁ,-, YilDi=1) =
Cov(h;, Y;(1)) + 0,(1).

Then we have shown @; = Var(h)~! Cov(h, Y(1)) + 0,(1) = Var(h)~! Cov(h, m1) +
op(1). By symmetry, we also have ap = Var(h)~! Cov(h, mg) + 0,(1). Putting this all to-

gether, we have ’071‘/1_71’ +do /% = Var(h) "' Cov(h, b) + 0,(1) =y + 0,(1). Then by
Theorem 3.4, \/n(8; — ATE) = N(0, V) with

2 2
V =V (yL) = Var(c(X)) + E[Var(b — vy} h|i)] + E[UI;X) + 20 (X)}

l1-p
as claimed. The claimed representation follows from the change of variables formula
above, since @] =41 + dp and @y = @p. This completes the proof. O

PROOF OF THEOREM A.4. We have Y; = ¢+ OyD; + Yyhi + e; with Eyle;(1, D;, h;)] =
0. By applying Frisch-Waugh twice, we have Y; = On(D; — p)+ ?Nfzi + e; and 5N =
En[(D;)?1" E,[D;Y;] with partialled treatment D; = (D; — p) — (En[iz,-fz;-]_lEn[fz,-(D,- -
p)1) h;. Squaring this expression gives

(D;)? = (D; — p)* = 2(Di — p)(Ea[hilt}] " Ex[i(Di — p)])'hi

+ ((En[;liil;‘]_lEn[ili(Di - ) hi)2 =11+ Mi2 + Mi3.
Using E,[h;(D; — p)] = O,(n~1/2) by Lemma A.2 of Cytrynbaum (2023) and E,,[izifz;.] 2

Var(h) = 0, we see that E,[n;2] = O,(n~1) and E,[ni3] = Op(n~!). Then we have
Eq[(Di)?] = Eql(Di — p)*1 + Op(n™') = p — p* + Op(n~!). Then apparently 6y = (p —
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P2 E,D;Yi] + Op(n~1). Now note that

EnlD;Y{) = En[(Di — p)Yi] — Ex[(En[hit}] " En[li(Di — p)]) Y3
= Eq[(Di — p)Yi] — Eo[(Di — p)i] (En[il}] " EnliuiY2)).

By using Frisch-Waugh to partial out D; — p from the original regression, we have
YN = Enlhill]) " E,[hiY;) with h; = hi — (E[(Di — p)*| 7 Eo[hi(Di — p))(D; — p). Then
using En[h;(D; — p)] = O,(n~1/?) again, we have Elhihi] = Eylhihl] + Op(n~"). Simi-
larly, E,[h; Y] = Enlh;Yi] — 0E,hi(D; — p)] = Enlh;Yi] 4+ O,(n~'/2). Then the coefficient
N = En[fzifz;]*lEn[fziYi] + O, (n~1/2). Then we have shown that

(D; — p)h;

N =10— En[ } (En[ililjl;]_lEn[iliYi])(p - Pz)_l/z +0p(n")

p— p?

=0— (In/cp) (h1 — ho)ep + Op(n7Y).

The second line uses that E,[(D; — p)c] = 0 for any constant. This shows the claimed
representation. We have En[ﬁ,-fz;.] = Var(h) + o,(1). Note also that En[fz,-Y,-(l)D,-] =
pCov(h, Y(1)) +0,(1) and E,[/;Y;(0)(1 — D;)] = (1 — p) Cov(h, Y (0)) + 0,(1). Putting
this together, we have shown that

1-—
YN/Cp = Var(h)™! Cov(h, m IIL + my /—p> +op(1)
-p p

= argmin Var(f — y'h) + 0,(1) = yny + 0p(1).
y

Then the first claim follows from Theorem 3.4. For the efficiency claims, (a) if p =1/2
and ¢ = 1, then f = b and yy = argmin,, Var(f — y'h) = argmin,, E[Var(b — y'h|¢)]. For
(c), if =1 and Cov(h, m; — mg) = 0, then we have

Cov(h, f) — Cov(h, b) = Cov(h, (my — mo) ﬁ) —0.

vp(l—p)

By expanding the variance, we have argmin, Var(f — y'h) = argmin,, Var(b — y'h). If (b)
holds, then m; — my = 0 and the same conclusion follows. This completes the proof. [

Proor oF THEOREM 3.7. For any y € R4, we have argmingeLz(d/)E[(Y(d) —g) —
Yh)? 1 =E[Y(d)— v'h|¥] by standard arguments. Then the coefficients

yqg =argmin E[(Y (d) — y'h — E[Y (d) — y/h|¢])2] = argmin E[Var(Y (d) — y'h|y)]
yeR% yeR%h
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and g4 () = E[Y (d) — v,,h|¥]. Define fy(x) = g4() + v,;h. Then the AIPW estimator

D;(Y; pfl(X))] E, [(1—Di)flfl—?fo(Xi))}

- (D,-—p)] [ (D p)}
=0—E,| 1(X; X;
|:f1( ) 5 fo(Xi) -

=§—En[(0i - p)<f1(X,~) 4 fO(Xi))]
p l-p

Oarew = Eq[f1(X) — fo(X; )]+En[

Di—
=En|: Z(Yi—(l_P)fl(Xi)_pfO(Xi))i|-

p—r

Let F(x) = (1 + p)fl(x) + pfo(x). Then by vanilla CLT, we have \/_(/H\Alpw ATE) =
N(0, V) with V' = Var( D; ”(Y F(X;))) = Var(W;) with W, = 2 ”(Y F(X;)) — ATE.
By the fundamental expansmn of the IPW estimator from Cytrynbaum (2023),

Di—p

W, = (Y F(X; )) ATE
p-r
B |:D,-ei (1—D,~)e?i|
P l1-p

+[c<Xi)—ATE]+[;L”2((m1 fl)\/:+(m0—f0) ”p)]
pP—p

By the law of total variance and tower law,

Var(W) = Var(E[W|X]) + E[Var(W|X)]
= Var(E[W|X]) + E[Var(E[W|X, D1|X)] + E[Var(W|X, D)].

From the expansion above, Var(E[W|X]) = Var(c¢(X) — ATE) = Var(c(X)). Next,

E[W|X, D] = [c(X;) — ATE]

Di—p _ 1-p - L ]
+[ﬁ<(m1 f1)/7+(m0 fO)/:) ’
— 2
E[Var(E[W|X, D]|X)] =E|:((m1 _fl)\/¥+ (o _fO)\/Z) :|

Using the definition of f;(x) gives

1_ 2
E[ (= it — Ems = 419 [F=2 + (mo = 75— E[Y(© = wla]) [ 2 ) ]

=E[Var<(m1—7/1h)\/¥+ (mo = voh Fllp)}
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=E Var 71 /;p-i-y 1T h|¢>] = argmin E[ Var(b — y'h|¢)].
yeR%

The final line by characterization of y; above and linearity of Z — argminyE [Var(Z —
v'h|¢)]. Finally, note that

Diel  (1-D;e?\?
Var(W|X, D) =E -~ |X, D
p

1-p
Di(e})*  (1-Dy(?)?
=E[ 1(621) —l—( 1)(621) |Xini:|
p (1-p)
_ Diof (X)) | (1-Di)og(Xy)
P (1- p)?
a2(X;) g2 (X;) . . .
Then E[Var(W|X, D)] = E[ lp + (1)*19 ]; comparing with Equation (3.3) completes
the proof. O

A.6 Proofs for Section 3.3

Proor oF THEOREM 3.9. By Theorem 3.2, the middle term of the asymptotic variance
is E[Var(b — B'h|y)] with B = Var(h)~! Cov(h, b). This is the OLS coefficient from the
population regression b=a+Bh+e=a+dz+yw+ewith E[e(1,w, z)] = Qand h=
(w, z). Denote b = b — E[b] and similarly for w, z. By Frisch-Waugh, we have b = &'z +
YW+ e. Let b = W — (E[2Z'] "' E[zW'])'z. Then again by Frisch-Waugh, the coefficient of
interest is y = E[ww']~ ! E[wb]. Next, we characterize this coefficient.
By assumption, E[w|{] = ¢ + Az. Demeaning both sides gives E[w|y] = AZ. Write
i =w— E[w|y] =w — Az with E[i|f] = 0. Then we have
E[Eﬁ/] = E[E(z]) — E[w|y] + E[ﬁ)|¢])’] = [~ ”] + E[EE’A ] [22/]1\
Then w =w — (E[2Z']71E[2Z']A') Z = ® — AZ = &i. We have now shown that
y = E[ai] ' E[ib) = E[Var(w|y)] " E[Cov(w, b|y)] = E[Var(w|y)] " E[Cov(w, b|y)].
In particular, the coefficient 8 = («, y) is optimal:
E[Var(b — B'h|¢p)] = E[Var(b — y'w|¢) | = min E[ Var(b — Y'w|)]
¥
min E[Var(b — &'z — y'w|¢)] = mBinE[Var(b — B'hly)].
&,y

The second equality since z = z(¥). This completes the proof. O

A.7 Proofs for Section 3.4
PrOOF OF THEOREM 3.15. By Frisch-Waugh, IV/i = ’H\FEDvi + %Eﬁi + e; with ﬁi =D; —
k™'Y icqyDj=Di— p and hi=hi — k™1 Y icq(iy hj- Applying Frisch-Waugh again, the
~ — — — v v/ v
estimator is Opg = En[(D;)?] 7 E,[D;Y;] with D; = (D; — p) — (Eqlhihi |7 E,[hi(D; —
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p)])/ﬂ,-. By Lemma A.8, we have En[};,-ﬂ,-/] £ %E[Var(hhlr)] > 0, so that En[ﬂ,-};i/]*l =
Op(1).By the definition of stratification, E,[(D; — p)1(g(i) = g)] = 0 for all g. Then defin-
ing hg =k~' Y., hj, we may write

E[(D; = p)hi] =En[(D,- - p)(h,- - (s = g)ﬁg)}

8
= Eq[(Di = p)hi] = Op(n~/?).

The final equality since E[|h[3] < co and by Lemma A.2 of Cytrynbaum (2023). Then
apparently E,[(D;)?] = E,[(D; — p)*] + Op(n~1), so that E (D)1 =(p—pH) 1+
Op(n~1). Then we have shown that

-~ E,,[(D, - P)Yi] [h (D; — P)] [ i
Orp = 5 >
p—r p—r

— (hy = ho) En[ihi | EnlhiYil +0p(n1).

By Lemma A.8, we have
EnlhiYil = Eq[iD;Y;(D)] + Ex[hi(1 = D) Y;(0)]

_ plk—1) 1-p)k-1)
k k
(k—1)
Tk

E[Cov(h, Y(D)|¢)] + E[Cov(h, Y (O)|¢)] + 0p(1)

E[Cov(h, p-m1(X) + (1= p) - mo(X)|)] + 0p(1).

Putting this together, we have c;lEn[};i};i/]_lEn[ﬁiYi] B E[Var(h|y)]"LE[Cov(h, f|¢)] =
argrniny E[Var(f — y'h|y)]. Similar reasoning shows that yrg = E, [ﬁiﬁi/]_lE”[ﬁiY,-] +
Op(n~1/2). Then we have representation O = 60— (c;l’)?FE)’(le —ho)ep+o0p(n~1/?). The
efficiency claims follow identically to the reasoning in Theorem A.4. This completes the
proof. O

Proor oF THEOREM 3.23 (PART I). Consider the regression Y; ~ D;(1, ivz,-) + (1 -D;)(1,
fz ;) with iz =h; — k1 Z]eg(z h;. Denote the OLS coefficients by (¢j, @1) and (cp, @),
respectlvely By Frisch-Waugh, the coefficient (¢1, @1) is given by the equation Y; =
a +a1h + e; with E,[e; (1, h; i)|Di = 1] = 0. By the usual OLS formula, @) = Varn(h |D; =
1! Covn(hl, Y;|D; = 1). Observe that by definition of stratification

Py(Di=1|g(i) = g)Pa(g(i) =g)

P.(D;=1) Pn(g(i)zg)'

P,(g(i)=¢g|Di=1) =

This shows that E,[E,[h;|g()]|D; = 1] = E,[En[hi|g(i)]] = Enlh;], so that En[izi|Di =1]=
En[hi|D; = 1] — En[hi) = Ex[p~1(D; — p)hil = O, (n~1/2) as above. Then we have

Var, (hi|D; = 1) = Ey[hi}|D; = 1] — Ey[hi|D; = 11 E4[ | D; = 1Y
=En[/jli/jl;»|Di = 1] + OP(n_l).
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Similarly, Cov,,(h;, Y;|D; = 1) = Eqlh; Yi|D; = 1] + O, (n~/2). Then we have

@) = E,[hill)|\D; = 1] Ep[h;Yi|D; = 11+ 0, (n1/?)

k-1 k -
= —— 1 E[Var(hly)] 'E[Cov(h, Y(1)|§)] + 0, (1)

by Lemma A.8. Similarly, a@g = E[Var(h|¢)] " E[Cov(h, Y (0)|4)] + 0,(1). By the usual
OLS formula, the constant term ¢; has form ¢ = E,;[Y;|D; = 1] — a’lE,,[/mDi =1] and
similarly for ¢y. By change of variables used in the proof of Theorem 3.2, our estimator

6 =01 —Co = EnlYi|D; = 1] — En[Yi|D; = 0] — [@) Enl[hi|D; = 1] — @ Enlhi|D; = 01]

_9_E, [alh(D p) @ h‘(D-—p)}

—9- /1— a [P [h(D p)}
I-p 2
Define y = a1,/ I*Tp +ao /%. Then by work above

= E[Var(h|a//)]71E[C0V(h, blY)] + 0p(1) = argmin E[Var(b — y'hl¢) | + 0, (1).
Y

Then applying Theorem 3.4 completes the proof. As before, @; =4 + @ and @y =@ by
change of variables. O

Proor oF THEOREM 3.23 (PArT II). Next, we analyze the group OLS estimator. By The-
orem 3.4, it suffices to show that Y = Varg(hg)~! Covg(hy, yg) = cp - E[Var(h|y)] 7! x
E[Cov(h, b|l)] + 0p(1). For the first term, note that Eg[hg] = O,(n~1/?) as above, so
that Var(/g) = Eglhghl] — Eglhg)Eglhgl = Eglhghl] +Op(n~"). Similarly, Covg (g, yg) =
Eglhgye] + Op(n~1/?). Applying Lemma A.7 to each component of 4,/ shows that

3 hi(Di — p) (Di = p)) _ KE[Vartil)
= () ) S,

ieg i€g

Using the fundamental expansion of the IPW estimator, we have

Eqlyohg] = Z( 1Zh(D p))( 1ZY(D p))

icg icg p—r
ZEZ< lzh(Dl p))
" 8 ieg p—pr
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D _ el — D€
« <kIZC(X,')+bL(Dl p) +Dzel _ (1 Dz)el)

1-—
ieg Jyp-pr P P

=A,+B,+C,.

First, note that A, = O,(n~%/2) and C, = O, (n"1/?) by Lemma A.7. Moreover, we have

k _ hi(D; — p) _ bi(D; — p)
gt )
g p—r

icg icg
k\/ p— p? E[Cov(h, b|)]
= mE[Cov(h, bly)] +o0p(1) = = a +0p(1).

Putting this together, by continuous mapping, we have

Y6 = Varg(hg) ™ Covg(hg, yg)
. a(k —a) 1

k valk —a)
= \/ﬁE[Var(hw)]*lE[Cov(h, b))+ 0, (1).

Applying Theorem 3.4 completes the proof. O

E[Var(h|y)] " E[Cov(h, bly)] + 0,(1)

ProoF oF THEOREM 3.23 (ParT III). Finally, we analyze the ToM estimator. From the
work in Part I of this proof, we have

_ ' _ ' 1-
¥prL = Var,(h;|D; = 1)"! Covy(h;, Yi|D; =1) Tp

+ Varn(izi|Di = 0)_1 COVn(ili, Yi|D; =0) IL

_p'

Comparing with Equation (3.10), it suffices to show that Var,,(ﬁ,-|D,- =11 Varn(lvz,-) =
op(1) and Var,(h;|D; = 0)~! Var,(h;) = 0, (1). This follows immediately from Lemma
A.8. Applying Theorem 3.4 completes the proof. O

Proor orF THEOREM 3.24. First, consider the fixed-effects estimator with
Y;=C+TreD; + %E};z +7,zi+ein.

Note that D; = D; — p and h; — E,[h;] = hi — (Enlhi] — En[Enlhi|gi = g1) = h;. By Frisch—
Waugh, we may instead study Y; = 7rg(D; — p) + Vpphi + 7,Zi + ei 2. Let w; = (h;, z;) and
w; = (h;, z;). Then by work in Theorem 3.15, 7rg = E,[(D;)?]~'E,[D;Y;] with

D= (D; — p) — (En[ibsi}] ™ En[thi(D;i — p)])'th;.
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Previous work suffices to show that E,[w;(D; — p)] = Op(n~'/?). Then as before,
E (D)X = (p— p*)~' + 0,(n~1). Then we have

7o = 0 — (p — p?) " (En[tort)] " En[i(D; — p)]) Enlit Vi)
— 0 — (i1 — o) En[thrid}] " Enlt; Yil.

The second equality uses E, [hi(D; —p)l = Eulhi(D;—p)land E,[Z;(D;— p)] = Eplzi(D;—
p)] as noted before. This shows the claim about estimator representation.

Next, consider ygg. Define g, (D;i—p, %).Lethj = h;— (E, [gig 1 En [gihi]) gi. Then
by Frisch-Waugh %, YFE = E,lhih; ] 1E,[h;Y;]. Consider E, [z,h 1=E, [z,h ] smce E, [h 1=
0. We have En[zlh ] = 0,,(1) by Lemma A.8. Then by prev10us work E,[gih ,] =o0p(1).
Then En[hlhl |= n[hzh;] + Op(1)~ Similarly, n[hLYz] = En[thL] + Op(1)~ Then by con-
tinuous mapping yrg = En[ﬁiﬁi/]‘lEn[ﬁiY,-] = En[iziiz;]_lEn[lvziYi] +0,(1), the coefficient
from the regression without strata variables z; included shown in Theorem 3.15. Con-
sider the coefficient y, on z(¢). Let g; = (D; — p, fvz,-) and z; =z, — (En[q,-q;.]_lEn[q,-Ei])’q,-.
We just showed that E,[q;Z;] = 0,(1). Then by similar reasoning as above and Frisch—
Waugh,

1

¥z = Ea 5] EalZiYi] = Ea[2:2)] " EalZ:Yi] + 0,(1)
= Var(z) ™! Cov(z, pmi + (1 — p)mo) + 0,(1) = cp Var(z) "t Cov(z, f) + 0, (1).

Our work so far also shows that Ej, [w;w]] £ Dlag(En[h i '1, EqlZ;Z}]). Then it is easy to
see from our expression for 7gg that we may identify 5, = @) + 0,(1). This completes the
proof for 7pp. The proofs for the modified partialled Lin estimator 7p;, and modified ToM
estimators are similar and omitted for brevity. O

A.8 Proofs for Section 4

Proor oF THEOREM 4.1. Define population augmented potential outcomes Y’(d) =
Y(d) — cpy'h(X) for d € {0, 1} with outcomes Yb Yb(D )=Y; — cpy 'h;. The proof of
Theorem 3.4 showed that f,q = Y — YP +o0 (n‘l/z) Define v, ﬁg, and 9%, to be the ana-
logues of v 1, o, and V19 substltutlng Yb for Y“ By applying Theorem 6.1 of Cytrynbaum
(2023) to Ob = Yb Yb we have Vb = V +o0 p(l) for variance estimator

D;— p)Y?
%) b 5 — 29,
p=p

f/\b = Var,,(
Then it suffices to show the following claim: V' — 7, = o p(1). We prove a slight generaliza-
tion, letting 4;(d) possibly have a potential outcomes structure and setting 4; = h;(D;).
The case with #;(1) = 4;(0) = h; is a special case.

We work term by term. Define the weights L; = (D; — p)/(p — p?). Then we
have Var,(L;Y}) = Vary(L;Y{) = Eq[L}(Y))?] = Eq[L; Y = EnlL7(Y{)?] + EalLi Y12
We have E,[L;Y®)?> — E,[L;Y"1> = ATE®— ATE®* +0,(1) = 0,(1) by previous work.
Next, we have |E,[L2(Y?)?] — Eo[L2(Y?)?]| = |Ea[L?(Y? — YO (Y? + Y| S EAl(Y? -
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YO2V2E, (YD + Y®)2]Y2, It is easy to see that E,[(Y? + Y*)2]Y/2 = O,(1). We have
En[(Y,” Y42 = Cf,En[(v hi =¥ hi)?] = (¥ — ¥) Ealhil})(7 — v) = 0,(1). This shows
that Varn(Lin.”) — Var,(L;Y") = 0,(1), completing the proof for the first term.

Next, consider ﬁ‘l’ — 1. We may expand

Y S

g<Gy,

=2 S pip(viYE - YY)

a(g) -1 p? iieg

Note that Y'Y — Ybe (Y7 — Yl.b)Y;‘ + Y}?(Yf — Y;’) =cp(¥— V) (Y] + Y?hj). Then
by triangle inequallty and Cauchy-Schwarz,

_ l—P b
| _U1| = Cp('}’ y)'n ! Z '(hiY-a +Y, hj)
g<Gh "(g) P" izjeg S
SW—m(nl >N |h,-|z|Y;‘|+|Y,-”||h,-|z).
geGn i#jeg
Observe that
S lhilo| Y < (1/2) Y (hil3 + Y7 —Zm e
i#jeg i#jeg icg

Then since G is a partition of [n], we have [00 — 91| < [¥ — yl2Enl|hil3 + Y721 =
0p(1)O,(1) = 0p(1). Then by symmetryiig — Vo = 0p(1) as well. A similar calculation
shows that 6?0 — 710 = 0p(1). Then we have shown that 17}, V=0 p(1), which completes
the proof. O

A.9 Proofs of noncompliance theorems

Proor or THEOREMS A.1, A.2, A.3. First, we show Theorem A.1. Define 5W(a) =
Wo — o (hy — }_zo)cp and similarly for 0P (). We claim that ?adj = §W(yW)/§D(yD) +
0, (n~1/2). By algebra, we have

5 0 ow) _ 8200)@w = yw) Ui~ holey + 87 Cyw)(vp = ) U — o)y
B8P () 6 (yp)6” (9p)

By Theorem 3.4, ﬁD(yD), ﬁD(?D) =7p+o0p(1) with 7p > 0, so the denominator is O, (1).
The numerator is o ,(n~1/2) since 0P (yp), 0% (yw) = 0,(1) and (4 —y.4)'(h1 — ho)cp =
0,(n~12) for A =D, W by the first line of the proof of Theorem 3.4. Next, recall the
potential outcomes Q(z) = W(z) — 7. D(z) and define yp = yw — 7. yp. Then we have

0" (yw) 0 (yw) 18P (yp)  6%(v0)
D,y LT 2D =D
0~ (vp) 0~ (vp) 0" (vp)



Supplementary Material Covariate adjustment in stratified experiments 15

The ATE-like quantity E[Q(1) — Q(0)] = 0 by definition of 7;.. Then by Theorem 3.4, we
have mQ(yQ) = N (0, Vp) with variance

Vo = Var(cg) + E[Var(bg — ' yo|¥)]| + E (A4)

[UEQ(X) . USQ(X)]
1-p |

The claim now follows by Slutsky since 50(3/1)) = E[D(1) — D(0)] + o0p(1), so that
VA (Fadj — 71) = v/102(70) /6 (yp) + 0, (1) = /12 (y0) /EID(1) — D(0)] + 0,(1).

Next, we prove Theorem A.2. By linearity of the balance function (Equation (2.2)), we
have by = by — 71.bp. The optimal coefficient is 7*Q = E[Var(h|)] " E[Cov(h, boly)1=
E[Var(h|y)] Y (E[Cov(h, by |y)] — T E[Cov(h, bp|)]) = Yy — TLY},- This shows that?adj
is efficient if and only if yy — 7. yp = v};, — 7L v},. In particular, this holds if yy = v};, and
Yp = v}, By the estimator representations in Section 3.4, the estimator 52’ =W, —Wy -
?’W,k(f_zl - l_zo)cp for Y x = v}, + 0p(1) for k € {PL, GO, TM}, and similarly for 5?. Then
?ﬁ is efficient for each k € {PL, GO, TM}.

Finally, we show Theorem A.3. With yp = yw — 71, vp, define the “population” aug-
mented potential outcomes Q°(z) = Q(z) — I’ Yo and outcomes Q? = Q; — hyyg. Let
VQ“ denote the bracketed term in Equation (4.1), and let Vé’ denote the bracketed
term with Q¢ replaced by the population version Qﬁ’. Note that we showed above that
ﬁ(Qll’ — Qg) = N(0, Vp). Then |7 Vo + 0p,(1) by Theorem 4.1. Then it suffices to
show that Vg — f/\él = 0p(1). To see this, note that we may write Ql.b = W; — B'S; and
Q¢ =W, — B'S; with B= B+ 0,(1) for B= (7F, 30), B= (71, y0), and S; = (D;, ;). Then
the fact that I//\Qb — VQ” = 0, (1) for outcomes of this form and E = B+0,(1) is exactly what
we showed in the main claim in the proof of Theorem 4.1. This completes the proof. [

A.10 Technical lemmas

LEMMA A5 (Conditional convergence). Let (G,)n>1 and (An)n>1 a sequence of o-
algebras and RV's. Then the following results hold:

(@) E[lAn”gn]ZOp(l)/Op(l) Ed Anzop(l)/op(l)-

(i) Var(A,,|gn)=op(c,21)/0p(c,21) = Ay —E[A,|Gn] = 0p(cn)/Op(cy) for any positive
sequence (cy)p.

(i) If (Ap)n=1 has A, < A < 00 Gy-a.s.¥nand Ap = 0,(1) = E[|An||Gs] = 0p(1).
See Appendix C of Cytrynbaum (2023) for the proof.

LEMMA A.6. Let (a;), (b;), (c;) be positive scalar arrays for i € I for some index set I. Then

we have Y  j ser aibjcs <3 (a? + b3+ c}).
], J#S
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Proor. Note that by AM-GM inequality and Jensen, for nonnegative x, y, z we have
xyz < ((1/3)(x +y +2))3 < (1/3)(x3 + y3 + 2%). Applying this gives

> aibjes < (21: ai) (2]: bj> <ZS: cs>

i,j,s

i), js

<(1/3)[(Z ) (Zb> +(ch>3}§32i:(a?+b?+cf’).

1 N

LeMmA A.7 (Group OLS). Let h, w: X — R. Denote h; = h(X;) and w; = w(X;) and sup-
pose E[h;|; = ] and E[wj|; = ] are Lipschitz continuous. Suppose E[h}] < co and
E[w}] < oo. Let € = Y;(d) — my(X;) for d € {0, 1}. Then we have

_ hi(D; — p) w;(D; — p) Cov(h, wli)
=n 12( 127p>< IZ p)— [a(k—a) ]+0p(1)r
8

ieg p—r icg p—=r
—r (ke R p)><"‘12“’f>=0p(n—1/2>,
g ieg p—r ieg
hi(D; — p) (1—D)6 _
oy S ) (s e ) g,
8 ieg p—p icg -pP

PROOF. Define hg1 =a=' Y, hil(Di =1), hgo = (k —a)™' ¥, hil(D; = 0), and b, =
k1 Zieg w;. Recall that g € o (1., m,) for each g and Dy, € o (1.5, ™, 7) for an ex-
ogenous variable 7 1L (X1, Y(0)1.1, Y(1)1.,) used to randomize treatments. Notice that

-1 Dicg by ;fi ’p P) hgl - hgo First, consider B,. By Lemma C.10 of Cytrynbaum (2023),
we have E[B,|X1.,, 7] = 0. Next, we have

E[B%|X1:n, 7]

=E|:n—ZZ< 1Zh(D P))( lzw)wgwg |X1”’7Tn:|
88

ieg ieg’ p—p
_ hi(Di — p)\" _
3 (R L2y P |
8 ieg p—pr

The second equality follows by Lemma C.10 of Cytrynbaum (2023), since Cov(D;, D;|
X1:n, m,) = 0if i, j are in different groups. We may calculate

(2 1)

ieg
1

= ————5 2 W Var(Di| Xvy, m)

k (p_p ) ieg
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T a2 Y hihjCov(Di, Dj|X1:n, )
k (p_P ) i+jeg

[th (k—1)! Zhh}
icg i#jE€g

equality by Jensen. Then by triangle inequality, a simple calculation gives

Zh2 (k=171 Y hihj klzzkk > hE <3k k.

icg i#jeg ieg icg

Then continuing from above

Fl m] 20 () (D) < 5 (2 (S o)

g ‘ieg ieg ieg ieg

< (2 )+ (Sut) | = e el +uf)= 0,07,

ieg ieg

The second inequality follows from Jensen, and the third by Young’s inequality. The first
equality by Jensen and final equality by our moment assumption. Then by Lemma A.5,
By =0,(n"1/2).
Next, consider A4,. Using the within-group covariances above, we compute
1

ElAn| X1ny 0l = ————5 > Cov(Dy, Dj| Xn, ) hiw;
nk*(p—p°)" % ijeg

1 alk —a)
e 5 Z(Z(p _ p?‘)hiwi — Z 7](2(]( ~ 1)h,w]>

”kz(P—PZ) g Nieg i£jeg
o

= E,[hjw;] — h; w)
Ep—ppL ("—Ug,;eg ]

Define u; = w; — E{w;|¥;] and v; = h; — E[h;|;]. Consider the second term. We have

4
I’l_lz Z hiwj=n_12 Z (E[h,‘llﬂ,‘] +Ui)(E[wj|¢j] +uj) EZA”’I'
=1

8 i#jeg 8 i#jeg
First, note that for any scalars a;b; + ajb; = a;b; +a;bj + (a; — a;)(bj — b;). Then we have
En_lz Z E[h;|1Ewj|y;]
8 i#jeg

=n"' Y0 D BVl Wil Elwjl) + Elhj |1 Elwil ]

8 i<jeg
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=’flz Z E[hi|gilElwi|i] + ELhj|g 1 E[w;| )]
8 i<jeg
+n7 Y (Elhil il — Ehylw 1) (ETwjli] — Elwili]) = B,y + Ca,1.-
8 i<jeg
By counting ordered tuples (i, j), it is easy to see that
By =n""Y "> (k= DEU|pElwilipi) = (k — D) Ea[ELhi| i) E[wi] ;]
8§ ieg
= (k — DE[E[hi|¢i Elwi|i]] + 0p(1) = (k — 1) (E[hjw;] — E[viu;]) + 0p(1).

For the second term, by our Lipschitz assumptions we have |C,, 1| <n ! Do DicjeglWi—
|3 = 0p(1). Next, claim that 4,,; = 0,(1) for / = 2, 3, 4. For instance, we have

E[Ap 2|1, mal =n"" Y Y E[Elhilgiluj|rin, ma] =0.
8 i#jeg
Since E(u;|¥1:n, mn] = E[uj|y;] = 0 by Lemma 9.21 of Cytrynbaum (2022). Moreover, we
have
E[ nzlllfln’ 7Tn ZZ Z Z E[hll//]Eh |¢S]E[u]ut|‘/flm77n
8 8 iF#jeg s#teg

For j # t, we have E[u;u;|{1:n, ma] = E[u;|{y;1E[u¢|y/] = 0 by Lemma 9.21 of the paper
above. Since the groups g are disjoint, and using E [u12.|¢f1:,,, m]=E [ujz. ],

E[AZ 5|1 ma] =02 > Elhi|yil Elhs| sl E[uf )]
¢ ilaé]j,bjeag

<3n72 30 S 2E |yl + E[ilyi]

8§ ieg
= 3n Ea[2E(hilyil® + E[u20i]*] = 0p(nY).

Then we have shown A, = O,(n~/?) by Lemma A.5. The proof for / = 3, 4 is almost
identical. Summarizing, the work above has shown that
1
kK (p - p®)
SR - Elviuil +0p(1) =
K*(p - p?) g

Next, we claim that Var(A4,| X1y, 7,) = 0,(1). Define Ay , = k1 Zieg h";f’;m , then

1
E[An|X1:n, mn] = (En[hiwi] - m(k — 1)(E[hjw;] — E[Uibli])) +0,(1)
E[Cov(h, w|)]

a(k—a) +0p(1)

Var(Aanlzn, Ty) = n,2 Z COV(Ah,gAw,gr Ah,g’Aw,g’ |X1:nr Tn).
7 4
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Note that Ay gAy g L Ap oAy, o | X1:, 7, fOr g # g/, since treatment assignments are
(conditionally) independent between groups. Then the on-diagonal terms are

VAt Xo ) ZZV<<kZM)(kZM) ‘X W,,)
2 p—rp

icg icg p—pr

:n_zk_4(p - p)_4ZVaI‘(Z hiwj(D,- - p)(D;— P X1 7Tn).
8 i,jeg

The inner variance term can be expanded as

> > hiwjhsw; Cov((D; — p)(D;j — p), (Ds — p)(Dy — p)| X1, 7).
i,jeg s teg

We have | Cov((D; — p)(D;— p), (Ds— p)(D;— p)|X1.n, m4)| < 2 since |(D; — p)| < 1 forall
i € [n]. Using Lemma 9.17 in Cytrynbaum (2022), the previous display is bounded above
by Y, jeg s reg [hiwihswi| -2 < 2k3 37, (b} + w?). Putting this all together,

Var(An| X1, m0) <202k~ 4(p — p) k3 Z Z(h;1 +wh)
8 ieg

=20 kN (p — p) T Ea[h} +wi] = 0p(n7Y)

By conditional Markov, this shows that A, — E[A,|X 1.1, 7] = O,(n~1/?). Then we have
shown that A4, = ms(vli—w +o0p(1).

Finally, we consider C,. Note that g, Dy., € 0(X1., 7, 7) and E[el‘.’|X1;n, T, T] =
E[eﬂX,-] =0 for d =0, 1 by Lemma 9.21 of Cytrynbaum (2022), so we have E[C,|X1.x,

7y, 7] = 0. Next, we claim that E[C2|X1.,, 7y, 7] = Op(n~!). Note that C2 can be written

1 hi(D; — p) (Djf} a —Df)6?>hs(Ds - p) (Dte} a —D»e?))
1121c4Z:(ZZ p—p* p 1-p p l-p .

2
88 “ijegsteg p—p

We have E[e;’e?/|X1;n, T, T] = E[e;’|Xj]E[e§’/|X,] =0 for any j # ¢t by Lemma 9.21 of
Cytrynbaum (2022). By group disjointness, the term E[C2|X1.,, m,, 7] simplifies to

1 hi(D; — p) hy(Ds — p) [ (Djej (1= Dpe)\?
—n2k4 Xg:( Z E|:( D — l—p ) Xl:n» Tn, T )

2 2
i,j,s€g p—p p—p

We have E[(ef)2|X1;n, T, T] = E[(ef)2|X,-] = as(Xi). Then by Young’s inequality and

Lemma 9.21 of the paper above

1 0
E[(Djej 3 (1 —Dj)€j>2
p 1-p

X1, Ty T] <2(pan(l- p))_l(O'IZ(Xj) + og(Xj)).
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Taking the absolute value of the second to last display and using triangle inequality gives
the upper bound:

2[n2k4(p—p2)2(p/\(l—p))]_l Z( Z |hihs|(0'12(Xj)+0'g(Xj))>

8 i, j,s€g
§n‘22( > Ihihs? + (of (X)) + «ré(X,-))z)
8 i j,seg

<n  RCE (02 (X) + of (X)) 4+ 072k Y il
8 i,seg

By Young’s inequality and assumption E[E,[(c?(X;) + 04(X:))?]] < 2E[03(X;)? +
02(X;)?] < cc. For the second term, using Jensen, we have

Y il _n—lz(zm ) < kn”'E,[1{] = 0,(1).

8 i,seg ieg

Then we have shown that E [C,ZZ|X Loy Ty T] = Op(n_l), so by conditional Markov in-
equality in Lemma A.5, C, = O, (n~1/2). This completes the proof. O

LEMMA A.8 (Partialled Lin). Under assumptions, E,[h;zi] = 0,(1). Also, we have

Eu[Dihih}] = @E[Var(hm)] +o,(1),
Eu[hil}] = k; E[Var(h|y)] + 0p(1),
EnDih;Y;] = @E[Cov(h, mi|)] +o,(1),
En[(l—Di)iz,-Y,-]=WE[Cov(h,mo|¢)]+op(1).
ProokF. First, observe that
hi=hi—k™ )" h,:%-hi—k* > ohj=kTt Y (hi—hy).
jeg(i) jegliN\i} jeg\ii)

Note that E,, [Diilii;li] =FE,[(D; — p)iliili] + pEn[/jLi/jli]. We claim that E,[(D; — p)/jli/jli] =
Op(n~Y2).Forl <1, <dy, by Lemma A.2 of Cytrynbaum (2022) and Cauchy-Schwarz,
we have Var(VaE[(D; — p)hichi| X1, ma) < 2Enlh212,] < 2E,[h41V/2E,[h%,1/2. Next,
note that by Jensen’s followed by Young’s inequality

. k—D*/ 1 4 (k_1)3
h;’lzz( k4) (m Z (hit—hjt)> f( k4) Z (hil_hjt)4

Jeg(O\ i} Jeg\{i}

(k—1)° gl — 1)3
=8 o Y. (hi+h})<8 Iz ((k—l)h + > h)

jeg(D\{i} jeg(D\{i}
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By counting, we have E, [Zjeg(l)\{l} Jt] = (k — 1)E, [h ;]. Putting this all together,

En[h ] < En[h ] = O (1). Then Var(\/_En[(D p)htthzt’ |X1 iy Tn) = O (1), so that
Enl(Di — p)hithis] = Op,(n~1/2) by Lemma A.5. Then it suffices to show the claim for
En[fzih,]. Let fi; = E[h(X;)|¢;] and write h;; = fi; + uj;. Then we have

Enlhithiv] = kzz< > i ,)( > h,ﬂ—hw)

i jeg(\{} leg()\{i}

1
=2 YD > (hii=hj) iy — hyp).

i Jrleg(D\{i}

We can expand the expression above as

—2 Z o (it = Fi) e = fur) + fia = fie) (i — ugy)

i jleg(\{i}

+ (wir — ”jt)(fiﬂ = fu) + (uir — uje) Uiy — ”lt/)] =Ay+ By + Cy+ Dy

First, consider A,. By the Lipschitz assumption in 3.1 and Young’s inequality,

| An| < kzZ > Afiu— fillfir = furl S kzZ S = ilalpi — ila

i jleg\{} ijleg\{i}
4k-1)
kzz SO (i— w5+ 19— ) = E ——— > Y = il5=o0,(1).
i j,leg\{i} n 8 i,jeg

The second to last equality by counting and the final equality by Assumption 2.1.
Next, consider B,,. Note that each g € o (1.4, 7s) and E[uj|¥1:n, m0] = Elui| i1 =0, so
E[By|¥1:n, 7] = 0. We can rewrite the sum

Z Z (fit — ]t)(uzt’ —up)= Z Z (fit — ]l)(uzt’ —uyy).

i j,leg\{i} 8 i,jleg
jol£i
Then we may compute Var(/nBy|#1., m,) = E [nBﬁ |1:n, 4] as follows. By Lemma 9.21
of Cytrynbaum (2022), E{u;yujy|1:n, 7,] = 0 for any g(i) # g(j), so we only consider the
diagonal

4 Z Z Z (fzt—f]t)(fat—fbt)(uzt’—ult’)(uat’—ucz’ﬂlﬁln» 7Tn]
8 ij, lega,b,ceg
Jyl#i b,c#a

<n’! Z Z Z fie = fiell far — sz||E[(”it/ —upy)(ar — ter)|P1n, Wn]‘
8§ i,j,lega,b,ceg
Jyl#i b,c#a

IZmaxw/l Wils Y D |E[(ir — i) (tar — tte) |1, w4
i,j,lega,b,ceg
Jyl#i b,c#a
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Next, by Lemma 9.21 of Cytrynbaum (2022), E[(ujy — ujp)(Uar — Uer)|P1:0, Tn] iS
SaiE[uly|Wi] = S1aE[ufy|Wa] — SciEufy 0] + 81 E[ui h].

Applying the triangle inequality and summing out using this relation, the above is

4k (k —1)3
< S Y a3 Bl ]
8

icg

IZ(maxwfl Wils+ Y E[ub,|wi] )
ieg

o 3 Diam(suppts) 23 i — il + Ea[E[ i)

i,jeg

We claim that E[u ,] < co. Note that E[u n,] = E[(hjy — fir)*] < 8E[hlt,] + 8E] ”,] by
Young’s inequality. We have E [h ] < oo by assumption. Note that E[ ”,] < Cf|1/; |* <
Cy Diam(Supp(#))* < oo by Assumptlon 3.1, with Lipschitz constant Cy. Then E[u t,] <
00, SO E[En[E[u”,W R E[E[u”,|lp 12] < E[u? ;] < oo. The inequality follows by con-
ditional Jensen and tower law. Then E,[E[u ”/|¢f % = 0O,(1) by Markov inequality. Then
using Assumption 2.1 in the display above, we have shown E [nB%W;l;n, ) = 0p(1) and
by Lemma A.5 we have shown B, = O,(n~1/?). We have C, = O,(n~'/2) by symmetry.
Finally, consider D,. By Lemma 9.21 of Cytrynbaum (2022), compute E[(u;; — uj;) (u;r —
ui) | Y1n, ™l = Elwiip |;] + Elujujp |18 for j, I #i. Then we calculate

E[Dn|1:n, 7] = kzz > Eluiuie| i) + Elujeuje |11 = 1)

i jleg(\ti}

1
= — 7 2 (k= D2 Eluigtte i) + — LY Ewgael)

i jeg(D\{i}

_ (k —1)?
 nk?

k(k—1
= % ZE[u[tuit/lllll‘]'

ZE[ultuzt’llp ] + 2 ZE[M,,M,yhﬁ

Now, E[E[ujiuiy|¥il*] < E[u?u?,] < 2E[u},] + 2E[u},] < oo by Jensen, tower law, Young’s,
and work above. Then by Chebyshev (kn’k” > Elujiuie il = %E[u”ui,/] + Op(n‘l/z) =
%E[Cov(hﬁ, hig|$)] + Op(n~1/2). Then we have shown E[Dy|¢1:n, w4l = % x
E[Cov(hi, hig|P)] + Op(n~1/2). Next, we claim that Var(y/nDy|1:, ™) = O,(1). Fol-

lowing the steps above for B, replacing terms shows that Var(y/nD,| 1.0, 7,) is

k4Z DY Cov((uis — wje) (wip — uger), (ar — tpe) (Uar — e )| 1, ).
8 i,j,lega,b,ceg
Jyl#i b,c#a
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For any variables A4, B, |Cov(A4, B)| < |E[AB]| + |E[A]E[B]| < 2|A|2|B|2 by Cauchy-
Schwarz and increasing L ,(P) norms. By Young’s inequality, (a — b)* < 8(a* + b*) for
any a, b € R. Then using these facts,

|Cov((uir — uje) (ir — wiy), (Uar — Upe) (Uar — tier)|P1:n, )|
< 2E[(uir — wj0)? Wi — w201 7] 2 E[(ar — upe)? (ttar — e V2|10 7] °
<AE[ (i — wj)? i — V(¥ 1, Ta) + AE[(tar — upe)* (g — ter) |10, 7]
< 2E[(uir — uj)* + i — wip) W10 0] + 2E[(tar — upe)* + (Uar — ter) (Y10, 4]
= IG(E[u;lt + u?t + u;lt’ + ”?ﬂld’li"’ ] + E[“ét + “gt +Uar + ugﬂlwliﬂ’ 7))
= 16(2E[ujy|i] + E[ufy 9] + E[ujy 1] + 2E[ug |a] + Elup, 95 ] + E[uy|¥c]).-
Plugging this bound in above and summing out gives

32k°
o 2 2 Elublwi] < EalEul 3] = 0p (1.

8 ieg

Var(VnDy |10, m) <

The final equality by Markov since E[u},] < co. Then by conditional Markov A.5, we have
D, = %E[Cov(hm hir|pi)] + OP(n_l/z). Since ¢, ¢’ were arbitrary, this shows En[ﬁiﬁg] =
E[Var(h|¢)] + op(1).

Next, consider E, [DiiziYi] = E,[(D; — p)iz,-Y,-(l)] + pEn[lvz,-Yi(l)]. We claim that
En[(D;i — p)hiYi(1)] = Op(n~1/2). For 1 <t < dj, by Lemma A.2 of Cytrynbaum (2023),
and Cauchy-Schwarz,

Var (VaEa[(Di — p)hiYi(D)]| X1, Y (1)1, ) < 2E[R3,Y;(1)%]
<2E,[i4]PEa[ V(142
Note that E,[Y;(1)*] = O,(1) by Markov inequality and Assumption 3.1 and En[}vzft] =
O, (1) was shown above. Then by Lemma A.5 (conditional Markov), this shows the claim.
Then it suffices to analyze En[iziYi(l)]. Let g; = E[Y;(1)|#;] and v; = Y;(1) — g; with
E[v;|¢p;] = 0. Then as above, we may expand
v 1
E,[hiY;(1)] = pya Z( Z . fie = fije +uir — ujt)(gi +v;)
jeg\ii}
1
=k Z Z (fir = [i0)&i + (fir — fio)vi + (wir — uje) gi + (wir — wj)v;
i jeg(H\{i}
=H,+J,+K,+L,.

First, consider H,. By Assumption 3.1, ¢y — g(¥) is continuous and Supp(¢/) C B(0, K)
compact, SO sup,,. s k) |§(#)| = K’ < co and |g| < K’ a.s. Then we have

Hal Sn7' Y00 Y W= lalgdl Sn7t )0 i — il = 0, (1).

i jeg(\ih 8 ijeg
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For the final equality, note that here we have the unsquared norm, different from As-
sumption 2.1. Proposition 8.6 of Cytrynbaum (2022) showed that this quantity is also
op(1). By substituting z; for g;, which satisfies the same conditions, this also shows that
En[ziiz;] = 0,(1). The proofthat J,,, K, = O, (n~'/?) are similar to the terms B,, C, above.
Next, consider L,. We have

E[Lnll,l’l:n» 77'11]: Z Z (ut_u]t)vzll,l"l B '7711]

i jeg(H\{i}
= — Z Z E[ u,,v,It,l/ [E[Uztvzll/’ ]]
i jeg()\{i}
k—1
- TE[Cov(hit, Yi(D)|i)] +Op(n1?).

The second equality follows since j # i and by Lemma 9.21 of Cytrynbaum (2022). The
third equality by counting. For the last equality, note that by Jensen, tower law, Young'’s
inequality E[E[u,-,v,-|1/;,-] < E[ult : V2] < (1/2)(E[u”] + E[v 1). We showed E[u ] < 00
above and a similar proof applies to v;. Then the final equahty above follows by Cheby-
shev. The proof that Var(L,|¢1:n, 74) = O, (n~1/?) is similar to our analysis of D, above.
Then we have shown En[Di}vziY,-] = p%E[Cov(h, Y (1)|¢)]+ 0,(1). The conclusion for
E,[(1—- Di)iziYi] follows by symmetry. This completes the proof. O
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