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Covariate adjustment in stratified experiments

Max Cytrynbaum
Department of Economics, Yale University

This paper studies covariate adjusted estimation of the average treatment effect in
stratified experiments. We work in a general framework that includes matched tu-
ples designs, coarse stratification, and complete randomization as special cases.
Regression adjustment with treatment-covariate interactions is known to weakly
improve efficiency for completely randomized designs. By contrast, we show that
for stratified designs such regression estimators are generically inefficient, po-
tentially even increasing estimator variance relative to the unadjusted bench-
mark. Motivated by this result, we derive the asymptotically optimal linear covari-
ate adjustment for a given stratification. We construct several feasible estimators
that implement this efficient adjustment in large samples. In the special case of
matched pairs, for example, the regression including treatment, covariates, and
pair fixed effects is asymptotically optimal. We also provide novel asymptotically
exact inference methods that allow researchers to report smaller confidence inter-
vals, fully reflecting the efficiency gains from both stratification and adjustment.
Simulations and an empirical application demonstrate the value of our proposed
methods.
Keywords. Matched pairs, analysis of covariance, blocking, robust standard er-
ror, treatment effects.

JEL classification. C10, C14, C90.

1. Introduction

This paper studies covariate adjusted estimation of the average treatment effect (ATE) in
stratified experiments. Researchers often make use of both stratified treatment assign-
ment and ex post covariate adjustment to improve the precision of experimental esti-
mates. Indeed, out of a survey of over 50 experimental papers published in the AER and
AEJ between 2018–2023, we found that 57% use stratified randomization, and 80% used
some form of ex post covariate adjustment. An influential paper by Lin (2013) showed
in a design-based setting that the regression estimator with full treatment-covariate in-
teractions is always asymptotically weakly more efficient than difference of means esti-
mation for completely randomized designs. Negi and Wooldridge (2021) extended these
results to estimation of the ATE using data sampled from a superpopulation. However,
questions remain about the interaction between stratification and regression adjust-
ment and the implications of combining these methods for both estimator efficiency
and the power and validity of inference methods. To study these questions, we work in
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the stratified randomization framework of Cytrynbaum (2023), which includes matched
tuples designs (e.g., matched pairs), coarse stratification, and complete randomization
as special cases.

We show that the Lin (2013) interacted regression adjustment is generically ineffi-
cient in the family of linearly adjusted estimators, with asymptotic efficiency only in the
limiting case of complete randomization. Motivated by this finding, we characterize the
efficient linear covariate adjustment for a given stratified design, providing several new
estimators that achieve the optimal variance.

Our first result derives the optimal linear adjustment coefficient for a given stratifi-
cation. We show that asymptotically the interacted regression estimator uses the wrong
objective function, minimizing a marginal variance objective that is totally insensitive
to the stratification. By contrast, the optimal adjustment coefficient minimizes a mean-
conditional variance objective, conditional on the covariates used to stratify. Intuitively,
the efficient covariate adjustment is tailored to the stratification, ignoring fluctuations
of the estimator that are predictable by the stratification covariates. Section 3.2 draws
an interesting connection with partially linear regression (Robinson (1988)), showing
that efficient linear adjustment of a stratified design is asymptotically equivalent to
doubly-robust semiparametric adjustment of an i.i.d. design. Intuitively, stratification
contributes the nonparametric component of the semiparametric adjustment function.

Our second set of results develops feasible versions of the optimal linear adjustment
derived in Section 3.1. First, we show that if the conditional expectation of the adjust-
ment covariates is linear in a known set of transformations of the stratification variables,
then adding the latter to the interacted regression restores optimality. Next, we relax this
assumption, providing four different regression estimators that are asymptotically ef-
ficient under weak conditions. For matched pairs experiments or in settings with lim-
ited treatment effect heterogeneity, the noninteracted regression with a full set of pair
fixed effects is asymptotically efficient. More generally, we show asymptotic optimal-
ity of within-stratum (inconsistently) partialled versions of the Lin and tyranny-of-the-
minority estimators (Lin (2013)). We also define a “group OLS” estimator, extending a
proposal of Imbens and Rubin (2015) for matched pairs experiments to a larger class of
designs. We show that this group OLS estimator is also asymptotically optimal.

Our final contribution is to develop novel asymptotically exact inference methods
for covariate adjusted estimation under stratified designs. Confidence intervals based
on the usual heteroskedasticity robust variance estimator are known to be conservative
in stratified experiments (Bai, Romano, and Shaikh (2021)). By contrast, the coverage
probabilities of our proposed confidence intervals converge to the specified nominal
level, with no overcoverage. Our approach applies to a generic family of linear covariate
adjustments and randomization schemes, including as special cases noninteracted re-
gression adjustment, the Lin (2013) interacted regression, and all of the other estimators
considered in this paper. Simulations and an empirical application to the experiment
in Baysan (2022a) suggest that the usual robust confidence intervals can substantially
overcover in stratified experiments, while our confidence intervals have close to nomi-
nal coverage.
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We present several extensions of our main results in the Supplemental Appendix
(Cytrynbaum (2024)). In the first, we consider estimation and inference in stratified ex-
periments with noncompliance. As a simple corollary of our results on ATE estimation,
we characterize the optimal linearly adjusted Wald estimator for the LATE (Imbens and
Angrist (1994)), construct a feasible implementation of the efficient adjustment, and
provide asymptotically exact inference methods. We also study efficient linear adjust-
ment for finely stratified designs with nonconstant treatment proportions, as in Cytryn-
baum (2023), and briefly consider the problem of efficient nonlinear adjustment.

There has been significant interest in treatment effect estimation under different
experimental designs in the recent literature. Some papers studying covariate adjust-
ment under stratified randomization include Bugni, Canay, and Shaikh (2018), Foga-
rty (2018), Liu and Yang (2020), Lu and Liu (2024), Wei, Tu, and Liu (2022), Reluga, Ye,
and Zhao (2024), Wang, Wang, and Liu (2021), Ting, Shao, Yi, and Zhao (2022), Ke, Liu,
and Yang (2024), and Chang (2023). These works differ from our paper in at least one
of the following ways: (1) studying inference on the sample average treatment effect
(SATE) rather than the ATE in a superpopulation, (2) restricting to coarse stratification
(stratum size going to infinity), or (3) proving weak efficiency gains but not optimality.
In a finite population setting, Ke, Liu, and Yang (2024) shows asymptotic efficiency of
a projection-based estimator numerically equivalent to the “partialled Lin” approach
considered in Section 3.4.2. In the same setting, Lu and Liu (2024) prove efficiency of a
tyranny-of-the-minority style regression similar but not equivalent to one the consid-
ered in Section 3.4.4. Both papers give conservative inference on the SATE, while we
provide asymptotically exact inference on the ATE using a generalized pairs-of-pairs
(Abadie and Imbens (2008)) style approach. Remarks 3.19 and 3.22 in Section 3.4 below
provide a detailed comparison.

Relative to the above papers, the superpopulation framework considered here cre-
ates some new technical challenges. For example, as pointed out in Bai, Romano, and
Shaikh (2021), matching units into data-dependent strata post-sampling produces a
complicated dependence structure between the treatment assignments and random co-
variates. We deal with this using a tight-matching condition (Equation (2.1)) and mar-
tingale CLT analysis similar to Cytrynbaum (2022). This setting also has analytical ad-
vantages, which allow us to establish new conceptual results. For example, the popu-
lation level characterization of the optimal adjustment coefficent in Section 3.1 allows
us to give explicit necessary and sufficient conditions for the efficiency of several com-
monly used regression estimators. The efficiency of interacted regression under a “rich
covariates” condition, as well as the equivalence between optimal linear adjustment of
stratified designs and doubly-robust semiparametric adjustment appear to be new ob-
servations in this literature. To the best of our knowledge, we give the first asymptotically
exact inference on the ATE for general covariate adjusted estimators under finely strati-
fied randomization.

Independently, Bai, Jiang, Romano, Shaikh, and Zhang (2024b) study covariate ad-
justment under matched pairs randomization in a superpopulation framework. They
also find that regression adjustment without pair fixed effects may be inefficient, while
adding pair fixed effects restores efficiency. Relative to our work, they additionally study
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regularized regression adjustment under high-dimensional asymptotics, which we do
not consider. By contrast, we study more general forms of stratification, allowing coarse
and fine stratification with arbitrary treatment proportions p �= 1/2. For such designs,
the strata fixed-effects estimator may still be inefficient. To fix this, we introduce novel
forms of linear adjustment that are efficient under general stratified designs.

The rest of the paper is organized as follows. In Section 2, we define notation and
introduce the family of stratified designs that we will consider throughout the paper.
Section 3 gives our main results, characterizing optimal covariate adjustment, and con-
structing efficient estimators. Section 4 provides asymptotically exact inference on the
ATE for generic linearly adjusted estimators. In Sections 5 and 6, we study the finite-
sample properties of our method, including both simulations and an empirical applica-
tion to the experiment in Baysan (2022a). Section 7 concludes with some recommenda-
tions for practitioners.

2. Framework and stratified designs

For a binary treatment d ∈ {0, 1}, let Yi(1), Yi(0) denote the treated and control poten-
tial outcomes, respectively. For treatment assignment Di, let Yi = Yi(Di ) = DiYi(1) +
(1 − Di )Yi(0) be the observed outcome. Let Xi denote covariates. Consider data
(Xi, Yi(1), Yi(0))ni=1 sampled i.i.d. from a superpopulation of interest. We are interested
in estimating the average treatment effect in this population, ATE =E[Y (1) −Y (0)]. Af-
ter sampling units i= 1, � � � , n, treatmentsD1:n are assigned by stratified randomization.
In particular, we use the “local randomization” framework introduced in Cytrynbaum
(2022).

Definition 2.1 (Local randomization). Let treatment proportions p= a/k with gcd(a,
k) = 1.1 Suppose that n is divisible by k for notational simplicity. Partition the ex-
perimental units into n/k groups g with {1, � � � , n} = ⋃

g g disjointly and |g| = k. Let

ψ(X ) ∈ R
dψ denote a vector of stratification variables. Suppose that the groups that sat-

isfy a homogeneity condition with respect to ψ(X ) such that

1
n

∑
g

∑
i,j∈g

∣∣ψ(Xi ) −ψ(Xj )
∣∣2
2 = op(1). (2.1)

Require that the groups only depend on the stratification variables ψ1:n and data-
independent randomness πn, so that g = g(ψ1:n, πn ) for each g. Independently, for
each |g| = k, draw treatment variables (Di )i∈g by setting Di = 1 for exactly a out of k
units, completely at random. For a stratification satisfying these conditions, we denote
D1:n ∼ Loc(ψ, p).

Example 2.2 (Matched tuples). Equation (2.1) requires units in a group to have similar
ψ(Xi ) values and can be thought of as a tight-matching condition. Cytrynbaum (2023)
provides an iterative pairing algorithm to match units into groups that provably satisfy

1gcd(a, k) stands for greatest common divisor.
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this condition for any k. Drawing treatments D1:n ∼ Loc(ψ, p) produces a “matched k-
tuples” design for p= a/k. Matched pairs corresponds to the case p= 1/2.

Example 2.3 (Complete randomization). We say variablesD1:n are completely random-
ized with treatment probability p if D1:n is drawn uniformly from all vectors d1:n with
di = 1 for exactly proportion p of the units. Formally, P(D1:n = d1:n ) = 1/

( n
pn

)
for all such

vectors. We denote complete randomization byD1:n ∼ CR(p). Complete randomization
may be obtained in our framework by setting ψ = 1 and forming groups |g| = k at ran-
dom, which automatically satisfies Equation (2.1). For example, assigning 2 out of 3 units
in each group to treatment gives a “random matched triples” representation of complete
randomization with p= 2/3.

Remark 2.4 (Coarse stratification). Similarly, coarse stratification with large fixed strata
S(X ) ∈ {1, � � � ,m} can also be obtained in our framework by setting ψ(X ) = S(X ) and
matching units with identical S(X ) values into groups at random. Because of this, our
framework enables a unified asymptotic analysis for a wide range of stratifications.

Experiment timing Suppose that the experimenter does the following:

(1) Samples units and observes their baseline covariates.

(2) Partitions the units into data-dependent groups g= g(ψ1:n, πn ) that satisfy Equa-
tion (2.1) for some stratification variables ψ(X ).

(3) Draws treatment assignments D1:n ∼ Loc(ψ, p), observes outcomes Yi(Di ), and
forms an estimate of the ATE, potentially adjusting for covariates h(X ).

We are agnostic about the exact time at which the covariates are observed, subject to
the constraints above. For example, it could be that only ψ(X ) is observed at the design
stage, while the full vectorX is collected later with the outcomes, and the experimenter
chooses to adjust for h(X ) ⊆ X . Alternatively, the full vector X could be observed at
the design stage, but the experimenter chooses to only stratify on ψ(X ), and adjusts for
h(X ) ⊆X at step (3). We may or may not have ψ(X ) ⊆ h(X ).2

Consider the unadjusted estimator given by the coefficient θ̂ on D in the regression
Y ∼ 1 +D. Before discussing covariate adjustment, we first state a helpful variance de-
composition for θ̂ that will be used extensively below. Let c(X ) = E[Y (1) −Y (0)|X] de-
note the conditional average treatment effect (CATE) and σ2

d (X ) = Var(Y (d)|X ) the het-
eroskedasticity function. Define the balance function:

b(X; p) =E[
Y (1)|X

](1 −p
p

)1/2

+ E
[
Y (0)|X

]( p

1 −p
)1/2

. (2.2)

We often denote b= b(X; p) in what follows. Cytrynbaum (2022) shows that ifD1:n ∼
Loc(ψ, p) then

√
n(θ̂− ATE) ⇒ N (0, V ) with

V = Var
(
c(X )

) +E[
Var(b|ψ)

] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

. (2.3)

2Our asymptotic framework lets h(X ), ψ(X ) be fixed as n→ ∞.
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The variance V is in fact the Hahn (1998) semiparametric variance bound3 for
the ATE (with covariates ψ(X )), providing a formal sense in which stratification does
nonparametric regression adjustment “by design.” The middle term is the most im-
portant for our analysis below. For example, in this notation the difference in asymp-
totic efficiency between stratifications ψ1 and ψ2 (for fixed p) is simply E[Var(b|ψ1 )] −
E[Var(b|ψ2 )]. Note also that E[Var(b|ψ)] ≤ Var(b) for any ψ, showing how stratification
removes the variance due to fluctuations that are predictable by ψ(X ).

Moving beyond the difference of means estimator θ̂, suppose that at the analysis
stage, the experimenter has access to covariates h(X ), which may strictly contain ψ(X ).
One may try to further improve the efficiency of ATE estimation by regression adjust-
ment using these covariates, either using the standard regression Y ∼ 1 +D+ h or the
regression Y ∼ 1 + D + h + Dh (with demeaned covariates) studied in Lin (2013). We
study the interaction between covariate adjustment and stratification in Section 3.1 be-
low, characterizing the optimal linear adjustment.

3. Main results

3.1 Efficient linear adjustment in stratified experiments

In this section, we begin by studying the efficiency of commonly used covariate-adjusted
estimators of the ATE under stratified randomization. Lin (2013) showed that in a com-
pletely randomized experiment, equivalent to D1:n ∼ Loc(ψ, p) with ψ = 1, regression
adjustment with full treatment-covariate interactions is asymptotically weakly more ef-
ficient than difference of means estimation. Negi and Wooldridge (2021) extended this
result to ATE estimation in the superpopulation framework that we use in this paper.
Interestingly, we show that this result is atypical. For a general stratified experiment
with ψ �= 1, Lin (2013) style regression adjustment may be strictly inefficient relative to
difference of means. The issue is that the interacted regression solves the wrong op-
timization problem, minimizing a marginal variance objective when, due to the strat-
ification, it should instead minimize a mean-conditional variance objective, condi-
tional on the stratification variables ψ. In fact, the Lin estimator is totally insensitive
to the stratification, estimating the same adjustment coefficient for any stratified design
D1:n ∼ Loc(ψ, p). Because of this, interacted regression is generically suboptimal and in
some cases can even be strictly less efficient than difference of means. Before proceed-
ing, we state our main assumption.

Assumption 3.1 (Smoothness and moment conditions). Assume the following:

(i) The conditional expectations E[h(X )|ψ] and E[Y (d)|ψ] for d ∈ {0, 1} are Lipschitz
continuous in the stratification variables ψ.

(ii) The moments E[Y (d)4] < ∞ for d ∈ {0, 1} and E[|ht(X )|4] < ∞ for all 1 ≤ t ≤
dim(h), |ψ(X )|2 <K <∞ a.s. and Var(h) � 0.

3Armstrong (2022) shows that this variance bound also holds for stratified designs.
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Now we are ready to define the Lin estimator and state our first result. Denote
hi = h(Xi ) and demeaned covariates h̃i = hi −En[hi], with En[hi] ≡ n−1 ∑n

i=1 hi. The Lin
estimator θ̂L is the coefficient onDi in the interacted regression

Yi ∼ 1 +Di + h̃i +Dih̃i. (3.1)

Define the within treatment arm covariate means h̄1 = En[hiDi]/En[Di] and h̄0 =
En[hi(1−Di )]/En[1−Di]. The Lin estimator θ̂L can be related to the difference of means
estimator θ̂ as

θ̂L = θ̂− γ̂′
L(h̄1 − h̄0 ). (3.2)

Here, the adjustment coefficient γ̂L is γ̂L = (1 − p)(â1 + â0 ) + pâ0, where â0 and â1 are
the coefficients on h̃i and Dih̃i in Equation (3.1). The following theorem characterizes
the asymptotic properties of this estimator under stratified designs.

Theorem 3.2. Let Assumption 3.1 hold. If D1:n ∼ Loc(ψ, p), then the Lin estimator√
n(θ̂L − ATE) ⇒ N (0, V ) with

V = Var
(
c(X )

) +E[
Var

(
b− γ′

Lh|ψ
)] +E

[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

The adjustment coefficient satisfies γ̂L
p→ γL with γL = argminγ∈Rdh Var(b− γ′h).

The variance V differs from the variance of the unadjusted estimator only in the mid-
dle term, which changes from E[Var(b|ψ)] in the unadjusted case to E[Var(b− γ′

Lh|ψ)]
for the interacted regression. Crucially, the second statement of Theorem 3.2 shows that
the adjustment coefficient γL attempts to minimize a marginal variance, instead of the
mean-conditional variance that shows up in V above. Because of this, the estimator may
be inefficient for stratifications ψ �= 1, since in general

γL = argmin
γ∈Rdh

Var
(
b− γ′h

) �= argmin
γ∈Rdh

E
[
Var

(
b− γ′h|ψ

)] ≡ γ∗.

Observe that the Lin estimator is completely insensitive to the experimental design,
estimating the same adjustment coefficient γL = argminγ Var(b− γ′h) for any stratifica-
tion variablesψ(X ). The following example shows that this can lead to strict inefficiency
relative to difference of means estimation.

Example 3.3 (Random assignment to class size). Suppose Y (d) are student test scores
under random assignment to one of two class sizes d ∈ {0, 1}. Let h(X ) be parent’s wealth
and ψ(X ) previous year (baseline) test scores. Suppose parent’s wealth is predictive of
future test scores marginally so that Cov(h, Y (d)) > 0. Then Cov(h, b) > 0 and the Lin
coefficient is γL = Var(h)−1 Cov(h, b) > 0. However, if on average parent’s wealth has
no predictive power for test scores conditional on a student’s baseline scores (a proxy
for ability), then E[Cov(h, Y (d)|ψ)] = 0. In this case, regression adjustment for parent’s
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wealth h(X ) in an experiment stratified on the earlier scores ψ(X ) will be strictly less
efficient than unadjusted estimation since

Vlin − Vunadj =E[
Var

(
b− γ′

Lh|ψ
)] −E[

Var(b|ψ)
]

= −2γLE
[
Cov(h, b|ψ)

] + γ2
LE

[
Var(h|ψ)

] = γ2
LE

[
Var(h|ψ)

]
> 0.

An important special case occurs when the design is completely randomized (ψ= 1)
or if the covariates and stratification variables are independent h(X ) ⊥⊥ ψ(X ). In this
case, the Lin estimator is weakly more efficient than difference of means since we have

E
[
Var

(
b− γ′

Lh|ψ
)] = Var

(
b− γ′

Lh
) = min

γ
Var

(
b− γ′h

) ≤ Var(b).

An analogue of Theorem 3.2 also holds for the noninteracted regression estimator
Yi ∼ 1+Di+hi under stratified designsD1:n ∼ Loc(ψ, p). The noninteracted estimator is
known to be inefficient relative to difference of means even for completely randomized
experiments unless p = 1/2 or treatment effects are homogeneous. For completeness,
we give asymptotic theory and optimality conditions for this estimator under stratified
randomization in Section A.3 in the Supplemental Appendix.

We noted above that the Lin estimator θ̂L can be written in the canonical form
θ̂L = θ̂− γ̂′

L(h̄1 − h̄0 ). In fact, most commonly used adjusted estimators can be written
in the standard form θ̂adj = θ̂− γ̂′(h̄1 − h̄0 ) for some γ̂, up to order Op(n−1 ) factors. The
following theorem describes the asymptotic properties of general covariate-adjusted
estimators θ̂adj of this form. To avoid carrying around factors of p in our variance ex-
pressions, in what follows, we scale adjusted estimators by the normalization constant
cp = √

p(1 −p).

Theorem 3.4. Let Assumption 3.1 hold. Suppose γ̂
p→ γ and consider the adjusted esti-

mator

θ̂adj = θ̂− γ̂′(h̄1 − h̄0 )cp.

IfD1:n ∼ Loc(ψ, p) then
√
n(θ̂adj − ATE) ⇒ N (0, V (γ)) with

V (γ) = Var
(
c(X )

) +E[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

. (3.3)

We define a linearly-adjusted estimator to be asymptotically efficient if it globally
minimizes the asymptotic variance V (γ) in the previous theorem.

Definition 3.5 (Optimal linear adjustment). The estimator θ̂adj = θ̂− γ̂′(h̄1 − h̄0 )cp is

efficient for the design D1:n ∼ Loc(ψ, p) and covariates h(X ) if γ̂
p→ γ∗ for an optimal

adjustment coefficient

γ∗ ∈ argmin
γ∈Rdh

E
[
Var

(
b− γ′h|ψ

)]
.

In particular, V (γ∗ ) = minγ∈Rdh V (γ).
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Note that efficiency is defined relative to a design D1:n ∼ Loc(ψ, p) and covariates
h(X ). Setting γ = 0 recovers unadjusted estimation, so any optimal estimator is in par-
ticular weakly more efficient than difference of means.

Optimal adjustment coefficient If E[Var(h|ψ)] � 0, then the optimization in Definition
3.5 is solved uniquely by a mean-conditional OLS coefficient

γ∗ =E[
Var(h|ψ)

]−1
E

[
Cov(h, b|ψ)

]
. (3.4)

Intuitively, fine stratification makes treatment-control imbalances in the covariates
h(X ) and the potential outcomes Y (d) that are predictable by ψ small enough that
they do not contribute to first-order asymptotic variance. Because of this, the optimal
covariate-adjusted estimator θ̂ − γ∗(h̄1 − h̄0 )cp ignores such fluctuations, minimizing
the mean-conditional variance objectiveE[Var(b−γ′h|ψ)], instead of the marginal vari-
ance Var(b− γ′h) targeted by the Lin estimator.

Optimal covariates The form of the variance in Equation (3.3) suggests adjusting for
variables h that contain predictive information not already contained in ψ. The (un-
known) optimal covariates are h∗ = b. In this case, γ∗ = 1 makes the middle variance
term identically zero, and θ̂adj achieves the Armstrong (2022) semiparametric variance
bound.

Sample average treatment effect Theorem 3.4 may be extended to covariate-adjusted
estimation of the sample average treatment effect SATE = En[Yi(1) − Yi(0)]. Defining
the conditional treatment effect variance σ2

τ (X ) = Var(Y (1) − Y (0)|X ), one can show
that

√
n(θ̂− SATE) ⇒ N (0, VS(γ)) with

VS(γ) =E[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p − σ2
τ (X )

]
. (3.5)

In particular, the optimal adjustment for estimating the ATE and the SATE are the same,
with γ∗

SATE = γ∗.

Remark 3.6 (Nonuniqueness). In general, the optimal adjustment coefficient γ∗ may
not be unique. For example, if h(x) = (z(ψ), w(x)) with z(ψ) a Lipschitz function of the
stratification variables, then the variance objective is constant in the coefficient on z(ψ),

E
[
Var

(
b− γ′

zz− γ′
ww|ψ

)] =E[
Var

(
b− γ′

ww|ψ
)] ∀γz ∈R

dz .

In fact, our analysis shows that the adjustment term γ′
z(z̄1 − z̄0 ) = op(n−1/2 ) for any co-

efficient γz in this case. Intuitively, since the covariate z(ψ) is already finely balanced by
stratifying on ψ(X ), ex post adjustment by z(ψ) cannot improve first-order efficiency.
However, there may still be finite sample efficiency gains from such adjustments, if the
covariates z(ψ) are not completely balanced by the stratification. Section 3.5 below pro-
vides methods to further adjust for covariates that are functions of the stratification vari-
ables.
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3.1.1 Extensions Before continuing, we briefly mention some extensions to the frame-
work above that are studied in detail in Appendices A.1–A.4.

Experiments with noncompliance In settings with noncompliance, we may instead
consider estimation and inference on the local average treatment effect (LATE) of Im-
bens and Angrist (1994). As a simple application of our main results, Section A.1 char-
acterizes the optimal linear adjustment for estimating the LATE, constructs feasible ef-
ficient estimators, and provides asymptotically exact inference on the LATE under strat-
ified randomization with ex post covariate adjustment.

Varying treatment proportions Cytrynbaum (2023) extends Definition 2.1 to allow fine
stratification with nonconstant assignment propensity p(ψ). Section A.2 in the Supple-
mental Appendix characterizes the optimal adjustment coefficient for such designs and
derives a feasible efficient estimator.

Nonlinear adjustment In some settings, it may be more natural to use nonlinear or
nonparametric covariate adjustment to improve efficiency, for example, in experiments
with binary outcomes. Section A.4 in the Supplemental Appendix characterizes the opti-
mal adjustment over a general function space H for finely stratified designs with varying
propensity p(ψ). Feasible estimation of the optimal nonlinear adjustment is an inter-
esting problem that we leave for future work.

3.2 Equivalence with partially linear regression adjustment

This section shows that optimal linear adjustment of a stratified design is as efficient as
semiparametric partially linear regression adjustment in an experiment with i.i.d. treat-
ments, with adjustment function that is linear in h(X ) and nonparametric inψ(X ). This
suggests that experimenters stratify on a small set of covariates expected to be most pre-
dictive of outcomes at design time, and (efficiently) adjust for the remaining covariates
ex post. See below for a more detailed discussion of stratification versus adjustment.

The main result of this section shows first-order asymptotic equivalence of the fol-
lowing (design, estimator) pairs:(

D1:n ∼ Loc(ψ, p), optimal linear
)

⇐⇒ (
Di

iid∼ Bernoulli(p), optimal semiparametric
)
.

To define the latter, consider the within-arm partially linear regression models(
g∗
d , γ∗

d

) = argmin
g∈L2(ψ),γ∈Rdh

E
[(
Y (d) − g(ψ) − γ′h

)2]
(3.6)

for d ∈ {0, 1}. Define the partially linear adjustment function Fd(x) = g∗
d(ψ(x)) +h(x)′γ∗

d
and consider a Robins and Rotnitzky (1995) style augmented inverse propensity weight-
ing (AIPW) estimator:

θ̂AIPW =En
[
F1(Xi ) − F0(Xi )

] +En
[
Di

(
Yi − F1(Xi )

)
p

]
−En

[
(1 −Di )

(
Yi − F0(Xi )

)
1 −p

]
.
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The next theorem shows that optimal linear adjustment of the design D1:n ∼ Loc(ψ, p)
is asymptotically equivalent to optimal semiparametric adjustment with nonparametric
ψ(X ) and linear h(X ) components.

Theorem 3.7. Require Assumption 3.1 and supposeDi
iid∼ Bernoulli(p). Then

√
n(θ̂AIPW −

ATE) ⇒ N (0, V ∗ ) with

V ∗ = Var
(
c(X )

) + min
γ∈Rdh

E
[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

The limiting variance V ∗ is the same as the optimal linearly adjusted variance V (γ∗ )
from Definition 3.5. Intuitively, stratification contributes the nonlinear component of
the optimal model Fd(x) above, while optimal adjustment contributes the linear com-

ponent. The optimal adjustment coefficient γ∗ =
√

1−p
p γ1 +

√
p

1−pγ0, for partially linear

coefficients γ1, γ0 defined in Equation (3.6) above.

Stratification versus regression adjustment Theorem 3.7 shows that stratification pro-
vides nonparametric control over the fluctuations of the outcomes predictable byψ(X ),
while (linear) adjustment only provides linear control. In first-order asympotics, this
suggests that we stratify on all available covariates, since the variance V ∗ above is min-
imized by setting ψ(X ) = X . However, this may perform poorly in finite samples due
to a curse of dimensionality for stratification as dim(ψ) increases. For example, Cytryn-
baum (2023) shows the variance convergence rate nVar(θ̂) = V +Op(n−2/(dim(ψ)+1) ) for
the variance V in Equation (3.3), which may be slow even for moderate dim(ψ). Intu-
itively, this suggests stratifying on a small set4 of covariates ψ(X ) expected to be most
predictive of outcomes at design time, and planning to optimally adjust for less predic-
tive covariates h(X ) ex post.

The next two sections show how to construct linearly-adjusted estimators for the
designD1:n ∼ Loc(ψ, p) that achieve the optimal variance V ∗.

3.3 Efficiency by rich strata controls

This section provides a “rich covariates” style condition on the relationship between ad-
justment covariates and stratification variables under which a simple parametric correc-
tion of the Lin estimator is fully efficient. The basic idea is to include rich functions z(ψ)
of the stratification variables in the adjustment set alongside the additional covariates
we would like to adjust for ex post. The main result of this section shows that includ-
ing z(ψ) as covariates forces the Lin estimator to solve the mean-conditional variance
minimization problem of Definition 3.5, restoring asymptotic optimality. An analogous
result holds for the noninteracted regression estimator Y ∼ 1 +D + h if p = 1/2. As a
simple application of this section’s results, Example 3.12 shows that for coarsely strati-
fied designs the Lin estimator with leave-one-out strata indicators is efficient.

4It is difficult to give concrete guidance for choosing dim(ψ), since the relevant quantities such as
E[Var(b|ψ)] are not estimable at design time, before we have outcome data. The rate above suggests
dim(ψ) = o(logn) to achieve the variance V in Equation (3.3).
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Consider adjusting for covariates h(X ) = (w(X ), z(ψ)). The main assumption of this
section requires that the conditional meanE[w|ψ] is well approximated by known trans-
formations z(ψ) of the stratification variables.

Assumption 3.8. There exist c ∈R
dw and 	 ∈R

dw×dz such that E[w|ψ] = c+	z(ψ).

Our next theorem shows that adding such transformations z(ψ) to the adjustment
set recovers full efficiency for the Lin estimator.

Theorem 3.9. Suppose Assumptions 3.1 and 3.8 hold. Fix adjustment set h(x) =
(w(x), z(ψ)). Then the Lin estimator θ̂L is fully efficient for the design D1:n ∼ Loc(ψ, p).
In particular,

√
n(θ̂L − ATE) ⇒ N (0, V ∗ ) with

V ∗ = Var
(
c(X )

) + min
γ∈Rdh

E
[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

Moreover, the asymptotic variance has

min
γ∈Rdh

E
[
Var

(
b− γ′h|ψ

)] = min
α∈Rdw

E
[
Var

(
b− α′w|ψ

)]
.

In practice, Theorem 3.9 suggests including flexible functions z(ψ) of the stratifi-
cation variables in the adjustment set. The proof is given in Section A.6 of the Sup-
plemental Appendix. The following corollary follows shows that if p = 1/2 (matched
pairs) or if treatment effect heterogeneity is limited then the noninteracted regression
Y ∼ 1 +D+w+ z with rich strata controls z(ψ) is also asymptotically efficient.

Corollary 3.10. Suppose additionally that p = 1/2 or E[Cov(Y (1) − Y (0), w|ψ)] = 0.
Then the coefficient θ̂N onDi in the regressionY ∼ 1+D+w+z is asymptotically efficient.

The condition E[Cov(Y (1) −Y (0), w|ψ)] = 0 limits the explanatory power of covari-
ates w for treatment effect heterogeneity, conditional on the stratification variables.

Remark 3.11 (Indirect efficiency gain). The second statement of the theorem shows
that optimal adjustment for h(X ) is as efficient as optimal adjustment for the subvector
w(X ) ⊆ h(X ) = (w(X ), z(ψ)). In this sense, the efficiency improvement due to includ-
ing z(ψ) is indirect. Indeed, our analysis shows that θ̂− γ′

z(z̄1 − z̄0 ) = θ̂+ op(n−1/2 ) for
any γz ∈ R

dz , so adjustment for z(ψ) alone cannot affect the first-order asymptotic vari-
ance. Intuitively, we are just using the inclusion of z(ψ) as a device to “tilt” the coefficient
on w(X ), forcing the Lin estimator to solve the correct mean-conditional variance opti-
mization problem.

The next example uses Theorem 3.9 to show that including leave-one-out strata in-
dicators as covariates in the Lin estimator restores asymptotic efficiency for coarsely
stratified designs.



Quantitative Economics 15 (2024) Covariate adjustment in stratified experiments 983

Example 3.12 (Coarse stratification). Consider stratified randomization D1:n ∼ Loc(S,
p) with fixed strata S(x) ∈ {1, � � � ,m}. Let the adjustment covariates be h(x) = (w(x),
z(s)) with leave-one-out strata indicators z(Si ) = (1(Si = k))m−1

k=1 . In this case, Assump-
tion 3.8 is automatically satisfied since we can writeE[w|S] = c+	z with c =E[w|S =m]
and	jk = (E[wj|S = k]−E[wj|S =m])jk. Then by Theorem 3.9, the Lin estimator θ̂L with
covariates hi = (wi, zi ) is efficient. In particular, we have

√
n(θ̂L−ATE) ⇒ N (0, V ∗ ) with

optimal variance

V ∗ = Var
(
c(X )

) + min
γ
E

[
Var

(
b− γ′w|S

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

Similarly, by Corollary 3.10 if p = 1/2, then including leave-one-out strata fixed effects
in the noninteracted regression restores efficiency.

Remark 3.13 (Fine stratification). Note that the argument in Example 3.12 only ap-
plies to coarse stratification, where the strata S(x) ∈ {1, � � � ,m} are data-independent
and fixed as n → ∞. For fine stratification D1:n ∼ Loc(ψ, p) with continuous covari-
ates ψ(x), the strata are data-dependent and number of strata m � n, so Theorem 3.23
does not apply. Indeed, for matched pairs the Lin regression in Example 3.12 would
have n + 2 dim(h) > n covariates, producing collinearity. This collinearity problem oc-
curs more generally; see Remark 3.18 below for further discussion.

Leaving behind the rich covariates Assumption 3.8, the next section provides new
adjusted estimators that are fully efficient for any design in the class D1:n ∼ Loc(ψ, p)
under weak conditions.

3.4 Generic efficient adjustment

In this section, we study several adjusted estimators that are asymptotically efficient un-
der weak conditions for any stratified design D1:n ∼ Loc(ψ, p). For matched pairs de-
signs, or in settings with limited treatment effect heterogeneity, the noninteracted re-
gression including treatment, covariates, and pair fixed effects is efficient. More gener-
ally, we show that the following estimators are efficient under weak assumptions:

(1) PL – A partialled Lin estimator with within-stratum (inconsistently) partialled co-
variates.

(2) GO – A “Group OLS” estimator, generalizing a proposal of Imbens and Rubin
(2015) for matched pairs designs.

(3) TM – A tyranny-of-the-minority (ToM) estimator for stratified designs.

The main new condition we impose in this section is that the adjustment covariates
are not collinear, conditionally on the stratification variables. This guarantees that the
optimal adjustment coefficient γ∗ is unique with γ∗ = E[Var(h|ψ)]−1E[Cov(h, b|ψ)], as
discussed in Section 3.1.
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Assumption 3.14. The conditional variance satisfies E[Var(h|ψ)] � 0.

Note that this assumption rules out adjustment for functions h(ψ) of the stratifica-
tion variables. To see why it is necessary, consider that, for example, in a regression with
full strata fixed effects Y ∼ D + h + zn, covariates hi = h(ψi ) would be asymptotically
collinear with the strata fixed effects zn = (1(i ∈ gj ))n/kj=1. More intuitively, the problem
is that h(ψ) has too little residual variation within local regions of ψ(X ) space defining
the fine strata. We noted earlier that θ̂− α′(h̄1 − h̄0 ) = θ̂− op(n−1/2 ) for any α ∈ R

dh , so
such adjustment cannot improve first-order efficiency. Nevertheless, one may still wish
to adjust for h(ψ) to correct finite sample imbalances not controlled by the design. Ad-
justment for such variables needs to be handled slightly differently, and we construct
modified efficient estimators for this purpose in Section 3.5 below.

3.4.1 Strata fixed-effects estimator Recall that for p = a/k, a finely stratified design
D1:n ∼ Loc(ψ, p) partitions the experimental units {1, � � � , n} into n/k disjoint groups
g. Define the fixed-effects estimator θ̂FE by the least squares equation

Yi = θ̂FEDi + γ̂′
FEhi +

n/k∑
j=1

âj1(i ∈ gj ) + ei. (3.7)

The next theorem shows that θ̂FE is fully efficient in the case of matched pairs or if
treatment effect heterogeneity is limited, but may be inefficient in general.

Theorem 3.15. Suppose Assumptions 3.1 and 3.14 hold. The estimator has represen-
tation θ̂FE = θ̂ − γ̂′

FE(h̄1 − h̄0 ) + Op(n−1 ). If D1:n ∼ Loc(ψ, p), then
√
n(θ̂FE − ATE) ⇒

N (0, V ) with variance

V = Var
(
c(X )

) +E[
Var

(
b− γ′

FEh|ψ
)] +E

[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

and coefficient γFE = argminγ∈Rdh E[Var(f − γ′h|ψ)] for target function

f (x) =m1(x)
√

p

1 −p +m0(x)

√
1 −p
p

.

The function f �= b in general. If p = 1/2, then f = b and the fixed-effects estimator is
efficient. If p �= 1/2, it is efficient if and only if E[Cov(h, Y (1) −Y (0)|ψ)] = 0.

See Section A.7 for the proof. Asymptotically exact inference for the ATE using θ̂FE is
available using the tools in Section 4.

Remark 3.16 (Conditions for efficiency). Ifp= 1/2, then f = b and θ̂FE is efficient. More
generally, f (x) �= b(x) and θ̂FE solves the wrong variance minimization problem, effec-
tively targeting the wrong linear combination of outcomes. The necessary and sufficient
condition E[Cov(h, Y (1) − Y (0)|ψ)] = 0 requires that treatment effect heterogeneity is
not explained by the covariates h(X ), conditional on the stratification variables.
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In the rest of this section, we develop estimators that are fully efficient for any finely
stratified design, without imposing any assumptions on treatment effect heterogeneity
or treatment proportions.

3.4.2 Partialled Lin estimator First, we define a partialled version of the Lin estimator.
Let g(i) denote the group that unit i belongs to and define the within-group partialled
covariates

ȟi = hi − 1
k

∑
j∈g(i)

hj .

For example, if k = 2 this is just the within-pair covariate difference ȟi = (1/2)(hi −
hm(i) ), where i is matched to m(i). We can think of ȟi as an inconsistent but approxi-
mately unbiased signal for the nonparametrically residualized covariate hi − E[hi|ψi].
Next, we use these partialled covariates in the Lin regression

Y ∼ 1 +Di + ȟi +Diȟi. (3.8)

Define the partialled Lin estimator θ̂PL to be the coefficient onDi in this regression. For
reference, similar to the Lin regression, we may write this in the standard form θ̂PL =
θ̂− γ̂′

PL(h̄1 − h̄0 )cp with adjustment coefficient γ̂PL = (â1 + â0 )
√

1−p
p + â0

√
p

1−p , where â0

and â1 are coefficients on ȟi andDiȟi.
Our main result in Theorem 3.23 below shows that the partialled Lin estimator θ̂PL

is asymptotically efficient in the sense of Definition 3.5, with γ̂PL
p→ γ∗ for the optimal

adjustment coefficient γ∗.

Remark 3.17 (Intuition for optimality). Theorem 3.4 showed that an estimator θ̂ −
γ̂(h̄1 − h̄0 )cp is efficient if γ̂

p→ γ∗ and γ∗ solves the conditional-mean variance problem

γ∗ ∈ argminγ E[Var(b−γ′h|ψ)]. By using within-stratum partialled regressors ȟi, we force
the Lin estimator to only use covariate signal hi −E[hi|ψi] that is mean-independent of
the stratification variables.

Remark 3.18 (Treatment-strata interactions). As an alternative to θ̂PL, one may at-
tempt to use the Lin regression Yi ∼ (1, hi, gn(i)) + Di(1, hi, gn(i)) with leave-one-out
strata fixed effects gn(i) = (1(i ∈ gj ))n/k−1

j=1 . Unfortunately, this produces collinear re-
gressors for p = a/k if either a = 1 or a = k − 1, which includes the case of matched
pairs. To see the issue, one can show by Frisch–Waugh that in contrast to Equation
(3.8) above, this estimator partials covariates hi separately in each treatment arm, using
ȟi1 = hi − a−1 ∑

j∈g(i) hjDj if Di = 1 and ȟi0 = hi − (k− a)−1 ∑
j∈g(i) hj(1 −Dj ) if Di = 0.

For instance, if a = 1 then this is ȟi = hi − hi = 0 for all i, showing collinearity. In the
case 1< a < k− 1 where this estimator is feasible, it is asymptotically equivalent to the
partialled Lin estimator. However, finite-sample properties will be worse due to noisier
within-arm partialling.
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Remark 3.19. A calculation shows that our estimator θ̂PL is numerically equivalent to
a regression estimator proposed in Ke, Liu, and Yang (2024), which the authors derive
alternately through an optimal projection argument. They study estimation of the SATE
under stratified randomization in a finite population framework, providing conservative
inference. They do not derive the exact form of the asymptotic variance, instead leaving
it as an infinite sum, which they assume converges to some limit. By contrast, we de-
rive the exact form of the asymptotic variance under the data-adaptive stratifications in
Definition 2.1, enabling asymptotically exact inference on the ATE using θ̂PL.

3.4.3 Group OLS estimator Next, we generalize an estimator proposed by Imbens and
Rubin (2015) for covariate adjustment in matched pairs experiments to more general
stratified designs. For each group of units g= 1, � � � , n/k in the design D1:n ∼ Loc(ψ, p),
define the within-group difference of means of outcomes and covariates

yg = 1
k

∑
i∈g

YiDi
p

− 1
k

∑
i∈g

Yi(1 −Di )
1 −p and hg = 1

k

∑
i∈g

hiDi
p

− 1
k

∑
i∈g

hi(1 −Di )
1 −p .

For any group-indexed array (xg )g, denote Eg[xg] = k
n

∑
g xg. Define the group OLS esti-

mator θ̂G by the regression

yg = θ̂G + γ̂′
Ghg + eg (3.9)

with Eg[(1, hg )eg] = 0. For motivation, note that if h= 0 then this becomes yg = θ̂G + eg
and θ̂G is just the unadjusted estimator θ̂G = Ȳ1 − Ȳ0. More generally, the adjusted ver-
sion can be written θ̂G = Eg[yg] − γ̂′

GEg[hg] = θ̂ − γ̂′
G(h̄1 − h̄0 ) with adjustment coeffi-

cient γ̂G = Varg(hg )−1 Covg(hg, yg ). The estimators θ̂G and θ̂PL are numerically identical
for the case of matched pairs, but not for p �= 1/2. The main result of this section shows
that θ̂G is asymptotically equivalent to the partialled Lin estimator θ̂PL, and both are
asymptotically optimal.

Remark 3.20 (Intuition for efficiency). The estimator θ̂G uses within-group differences
of covariates h̄g1 − h̄g0 to predict within-group outcome differences Ȳ1g− Ȳ0g. Similar to
the partialled Lin strategy, by doing this we only measure the variation in covariates and
potential outcomes orthogonal to the stratification variables. This forces least squares
to compute a conditional variance-covariance trade-off, solving the optimal adjustment
problem in Definition 3.5. In particular, the proof of Theorem 3.23 shows that if D1:n ∼
Loc(ψ, p), then the adjustment coefficient

γ̂G = Varg(hg )−1 Covg(hg, yg )
p→ cp argmin

γ
E

[
Var

(
b− γ′h|ψ

)]
.

Remark 3.21. Imbens and Rubin (2015) propose θ̂G in the case of matched pairs p =
1/2. Their analysis uses a toy sampling model where the pairs themselves are drawn
“pre-matched” from a superpopulation. By contrast, we model the experimental units as
being sampled from a superpopulation, with units matched into data-dependent strata
post-sampling. This more realistic model complicates the analysis, producing different
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limiting variances and requiring different inference procedures. In a design-based set-
ting, Fogarty (2018) shows that the Imbens and Rubin (2015) estimator is weakly more
efficient than difference of means for matched pairs designs. By contrast, we extend this
estimator to a larger family of fine stratifications strictly containing matched pairs, and
show that it is asymptotically optimal among linearly adjusted estimators.

3.4.4 Tyranny-of-the-minority estimator Finally, we define tyranny-of-the-minority
(ToM) adjustment, extending Lin (2013). To do so, define the adjustment coefficient:

γ̂TM = Varn(ȟi )
−1

(
Covn(ȟi, Yi|Di = 1)

√
1 −p
p

+ Covn(ȟi, Yi|Di = 0)
√

p

1 −p
)

. (3.10)

Define the ToM estimator θ̂TM = θ̂− γ̂′
TM(h̄1 − h̄0 )cp. The main difference between the

ToM and partialled Lin adjustment coefficients is that γ̂TM estimates the conditional
variance E[Var(h|ψ)] only once, using the sample variance Varn(ȟi ) for the full experi-
mental sample. By contrast, partialled Lin estimates this term separately in each treat-
ment arm, using Varn(ȟi|Di = 1) and Varn(ȟi|Di = 0). Because of this, we expect θ̂TM to
be more stable than θ̂PL in small experiments.

Remark 3.22. Lu and Liu (2024) propose an alternate ToM regression adjustment for
stratified experiments. To compare the approaches, for propensity p = a/k define the
within-arm partialling ȟi1 = hi − a−1 ∑

i∈g Dihi and ȟi0 = hi − (k− a)−1 ∑
i∈g(1 −Di )hi.

Their estimator takes the form θ̂LL = θ̂− γ̂′
LL(h̄1 − h̄0 ). In our notation, their adjustment

coefficient γ̂LL = Ŝ−1
hh ŜhY has

Ŝhh =En
[
Diȟi1ȟ

′
i1

p2

a

a− 1
+ (1 −Di )ȟi0ȟ′

i0

(1 −p)2

k− a
k− a− 1

]
and similarly for ŜhY . Their approach is infeasible if a= 1 or a= k− 1. For example, this
prohibits its use in matched pairs and matched triples experiments.

3.4.5 Main result The main result of this section shows that all three estimators above
are asymptotically equivalent and efficient in the sense of Definition 3.5.

Theorem 3.23. Suppose Assumptions 3.1 and 3.14 hold. If D1:n ∼ Loc(ψ, p), then θ̂PL −
θ̂G = op(n−1/2 ) and θ̂PL − θ̂TM = op(n−1/2 ). We have

√
n(θ̂PL −ATE) ⇒ N (0, V ∗ ) with the

optimal variance

V ∗ = Var
(
c(X )

) + min
γ
E

[
Var

(
b− γ′h|ψ

)] +E
[
σ2

1 (X )
p

+ σ2
0 (X )

1 −p
]

.

Methods for asymptotically exact inference on the ATE using these estimators are
discussed in Section 4 below. Our simulations and empirical results show that the par-
tialled Lin, Group OLS, and ToM estimators behave very similarly in finite samples.
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3.5 Further adjustment for stratification variables

In this section, we provide modified versions of the previous estimators that allow fur-
ther adjustment for covariates z(ψ) that are functions of the stratification variables. As
discussed above, this cannot improve first-order efficiency but may improve finite sam-
ple performance by correcting for any remaining imbalances in ψ not controlled by the
stratification.

Denote zi = z(ψi ). For each estimator θ̂k above with k ∈ {FE, PL,G, TM}, we de-
fine a modified estimator of the form τ̂k = θ̂k − α̂′

k(z̄1 − z̄0 )cp. For the fixed effects

estimator, define τ̂FE to be the coefficient on Di in the regression Yi ∼ (1,Di, ȟi, zi ).
For the partialled Lin estimator, define τ̂PL to be the coefficient on Di in the regres-
sion Yi ∼ (1, ȟi, zi ) +Di(1, ȟi, zi ). Define the modified ToM estimator to be as in Equa-
tion (3.10), with (ȟi, zi ) in place of ȟi. Finally, define the modified group OLS estimator
τ̂G = θ̂G − α̂′

G(z̄1 − z̄0 )cp, with α̂G = α̂PL. Our next theorem shows that these estimators
are asymptotically equivalent to the original versions of each estimator that do not ad-
just for z(ψ). However, the simulations in Sections 5 and 6 show that they may perform
better in small experiments.

Theorem 3.24. Suppose Assumptions 3.1 and 3.14 hold, as well as Var(z) � 0 and
E[|z|2

2] <∞. Then if D1:n ∼ Loc(ψ, p), we have τ̂k = θ̂k + op(n−1/2 ) for k ∈ {FE, PL,G,

TM}. Each estimator has the form τ̂k = θ̂k−α̂′
k(z̄1 − z̄0 )cp with α̂FE

p→ argminαVar(f−α′z)

for f as in Theorem 3.15 and α̂PL, α̂G, α̂TM
p→ argminαVar(b− α′z).

From the second statement of the theorem, we can interpret the modified estima-
tors as taking a conservative approach that ignores stratification on ψ and adjusts for
imbalances in z(ψ) as if the experiment were completely randomized.

4. Inference

In this section, we provide asymptotically exact confidence intervals for the ATE in strat-
ified experiments using generic linearly adjusted estimators. Overcoverage is known to
be a problem for inference based on the usual Eicker–Huber–White (EHW) variance es-
timator in stratified experiments. For example, Bai, Romano, and Shaikh (2021) shows
that the EHW variance estimators for Y ∼ 1 + D + h and the fixed-effects regression
Y ∼ D + h + zn are asymptotically conservative for matched pairs designs if h = 0. To
the best of our knowledge, we give the first asymptotically exact inference methods for
covariate-adjusted (h �= 0) ATE estimation under general stratified designs. Our main
inference result applies to any estimator of the form θ̂ − γ̂′(h̄1 − h̄0 )cp + op(n−1/2 ). In
particular, this enables asymptotically exact inference on the ATE using any of the esti-
mators in this paper. Our confidence intervals are shorter than those produced by EHW
in the simulations and empirical application below, taking full advantage of the effi-
ciency gains from both stratification and covariate adjustment.

To define our inference methods, consider such an estimator θ̂(γ̂) = θ̂− γ̂′(h̄1 −h̄0 )cp

with γ̂
p→ γ. Define the augmented potential outcomes Yai (d) = Yi(d) − cpγ̂

′hi for d ∈
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{0, 1} and the augmented outcome Yai = Yi − cpγ̂′hi. Then apparently

θ̂(γ̂) = Ȳ1 − Ȳ0 − cpγ̂′(h̄1 − h̄0 ) = Ȳ a1 − Ȳ a0 . (4.1)

Our strategy is to apply the inference results of Cytrynbaum (2023) for difference of
means estimation θ̂ = Ȳ1 − Ȳ0 to the difference of augmented potential outcomes
Ȳ a1 − Ȳ a0 . To do so, let Gn denote the set of groups in Definition 2.1. For each g ∈ Gn, define
the group centroid ψ̄g = |g|−1 ∑

i∈g ψi. Let ν : Gn → Gn be a bijective matching between
groups satisfying ν(g) �= g, ν2 = Id, and the homogeneity condition

1
n

∑
g∈Gn

|ψ̄g − ψ̄ν(g)|22 = op(1). (4.2)

In practice, ν is obtained by simply matching the group centroids ψ̄g into pairs using the
Derigs (1988) matching algorithm. Let Gνn = {g ∪ ν(g) : g ∈ Gn} be the unions of paired
groups formed by this matching. Define a(g) = ∑

i∈g Di and k(g) = |g|. Finally, define
the variance estimator components:

v̂1 = n−1
∑
g∈Gνn

1
a(g) − 1

∑
i �=j∈g

Yai Y
a
j DiDj(1 −p)

p2 ,

v̂0 = n−1
∑
g∈Gνn

1

(k− a)(g) − 1

∑
i �=j∈g

Yai Y
a
j (1 −Di )(1 −Dj )p

(1 −p)2 ,

v̂10 = n−1
∑
g∈Gn

k

a(k− a)
(g)

∑
i,j∈g

Yai Y
a
j Di(1 −Dj ).

Next, define the variance estimator:

V̂ = Varn

(
(Di −p)Yai
p−p2

)
− v̂1 − v̂0 − 2̂v10. (4.3)

Our inference strategy begins with the sample variance of the adjusted estimator,
which is consistent for the asymptotic variance of θ̂adj under an i.i.d. design, but too
large under stratified designs. We correct this sample variance using the estimators
above, which measure how well the stratification variables predict augmented outcomes
in local regions of the covariate space. This section’s main result shows that V̂ is consis-
tent for the limiting variance of Theorem 3.4, enabling asymptotically exact inference on
the ATE using adjusted estimators.

Theorem 4.1 (Inference). Under the conditions of Theorem 3.4, ifD1:n ∼ Loc(ψ, p), then
V̂ = V + op(1).

By Theorem 4.1 and our previous asymptotic results in Theorem 3.4, the confidence
interval Ĉ = [θ̂(γ̂)± V̂ 1/2c1−α/2/

√
n] with cα =�−1(α) is asymptotically exact in the sense

that P(ATE ∈ Ĉ ) = 1 − α+ o(1).
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5. Simulations

In this section, we use simulations to test the finite-sample performance of the estima-
tors studied above. We consider quadratic outcome models of the form

Yi(d) =ψ′
iQdψi +ψ′

iLd + cd · u(Xi ) + εdi E
[
εdi |Xi

] = 0

for d ∈ {0, 1}. The component ui = u(Xi ) represents covariate signal that is independent
of the stratification variables ψ(Xi ). After implementing the design D1:n ∼ Loc(ψ, p),
we receive access to scalar covariates hi that are correlated with both ψi and Yi(d). In
particular, suppose that hi =ψ′

iQhψi+ψ′
iLh+ui with E[ui|ψi] = 0. In the following sim-

ulations, we let ψi ∼N(0, Im ), ui ∼N(0, 1), and εdi ∼N(0, 1/10) with (ψi, ui, εdi ) jointly
independent. We use treatment proportions p = 2/3 unless otherwise specified. With
m≡ dim(ψ), let A ∈ R

m×m have Aij = 1 for i �= j and Aii = 0. We simulate the following
DGPs:

Model 1: Quadratic coefficients Qh = (1/m2 )A and Q0 =Q1 = (1/m)A. Linear co-
efficients L0 = 1m, L1 = 21m, Lh = 1m. Regressor signal c1 = c0 = −3.

Model 2: As in Model 1 but c0 = −4 and c1 = −1.

Model 3: As in Model 2 but p= 1/2.

Model 4: As in Model 1 but c0 = 2 and c1 = 4.

Model 5: As in Model 1 but c0 = 2 and c1 = 4 and p= 1/2.

Model 6: As in Model 1 butQh = (1/100)A.

We begin by comparing the efficiency properties of different linearly adjusted es-
timators. Unadj refers to simple difference of means (unadjusted). The Lin estimator is
studied in Theorem 3.2. Naive refers to the noninteracted regressionY ∼ (1,D, h), (The-
orem A.4). FE refers to the fixed-effects estimator (Theorem 3.15) and Plin the partialled
Lin estimator (Theorem 3.23). GO refers to Group OLS and ToM refers to Tyranny-of-
the-Minority estimation (Theorem 3.23). Strata controls refer to modified versions of
each of the previous estimators that further adjust for parametric strata controls z(ψ),
as discussed in Section 3.5. In our simulations, we set z(ψ) = ψ. Ad refers to an adap-
tive5 estimator that sets θ̂adj = θ̂L if V̂ (γ̂L ) ≤ V̂ (γ̂PL ) and θ̂adj = θ̂PL otherwise,6 including
parametric controls z(ψ) =ψ in both cases.

Table 1 studies finite sample efficiency. We present the mean squared error (MSE)
ratio, relative to unadjusted estimation, for each of the adjusted estimators above. The
bottom line of the table reports the excess risk Rk of each estimator k relative to the opti-
mal estimator. To define this, let MSEk,s be the relative MSE of estimator k in simulation

5This estimator is pointwise asymptotically equivalent to θ̂PL. Issues with post model-selection inference
(e.g., Leeb and Potscher (2005)) appear to be less worrying here, since even under the fixed alternative
γ∗ �= γL, the Lin estimator is still

√
n-consistent and asymptotically unbiased.

6We could also use a cross-fit version of V̂ (γ) to reduce bias. However, the in-sample criterion performed
quite well in our simulations.
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Table 1. Ratio of MSEs (%), adjusted vs. unadjusted estimation.

No strata controls Strata controls z(ψ)

(n, dim(ψ)) Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM Ad

(600, 2) 1 100 113 102 49 48 49 48 36 35 35 37 37 36 34
2 100 126 102 64 57 58 57 60 46 52 47 47 47 45
3 100 116 116 38 38 38 38 48 48 36 36 37 36 37
4 100 27 31 31 27 27 27 26 26 38 32 33 32 26
5 100 28 28 18 18 18 18 21 21 19 19 19 19 19
6 100 100 100 11 11 11 11 7 7 9 9 9 9 7

(1200, 2) 1 100 114 103 44 44 44 44 35 34 31 33 33 33 32
2 100 126 102 60 56 56 56 61 47 50 47 46 47 45
3 100 116 116 38 38 38 38 48 48 37 37 37 37 37
4 100 26 30 29 25 25 25 23 24 36 30 30 30 24
5 100 28 28 17 17 17 17 20 20 17 18 17 18 18
6 100 101 101 9 9 9 9 7 7 8 8 8 8 7

(1200, 5) 1 100 142 127 85 84 84 84 25 24 41 46 55 46 24
2 100 145 123 94 86 87 86 45 34 57 54 62 54 34
3 100 137 137 81 81 81 81 40 40 54 54 57 54 40
4 100 27 31 31 27 27 27 25 20 54 45 49 45 20
5 100 32 32 24 24 24 24 18 18 38 38 39 38 18
6 100 138 138 67 67 67 67 15 15 36 36 39 37 15

Rk 73 65 60 17 15 15 15 5 2 10 8 10 8 0.2

s. Then we set Rk = (1/S)
∑
s(MSEk,s−minj MSEj,s ), averaging over all simulations in

the table. All results are calculated using 2000 Monte Carlo repetitions.
In models 1, 2, and 3, both Naive and Lin style linear adjustment are strictly in-

efficient relative to unadjusted estimation. These models have marginal covariance
Cov(Y (d), h)> 0 but conditional covariance E[Cov(Y (d), h|ψ)]< 0, conditional on the
stratification variables. Because of this, the optimal adjustment coefficient γ∗ < 0, while
the Naive and Lin regressions estimate positive adjustment coefficients γN , γL > 0, lead-
ing to even worse performance than unadjusted estimation in some cases. For Models
4 and 5, the Naive and Lin methods are competitive with the generic efficient meth-
ods from Section 3.4. This is because in these cases we made it so that Cov(Y (d), h) ≈
E[Cov(Y (d), h|ψ)], so that “by chance” γ∗ is close to γN and γL. However, the paramet-
ric coefficients γN and γL are estimated more precisely than the semiparametric object
γ∗ = E[Var(h|ψ)]−1E[Cov(h, b|ψ)]. For Model 6, Lin with z(ψ) = ψ controls is (approxi-
mately) optimal by Theorem 3.9, since E[w|ψ] is (approximately) linear in ψ.

Summarizing our findings, the Lin, Plin, and Naive estimators with parametric
Strata controls z(ψ) = ψ had low excess risk across specifications, while the Ad esti-
mator was the most efficient overall. The Naive and Lin estimators without strata con-
trols or within-stratum partialling had large MSE. The Plin, GO, and ToM estimators
had similar MSE across model specifications. These generic methods performed the
best in regimes with large n, small dim(ψ), and nonlinear E[h|ψ]. In these cases, the
gap γL − γ∗ between the suboptimal Lin coefficient and optimal coefficient γ∗ domi-
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Table 2. Properties of inference.

No strata controls Strata controls z(ψ)

Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM Ad

%�CI Length
vs. Unadj

1 0 17 11 −5 −5 −5 −5 −49 −50 −34 −29 −26 −29 −50
2 0 18 10 −3 −4 −4 −4 −33 −41 −25 −25 −22 −25 −41
3 0 16 16 −6 −6 −6 −6 −36 −36 −24 −24 −24 −24 −36
4 0 −46 −43 −42 −46 −46 −46 −50 −55 −22 −31 −26 −30 −55
5 0 −44 −44 −49 −49 −49 −49 −56 −56 −34 −34 −31 −34 −56
6 0 16 16 −12 −12 −12 −12 −59 −59 −35 −35 −35 −35 −59

Coverage
(Exact)

1 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.95 0.96 0.95
2 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.95 0.96 0.95 0.96 0.95 0.96 0.96
3 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
4 0.95 0.95 0.94 0.96 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.95
5 0.94 0.95 0.95 0.96 0.96 0.96 0.96 0.95 0.95 0.96 0.96 0.97 0.96 0.95
6 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.96 0.97 0.96

Coverage
(EHW)

1 0.99 0.95 0.96 0.97 0.99 0.99 0.98 0.99 0.97
2 0.99 0.95 0.95 0.94 0.99 0.98 0.93 0.98 0.96
3 1.00 0.96 0.95 0.96 1.00 0.99 0.93 0.98 0.97
4 0.99 0.99 0.90 0.98 1.00 0.97 0.68 0.98 0.97
5 0.99 0.97 0.90 0.98 1.00 0.96 0.65 0.99 0.99
6 1.00 0.97 0.96 0.96 1.00 0.99 0.97 1.00 0.99

nates the additional variability Var(γ̂∗ )>Var(γ̂L ) required to estimate γ∗ (this variabil-
ity increases with dim(ψ)). For example, Plin with z(ψ) controls performs the best when
(n, dim(ψ)) = (1200, 2), but Lin with z(ψ) controls is much better when dim(ψ) = 5. The
Ad estimator used a variance pretest to choose between Plin and Lin (including z(ψ)
controls), allowing it to perform well in both regimes.

Table 2 reports finite-sample efficiency and coverage properties of the asymptoti-
cally exact inference methods developed in Section 4. We let n = 1200 and dim(ψ) = 5.
The first panel shows % change in confidence interval length relative to unadjusted esti-
mation. All confidence intervals are computed using the method in Theorem 4.1. We see
that the relative efficiency of different estimators are reflected by our inference methods.
In particular, asymptotically exact inference allows researchers to report shorter confi-
dence intervals when a more efficient adjustment method is used. In the second panel,
we show coverage probabilities for our asymptotically exact confidence interval across
a range of linearly adjusted estimators. The final panel shows coverage probabilities for
confidence intervals based on the usual HC2 variance estimator, where applicable. The
HC2-based confidence intervals significantly overcover.

6. Empirical application

In this section, we apply our methods to the experiment in Baysan (2022a),7 who esti-
mates the effect of a political information campaign on support for a 2017 Turkish refer-

7The data is available from Baysan (2022b).
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Table 3. Empirical results.

No strata controls Strata controls z(ψ)

Model Unadj Naive Lin FE Plin GO ToM Naive Lin FE Plin GO ToM

θ̂adj −0.0054 0.0040 0.0047 0.0041 0.0021 0.0034 0.0021 0.0041 0.0040 0.0038 0.0037 0.0031 0.0019
SE 0.0088 0.0074 0.0074 0.0074 0.0078 0.0077 0.0081 0.0074 0.0073 0.0077 0.0076 0.0078 0.0083
HC2 0.0155 0.0075 0.0073 0.0075 0.0149 0.0075 0.0070 0.0736 0.0071

endum removing checks and balances on executive power. The campaign was adminis-
tered by the opposition Republican People’s Party (CHP), who opposed the referendum.
Randomization was performed at the neighborhood level, stratified on quartiles of CHP
vote share in the previous 2015 elections. The main outcome is the “No” vote share in
the 2017 referendum.8 Due to the cost of administering the campaign, p = 2/11 out of
n = 550 total neighborhoods were treated. In the original analysis, Baysan (2022a) per-
formed noninteracted covariate adjustment (Theorem A.4) for h(X ) = number of regis-
tered voters, number of valid votes, number of votes for the CHP in 2015, CHP vote share
in 2015, voter turnout, and CHP vote share quartile fixed effects.

In the first block of Table 3, we replicate the neighborhood-level analysis of Baysan
(2022a). θ̂adj is the point estimate from each adjustment strategy, SE is the asymptot-
ically exact standard error from Section 4, and EHW is the usual robust standard error
(HC2). Estimates in the “strata controls z(ψ)” section include quartile fixed effects, while
the leftmost section does not. The results in Section 3.3 show that Lin adjustment with
quartile fixed effects is efficient in this case, and indeed this has the smallest estimated
standard error. The generic efficient estimators have slightly larger SE. The asymptoti-
cally exact standard errors from Section 4 are generally similar to or smaller than EHW,
except for the Lin, FE, and Plin estimators with z(ψ) controls. However, our simulation
also showed that EHW standard errors may severely undercover in these cases.9

Overall, changing the adjustment method did not have an economically meaningful
effect on the conclusions of the study, and we recover the null effect of Baysan (2022a) in
all cases. The covariate hk = “CHP vote share in 2015” is highly predictive of Y = “CHP
vote share in 2017,” so adjusting for this variable ex post provides a modest variance
reduction even after stratifying on 2015 vote share quartiles. However, the estimated op-
timal coefficient γ∗

k ≈ 0.27 and Lin coefficient γL,k ≈ 0.31 are quite similar, so (ineffi-
cient) Lin adjustment still performs quite well. The other covariates such as hj = “voter
turnout” are very weak predictors of outcomes, so changing the adjustment coefficient
on these variables does not matter much.

Next, we ask how each estimator would have performed in the experiment in Baysan
(2022a) under counterfactual randomization procedures, such as fine stratification.10 To

8Baysan (2022a) estimates effects of the campaign on vote share at both the ballot box and neighborhood
level. We focus on the neighborhood level effects.

9We also note that Bai, Tabord-Meehan, and Liu (2024) have found the EHW standard error from a linear
regression with block fixed effects to be potentially invalid in a related problem.

10Algorithms and inference methods for fine stratification with p �= 1/2 have only been developed re-
cently, for example, Bai (2022) and Cytrynbaum (2023).
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do so, we follow the nonparametric imputation strategy in Bai (2022), defining poten-
tial outcomes Ŷi(d) = Yi if Di = d and matching imputation Ŷi(d) = Yj(i)(d) with j(i) =
argminj:Dj=d |Xi −Xj|2 if Di �= d. We let the matching variables Xi include all controls

used in the analysis of Baysan (2022a). Given the imputed data (Xi, Ŷi(0), Ŷi(1))ni=1, we
do the following simulation exercise: (1) draw treatment assignments D1:n ∼ Loc(ψ, p),
(2) reveal outcomes Ŷi = Ŷi(Di ), and (3) form each estimator θ̂adj. We report average
point estimates and standard errors over N = 2000 Monte Carlo repetitions of this pro-
cedure.

The first block of Table 4 uses this imputation procedure to reproduce the empirical
results in Table 3, stratifying by quartiles of CHP vote share and adjusting for exactly the
same covariates. The standard errors are very similar to those in the empirical analysis,
which provides some validation for this imputation exercise. In the second block of Ta-
ble 4, we simulate a design with fine stratification on 2015 CHP vote share, rather than
just stratifying by quartiles of the vote share as in Baysan (2022a). We used a matched
11-tuples design, letting D1:n ∼ Loc(ψ, p) for p = 2/11 and ψ = (2015 CHP vote share).
Covariates h(X ) are as above, with z(ψ) = ψ. In the third block, we simulate a matched
pairs design D1:n ∼ Loc(ψ, 1/2). Note that p = 1/2 was infeasible in the original ex-
periment due to the high cost of treatment. The last block uses the design D1:n ∼
Loc(ψalt, p) for ψalt = (CHP vote share, Num. of registered voters, Num. of valid votes),
p= 2/11, and covariates h= Turnout.

We make some brief observations about this simulation exercise. First, note that the
Naive and Lin adjustment are strictly less efficient than unadjusted estimation under
simulated fine stratification, consistent with Theorems 3.2 and Section A.4. Lin and par-
tialled Lin with z(ψ) controls are the most efficient. Adjustment for extra covariates h
does not significantly improve efficiency relative to the baseline efficiency gain from
finely stratifying on ψ and adjusting for z(ψ) ex post. Using a matched pairs design
p= 1/2 improves efficiency, though the improvement is small considering that this de-
sign would require providing the information campaign to 175 extra neighborhoods. Fi-
nally, fine stratification on ψalt significantly reduces efficiency. This is because the extra
covariates are not very predictive of outcomes, but stratifying on these covariates force
us to use worse matches on the important covariate ψ= (2015 CHP vote share).

7. Discussion and recommendations for practice

Stratified randomization and covariate adjustment are both commonly used in the de-
sign and analysis of experiments. In general, experimenters should stratify on a few vari-
ables ψ(X ) expected to be most predictive of outcomes at design time, and plan to ad-
just for imbalances in the remaining covariates h(X ) ex post, as discussed in Section 3.2.
Our analysis showed that under stratified randomization, the usual regression adjusted
estimators can be inefficient. Motivated by this, we provide feasible alternatives that are
asymptotically optimal in the class of linearly adjusted estimators. We conclude by giv-
ing some recommendations for empirical practice based on the theory, simulations, and
empirical results above.
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We recommend that applied researchers use either (1) the Lin estimator with para-
metric strata controls z(ψ) (e.g., z(ψ) =ψ) or (2) the partialled Lin estimator with para-
metric controls z(ψ), since these estimators performed the best across our simulations
and empirical application. Lin with parametric controls z(ψ) is efficient under a rich co-
variates condition (Section 3.3), while partialled Lin is generically efficient (Section 3.5).
Both estimators are robust to treatment effect heterogeneity, while the strata fixed- ef-
fects estimator (Theorem 3.15) is not unless p= 1/2.

In our simulations, partialled Lin had good finite-sample performance in regimes
where nwas large relative to dim(ψ), especially whenE[h|ψ] was very nonlinear. Lin with
z(ψ) =ψ controls performed better when dim(ψ) was large relative to n, or if E[h|ψ] was
approximately linear. To decide which regime we are in, we suggest model selection us-
ing a variance pretest, choosing Lin if V̂ (γ̂L ) ≤ V̂ (γ̂PL ) and partialled Lin otherwise. This
adaptive estimator (Ad in Section 6) was efficient in both regimes and had good cover-
age properties. We leave a more general study of such post model-selection estimators
in this context to future work.

Regardless of the adjustment strategy, we recommend using the asymptotically exact
confidence intervals provided in Section 4. Our simulations showed close to nominal
coverage for these confidence intervals across all considered estimators. By contrast,
confidence intervals based on the HC2 robust variance estimator often had significant
overcoverage.
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