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Appendix A: Statistical properties of RIPW estimators

A.1 Setup and preliminaries

We will consider the more general setting in Section 3 since it nests the setting in Sec-

tion 2. For ease of reference, we state the framework here, along with the list of assump-

tions some of which are weaker than those stated in the main text.

Suppose the ith unit is characterized by potential outcomes Y i(1) = (Yi1(1), � � � ,

YiT (1)), Y i(0) = (Yi1(0), � � � , YiT (0)), the treatment path W i = (Wi1, � � � ,WiT ), and a set

of covariates Xi = (Xi1, � � � ,XiT ). The vector of time-varying treatment effects for unit

i is denoted by τ i = (τi1, � � � , τiT ) = Y i(1) − Y i(0). We treat covariates as fixed and con-

sider {(Y i(1), Y i(0),W i ) : i ∈ [n]} as a random vector (jointly) drawn from a distribution

(conditional on {Xi : i ∈ [n]}). We let P denote the joint distribution of the entire ran-

dom vector {(Y i(1), Y i(0),W i ) : i ∈ [n]} (conditional on {Xi : i ∈ [n]}) and E denote the

expectation over this distribution.

The assignment model is characterized by the generalized propensity score defined

as

πi(w) = P(W i =w).
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The outcome model is characterized by {(mi, νi ) : i ∈ [n]} wheremi = (mi1, � � � ,miT ), νi =
(νi1, � � � , νiT ),

mit = E
[
Yit(0)

]− 1
n

n∑
i=1

E
[
Yit(0)

]− 1
T

T∑
t=1

E
[
Yit(0)

]+ 1
nT

n∑
i=1

T∑
t=1

E
[
Yit(0)

]
,

τit = E
[
Yit(1)

]−E
[
Yit(0)

]
,

νit = τit − τ∗(ξ).

Let {(π̂i, μ̂i(0), μ̂i(1)) : i ∈ [n]} be an estimate of {(πi, μi(0), μi(1))}. Further, let m̂i =
(m̂i1, � � � , m̂iT ) and ν̂i = (ν̂i1, � � � , ν̂iT ), where

m̂it � μ̂it(0) − 1
n

n∑
i=1

μ̂it(0) − 1
T

T∑
t=1

μ̂it(0) + 1
nT

n∑
i=1

T∑
t=1

μ̂it(0),

τ̂it � μ̂it(1) − μ̂it(0),

ν̂it � τ̂it −
T∑
t=1

ξt

n

n∑
i=1

τ̂it .

The results in Section 2 are given by the special case where π̂i =πi, m̂i = ν̂i = 0T .
Define the modified potential outcomes as

Ỹ i(0) = Y i(0) − m̂i, Ỹ i(1) = Y i(1) − m̂i − ν̂i,

and the modified treatment effects as

τ̃ i = E
[
Ỹ i(1) − Ỹ i(0)

]= τ i −E[ν̂i]. (A.1)

By definition,

τ∗(ξ) =
T∑
t=1

ξt

n

n∑
i=1

τit =
T∑
t=1

ξt

n

n∑
i=1

τ̃it . (A.2)

Then the modified observed outcome is Ỹ i = (Ỹi1, � � � , ỸiT ) where

Ỹit = Ỹit(1)Wit + Ỹit(0)(1 −Wit ) = Yit − m̂it − ν̂itWit .

With a reshaped distribution� on {0, 1}T , the RIPW estimator is defined as

τ̂(�) � arg min
τ,μ,

∑
i αi=

∑
t λt=0

n∑
i=1

T∑
t=1

(Ỹit −μ− αi − λt −Witτ)2 �(W i )
π̂i(W i )

.

We will suppress ξ from τ∗(ξ) and� from τ̂(�) throughout the section.
Since τ̂(�) remains invariant if we replace Yit by Yit −μ′ − α′

i − λ′
t , we assume that

Y i(0) =mi ⇐⇒ Ỹ i(0) =mi − m̂i, (A.3)
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by setting μ′ = (1/nT )
∑n
i=1
∑T
t=1 E[Yit(0)], α′

i = (1/T )
∑T
t=1(E[Yit(0)] − μ′ ), and λ′

t =
(1/n)

∑n
i=1(E[Yit(0)] −μ′ ).

The accuracy of the assignment model and the outcome model for unit i are defined
as

δπi =
√
E
[∣∣π̂i(W i ) −πi(W i )

∣∣2], δyi =
√
E
[‖m̂i −mi‖2

2 + ‖ν̂i − νi‖2
2

]
.

In the proofs, we need the conditional version of these measures


πi =
√
E
[∣∣π̂i(W i ) −πi(W i )

∣∣2|π̂i
]2

, 
yi =
√
E
[‖m̂i −mi‖2

2|m̂i
]+E

[‖ν̂i − νi‖2
2|ν̂i
]
.

We then define the unconditional and conditional average accuracy measures

δ̄π =
√√√√1
n

n∑
i=1

δ2
πi, δ̄y =

√√√√1
n

n∑
i=1

δ2
yi,

and


̄π =
√√√√1
n

n∑
i=1


2
πi, 
̄y =

√√√√1
n

n∑
i=1


2
yi.

By law of iterated expectations,

E
[

̄2
π

]= δ̄2
π , E

[

̄2
y

]= δ̄2
y .

By Markov inequality,


̄π =OP(δ̄π ), 
̄y =OP(δ̄y ). (A.4)

Therefore, if we can prove the result only assuming 
̄π
̄y = o(1) conditional on
(π̂i, m̂i, ν̂i )ni=1, we can prove it assuming that δ̄πδ̄y = o(1) as in Section 3.

To be self-contained, we list all quantities involved in the DATE equation and the
asymptotically linear expansion of the RIPW estimator. Let J = IT − 1T1�

T /T ,

�i =�(W i )/π̂i(W i ),

�θ � 1
n

n∑
i=1

�i, �ww � 1
n

n∑
i=1

�iW
�
i JW i, �wy � 1

n

n∑
i=1

�iW
�
i JỸ i,

�w � 1
n

n∑
i=1

�iJW i, � y � 1
n

n∑
i=1

�iJỸ i,

and

Vi =�i
{(
E[�wy ] − τ∗

E[�ww]
)− (E[� y ] − τ∗

E[�w]
)�
JW i

+E[�θ]W�
i J
(
Ỹ i − τ∗W i

)−E[�w]�J
(
Ỹ i − τ∗W i

)}
.

This coincides with the definition in Theorem 2.2 when π̂i =πi and m̂i = ν̂i = 0T .
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Finally, we state the core assumptions, some of which are repeated and combined
for ease of reference and the rest of which are weakened. We start by restating the unit-
specific mean ignorability assumption.

Assumption A.1. For each i ∈ [n],

E
[(
Y i(1), Y i(0)

)
|W i

]= E
[(
Y i(1), Y i(0)

)]
. (A.5)

Next, we combine the overlap condition for the true propensity scores (Assump-
tion 2.2) and that for the estimated propensity scores (Assumption 3.2) with the constant
c replaced by cπ to be more informative in the proofs.

Assumption A.2. There exists a universal constant c > 0 and a nonstochastic subset S∗ ⊂
{0, 1}T with at least two elements and at least one element not in {0T , 1T }, such that

π̂i(w)> cπ , πi(w)> cπ , ∀w ∈ S
∗, i ∈ [n], almost surely. (A.6)

Lastly, we state the following assumption that unifies and weakens Assumptions 2.1,
2.3, and 3.3.

Assumption A.3. There exists q ∈ (0, 1],

1

n2

n∑
i=1

ρi
{
E
∥∥Ỹ i(1)

∥∥2
2 +E

∥∥Ỹ i(0)
∥∥2

2 + 1
}=O(n−q),

and

1
n

n∑
i=1

{
E
∥∥Ỹ i(1)

∥∥2
2 +E

∥∥Ỹ i(0)
∥∥2

2

}=O(1).

We close this section by a basic property of the maximal correlation.

Lemma A.1. Let Zi = (Y i(1), Y i(0), Xi ) and fi be any deterministic function on the do-
main of Zi. Then

Var

[
n∑
i=1

fi(Zi )
]

≤ 1
2

n∑
i=1

Var
[
fi(Zi )

]
ρi.

Proof. By definition of ρij ,

Cov
(
fi(Zi ), fj(Zj )

)≤ ρij√Var
[
fi(Zi )

]
Var
[
fj(Zj )

]≤ ρij

2

{
Var
[
fi(Zi )

]+ Var
[
fj(Zj )

]}
.

Thus,

Var

[
n∑
i=1

fi(Zi )
]

=
n∑

i,j=1

Cov
(
fi(Zi ), fj(Zj )

)

≤
n∑

i,j=1

ρij

2

{
Var
[
fi(Zi )

]+ Var
[
fj(Zj )

]}=
n∑
i=1

Var
[
fi(Zi )

]
ρi.
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A.2 A nonstochastic formula of RIPW estimators

Theorem A.1. With the same notation as Theorem 2.2, τ̂ = N /D, where

N = �wy�θ − ��
w� y , D = �ww�θ − ��

w�w. (A.7)

Proof. Let γ = (λ1, � � � , λt ) be any vector with γ�1T = 0. First, we derive the optimum
μ̂(γ , τ), α̂i(γ , τ) given any values of γ and τ. Recall that

(
μ̂(γ , τ), α̂i(γ , τ)

)= arg min∑
i αi=0

n∑
i=1

(
T∑
t=1

(Ỹit −μ− αi − λt −Witτ)2

)
�i.

Since the weight �i only depends on i, it is easy to see that

μ̂(γ , τ) + α̂i(γ , τ) = 1
T

T∑
t=1

(Ỹit − λt −Witτ), μ̂(γ , τ) = 1
nT

n∑
i=1

T∑
t=1

(Ỹit − λt −Witτ).

As a result,

T∑
t=1

(
Ỹit − μ̂(γ , μ) − α̂i(γ , μ) − λt −Witτ

)2

=
∥∥∥∥(Ỹ i − γ −W iτ) − 1T1�

T

T
(Ỹ i − γ −W iτ)

∥∥∥∥
2

2

= ∥∥J(Ỹ i − γ −W iτ)
∥∥2

2.

This yields a profile loss function for γ and τ:

(γ̂ , τ̂) = arg min
γ�1T=0

n∑
i=1

∥∥J(Ỹ i − γ −W iτ)
∥∥2

2�i = arg min
γ�1T=0

n∑
i=1

∥∥J(Ỹ i −W iτ) − γ∥∥2
2�i,

where the last equality uses the fact that Jγ = γ . Given τ, the optimizer γ̂(τ) is simply
the weighted average of {J(Ỹ i −W iτ)}ni=1 in absence of the constraint γ�1T = 0, that is,

γ̂(τ) =

n∑
i=1

�iJ(Ỹ i −W iτ)

n∑
i=1

�i

= � y

�θ
− �w

�θ
τ.

Noting that γ̂(τ)�1T = 0 since J1T = 0, γ̂(τ) is also the minimizer of the constrained
problem, that is,

γ̂(τ) = arg min
γ�1T=0

n∑
i=1

∥∥J(Ỹ i −W iτ) − γ∥∥2
2�i.
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Plugging in γ̂(τ) yields a profile loss function for τ,

τ̂ = arg min
n∑
i=1

∥∥J(Ỹ i −W iτ) − γ̂(τ)
∥∥2

2�i �L(τ).

A direct calculation shows that

L′(τ)
2n

= 1
n

n∑
i=1

�i

(
−JW i + �w

�θ

)�(
J(Ỹ i −W iτ) − � y

�θ
+ �w

�θ
τ

)

= 1
n

{
n∑
i=1

�i

(
JW i − �w

�θ

)�(
JW i − �w

�θ

)}
τ− 1

n

{
n∑
i=1

�i

(
JW i − �w

�θ

)�(
JỸ i − � y

�θ

)}

=
{
�ww − ��

w�w

�θ

}
τ−

{
�wy − ��

w� y

�θ

}

Since L(τ) is a convex quadratic function of τ, the first-order condition is sufficient and
necessary to determine the optimality. The proof is then completed by solving L′(τ̂) =
0.

A.3 Statistical properties of RIPW estimators with deterministic (π̂i, m̂i, ν̂i )

A.3.1 Asymptotic linear expansion of RIPW estimators As a warm-up, we assume that
(π̂i, m̂i, ν̂i )ni=1 are deterministic. This, for example, includes the pure design-based in-
ference where π̂i = πi and m̂i = ν̂i = 0. In this case, the measures of accuracy can be
simplified as


πi =
√
E
[
π̂i(W i ) −πi(W i )

]2
, 
yi =

√
‖m̂i −mi‖2

2 + ‖ν̂i − νi‖2
2. (A.8)

As a result, (
πi, 
yi ) are deterministic.
We start by a lemma showing that �θ, �wy , �ww, �w, � y concentrate around their

means. For notational convenience, we let Var(Z ) denote E‖Z − E[Z]‖2
2 for a random

vector Z.

Lemma A.2. Under Assumptions A.2 and A.3,

∣∣E[�θ]
∣∣+ ∣∣E[�wy ]

∣∣+ ∣∣E[�ww]
∣∣+ ∥∥E[�w]

∥∥
2 + ∥∥E[� y ]

∥∥
2 =O(1),

and

Var(�θ ) + Var(�wy ) + Var(�ww ) + Var(�w ) + Var(� y ) =O(n−q).
As a consequence,

∣∣�θ −E[�θ]
∣∣+ ∣∣�wy −E[�wy ]

∣∣+ ∣∣�ww −E[�ww]
∣∣+ ∥∥�w −E[�w]

∥∥
2 + ∥∥� y −E[� y ]

∥∥
2

=OP

(
n−q/2).
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Proof. By Assumption A.2, �i ≤ 1/cπ almost surely. Moreover, ‖W i‖2 ≤ √
T since Wit ∈

{0, 1}. Thus,

‖�w‖2 ≤
√
T

cπ
, |�ww| ≤ T

cπ
, |�θ| ≤ 1

cπ
=⇒ E‖�w‖2 +E|�ww| +E|�θ| =O(1).

Next, we derive bounds for (E[�wy ])2 and ‖E[� y ]‖2
2 separately. For (E[�wy ])2,

(
E[�wy ]

)2 ≤
(

1
n

n∑
i=1

E
[
�iW

�
i JỸ i

])2

≤ 1
n

n∑
i=1

E
[
�iW

�
i JỸ i

]2

≤ 1

nc2
π

n∑
i=1

E
[
W�
i JỸ i

]2 ≤ T

nc2
π

n∑
i=1

E‖Ỹ i‖2
2

≤ T

nc2
π

n∑
i=1

{
E
∥∥Ỹ i(0)

∥∥2
2 +E

∥∥Ỹ i(1)
∥∥2

2

}

=O(1),

where the last step follows from the Assumption A.3. For ‖E[� y ]‖2
2,

∥∥E[� y ]
∥∥2

2 ≤ 1
n

n∑
i=1

(
E[�iJỸ i]

)2 ≤ 1

nc2
π

n∑
i=1

‖Ỹ i‖2
2

≤ 1

nc2
π

n∑
i=1

{
E
∥∥Ỹ i(0)

∥∥2
2 +E

∥∥Ỹ i(1)
∥∥2

2

}

=O(1),

where the last step follows from the Assumption A.3. Putting the pieces together, the
bound on the sum of expectations is proved.

Next, we turn to the bound on the variances. By Lemma A.1,

Var(�θ ) ≤ 1

n2

n∑
i=1

Var(�i )ρi ≤ 1

n2c2
π

n∑
i=1

ρi.

Assumption A.2 implies that

1

n2

n∑
i=1

ρi =O
(
n−q).

Therefore, Var(�θ ) =O(n−q ). For �ww,

Var(�ww ) ≤ 1

n2

n∑
i=1

Var
(
�iW

�
i JW i

)
ρi ≤ 1

n2

n∑
i=1

E
(
�iW

�
i JW i

)2
ρi

≤ 1

n2c2
π

n∑
i=1

E‖W i‖2
2ρi ≤

T

n2c2
π

n∑
i=1

ρi =O
(
n−q),
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where the last equality uses the fact that ‖W i‖2 ≤ √
T . For �wy ,

Var(�wy ) ≤ 1

n2

n∑
i=1

Var
(
�iW

�
i JỸ i

)
ρi ≤ 1

n2

n∑
i=1

E
(
�iW

�
i JỸ i

)2
ρi

(i)≤ 1

n2c2
π

n∑
i=1

E
[‖W i‖2

2 · ‖Ỹ i‖2
2
]
ρi

(ii)≤ T

n2c2
π

n∑
i=1

(
E
∥∥Ỹ i(1)

∥∥2
2 +E

∥∥Ỹ i(0)
∥∥2

2

)
ρi

(iii)= O
(
n−q),

where (i) follows from the Cauchy–Schwarz inequality and that ‖J‖op = 1, (ii) is ob-
tained from the fact that ‖W i‖2

2 ≤ T and Ỹ i ∈ {Ỹ i(1), Ỹ i(0)}, and (iii) follows from As-
sumption A.3.

For �w, recall that Var(�w ) is the sum of the variance of each coordinate of �w. By
Lemma A.1,

Var(�w ) ≤ 1

n2

n∑
i=1

Var(�iJW i )ρi ≤ 1

n2

n∑
i=1

E‖�iJW i‖2
2ρi

≤ 1

n2c2
π

n∑
i=1

E‖W i‖2
2ρi ≤

T

n2c2
π

n∑
i=1

ρi =O
(
n−q).

For � y , analogues to inequalities (i)–(iii) for �wy , we obtain that

Var(� y ) ≤ 1

n2

n∑
i=1

Var(�iJỸ i )ρi ≤ 1

n2

n∑
i=1

E‖�iJỸ i‖2
2ρi

≤ 1

n2c2
π

n∑
i=1

(
E
[∥∥Ỹ i(1)

∥∥2
2

]+E
[∥∥Ỹ i(0)

∥∥2
2

])
ρi =O

(
n−q),

where the last step follows from Assumption A.3.
Finally, by Markov’s inequality,∣∣�θ −E[�θ]

∣∣+ ∣∣�wy −E[�wy ]
∣∣+ ∣∣�ww −E[�ww]

∣∣+ ∥∥�w −E[�w]
∥∥

2 + ∥∥� y −E[� y ]
∥∥

2

=OP

(√
Var(�θ ) + Var(�wy ) + Var(�ww ) + Var(�w ) + Var(� y )

)=OP

(
n−q/2).

The following lemma shows that the denominator of τ̂ is bounded away from 0.

Lemma A.3. Under Assumptions A.3, regardless of the dependence between (π̂i, m̂i, ν̂i )
and the data,

D ≥ c2
D

(
1
n

n∑
i=1

I(W i =w1 )

)(
1
n

n∑
i=1

I(W i =w2 )

)
,
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for some constant cD that only depends on�. As a result, D ≥ 0 almost surely. If Assump-
tion A.2 also holds, 1

E[D] ≥ c2
D

(
c2
π − 1

n2

n∑
i=1

ρi

)
, D ≥ c2

Dc
2
π − oP(1).

Proof. By definition,

D =
(

1
n

n∑
i=1

�iW̃
�
i JW̃ i

)(
1
n

n∑
i=1

�i

)
−
∥∥∥∥∥1
n

n∑
i=1

�iJW̃ i

∥∥∥∥∥
2

2

= 1

n2

n∑
i,j=1

�i�j
(
W̃

�
i JW̃ i + W̃�

j JW̃ j − 2W̃
�
i JW̃ j

)

= 1

n2

n∑
i,j=1

�i�j
∥∥J(W i −W j )

∥∥2
2.

Let w1,w2 be two distinct elements from S
∗ with w1 /∈ {0T , 1T } and

1
n

n∑
i=1

πi(wk )> cπ , k ∈ {1, 2}. (A.9)

This is enabled by Assumption A.2. Note that J(w1 −w2 ) = 0 iff w1 −w2 = a1T for some
a ∈ R, which is impossible since w1 /∈ {0T , 1T } and all entries of w1 and w2 are binary. In
addition, since� has support S∗,�(w1 ),�(w2 )> 0. Let

cD = min
{
�(w1 ),�(w2 )

}∥∥J(w1 −w2 )
∥∥

2 > 0.

Then

D ≥ c2
D
n2

n∑
i,j=1

1
π̂i(W i )π̂j(W j )

I(W i =w1,W j =w2 )

≥ c2
D
n2

n∑
i,j=1

I(W i =w1,W j =w2 )

= c2
D

(
1
n

n∑
i=1

I(W i =w1 )

)(
1
n

n∑
i=1

I(W i =w2 )

)
,

where the second inequality follows from the fact that π̂i(w) ≤ 1. By (A.9),

E

[
1
n

n∑
i=1

I(W i =wk )

]
= 1
n

n∑
i=1

πi(wk )> cπ , k ∈ {1, 2}.

1A more rigorous version of the second statement is max{c2
Dc

2
π −D, 0} = oP(1).
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Furthermore, by Lemma A.1,∣∣∣∣∣Cov

[
1
n

n∑
i=1

I(W i =w1 ),
1
n

n∑
i=1

I(W i =w2 )

]∣∣∣∣∣
= 1

n2

∣∣∣∣∣
n∑

i,j=1

Cov
(
I(W i =w1 ), I(W j =w2 )

)∣∣∣∣∣
≤ 1

n2

n∑
i,j=1

∣∣Cov
(
I(W i =w1 ), I(W j =w2 )

)∣∣

≤ 1

n2

n∑
i,j=1

ρij

√
Var
(
I(W i =w1 )

)
Var
(
I(W j =w2 )

)

≤ 1

n2

n∑
i,j=1

ρij = 1

n2

n∑
i=1

ρi.

Putting pieces together, we obtain that

E[D] ≥ c2
DE

[(
1
n

n∑
i=1

I(W i =w1 )

)(
1
n

n∑
i=1

I(W i =w2 )

)]

= c2
D

{
E

[
1
n

n∑
i=1

I(W i =w1 )

]
E

[
1
n

n∑
i=1

I(W i =w2 )

]

+ Cov

[
1
n

n∑
i=1

I(W i =w1 ),
1
n

n∑
i=1

I(W i =w2 )

]}

≥ c2
D

(
c2
π − 1

n2

n∑
i=1

ρi

)
.

On the other hand, by Lemma A.1, for k ∈ {1, 2},

Var

(
1
n

n∑
i=1

I(W i =wk )

)
≤ 1

n2

n∑
i=1

ρi =O
(
n−q)= o(1).

By Markov’s inequality, for k ∈ {1, 2},

1
n

n∑
i=1

I(W i =wk ) = 1
n

n∑
i=1

P(W i =w1 ) − oP(1) ≥ cπ − oP(1).

Therefore,

D ≥ c2
D
(
cπ − oP(1)

)(
cπ − oP(1)

)≥ c2
Dc

2
π − oP(1).

Based on Lemma A.2 and A.3, we can derive an asymptotic linear expansion for the
RIPW estimator.
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Theorem A.2. Under Assumptions A.2 and A.3,

D
(
τ̂− τ∗)=N∗ + 1

n

n∑
i=1

(
Vi −E[Vi]

)+OP

(
n−q),

where

N∗ = 1
2n

n∑
i=1

E[Vi] = E[�wy ]E[�θ] −E[�w]�E[� y ] − τ∗(
E[�ww]E[�θ] −E[�w]�E[�w]

)
.

Furthermore,

τ̂− τ∗ =OP

(|N∗|
)+OP

(
n−q/2).

Proof. Note that

D
(
τ̂− τ∗)= N − τ∗D.

By Lemma A.2,

∣∣(�wy −E[�wy ]
)(
�θ −E[�θ]

)∣∣+ ∣∣(�w −E[�w]
)�(
� y −E[� y ]

)∣∣
≤ 1

2

{(
�wy −E[�wy ]

)2 + (�θ −E[�θ]
)2 + ∥∥�w −E[�w]

∥∥2
2 + ∥∥� y −E[� y ]

∥∥2
2

}
=OP

(
Var(�wy ) + Var(�θ ) + Var(�w ) + Var(� y )

)=OP

(
n−q).

Let

Vi1 =�i
{
E[�wy ] −E[� y ]�JW i +E[�θ]W�

i JỸ i −E[�w]�JỸ i
}

.

Then

N = E[�wy ]E[�θ] −E[�w]�E[� y ] + 1
n

n∑
i=1

(
Vi1 −E[Vi1]

)+OP

(
n−q).

Similarly,

D = E[�ww]E[�θ] −E[�w]�E[�w] + 1
n

n∑
i=1

(
Vi2 −E[Vi2]

)+OP

(
n−q),

where

Vi2 =�i
{
E[�ww] −E[�w]�JW i +E[�θ]W�

i JW i −E[�w]�JW i

}
.

Since Vi = Vi1 − τ∗Vi2,

D
(
τ̂− τ∗)= N − τ∗D =N∗ + 1

n

n∑
i=1

(
Vi −E[Vi]

)+OP

(
n−q).

This proves the first statement.
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Next, we prove the second statement on τ̂− τ∗. By Lemma A.3, 1/D =OP(1). It is left
to show that

1
n

n∑
i=1

(
Vi −E[Vi]

)=OP

(
n−q/2).

Applying the inequality that Var(Z1 + Z2 ) = 2Var(Z1 ) + 2Var(Z2 ) − Var(Z1 − Z2 ) ≤
2(Var(Z1 ) + Var(Z2 )), we obtain that

1
4

Var(Vi1 )

≤ Var
(
�iE[�wy ]

)+ Var
(
�iE[�θ]W�

i JỸ i
)+ Var

(
�iE[�w]�JỸ i

)+ Var
(
�iE[� y ]�JW i

)
≤ E

(
�iE[�wy ]

)2 +E
(
�iE[�θ]W�

i JỸ i
)2 +E

(
�iE[�w]�JỸ i

)2 +E
(
�iE[� y ]�JW i

)2
(i)≤ 1

c2
π

{(
E[�wy ]

)2 + (E[�θ]
)2
E
(
W�
i JỸ i

)2 +E
(
E[�w]�JỸ i

)2 +E
(
E[� y ]�JW i

)2}
(ii )≤ 1

c2
π

{(
E[�wy ]

)2 + (E[�θ]
)2
E‖W i‖2

2E‖Ỹ i‖2
2 + ∥∥E[�w]

∥∥2
2E‖Ỹ i‖2

2 + ∥∥E[� y ]
∥∥2

2E‖W i‖2
2

}
(iii )≤ 1

c2
π

{(
E[�wy ]

)2 + T (E[�θ]
)2
E‖Ỹ i‖2

2 + ∥∥E[�w]
∥∥2

2E‖Ỹ i‖2
2 + T∥∥E[� y ]

∥∥2
2

}
,

where (i) follows from the Assumption A.2 that �i ≤ 1/cπ almost surely, (ii) follows from
the Cauchy–Schwarz inequality and the fact that ‖J‖op = 1, and (iii) follows from the fact
that ‖W i‖2

2 ≤ T . By Lemma A.2, we obtain that for all i ∈ [n],

Var(Vi1 ) ≤ C1
(
1 +E‖Ỹ i‖2

2
)≤ C1

(
1 +E

∥∥Ỹ i(0)
∥∥2

2 +E
∥∥Ỹ i(1)

∥∥2
2

)
, (A.10)

for some constant C1 that only depends on cπ and T . Similarly, we have that Var(Vi2 ) ≤
C2 for some constant C2 that only depends on cπ and T . By Assumption A.3,

τ∗ =
T∑
t=1

ξt

{
1
n

n∑
i=1

(
E
[
Ỹit(1)

]−E
[
Ỹit(0)

])}=O(1).

Therefore,

Var(Vi ) ≤ 2Var(Vi1 ) + 2
(
τ∗)2Var(Vi2 ) ≤C(1 +E

∥∥Ỹ i(0)
∥∥2

2 +E
∥∥Ỹ i(1)

∥∥2
2

)
.

for some constant C that only depends on cπ and T . Since Vi is a function of (Y i(1),
Y i(0), Xi ), by Lemma A.1 and Assumption A.3,

Var

(
1
n

n∑
i=1

Vi

)
≤ 1

n2

n∑
i=1

Var(Vi )ρi =O
(
n−q).

By Chebyshev’s inequality,

1
n

n∑
i=1

(
Vi −E[Vi]

)=OP

(
n−q/2).

The proof is then completed.
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A.3.2 DATE equation and consistency Theorem A.2 shows that the asymptotic limit of
D(τ̂ − τ∗ ) is N∗. For consistency, it remains to prove that N∗ = o(1). We start by prov-
ing that the asymptotic bias is zero when either the treatment or the outcome model is
perfectly estimated.

Lemma A.4. Under Assumptions A.1, A.2, and A.3, N∗ = 0, if either (1) 
yi = 0 for all
i ∈ [n], or (2) 
πi = 0 for all i ∈ [n], and� satisfies the DATE equation (2.14).

Proof. Without loss of generality, we assume that τ∗ = 0; otherwise, we replace Yit(1)
by Yit(1) − τ∗ and the resulting τ̂ becomes τ̂− τ∗. Then

N∗ = E[�wy ]E[�θ] −E[�w]�E[� y ].

It remains to prove that N∗ = 0. Since (π̂i, m̂i, ν̂i ) are deterministic, by Assumption A.1
and (A.1),

E[�wy ] = 1
n

n∑
i=1

E
[
�iW

�
i JỸ i

]= 1
n

n∑
i=1

E
[
�iW

�
i J
{
Ỹ i(0) + diag(W i )

(
Ỹ i(1) − Ỹ i(0)

)}]

= 1
n

n∑
i=1

E[�iJW i]
�
E
[
Ỹ i(0)

]+ 1
n

n∑
i=1

E
[
�iW

�
i J diag(W i )

]
τ̃ i.

Similarly,

E[� y ] = 1
n

n∑
i=1

E[�i]JE
[
Ỹ i(0)

]+ 1
n

n∑
i=1

E
[
�i diag(W i )

]
τ̃ i.

As a result,

N∗ = 1
n

n∑
i=1

{
E[�iJW i]E[�θ] −E[�i]E[�w]

}�
E
[
Ỹ i(0)

]

+ 1
n

n∑
i=1

{
E
[
�iW

�
i J diag(W i )

]
E[�θ] −E[�w]�E

[
�i diag(W i )

]}
τ̃ i. (A.11)

If 
yi = 0, m̂i = mi and ν̂i = νi. Since we have assumed τ∗ = 0, τ̃ i = 0T . By (A.3),
E[Ỹ i(0)] = 0T . It is then obvious from (A.11) thatN∗ = 0.

If 
πi = 0, π̂i =πi, and thus for any function f (·),

E
[
�if (W i )

]= ∑
w∈{0,1}T

�(w)
πi(w)

f (w)πi(w) = EW∼�
[
f (W )

]
. (A.12)

As a result,

E[�iJW i] = EW∼�[JW ] = E[�w], E[�i] = 1 = E[�θ],

and

E
[
�iW

�
i J diag(W i )

]= EW∼�
[
WJ diag(W )

]
, E
[
�i diag(W i )

]= EW∼�
[
diag(W )

]
.
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Then

E[�iJW i]E[�θ] −E[�i]E[�w] = EW∼�[JW ] −EW∼�[JW ] = 0,

and by DATE equation,

E
[
�iW

�
i J diag(W i )

]
E[�θ] −E[�w]�E

[
�i diag(W i )

]
= EW∼�

[(
W −EW∼�[W ]

)�
J diag(W )

]
= EW∼�

[(
W −EW∼�[W ]

)�
JW
]
ξ�.

By (A.11) and (A.2),

N∗ = 1
n

n∑
i=1

EW∼�
[(
W −EW∼�[W ]

)�
JW
]
ξ�τ̃ i

= EW∼�
[(
W −EW∼�[W ]

)�
JW
](1
n

n∑
i=1

ξ�τ̃ i

)

= EW∼�
[(
W −EW∼�[W ]

)�
JW
]
τ∗ = 0.

Next, we prove a general bound for the asymptotic bias N∗ as a function of
(
yi, 
πi )ni=1.

Theorem A.3. Let� be an solution of the DATE equation (2.14). Under Assumptions A.1,
A.2, and A.3,

|N∗| =O(
̄π
̄y ).

Proof. As in the proof of Lemma A.4, we assume that τ∗ = 0. Let

�∗
i = �(W i )

πi(W i )
, Ỹ

∗
i = Y i −mi − diag(W i )νi.

Further, let �∗
θ and � ∗

w be the counterpart of �θ and �w with (�i, Ỹ i ) replaced by (�∗
i , Ỹ

∗
i ).

For any function f : {0, 1}T �→ R such that E[f 2(W i )] ≤ C1 for some constant C1 > 0, by
the Cauchy–Schwarz inequality,

E
[
�if (W i ) −�∗

i f (W i )
]= E

[(
�i −�∗

i

)
f (W i )

]≤√C1

√
E
(
�i −�∗

i

)2
=
√
C1

√
E

[
�(W i )

2

π̂i(W i )
2πi(W i )

2

(
π̂i(W i ) −πi(W i )

)2]

≤
√
C1

c2
π


πi. (A.13)

Thus, there exists a constant C2 that only depends on cπ and T such that∣∣E[�i] −E
[
�∗
i

]∣∣+ ∥∥E[�iJW i] −E
[
�∗
i JW i

]∥∥
2
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+ ∥∥E[�iW�
i J diag(W i )

]−E
[
�∗
iW

�
i J diag(W i )

]∥∥
2

+ ∥∥E[�i diag(W i )
]−E

[
�∗
i diag(W i )

]∥∥
op ≤ C2
πi.

By the triangle inequality and Cauchy–Schwarz inequality, we also have

∣∣E[�θ] −E
[
�∗
θ

]∣∣+ ∥∥E[�w] −E
[
� ∗
w

]∥∥
2 ≤ C2

n

n∑
i=1


πi ≤C2
̄π .

On the other hand, by Lemma A.2, there exists a constant C3 that only depends on cπ
and T , ∣∣E[�θ]

∣∣+ ∥∥E[�w]
∥∥

2 ≤ C3.

Without loss of generality, we assume that

C3 ≥ 1 + √
T ≥ 1 + ∥∥EW∼�[JW ]

∥∥
2 = E

[
�∗
i

]+ ∥∥E[�∗
i JW i

]∥∥
2.

Putting pieces together,

∣∣E[�iJW i]E[�θ] −E[�i]E[�w] − (E[�∗
i JW i

]
E
[
�∗
θ

]−E
[
�∗
i

]
E
[
� ∗
w

])∣∣
≤ ∣∣E[�iJW i] −E

[
�∗
i JW i

]∣∣ ·E[�θ] + ∣∣E[�i] −E
[
�∗
i

]∣∣ · ∥∥E[�w]
∥∥

2

+ ∣∣E[�θ] −E
[
�∗
θ

]∣∣ · ∥∥E[�∗
i JW i

]∥∥
2 + ∥∥E[�w] −E

[
� ∗
w

]∥∥ ·E[�∗
i

]
≤ 2C3C2(
πi + 
̄π ).

Similarly,

∣∣E[�iW�
i J diag(W i )

]
E[�θ] −E[�w]�E

[
�i diag(W i )

]
− (E[�∗

iW
�
i J diag(W i )

]
E
[
�∗
θ

]−E
[
� ∗
w

]�
E
[
�∗
i diag(W i )

])∣∣
≤ 2C3C2(
πi + 
̄π ).

Let

N ′∗ = 1
n

n∑
i=1

{
E
[
�∗
i JW i

]
E
[
�∗
θ

]−E
[
�∗
i

]
E
[
� ∗
w

]}�
E
[
Ỹ i(0)

]

+ 1
n

n∑
i=1

{
E
[
�∗
iW

�
i J diag(W i )

]
E
[
�∗
θ

]−E
[
� ∗
w

]�
E
[
�∗
i diag(W i )

]}
τ̃ i.

Using the same arguments as in the proof of Lemma A.4,

E
[
�∗
i JW i

]
E
[
�∗
θ

]−E
[
�∗
i

]
E
[
� ∗
w

]= 0,

and

E
[
�∗
iW

�
i J diag(W i )

]
E
[
�∗
θ

]−E
[
� ∗
w

]�
E
[
�∗
i diag(W i )

]= EW∼�
[(
W −EW∼�[W ]

)�
JW
]
ξ�.
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Then

N ′∗ = 1
n

n∑
i=1

EW∼�
[(
W −EW∼�[W ]

)�
JW
]
ξ�τ̃ i = EW∼�

[(
W −EW∼�[W ]

)�
JW
]
τ∗ = 0.

This entails that

|N∗| =
∣∣N∗ −N ′∗

∣∣≤ 2C3C2

n

n∑
i=1

(
πi + 
̄π )
(∥∥E[Ỹ i(0)

]∥∥
2 + ‖τ̃ i‖2

)
.

By (A.1), (A.2), and (A.3),∥∥E[Ỹ i(0)
]∥∥

2 + ‖τ̃ i‖2 = ‖m̂i −mi‖2 + ‖ν̂i − νi‖2 ≤ 2
yi.

Since (1/n)
∑n
i=1
yi ≤

√
(1/n)

∑n
i=1


2
yi,

|N∗| ≤ 4C3C2

n

n∑
i=1

(
πi + 
̄π )
yi = 4C3C2
̄π
̄y .

The proof is then completed.

A.3.3 Asymptotic inference under independence Theorem A.2 and Theorem A.3 imply
the following properties of RIPW estimators.

Theorem A.4. Let� be an solution of the DATE equation (2.14). Under Assumptions A.1,
A.2, and A.3,

τ̂− τ∗ = oP(1), if 
̄π
̄y = o(1).

If, further, q > 1/2 in Assumption A.3 and 
̄π
̄y = o(1/
√
n),

D · √n(τ̂− τ∗)= 1√
n

n∑
i=1

(
Vi −E[Vi]

)+ oP(1).

Recalling (A.8) that (
πi, 
yi ) are deterministic, 
̄π
̄y = E[
̄π
̄y ]. Since Assumptions
A.2 and A.3 generalize Assumptions 2.1–2.3, Theorem A.4 implies Theorem 2.1 and 2.2.
Similarly, Theorem 3.1 is implied by Theorem A.4.

Throughout the rest of the subsection, we focus on the special case where {(Y i(1),
Y i(0), Xi ) : i ∈ [n]} are independent. In this case, Assumption A.3 holds with q= 1> 1/2,
and thus the asymptotically linear expansion in Theorem A.4 holds. To obtain the
asymptotic normality and a consistent variance estimator, we modify Assumption A.3
as follows.

Assumption A.4. {(Y i(1), Y i(0), Xi ) : i = 1, � � � , n} are independent (but not necessarily
identically distributed), and there exists ω> 0 such that

1
n

n∑
i=1

{
E
∥∥Ỹ i(1)

∥∥2+ω
2 +E

∥∥Ỹ i(0)
∥∥2+ω

2

}=O(1).
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To derive the asymptotic normality of the RIPW estimator, we need the following
assumption that prevents the variance from being too small.

Assumption A.5. There exists v0 > 0 such that

σ2 � 1
n

n∑
i=1

Var(Vi ) ≥ v0.

The following lemma shows the asymptotic normality of the term 1√
n

∑n
i=1(Vi −

E[Vi]).

Lemma A.5. Then under Assumptions A.2, A.4, and A.5,

dK

(
L
(

1√
nσ

n∑
i=1

(
Vi −E[Vi]

))
,N(0, 1)

)
→ 0,

where L(·) denotes the probability law, dK denotes the Kolmogorov–Smirnov distance (i.e.,
the �∞-norm of the difference of CDFs).

Proof. Since (π̂i, m̂i, ν̂i ) are deterministic, by Assumption A.4, {Vi : i ∈ [n]} are inde-
pendent. Recalling the definition of Vi, it is easy to see that Assumption A.4 implies

1
n

n∑
i=1

E|Vi|2+ω =O(1). (A.14)

By Assumption A.4,

n∑
i=1

E

∣∣∣∣ Vi√
nσ

∣∣∣∣
2+ω

=O(n−ω/2)= o(1).

The proof is completed by the Berry–Esseen inequality (Proposition A.1) with g(x) =
xω.

Let V̂i denote the plug-in estimate of Vi, that is,

V̂i =�i
{

(�wy − τ̂�ww ) − (� y − τ̂�w )�JW i

+ �θW�
i J(Ỹ i − τ̂W i ) − ��

wJ(Ỹ i − τ̂W i )
}

. (A.15)

We first prove that V̂i is an accurate approximation of Vi on average, even without the
independence assumption.

Lemma A.6. Let� be a solution of the DATE equation. Under Assumptions A.1–A.3,

1
n

n∑
i=1

(V̂i − Vi )2 = oP(1), if 
̄π
̄y = o(1).
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Proof. Let

V̂ ′
i =�i

{(
�wy − τ∗�ww

)− (� y − τ∗�w
)�
JW i + �θW�

i J
(
Ỹ i − τ∗W i

)− ��
wJ
(
Ỹ i − τ∗W i

)}
.

Then

V̂i − V̂ ′
i =
(
τ̂− τ∗)�i{−�ww + ��

wJW i − �θW�
i JW i + ��

wJW i

}
.

Under Assumption A.2, there exists a constant C that only depends on cπ and T such
that ∣∣V̂i − V̂ ′

i

∣∣≤ C∣∣τ̂− τ∗∣∣.
By Theorem A.4,

1
n

n∑
i=1

(
V̂i − V̂ ′

i

)2 =O((τ̂− τ∗)2)= oP(1) (A.16)

Next,

V̂ ′
i − Vi =�i

{((
�wy −E[�wy ]

)− τ∗(�ww −E[�ww]
))

− ((� y −E[� y ]
)− τ∗(�w −E[�w]

))�
JW i

+ (�θ −E[�θ]
)
W�
i J
(
Ỹ i − τ∗W i

)− (�w −E[�w]
)�
J
(
Ỹ i − τ∗W i

)}
.

By Jensen’s inequality and Assumption A.2,

1
n

n∑
i=1

(
V̂ ′
i − Vi

)2

≤ 5

nc2
π

n∑
i=1

{(
�wy −E[�wy ]

)2 + (�ww −E[�ww]
)2 · τ∗2 + ∥∥(� y −E[� y ]

)∥∥2
2 · ‖JW i‖2

2

+ ∥∥(�w −E[�w]
)∥∥2

2 · ∥∥J(Ỹ i − 2τ∗W i

)∥∥2
2 + (�θ −E[�θ]

)2(
W�
i J
(
Ỹ i − τ∗W i

))2}
= 5

c2
π

{(
�wy −E[�wy ]

)2 + (�ww −E[�ww]
)2 · τ∗2 + ∥∥(� y −E[� y ]

)∥∥2
2 · T

+ ∥∥(�w −E[�w]
)∥∥2

2 · 1
n

n∑
i=1

∥∥(Ỹ i − 2τ∗W i

)∥∥2
2

+ ∥∥(�θ −E[�θ]
)∥∥2

2 · T
n

n∑
i=1

∥∥Ỹ i − τ∗W i

∥∥2
2

}
.

By Lemma A.2,

E

[
1
n

n∑
i=1

(
V̂ ′
i − Vi

)2]= o(1).
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By Markov’s inequality,

1
n

n∑
i=1

(
V̂ ′
i − Vi

)2 = oP(1). (A.17)

Putting (A.16) and (A.17) together, we obtain that

1
n

n∑
i=1

(V̂i − Vi )2 ≤ 2
n

n∑
i=1

{(
V̂i − V̂ ′

i

)2 + (V̂ ′
i − Vi

)2}= oP(1).

As in Section 2, we estimate the (conservative) variance of the term 1√
n

∑n
i=1(Vi −

E[Vi]) as

σ̂2 = 1
n− 1

n∑
i=1

(
V̂i − 1

n

n∑
i=1

V̂i

)2

= n

n− 1

{
1
n

n∑
i=1

V̂2
i −

(
1
n

n∑
i=1

V̂i

)2}
. (A.18)

This yields a Wald-type confidence interval for DATE,

Ĉ1−α = [τ̂− z1−α/2σ̂/
√
nD, τ̂+ z1−α/2σ̂/

√
nD], (A.19)

where zη is the ηth quantile of the standard normal distribution.

Theorem A.5. Assume that 
̄π
̄y = o(1/
√
n). Under Assumptions A.1, A.2, A.4, and A.5,

lim inf
n→∞ P

(
τ∗ ∈ Ĉ1−α

)≥ 1 − α.

Proof. By Theorem A.2, Theorem A.3, Lemma A.5, and Assumption A.5,

D · √n(τ̂− τ∗)
σ

= 1√
nσ

n∑
i=1

(
Vi −E[Vi]

)+ oP(1)
d→N(0, 1)

in Kolmogorov-Smirnov distance,

As a result,∣∣∣∣P
(∣∣∣∣D · √n(τ̂− τ∗)

σ

∣∣∣∣≤ z1−α/2 · σ̂
σ

)
−
{

2�
(
z1−α/2 · σ̂

σ

)
− 1
}∣∣∣∣= o(1), (A.20)

where� is the cumulative distribution function of the standard normal distribution. Let

σ2+ = 1
n

n∑
i=1

E

(
Vi − 1

n

n∑
i=1

E[Vi]
)2

= 1
n

n∑
i=1

E
[
V2
i

]−
(

1
n

n∑
i=1

E[Vi]
)2

. (A.21)

Clearly, σ2+ is deterministic and

σ2+ = σ2 + 1
n

n∑
i=1

(
E[Vi] − 1

n

n∑
i=1

E[Vi]
)2

≥ σ2.
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It remains to show that ∣∣∣∣n− 1
n

σ̂2 − σ2+
∣∣∣∣= oP(1). (A.22)

In fact, by Assumption A.5, (A.22) implies that√
n− 1
n

σ̂

σ

p→ σ+
σ

≥ 1 =⇒ σ̂

σ

p→ σ+
σ

≥ 1.

By the continuous mapping theorem,

2�
(
z1−α/2 · σ̂

σ

)
− 1

p→ 2�
(
z1−α/2 · σ+

σ

)
− 1 ≥ 1 − α,

which completes the proof.
Now, we prove (A.22). By Proposition A.2 and Jensen’s inequality,

E

∣∣∣∣∣1n
n∑
i=1

(
V2
i −E

[
V2
i

])∣∣∣∣∣
1+ω/2

≤ 2

n1+ω/2

n∑
i=1

E
∣∣V2
i −E

[
V2
i

]∣∣1+ω/2

≤ 21+ω/2

n1+ω/2

n∑
i=1

(
E
[|Vi|2+ω]+E

[
V2
i

]1+ω/2)

≤ 22+ω/2

n1+ω/2

n∑
i=1

E
[|Vi|2+ω].

By (A.14),

E

∣∣∣∣∣1n
n∑
i=1

(
V2
i −E

[
V2
i

])∣∣∣∣∣
1+ω/2

= o(1).

By Markov’s inequality,

1
n

n∑
i=1

(
V2
i −E

[
V2
i

])= oP(1). (A.23)

Similarly, we have that

1
n

n∑
i=1

(
Vi −E[Vi]

)= oP(1). (A.24)

In addition, (A.14) and Hölder’s inequality imply that

1
n

n∑
i=1

E
[
V2
i

]=O(1),
1
n

n∑
i=1

E[Vi] =O(1).

As a result,

1
n

n∑
i=1

V2
i =OP(1),

1
n

n∑
i=1

Vi =OP(1). (A.25)



Supplementary Material Design-robust two-way-fixed-effects regression 21

By Lemma A.6, (A.25), and the Cauchy–Schwarz inequality,

∣∣∣∣∣1n
n∑
i=1

V̂2
i − 1

n

n∑
i=1

V2
i

∣∣∣∣∣≤ 2
n

n∑
i=1

Vi|V̂i − Vi| + 1
n

n∑
i=1

(V̂i − Vi )2

≤ 2

√√√√1
n

n∑
i=1

V2
i

√√√√1
n

n∑
i=1

(V̂i − Vi )2 + 1
n

n∑
i=1

(V̂i − Vi )2

= oP(1). (A.26)

Similarly, ∣∣∣∣∣
(

1
n

n∑
i=1

V̂i

)2

−
(

1
n

n∑
i=1

Vi

)2∣∣∣∣∣= oP(1). (A.27)

By (A.23), (A.24), and (A.25),

∣∣∣∣∣1n
n∑
i=1

V2
i −

(
1
n

n∑
i=1

Vi

)2

− σ2+

∣∣∣∣∣= oP(1). (A.28)

Putting (A.26)–(A.28) together, we complete the proof of (A.22).

A.4 Inference with deterministic (π̂i, m̂i, ν̂i ) and dependent assignments across units

Recall Theorem A.4 that

D · √n(τ̂− τ∗)= 1√
n

n∑
i=1

(
Vi −E[Vi]

)+ oP(1).

This is true even when (Y i(1), Y i(0), Xi ) are dependent as long as Assumption A.3 holds.
If Vi’s are observable, a valid confidence interval for τ∗ can be derived if the distribution
of (1/

√
n)
∑n
i=1(Vi −E[Vi]) can be approximated. Specifically, assume that

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
√√√√(1/n)Var

[
n∑
i=1

Vi

] d→N(0, 1), (A.29)

and there exists a conservative oracle variance estimator σ̂∗2 based on (V1, � � � , Vn ) in
the sense that

(1/n)Var

[
n∑
i=1

Vi

]

σ̂∗2 ≤ 1 + oP(1). (A.30)
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Then [τ̂ − z1−α/2σ̂
∗/

√
nD, τ̂ + z1−α/2σ̂

∗/
√
nD] is an asymptotically valid confidence in-

terval for τ∗. Of course, this interval cannot be computed in practice because Vi is un-
observed due to the unknown quantities including E[�θ], E[�w], E[� y ], E[�ww], E[�wy ],
and τ∗. A natural variance estimator can be obtained by replacing V � (V1, � � � , Vn ) with
V̂ � (V̂1, � � � , V̂n ) in σ̂∗2. The following theorem makes this intuition rigorous for generic
quadratic oracle variance estimators.

Theorem A.6. Suppose there exists an oracle variance estimator σ̂∗2 such that:

(i) σ̂∗2 = V�AnV/n for some positive semidefinite (and potentially random) matrix
An with ‖An‖op =OP(1);

(ii) σ̂∗2 is conservative in the sense that, for every η in a neighborhood of α,

lim
n→∞P

(∣∣∣∣∣
(1/

√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂∗

∣∣∣∣∣≥ z1−η/2

)
≤ η;

(iii) 1/σ̂∗2 =OP(1).

Let σ̂2 = V̂�
AnV̂/n and

Ĉ1−α = [τ̂− z1−α/2σ̂/
√
nD, τ̂+ z1−α/2σ̂/

√
nD].

Under Assumptions A.1, A.2, and A.3 with q > 1/2, if� be an solution of the DATE equa-
tion (2.14) and 
̄π
̄y = o(1/

√
n),

lim inf
n→∞ P

(
τ∗ ∈ Ĉ1−α

)≥ 1 − α.

Proof. By Lemma A.6,

1
n

‖V̂ −V‖2
2 = 1

n

n∑
i=1

(V̂i − Vi )2 = oP(1).

Since An is positive semidefinite, for any ε ∈ (0, 1),

(1 − ε)σ̂∗2 −
(

1
ε

− 1
)

1
n

(V̂ −V )�An(V̂ −V )

≤ σ̂2 ≤ (1 + ε)σ̂∗2 +
(

1
ε

+ 1
)

1
n

(V̂ −V )�An(V̂ −V )

Thus, for any ε ∈ (0, 1),

P
(
σ̂2 /∈ [(1 − ε)σ̂∗2, (1 + ε)σ̂∗2])= o(1).

By condition (iii), the above result implies that∣∣∣∣ σ̂σ̂∗ − 1

∣∣∣∣= oP(1). (A.31)
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By Theorem A.4,

D · √n(τ̂− τ∗)= 1√
n

n∑
i=1

(
Vi −E[Vi]

)+ oP(1).

It remains to show that

lim
n→∞P

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂

∣∣∣∣∣∣∣∣∣∣∣
≥ z1−α/2

⎞
⎟⎟⎟⎟⎟⎠≤ α.

Let η(ε) be the quantity such that z1−η(ε)/2 = z1−α/2 · (1 − ε). For any sufficiently small ε
such that η(ε) lies in the neighborhood of α in condition (ii),

P

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂

∣∣∣∣∣∣∣∣∣∣∣
≥ z1−α/2

⎞
⎟⎟⎟⎟⎟⎠

= P

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂∗

∣∣∣∣∣∣∣∣∣∣∣
≥ z1−α/2 · σ̂

σ̂∗

⎞
⎟⎟⎟⎟⎟⎠

≤ P

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂∗

∣∣∣∣∣∣∣∣∣∣∣
≥ z1−η(ε)/2

⎞
⎟⎟⎟⎟⎟⎠+ P

(
σ̂

σ̂∗ ≤ 1 − ε
)

.

By (A.31), when n tends to infinity,

lim
n→∞P

⎛
⎜⎜⎜⎜⎜⎝

∣∣∣∣∣∣∣∣∣∣∣

(1/
√
n)

n∑
i=1

(
Vi −E[Vi]

)
σ̂

∣∣∣∣∣∣∣∣∣∣∣
≥ z1−α/2

⎞
⎟⎟⎟⎟⎟⎠≤ η(ε).

The proof is completed by letting ε→ 0 and noting that limε→0η(ε) = α.

WhenW i’s are independent,

σ̂∗2 = 1
n− 1

n∑
i=1

(Vi − V̄ )2.
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Thus, An = (n/(n − 1))(In − 1n1Tn /n). Clearly, the condition (i) is satisfied because
‖An‖op = n/(n−1). Under the assumptions in Theorem A.5, the condition (ii) is satisfied.
Moreover, we have shown that σ̂∗2 converges to σ2+ ≥ σ2 > 0, and thus the condition (iii)
is satisfied. Therefore, Theorem A.5 can be implied by Theorem A.6.

When Vi’s are observed, the variance estimators are quadratic under nearly all types
of dependent assignment mechanisms. With fixed potential outcomes, Theorem A.6 ap-
plies to completely randomized experiments (Hoeffding (1951), Li and Ding (2017)),
blocked and matched experiments (Pashley and Miratrix (2021)), two-stage random-
ized experiments (Ohlsson (1989)), and so on. Below, we prove the results for completely
randomized experiments with fixed potential outcomes to illustrate how to apply The-
orem A.6. The notation is chosen to mimic Theorem 5 and Proposition 3 in Li and Ding
(2017).

Theorem A.7. Assume that (Yit(1), Yit(0)) are fixed, and π̂i = πi as in Section 2 (while
(m̂it , ν̂it ) are allowed to be nonzero). Consider a completely randomized experiments
where the treatment assignments are sampled without replacement from Q possible as-
signments {w[1], � � � ,w[Q]} with nq units assigned w[q]. Let � be a solution of the DATE
equation (2.14) with support {w[1], � � � ,w[Q]}, and Vi(q) be the “potential outcome” for Vi
where (Yit ,Wit ) is replaced by (Yit(w[q],t ),w[q],t ), that is,

Vi(q) = �(w[q] )

π̂i(w[q] )

{(
E[�wy ] − τ∗

E[�ww]
)− (E[� y ] − τ∗

E[�w]
)�
Jw[q]

+E[�θ]w�
[q]J
(
Ỹ i(q) − τ∗w[q]

)−E[�w]�J
(
Ỹ i(q) − τ∗w[q]

)}
,

and Ỹ i(q) = (Yi1(w[q],1 ) − m̂i1 −w[q],1ν̂i1, � � � , YiT (w[q],T ) − m̂iT −w[q],1ν̂iT ). Further, for
any q, r = 1, � � � ,Q, let

S2
q = 1

n− 1

n∑
i=1

(
Vi(q) − V̄(q)

)2
, Sqr = 1

n− 1

n∑
i=1

(
Vi(q) − V̄(q)

)(
Vi(r ) − V̄(r )

)
,

where V̄(q) = (1/n)
∑n
i=1 Vi(q). Define the variance estimate σ̂2 as

σ̂2 =
Q∑
q=1

nq

n
s2
q, where s2

q = 1
nq − 1

∑
i:wi=w[q]

(
V̂i − ˆ̄V(q)

)2
, ˆ̄V(q) = 1

nq

∑
i:wi=w[q]

V̂i.

Further, define the confidence interval as

Ĉ1−α = [τ̂− z1−α/2σ̂/
√
nD, τ̂+ z1−α/2σ̂/

√
nD].

Assume that

(a) Q=O(1) and nq/n→ πq for some constant πq > 0;

(b) for any q, r = 1, � � � ,Q, S2
q and Sqr have limiting values S∗2

q , S∗
qr ;

(c) there exists a constant cτ > 0 such that
∑Q
q=1πqS

∗2
q > cτ ;
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(d) there exists a constantM <∞ such that maxi,q{‖Ỹ i(q)‖2}<M .

Then

lim inf
n→∞ P

(
τ∗ ∈ Ĉ1−α

)≥ 1 − α.

Proof. By definition, for any i �= j ∈ [n] and q �= r ∈ [Q],

P(W i =w[q] ) = nq

n
, P(W i =W j =w[q] ) = nq(nq − 1)

n(n− 1)
,

P(W i =w[q], W j =w[r] ) = nqnr

n(n− 1)
.

For any functions f and g on [0, 1]T ,

E
[
f (W i )

]= Q∑
q=1

nq

n
f (w[q] ), E

[
g(W j )

]= Q∑
q=1

nq

n
g(w[q] ),

E
[
f 2(W i )

]= Q∑
q=1

nq

n
f 2(w[q] ), E

[
g2(W j )

]= Q∑
q=1

nq

n
g2(w[q] ),

and

E
[
f (W i )g(W i )

]= Q∑
q=1

nq

n
f (w[q] )g(w[q] ),

E
[
f (W i )g(W j )

]= Q∑
q=1

nq(nq − 1)
n(n− 1)

f (w[q] )g(w[q] ) +
∑
q �=r

nqnr

n(n− 1)
f (w[q] )g(w[r] ).

As a result, for any i �= j

Cov
(
f (W i ), g(W j )

)
= E

[
f (W i )g(W j )

]−E
[
f (W i )

]
E
[
g(W j )

]

=
Q∑
q=1

(
nq(nq − 1)
n(n− 1)

− n2
q

n2

)
f (w[q] )g(w[q] ) +

∑
q �=r

(
nqnr

n(n− 1)
− nqnr

n2

)
f (w[q] )g(w[r] )

=
Q∑
q=1

−nq(n− nq )

n2(n− 1)
f (w[q] )g(w[q] ) +

∑
q �=r

nqnr

n2(n− 1)
f (w[q] )g(w[r] )

= − 1
n− 1

Q∑
q=1

nq

n
f (w[q] )g(w[q] ) + 1

n− 1

(
Q∑
q=1

nq

n
f (w[q] )

)(
Q∑
q=1

nq

n
g(w[r] )

)

= − 1
n− 1

(
E
[
f (W i )g(W i )

]−E
[
f (W i )

]
E
[
g(W i )

])
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= − 1
n− 1

Cov
(
f (W i ), g(W i )

)
By the Cauchy–Schwarz inequality,

∣∣Cov
(
f (W i ), g(W j )

)∣∣≤ 1
n− 1

∣∣Cov
(
f (W i ), g(W i )

)∣∣
≤ 1
n− 1

√
Var
[
f (W i )

]
Var
[
g(W i )

]= 1
n− 1

√
Var
[
f (W i )

]
Var
[
g(W j )

]
.

This implies that

ρij ≤ 1
n− 1

=⇒ ρi ≤ 2.

It is then clear that Assumption A.3 holds under the condition (d). Further, since
π̂i(w[q] ) =πi(w[q] ) = nq/n, the condition (a) implies Assumption A.2 and that 
̄π
̄y = 0.
On the other hand, Assumption A.1 holds becauseW i is completely randomized. There-
fore, it remains to check the conditions (i)–(iii) in Theorem A.6 with

σ̂∗2 =
Q∑
q=1

nq

n
s∗2
q , where s∗2

q = 1
nq − 1

∑
i:wi=w[q]

(
Vi − V̄(q)

)2
, V̄(q) = 1

nq

∑
i:wi=w[q]

Vi.

In this case, An is a block-diagonal matrix with

An,Iq ,Iq = nq

nq − 1

(
Inq −

1nq1�
nq

nq

)
,

where Iq = {i :W i =w[q]}. As a result,

‖An‖op = max
q

nq

nq − 1
=O(1).

Thus, the condition (i) holds. The condition (ii) is implied by Proposition 3 in Li and
Ding (2017) and the condition (iii) is implied by the condition (c). The theorem is then
implied by Theorem A.6.

A.5 Inference of RIPW estimators when δ̄πδ̄y �= o(1/
√
n)

In this section, we study the asymptotic inference on the RIPW estimator when one
of the models is globally misspecified. Doubly robust inference is hard even for cross-
sectional data (e.g., Benkeser, Carone, Van Der Laan, and Gilbert (2017)). Here, we fo-
cus on a practically relevant case where the researcher fits parametric models for both
assignments and outcomes. Specifically, we consider a parametric family fκ(w, Xi ) for
πi(w), gt,φt (Xi ) for mit , and ht,ψt (Xi ) for νit , where κ ∈ R

d ,φt ∈ R
dφ,t , ψt ∈ R

dψ,t are
parameter vectors to estimate. We impose the standard regularity conditions on these
parametric families.

Assumption A.6. (a) 1/fκ(w; x) is bounded away from zero uniformly over (κ,w, x);
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(b) ‖∇2
κfκ(w; x)‖ is uniformly bounded over (κ,w, x);

(c) ‖∇2
φt
gt,φt (x)‖ + ‖∇2

ψt
ht,ψt (x)‖ is uniformly bounded over (φt , ψt , x, t ).

To ease notation, we denote by φ (resp., ψ) the concatenation of φ1, � � � ,φT (resp.,
ψ1, � � � , ψT ) and by θ the concatenation of κ,φ, ψ. We assume that θ̂ has an asymptoti-
cally linear expansion.

Assumption A.7. For some pseudo-parameter θ′,

θ̂= θ′ + 1
n

n∑
i=1

Ci + oP
(
n−1/2),

where Ci is a function of (Y i,W i, Xi ) that has a zero mean and bounded second moment.

When (Y i(1), Y i(0),W i ) are independent or weakly dependent, Assumption A.7
holds under standard regularity conditions (Fan and Yao (2003), Wooldridge (2010)) with
root-n rate. In particular, ‖θ̂− θ′‖ =OP(1/

√
n).

Let κ′,φ′
t , ψ

′
t denote the corresponding elements of θ′. Further, let

π ′
i(w) = fκ′(w, Xi ), m′

it = gt,φ′
t
(Xi ), ν′

it = ht,ψ′
t
(Xi ). (A.32)

We say the assignment model is correctly specified if

πi(w) =π ′
i(w), (A.33)

and the outcome model is correctly specified if

mi =m′
i, νi = ν′

i. (A.34)

When one of these two models is globally misspecified and the other one is correctly
specified,

δ̄πδ̄y =O(1/
√
n).

Thus, Theorems 3.2 and 3.3 do not apply. Nevertheless, we prove that the RIPW estima-
tor remains asymptotically linear though an additional term is added to Vi to account
for the estimation uncertainty of θ̂ under the assumption that units are independent.
We leave the general dependent case for future research.

Since the result is very complicated, we first define several quantities. Let �′
θ, �′

ww,
�′
wy , � ′

w, � ′
y , �′

i, Ỹ
′
it be the counterparts of �θ, �ww, �wy , �w, � y ,�i, Ỹit with (π̂i, m̂i, ν̂i )

replaced by (π ′
i,m

′
i, ν

′
i ). Further, let

Li = ∇κ log fκ′(W i,Xi ), Gi =

⎡
⎢⎢⎢⎢⎣

∇φ1
g1,φ′

1
(Xi ) 0 · · · 0

0 ∇φ2
g2,φ′

2
(Xi ) · · · 0

...
...

...
...

0 0 · · · ∇φT gT ,φ′
T

(Xi )

⎤
⎥⎥⎥⎥⎦ ,
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and

H i =

⎡
⎢⎢⎢⎢⎣

∇ψ1
h1,ψ′

1
(Xi ) 0 · · · 0

0 ∇ψ2
h2,ψ′

2
(Xi ) · · · 0

...
...

...
...

0 0 · · · ∇ψT hT ,ψ′
T

(Xi )

⎤
⎥⎥⎥⎥⎦ .

For any vector v that has the same dimension as θ, let Pκ(v), Pφ(v), Pψ(v) denote the
subvectors corresponding to the positions of κ,φ, ψ in θ. We define A and B as two
vectors such that

Pκ(A) = 1
n

n∑
i=1

{−E
[
�′
iLi
]
E
[
�′
wy

]−E
[
�′
iLiW

�
i JỸ

′
i

]
E
[
�′
θ

]+E
[
�′
iLiỸ

′�
i J
]
E
[
� ′
w

]

+E
[
�′
iLiW

�
i J
]
E
[
� ′
y

]}
Pφ(A) = 1

n

n∑
i=1

{
E
[
�′
iGiJ

]
E
[
� ′
w

]−E
[
�′
iGiJW i

]
E
[
�′
θ

]}

Pψ(A) = 1
n

n∑
i=1

{
E
[
�′
iH i diag(W i )J

]
E
[
� ′
w

]−E
[
�′
iH i diag(W i )JW i

]
E
[
�′
θ

]}
,

and

Pκ(B) = 1
n

n∑
i=1

(
2E
[
�′
iLiW

�
i JW i

]
E[�w] −E

[
�′
iLi
]
E
[
�′
ww

]−E
[
�′
iLiW

�
i JW i

]
E
[
�′
θ

])
,

Pφ(B) = Pψ(B) = 0.

Theorem A.8. Assume that (Y i(1), Y i(0),W i, Xi ) are independent. Further, assume that
either (A.33) or (A.34) holds. In the setting of Theorem 3.2, under Assumptions A.6 and
A.7,

D · √n(τ̂(�) − τ∗)= 1√
n

n∑
i=1

(
V ′
i + Ui −E

[
V ′
i

])+ oP(1/
√
n),

if either the assignment model or the outcome model is correctly specified. Above, V ′
i is

defined as in Theorem 3.2 with (π̂i, m̂i, ν̂i ) replaced by (π ′
i,m

′
i, ν

′
i ) and

Ui =
〈
Ci, A−Bτ∗〉, E[Ui] = 0,

where A and B are defined above.

Remark A.1. To make inference, we can replaceA, B, andCi by their plug-in estimates.
It is straightforward, though tedious, to prove that the plug-in variance estimator is con-
sistent. Importantly, this does not require the researcher to know which model is mis-
specified apriori. Here, we present a proof sketch to illustrate why this is true. First,
we can define an oracle RIPW estimate τ̂′ with the model estimates (A.32). Under As-
sumptions A.6 and A.7, we can derive an asymptotically linear expansion of

√
n(τ̂ − τ̂′ )
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via the Taylor expansion. These estimates are deterministic and δ̄′
πδ̄

′
y = 0 if (A.33) or

(A.34) holds, we can apply Theorem A.4 to obtain an asymptotically linear expansion of√
n(τ̂′ − τ∗ ) where the influence function can be estimated consistently without know-

ing which model is misspecified. Adding up two asymptotically linear expansions yields
our result.

Proof. Write τ̂ for τ̂(�). Further let

τ̂′ = N ′

D′ , N ′ = �′
wy�

′
θ − � ′�

w �
′
y , D′ = �′

ww�
′
θ − � ′�

w �
′
w.

We will show that

N = N ′ + 〈A, θ̂− θ′〉+ oP
(

1√
n

)
, D = D′ + 〈B, θ̂− θ′〉+ oP

(
1√
n

)
. (A.35)

Under (A.35),

D · √n(τ̂− τ̂′)= √
n

(
N −N ′ D

D′
)

= √
n

(
N −N ′ −N ′D −D′

D′
)

= √
n
(
N −N ′ − τ̂′(D −D′))= 〈A−Bτ̂′,

√
n
(
θ̂− θ′)〉+ oP(1)

It is easy to see that the assumptions of Theorem A.4 are implied by independence, As-
sumption 3.3, and Assumption A.6. Since τ̂′ is the RIPW estimator with deterministic
(πi,mi, νi ), Theorem A.4 implies that

τ̂′ = τ∗ + oP(1).

By definition and Assumption (A.3), ‖A‖ + ‖B‖ = OP(1). Under Assumption A.7, ‖θ̂ −
θ′‖ =OP(1/

√
n). Together with Assumption A.7, it implies

D · √n(τ̂− τ̂′)= 〈A−Bτ∗,
√
n
(
θ̂− θ′)〉+ oP(1) = 1√

n

n∑
i=1

Ui + oP(1).

By Theorem A.4 again,

D · √n(τ̂′ − τ∗)= 1√
n

n∑
i=1

(
V ′
i −E

[
V ′
i

])+ oP(1).

Combining the two pieces yield the desired result.
Now, we turn to proving (A.35). By Assumption A.6,

�i −�′
i =

�(W i )
fκ̂(W i, Xi )

− �(W i )
fκ′(W i, Xi )

= −�′
i

〈
Li, κ̂−κ′〉+O(1) · ∥∥θ̂− θ′∥∥2

, (A.36)

where the O(1) terms are uniformly bounded across all units. By (A.36),

�θ − �′
θ = −

〈
1
n

n∑
i=1

�′
iLi, κ̂−κ′

〉
+ oP

(
1√
n

)
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Similar to Lemma A.2, we can show

1
n

n∑
i=1

�′
iLi =

1
n

n∑
i=1

E
[
�′
iLi
]+OP

(
1√
n

)
.

Thus,

�θ − �′
θ = −

〈
1
n

n∑
i=1

E
[
�′
iLi
]
, κ̂−κ′

〉
+ oP

(
1√
n

)
. (A.37)

Using the same argument, we can prove that

�ww − �′
ww = −

〈
1
n

n∑
i=1

E
[
�′
iLiW

�
i JW i

]
, κ̂−κ′

〉
+ oP

(
1√
n

)
, (A.38)

and

�w − � ′
w = −

〈
1
n

n∑
i=1

E
[
�′
iLiW

�
i J
]
, κ̂−κ′

〉
+ oP

(
1√
n

)
, (A.39)

where we define 〈A, b〉 to beA�b for a matrixA and vector b. In particular,

∣∣�θ − �′
θ

∣∣+ ∣∣�ww − �′
ww

∣∣+ ∥∥�w − � ′
w

∥∥=OP

(
1√
n

)
.

Putting (A.37)–(A.39) and Lemma A.2 together, we have

D −D′

= �′
ww

(
�θ − �′

θ

)+ �′
θ

(
�ww − �′

ww

)− 2� ′�
w

(
�w − � ′

w

)+ oP
(

1√
n

)

= E
[
�′
ww

](
�θ − �′

θ

)+E
[
�′
θ

](
�ww − �′

ww

)− 2E
[
� ′
w

]�(
�w − � ′

w

)+ oP
(

1√
n

)

=
〈

1
n

n∑
i=1

(
2E
[
�′
iLiW

�
i J
]
E[�w] −E

[
�′
iLi
]
E
[
�′
ww

]−E
[
�′
iLiW

�
i JW i

]
E
[
�′
θ

])
, κ̂−κ′

〉

+ oP
(

1√
n

)

By definition of B,

D −D′ = 〈B, θ̂− θ′〉+ oP
(

1√
n

)
.

This proves the second part of (A.35).
To prove the first part of (A.35), we first recall that

Ỹ i = Y i −mi − diag(W i )νi, Ỹ
′
i = Y i −m′

i − diag(W i )ν
′
i.
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Similar to (A.36), Assumption A.6 implies

Ỹ i − Ỹ ′
i = −〈Gi, φ̂−φ〉 − 〈H i diag(W i ), ψ̂−ψ〉+O(1) · ‖θ̂− θ‖2, (A.40)

where the O(1) terms are uniformly bounded across all units. Together with (A.36),

�wy − �′
wy

= 1
n

n∑
i=1

�′
iW

�
i J
(
Ỹ i − Ỹ ′

i

)+ 1
n

n∑
i=1

(
�i −�′

i

)
W�
i JỸ

′
i + oP

(
1√
n

)

= −
〈

1
n

n∑
i=1

�′
iGiJW i, φ̂−φ′

〉
−
〈

1
n

n∑
i=1

�′
iH i diag(W i )JW i, ψ̂−ψ′

〉

−
〈

1
n

n∑
i=1

�′
iLiW

�
i JỸ

′
i, κ̂−κ′

〉
+ oP

(
1√
n

)
.

Similar to (A.37)–(A.39),

�wy − �′
wy = −

〈
1
n

n∑
i=1

E
[
�′
iGiJW i

]
, φ̂−φ′

〉
−
〈

1
n

n∑
i=1

E
[
�′
iH i diag(W i )JW i

]
, ψ̂−ψ′

〉

−
〈

1
n

n∑
i=1

E
[
�′
iLiW

�
i JỸ

′
i

]
, κ̂−κ′

〉
+ oP

(
1√
n

)
. (A.41)

Using the same argument, we can show

� y − � ′
y = −

〈
1
n

n∑
i=1

E
[
�′
iGiJ

]
, φ̂−φ′

〉
−
〈

1
n

n∑
i=1

E
[
�′
iH i diag(W i )J

]
, ψ̂−ψ′

〉

−
〈

1
n

n∑
i=1

E
[
�′
iLiỸ

′�
i J
]
, κ̂−κ′

〉
+ oP

(
1√
n

)
. (A.42)

As a result,

N −N ′

= �′
wy

(
�θ − �′

θ

)+ �′
θ

(
�wy − �′

wy

)− � ′�
w

(
� y − � ′

y

)− � ′�
y

(
�w − � ′

w

)+ oP
(

1√
n

)

= E
[
�′
wy

](
�θ − �′

θ

)+E
[
�′
θ

](
�wy − �′

wy

)−E
[
� ′
w

]�(
� y − � ′

y

)
−E

[
� ′
y

]�(
�w − � ′

w

)+ oP
(

1√
n

)

=
〈

1
n

n∑
i=1

{−E
[
�′
iLi
]
E
[
�′
wy

]−E
[
�′
iLiW

�
i JỸ

′
i

]
E
[
�′
θ

]+E
[
�′
iLiỸ

′�
i J
]
E
[
� ′
w

]
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+E
[
�′
iLiW

�
i J
]
E
[
� ′
y

]}
, κ̂−κ′

〉

+
〈

1
n

n∑
i=1

{
E
[
�′
iGiJ

]
E
[
� ′
w

]−E
[
�′
iGiJW i

]
E
[
�′
θ

]}
, φ̂−φ′

〉

+
〈

1
n

n∑
i=1

{
E
[
�′
iH i diag(W i )J

]
E
[
� ′
w

]−E
[
�′
iH i diag(W i )JW i

]
E
[
�′
θ

]}
, ψ̂−ψ′

〉

+ oP
(

1√
n

)
.

By definition of A,

N −N ′ = 〈A, θ̂− θ′〉+ oP
(

1√
n

)
.

A.6 Proof of Proposition 2.1: Induced weights are nonnegative

Proof. Letω= EW∼�[W ]. Then

EW∼�
[
diag(W )J

(
W −EW∼�[W ]

)]
= EW∼�

[
diag(W )

(
W −EW∼�[W ]

)]− 1
T
EW∼�

[
diag(W )1T1�

T

(
W −EW∼�[W ]

)]

= EW∼�[W ] −EW∼�
[
diag(W )

]
EW∼�[W ] −EW∼�

[
W

(
1�
TW

T

)]

+EW∼�[W ]
1�
TEW∼�[W ]

T

=ω− diag(ω)ω−EW∼�
[
W

(
1�
TW

T

)]
+ω

(
1�
Tω

T

)
.

By (2.18), for any t,

EW∼�
[∥∥W̃ −EW∼�[W̃ ]

∥∥2
2

]
ξt =ωt −ω2

t −EW∼�
[
W t

(
1�
TW

T

)]
+ωt

(
1�
Tω

T

)
. (A.43)

Now, we consider two scenarios:

1. Ifωt ≤ 1�
Tω/T ,

EW∼�
[
W t

(
1�
TW

T

)]
≤ EW∼�[W t ] =ωt .

Then the right-hand side of (A.43) is lower bounded by

ωt −ω2
t −ωt +ωt

(
1�
Tω

T

)
=ωt

(
1�
Tω

T
−ωt

)
≥ 0.
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2. Ifωt > 1�
Tω/T ,

EW∼�
[
W t

(
1�
TW

T

)]
≤ EW∼�

[
1�
TW

T

]
= 1�

Tω

T
.

Then the right-hand side of (A.43) is lower bounded by

ωt −ω2
t − 1�

Tω

T
+ωt

(
1�
Tω

T

)
=
(
ωt − 1�

Tω

T

)
(1 −ωt ) ≥ 0.

A.7 Extension to generalized DATE in Remark 2.3

We prove that, under Assumptions A.1–A.3, τ̂(�; ζ ) = τ∗(ξ; ζ ) +oP(1) if, further, π̂i =πi
and n‖ζ‖∞ =O(1).

To prove consistency, we just need to modify the proofs in Appendix A.3.1 and A.3.2
by redefining �i as

�i = (nζi )�(W i )
πi(W i )

,

and redefining �θ, �w, �ww, �wy , � y correspondingly. First, we can apply the same argu-
ments to show that Lemma A.2, Lemma A.3, and Theorem A.2 continue to hold under
the above assumptions. We are left to prove that

N∗ = 0.

As in the proof of Lemma A.4, we assume without loss of generality that τ∗(ξ; ζ ) = 0;
otherwise, we replaceYit(1) byYit(1)−τ∗(ξ; ζ ) and the resulting τ̂ becomes τ̂−τ∗(ξ; ζ ).
Note that this reduction relies on the fact that

∑n
i=1 ζi = 1. Using the same argument, we

can show that (A.11) continues to hold with the new definition of �i and other related
quantities, that is,

N∗ = 1
n

n∑
i=1

{
E[�iJW i]E[�θ] −E[�i]E[�w]

}�
E
[
Ỹ i(0)

]

+ 1
n

n∑
i=1

{
E
[
�iW

�
i J diag(W i )

]
E[�θ] −E[�w]�E

[
�i diag(W i )

]}
τ̃ i.

By (A.12),

E[�iJW i] = nζiEW∼�[JW ], E[�i] = nζi,
and

E
[
�iW

�
i J diag(W i )

]= nζiEW∼�
[
WJ diag(W )

]
, E

[
�i diag(W i )

]= nζiEW∼�
[
diag(W )

]
.

Thus,

�θ = 1, �w = EW∼�[JW ].
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Then

E[�iJW i]E[�θ] −E[�i]E[�w] = nζiEW∼�[JW ] − nζiEW∼�[JW ] = 0,

and by the DATE equation,

E
[
�iW

�
i J diag(W i )

]
E[�θ] −E[�w]�E

[
�i diag(W i )

]
= nζiEW∼�

[(
W −EW∼�[W ]

)�
J diag(W )

]
= nζiEW∼�

[(
W −EW∼�[W ]

)�
JW
]
ξ�.

Since we assume τ∗ = 0,

N∗ =
n∑
i=1

ζiEW∼�
[(
W −EW∼�[W ]

)�
JW
]
ξ�τ̃ i

= EW∼�
[(
W −EW∼�[W ]

)�
JW
]( n∑

i=1

ζiξ
�τ̃ i

)

= EW∼�
[(
W −EW∼�[W ]

)�
JW
]
τ∗ = 0.

A.8 Proof of Theorem 4.1

LetW i,ex = (W i,0,W i,−1, � � � ,W i,−p ) ∈R
T×(p+1), whereW i,0 =W i, and τ̂ex = (τ̂0, τ̂−1. � � � ,

τ̂−p ) where the entries are defined in (4.2). To derive the nonstochastic formula of τ̂ex, we
can repeat the steps in the proof of Theorem A.1 by replacing W i with W i,ex in �ww, �w,
and �wy . This results in

τ̂ex =
{
�ww,ex − ��

w,ex�w,ex

�θ

}−1{
�wy,ex − ��

w,ex� y

�θ

}
,

where

�ww,ex = 1
n

n∑
i=1

�iW
�
i,exJW i,ex ∈R

(p+1)×(p+1), �w,ex � 1
n

n∑
i=1

�iJW i,ex ∈ R
T×(p+1),

and

�wy,ex = 1
n

n∑
i=1

�iW
�
i,exJY i ∈R

(p+1)×T , � y = 1
n

n∑
i=1

�iJY i ∈R
T .

Note that Y i = Ỹ i in this case since no regression adjustment is applied.
Following the same steps as in Supplemental Appendix A.3.1, we can prove that

τ̂ex
p→
{
E[�ww,ex] − E[�w,ex]�E[�w,ex]

E[�θ]

}−1{
E[�wy,ex] − E[�w,ex]�E[� y ]

E[�θ]

}
. (A.44)

Since π̂i =πi, by (A.12),

E[�θ] = 1, E[�ww,ex] = EW∼�
[
W�

exJWex
]
, E[�w,ex] = EW∼�[JWex].
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Thus,

E[�ww,ex] − E[�w,ex]�E[�w,ex]
E[�θ]

= EW∼�
[(
Wex −EW∼�[Wex]

)�
J
(
Wex −EW∼�[Wex]

)]
(A.45)

By assumption (4.1),

Y i = Y i(0p+1 ) +
p∑
�=0

W i,−�τi,−� = Y i(0p+1 ) +W i,exτ i,ex,

where

τ i,ex = (τi,0, τi,−1, � � � , τi,−p ) ∈ R
p+1.

Then

E[�wy,ex] = 1
n

n∑
i=1

E
[
�iW

�
i,exJY i

]= 1
n

n∑
i=1

{
E
[
�iW

�
i,exJY i(0p+1 )

]+E
[
�iW

�
i,exJW i,ex

]
τ i,ex

}

= 1
n

n∑
i=1

{
E
[
�iW

�
i,exJ

]
E
[
Y i(0p+1 )

]+E
[
�iW

�
i,exJW i,ex

]
τ i,ex

}

= EW∼�
[
W�

exJ
]{1
n

n∑
i=1

E
[
JY i(0p+1 )

]}+EW∼�
[
W�

exJWex
]{1
n

n∑
i=1

τ i,ex

}
,

where the second last line uses the assumption that πi(w) = P(W i = w|Y i(0p+1 )) and
the last line is a result of (A.12) and the fact that J2 = J. Similarly,

E[� y ] = 1
n

n∑
i=1

{
E
[
JY i(0p+1 )

]+EW∼�[JWex]τ i,ex
}

.

Thus,

E[�wy,ex] − E[�w,ex]�E[� y ]
E[�θ]

= EW∼�
[(
Wex −EW∼�[Wex]

)�
J
(
Wex −EW∼�[Wex]

)]{1
n

n∑
i=1

τ i,ex

}
. (A.46)

Combining (A.44), (A.45), and (A.46) together, we obtain that

τ̂ex
p→ 1
n

n∑
i=1

τ i,ex.
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A.9 Miscellaneous

Proposition A.1. [Petrov (1975), p. 112, Theorem 5] Let X1,X2, � � � ,Xn be independent
random variables such that E[Xj ] = 0, for all j. Assume also E[X2

j g(Xj )] <∞ for some
function g that is nonnegative, even, and nondecreasing in the interval x > 0, with x/g(x)
being non-decreasing for x > 0. Write Bn =∑j Var[Xj ]. Then

dK

(
L
(

1√
Bn

n∑
j=1

Xj

)
,N(0, 1)

)
≤ A

Bng(
√
Bn )

n∑
j=1

E
[
X2
j g(Xj )

]
,

where A is a universal constant, L(·) denotes the probability law, dK denotes the
Kolmogorov–Smirnov distance (i.e., the �∞-norm of the difference of CDFs).

Proposition A.2 (Theorem 2 of von Bahr and Esseen (1965)). Let {Zi}i=1, ���,n be inde-
pendent mean-zero random variables. Then for any a ∈ [0, 1),

E

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
1+a

≤ 2
n∑
i=1

E|Zi|1+a.

Appendix B: Inference with cross-fitted model estimates

B.1 Cross-fitted RIPW estimator and main result

We split the data into K almost equal-sized folds with Ik denoting the index sets of
the kth fold and |Ik| ∈ {�n/K�, �n/K�}. For each i ∈ Ik, we estimate (π̂i, m̂i, ν̂i ) using
{(Y i(1), Y i(0),W i ) : i /∈ Ik}. When {(Y i(1), Y i(0),W i ) : i ∈ [n]} are independent, it is obvi-
ous that {

(π̂i, m̂i, ν̂i ) : i ∈ Ik
}⊥⊥ {(Y i(1), Y i(0),W i

)
: i ∈ Ik

}
.

We assume that

1
T

T∑
t=1

m̂it = 1
|Ik|

∑
i∈Ik

m̂it = 0, ∀i ∈ Ik, t = 1, � � � , T ,

and
1

|Ik|
∑
i∈Ik

ξ′ν̂i = 0. (B.1)

Otherwise, we apply the transformations (3.1) and (3.2) in each fold to enforce the above.
For valid inference, we need an additional assumption on the stability of the esti-

mates.

Assumption B.1. There exist functions {π ′
i : i ∈ [n]}, which satisfy Assumption A.2 and

vectors {(m′
i, ν

′
i ) : i ∈ [n]}, which satisfy Assumption A.3, such that

1
n

n∑
i=1

{
E
[(
π̂i(W i ) −π ′

i(W i )
)2]+E

[∥∥m̂i −m′
i

∥∥2
2

]+E
[∥∥ν̂i − ν′

i

∥∥2
2

]}=O(n−r) (B.2)
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for some r > 0. Furthermore,

π ′
i =πi for all i, or

(
m′
i, ν

′
i

)= (mi, νi ) for all i. (B.3)

The condition (B.2) states that the estimates need to be asymptotically deterministic
given the covariates. This is a very mild assumption. For example, when π̂i is estimated
from a parametric model {f (Xi; θ) : θ ∈R

d } as f (Xi; θ̂), under standard regularity condi-
tions, θ̂ converges to a limit θ0 even if the model is misspecified. As a result, π̂i converges
to π ′

i = f (Xi; θ0 ). Under certain smoothness assumption, the estimates converge in the
standard parametric rate, and thus (B.2) holds with r = 1. On the other hand, in the set-
tings of Section 2, (B.2) is always satisfied with π ′

i =πi andm′
i = νi = 0T . More generally,

if δ̄2
π + δ̄2

y = O(n−r ), it is also satisfied with π ′
i = πi and (m′

i, ν
′
i ) = (mi, νi ). A similar as-

sumption was considered for cross-sectional data by Chernozhukov, Newey, Singh, and
Syrgkanis (2020).

The condition (B.3) allows one of the treatment and outcome models to be incon-
sistently estimated. This covers the settings in Section 2 where the outcome model does
not need to be consistently estimated. It also covers the classical model-based inference
in which case the assignment model can be arbitrarily misspecified.

Theorem B.1. Assume that {(Y i(1), Y i(0),W i ) : i ∈ [n]} are independent. Let {(π̂i, m̂i,
ν̂i ) : i ∈ [n]} be estimates obtained from K-fold cross-fitting where K = O(1). Under As-
sumptions A.1, A.2, A.4, and B.1:

(i) τ̂(�) − τ∗(ξ) = oP(1) if δ̄πδ̄y = o(1);

(ii) Let Ĉ1−α be the same confidence interval as in Theorem 3.3. Then

lim inf
n→∞ P

(
τ∗(ξ) ∈ Ĉ1−α

)≥ 1 − α

if (a) δ̄πδ̄y = o(1/
√
n), (b) Assumption B.1 holds with r > 1/2, and (c) (2.24) holds if

(�i, Y i ) are replaced by (�(W i )/π ′
i(W i ), Y i −m′

i − diag(W i )ν′
i ) in the definition of

Vi.

The proof of Theorem B.1 is quite involved because our cross-fitted estimator is
non-standard. The standard cross-fitting (Chernozhukov, Chetverikov, Demirer, Duflo,
Hansen, and Newey (2017)) would compute τ̂k(�) on Ik with {(π̂i, m̂i, ν̂i ) : i ∈ Ik} and
then take τ̂(�) as the average of {τ̂k(�) : k ∈ [K]}. Under the assumptions of Theo-
rem 3.2, it is straightforward to show each τ̂k(�) is asymptotically linear, and hence
their average τ̂(�). In contrast, our estimator only cross-fitted the nuisance parameters
{(π̂i, m̂i, ν̂i ) : i ∈ [n]} but compute τ̂(�) using the whole data set. While it is theoretically
convenient to deal with the standard cross-fitting estimator, the standard version would
fit weighted TWFE regressions on merely n/K units, which would cause instability when
n is moderate as in many economic applications. For this reason, we opt for our version
to max out the sample size for computing τ̂(�), even though the technical proofs are
lengthier.
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B.2 Derandomization

Cross-fitting involves random data splits, which introduce operational variation into the
final estimate. We propose a derandomization procedure that mitigates this source of
unnecessary uncertainty by averaging over multiple splits. In particular, we consider B
independent splits and add a superscript (b) to denote the quantities involved in the bth
split.

In the proof presented in the next subsection, we will show in (B.14) that, for each
given data split,

D(b) · √n(τ̂(b) − τ∗)= 1√
n

n∑
i=1

(
V ′
i −E

[
V ′
i

])+ oP(1),

Note that V ′
i does not depend on b. We define the derandomized cross-fitted RIPW esti-

mate as

τ̂ =

B∑
b=1

D(b)τ̂(b)

B∑
b=1

D(b)

. (B.4)

Then, when B=O(1),

(
1
B

B∑
b=1

D(b)

)
· √n(τ̂− τ∗)= 1√

n

n∑
i=1

(
V ′
i −E

[
V ′
i

])+ oP(1).

Furthermore, in Section B.3.2 we show that

1
n

n∑
i=1

(
V ′
i − V̂ (b)

i

)2 = oP(1).

Denote by ¯̂Vi the average influence function:

¯̂Vi = 1
B

B∑
b=1

V̂ (b)
i .

Then

1
n

n∑
i=1

(
V ′
i − ¯̂Vi

)2 = oP(1).

Therefore, we can estimate the variance of τ̂ by the sample variance of ¯̂V1, � � � , ¯̂Vn. This
justifies the confidence interval stated in Algorithm 1.
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B.3 Proof of Theorem B.1

For convenience, we assume thatm= n/K is an integer. All proofs in this subsection can
be easily extended to the general case. Without loss of generality, we can assume that

E
[

̄2
π

]= δ̄2
π =�(n−r), E

[

̄2
y

]= δ̄2
y =�(n−r), (B.5)

where an = �(bn ) iff bn = O(an ). Otherwise, we can replace (π ′
i,m

′
i, ν

′
i ) by (πi,mi, νi )

without decreasing r.
We use a superscript (k) to denote the corresponding quantity in fold k, that is,

�(k)
θ � 1

m

∑
i∈Ik

�i, �(k)
ww � 1

m

∑
i∈Ik

�iW
�
i JW i, �(k)

wy � 1
m

∑
i∈Ik

�iW
�
i JỸ i,

� (k)
w � 1

m

∑
i∈Ik

�iJW i, � (k)
y � 1

m

∑
i∈Ik

�iJỸ i.

As in the proof of Theorem A.3, we assume τ∗ = 0 without loss of generality. Let
(�′
wy , �′

θ, � ′
w, � ′

y ) and (�′
i, Ỹ

′
i, τ̃

′
i ) be the counterpart of (�wy , �θ, �w, � y ) and (�i, Ỹ i, τ̃ i )

with (π̂i, m̂i, ν̂i ) replaced by (π ′
i,m

′
i, ν

′
i ). We first claim that

�wy�θ − ��
w� y − {�′

wy�
′
θ − � ′�

w �
′
y

}=OP

(
n−min{r,(r′+1)/2} +

√
E
[

̄2
π

] ·√E
[

̄2
y

])
, (B.6)

where r′ = rω/(2 +ω). The proof of (B.6) is relegated to the end. Here, we prove the rest
of the theorem under (B.6).

Note that �′
wy�

′
θ − � ′�

w �
′
y is the numerator of τ̂ when {(π ′

i,m
′
i, ν

′
i ) : i = 1, � � � , n} are

used as the estimates. Let

δ′
πi =

√
E
[(
π ′
i(W i ) −πi(W i )

)2]
, δ′

yi =
√
E
[∥∥m′

i −mi
∥∥2

2

]+E
[∥∥ν′

i − νi
∥∥2

2

]
, (B.7)

and

δ̄′
π =

√√√√1
n

n∑
i=1

δ′2
πi, δ̄′

y =
√√√√1
n

n∑
i=1

δ′2
yi. (B.8)

By Assumption B.1 and (B.5),

δ̄′2
π = 1

n

n∑
i=1

δ′2
πi

≤ 2
n

n∑
i=1

{
E
[

2
πi

]+E
[(
π̂i(W i ) −π ′

i(W i )
)2]}

=O(E[
̄2
π

]+ n−r)=O(E[
̄2
π

])
. (B.9)

Similarly,

δ̄′2
y = 1

n

n∑
i=1

δ′2
yi =O

(
E
[

̄2
y

])
. (B.10)
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As a result,

δ̄′
πδ̄

′
y =O

(√
E
[

̄2
π

] ·√E
[

̄2
y

])
.

Note that Assumption A.4 implies Assumption A.3 with q= 1. By Theorem A.2 and The-
orem A.3,

�′
wy�

′
θ − � ′�

w �
′
y = 1

n

n∑
i=1

(
V ′
i −E

[
V ′
i

])+OP

(√
E
[

̄2
π

] ·√E
[

̄2
y

])+ oP(1/
√
n) (B.11)

= OP

(√
E
[

̄2
π

] ·√E
[

̄2
y

])+ oP(1), (B.12)

where

V ′
i =�′

i

{
E
[
�′
wy

]−E
[
� ′
y

]�
JW i +E

[
�′
θ

]
W�
i JỸ

′
i −E

[
� ′
w

]�
JỸ

′
i

}
.

On the other hand, by (B.6),

D
(
τ̂− τ∗) = �wy�θ − ��

w� y

= �′
wy�

′
θ − � ′�

w �
′
y +OP

(
n−min{r,(r′+1)/2} +

√
E
[

̄2
π

] ·√E
[

̄2
y

])
. (B.13)

When
√
E[
̄2

π ] ·
√
E[
̄2

y ] = o(1), (B.12) and (B.13) imply that

D
(
τ̂− τ∗)= oP(1).

The consistency then follows from Lemma A.3.

When
√
E[
̄2

π ] ·
√
E[
̄2

y ] = o(1/
√
n) and r > 1/2, (B.12) and (B.13) imply that

D · √n(τ̂− τ∗)= 1√
n

n∑
i=1

(
V ′
i −E

[
V ′
i

])+ oP(1). (B.14)

Let V̂ ′
i denote the plug-in estimate of V ′

i assuming that (π ′
i,m

′
i, ν

′
i ) is known, that is,

V̂ ′
i =�′

i

{
�′
wy − � ′�

y JW i + �′
θW

�
i JỸ

′
i − � ′�

w JỸ
′
i

}
. (B.15)

By Lemma A.5, under Assumption A.5 (with (π̂i, m̂i, ν̂i ) = (π ′
i,m

′
i, ν

′
i )),

D · √n(τ̂− τ∗)
σ ′

d→N(0, 1) in Kolmogorov–Smirnov distance,

where

σ ′2 = 1
n

n∑
i=1

Var
(
V ′
i

)≥ v0.

Similar to (A.21), define

σ ′2+ = 1
n

n∑
i=1

E

(
V ′
i −

1
n

n∑
i=1

E
[
V ′
i

])2

= 1
n

n∑
i=1

E
[
V ′2
i

]−
(

1
n

n∑
i=1

E
[
V ′
i

])2

.
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Obviously, σ ′2+ ≥ σ ′2. Furthermore, define an oracle variance estimate σ̂ ′2 as

σ̂ ′2 = 1
n− 1

n∑
i=1

(
V̂ ′
i −

1
n

n∑
i=1

V̂ ′
i

)2

= n

n− 1

{
1
n

n∑
i=1

V̂ ′2
i −

(
1
n

n∑
i=1

V̂ ′
i

)2}
.

Recalling (A.18) that

σ̂2 = 1
n− 1

n∑
i=1

(
V̂i − 1

n

n∑
i=1

V̂i

)2

= n

n− 1

{
1
n

n∑
i=1

V̂2
i −

(
1
n

n∑
i=1

V̂i

)2}
.

Similar to (A.22) in Theorem A.5, it remains to prove that

∣∣σ̂2 − σ ′2+
∣∣= oP(1).

Using the same arguments as in Theorem A.5, we can prove that

∣∣σ̂ ′2 − σ ′2+
∣∣= oP(1).

Therefore, the proof will be completed if

∣∣σ̂2 − σ̂ ′2∣∣= oP(1). (B.16)

We present the proof of (B.16) in the end.

B.3.1 Proof of ( B.6) Let (�′(k)
wy , �′(k)

θ , � ′(k)
w , � ′(k)

y ) be the counterpart of (�(k)
wy , �(k)

θ , � (k)
w ,

� (k)
y ) with (π̂i, m̂i, ν̂i ) replaced by (π ′

i,m
′
i, ν

′
i ). Since the proof is lengthy, we decompose

it into seven steps.

Step 1 By the triangle inequality and the Cauchy–Schwarz inequality,

∣∣�wy − �′
wy

∣∣
≤ 1
n

n∑
i=1

∣∣�iW�
i JỸ i −�′

iW
�
i JỸ

′
i

∣∣

≤ 1
n

n∑
i=1

∣∣�iW�
i J
(
m̂i −m′

i

)∣∣+ 1
n

n∑
i=1

∣∣�iW�
i J diag(W i )

(
ν̂i − ν′

i

)∣∣

+ 1
n

n∑
i=1

∣∣(�i −�′
i

)
W�
i JỸ

′
i

∣∣

≤
√√√√(1

n

n∑
i=1

∥∥�iW�
i J
∥∥2

2

)(
1
n

n∑
i=1

∥∥m̂i −m′
i

∥∥2
2

)

+
√√√√(1

n

n∑
i=1

∥∥�iW�
i J diag(W i )

∥∥2
2

)(
1
n

n∑
i=1

∥∥ν̂i − ν′
i

∥∥2
2

)
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+
√√√√(1

n

n∑
i=1

∥∥(�i −�′
i

)
W�
i J
∥∥2

2

)(
1
n

n∑
i=1

∥∥Ỹ ′
i

∥∥2
2

)
.

By Assumption A.5 and Hölder’s inequality,

1
n

n∑
i=1

E
[∥∥Ỹ ′

i

∥∥2
2

]≤
(

1
n

n∑
i=1

E
[∥∥Ỹ ′

i

∥∥2+ω
2

])2/(2+ω)

=O(1).

By Markov’s inequality,

1
n

n∑
i=1

∥∥Ỹ ′
i

∥∥2
2 =OP(1). (B.17)

By Assumption A.2 and the boundedness of ‖W iJ‖2 and ‖W iJ diag(W i )‖2,

1
n

n∑
i=1

∥∥�iW�
i J
∥∥2

2 =O(1),
1
n

n∑
i=1

∥∥�iW�
i J diag(W i )

∥∥2
2 =O(1),

and, further, by Markov’s inequality,

1
n

n∑
i=1

∥∥(�i −�′
i

)
W�
i J
∥∥2

2 =OP

(
1
n

n∑
i=1

E
[(
π̂i(W i ) −π ′

i(W i )
)2])

.

Putting pieces together and using Assumption B.1, we arrive at

∣∣�wy − �′
wy

∣∣=OP

(
n−r/2).

Similarly, we can prove that

∣∣�wy − �′
wy

∣∣+ ∣∣�θ − �′
θ

∣∣+ ∥∥�w − � ′
w

∥∥
2 + ∥∥� y − � ′

y

∥∥
2 =OP

(
n−r/2). (B.18)

As a consequence,

∣∣(�wy − �′
wy

)(
�θ − �′

θ

)− (�w − � ′
w

)�(
� y − � ′

y

)∣∣=OP

(
n−r). (B.19)

Step 2 Note that Assumption A.4 implies Assumption A.3 with q= 1. By Lemma A.2,

∣∣�′
θ −E

[
�′
θ

]∣∣+ ∣∣�′
wy −E

[
�′
wy

]∣∣+ ∥∥� ′
w −E

[
� ′
w

]∥∥
2 + ∥∥� ′

y −E
[
� ′
y

]∥∥
2 =OP

(
n−1/2).

By (B.18), we have

∣∣(�wy − �′
wy

)(
�′
θ −E

[
�′
θ

])+ (�′
wy −E

[
�′
wy

])(
�θ − �′

θ

)
− (�w − � ′

w

)�(
� ′
y −E

[
� ′
y

])− (� ′
w −E

[
� ′
w

])�(
� y − � ′

y

)∣∣
=OP

(
n−(r+1)/2). (B.20)
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Step 3 Note that

�wy − �′
wy = 1

K

K∑
k=1

(
�(k)
wy − �′(k)

wy

)
.

For each k,

�(k)
wy − �′(k)

wy = 1
m

∑
i∈Ik

(
�iW

�
i JỸ i −�′

iW
�
i JỸ

′
i

)
.

Under Assumption A.4, the summands are independent conditional on D−[k] �
{(Y i(1), Y i(0), Xi ) : i /∈ Ik}. Let E(k) and Var(k) denote the expectation and vari-
ance conditional on D−[k]. By Chebyshev’s inequality,

(
�(k)
wy − �′(k)

wy −E
(k)[�(k)

wy − �′(k)
wy

])2
=OP

(
1

m2

∑
i∈Ik
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where (i) follows fromK =O(1) and (ii) applies Markov’s inequality. By Jensen’s
inequality and the Cauchy–Schwarz inequality,
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, (B.22)

where C is a constant that only depends on cπ and T . The second term can be
bounded by

1
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E
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(i)≤ E

[(
1
n
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(
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Ỹ

′
i

)2+ω
)2/(2+ω)]

(ii )≤
(

1
n

n∑
i=1

E
[(
π̂i(W i ) −π ′

i(W i )
)2(1+2/ω)])ω/(2+ω)(

1
n

n∑
i=1

E
[(
Ỹ
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1
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E
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Ỹ
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,

where (i) applies the Hölder’s inequality for sums, (ii) applies the Hölder’s in-
equality that E[XY ] ≤ E[X(2+ω)/ω]ω/(2+ω)E[Y (2+ω)/2]2/(2+ω), and (iii) uses the
fact that |π̂i(W i ) −π ′

i(W i )| ≤ 1. By Assumptions A.5 and B.1,

1
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E
[(
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i(W i )
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Ỹ

′
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)2]=O(n−rω/(2+ω))=O(n−r′) (B.23)

(B.22) and (B.23) together imply that

1
n
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i=1

E
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�
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�
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′
i

)2 =O(n−r′). (B.24)

By (B.21), for each k,

�(k)
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By Lemma A.2,∣∣E[�′
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Therefore, ∣∣∣∣∣
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+E
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Step 4 Note that E[�′
wy ]E[�′

θ] − E[� ′
w]�E[� ′

y ] is the limit of D · √
n(τ̂ − τ∗ ) when

{(π ′
i,m

′
i, ν

′
i ) : i = 1, � � � , n} are plugged in as the estimates. Under Assump-
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′
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by Lemma A.4,

E
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E
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Step 5 We shall prove that∣∣∣∣∣ 1
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By definition, we can write


πi =
√
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By Assumption A.1 and A.4,

E
(k)[�(k)

wy

]= 1
m

∑
i∈Ik

E
(k)[�iW�

i JỸ i
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Putting the pieces together and using the fact that E[� ′
w]�J = E[� ′
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As in the proof of Theorem A.3, let
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Recalling (A.13) on page 14, there exists a constant C1 that only depends on cπ
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where δ′
πi and δ̄′

π are defined in (B.7) and (B.8), respectively. Then

∣∣E(k)[�iW�
i J diag(W i )

]
E
[
�′
θ

]− (E[�∗
iW

�
i J diag(W i )

]
E
[
�∗
θ

])∣∣
≤ ∣∣E(k)[�iW�

i J diag(W i )
]−E

[
�∗
iW

�
i J diag(W i )

]∣∣ ·E[�′
θ

]
+E

[
�∗
iW

�
i J diag(W i )

] · ∣∣(E[�′
θ

]−E
[
�∗
θ

])∣∣
≤ C1

(
E
[
�′
θ

] ·
πi +E
[
�∗
iW

�
i J diag(W i )

] · δ̄′
π

)
.
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for some constant C2 that only depends on cπ and T . Let
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.
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Since we assume τ∗ = 0, ‖E(k)[τ̃ i]‖2 = ‖E(k)[ν̂i − νi]‖2 ≤ 
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On the other hand, by definition of �∗
i ,
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Now, we turn to the second and third terms of (B.28). Similar to (B.30), we can
show that
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Putting (B.28), (B.31), (B.32), and (B.33) together, we arrive at∣∣∣∣E(k)[�(k)
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for some constant C4 that only depends on cπ and T . Since τ∗ = 0,
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where the last step uses (B.1). Therefore, averaging over k and marginalizing
over D−k yields that∣∣∣∣∣ 1
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By the Cauchy–Schwarz inequality,∣∣∣∣∣ 1
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Therefore, (B.27) is proved by (B.9) and (B.10) on page 39.
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Using the same argument as (B.29), we can show that∥∥E[(�′
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where the last step uses (B.5). On the other hand,
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Together with (B.35), we prove (B.34).
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θ

]
,

and

E
[
� ′
w

]� 1
K

(
K∑
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E
(k)[� ′(k)

y

])= E
[
� ′
w

]� 1
K

(
K∑
k=1

E
[
� ′(k)
y

])= E
[
� ′
w

]�
E
[
� ′
y

]
.

By (B.19), (B.20), (B.25), (B.26), (B.27), (B.34), and triangle inequality,

�wy�θ − ��
w� y − {�′

wy�
′
θ − � ′�

w �
′
y

}
=OP

(
n−r + n−(r+1)/2 + n−(r′+1)/2 +

√
E
[

̄2
π

] ·√E
[

̄2
y

])
.

The proof of (B.6) is then completed.

B.3.2 Proof of ( B.16) Let

V̂ ′′
i =�′

i

{
�wy − ��

y JW i + �θW�
i JỸ

′
i − ��

wJỸ
′
i

}
. (B.36)
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Recalling the definition of V̂ ′
i in (B.15) on page 40,

∣∣V̂ ′
i − V̂ ′′

i

∣∣≤ ∣∣�wy − �′
wy

∣∣ ·�′
i +
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iJW i
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2
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θ
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iW

�
i JỸ
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i
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iJỸ
′
i

∥∥
2

≤ {∣∣�wy − �′
wy
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2
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∥∥
2 + ∣∣�′

iW
�
i JỸ

′
i

∣∣+ ∥∥�′
iJỸ

′
i

∥∥
2

}
By Jensen’s inequality and the Cauchy–Schwarz inequality,

1
n

n∑
i=1

(
V̂ ′
i − V̂ ′′

i

)2
≤ 4
{∣∣�wy − �′

wy
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}
,

where the last inequality uses Assumption A.2. By (B.17) and (B.18) on page 42,

1
n

n∑
i=1

(
V̂ ′
i − V̂ ′′

i

)2 =OP

(
n−r)= oP(1). (B.37)

On the other hand, recalling the definition of V̂i in (A.15) on page 17,
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By the triangle inequality,
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≤
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Similarly, ∥∥�′
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Putting pieces together, we have that(
V̂ ′′
i − V̂i

)2
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∣∣},

for some constant C that only depends on cπ and T . By Lemma A.2 and Markov’s in-
equality,

|�wy | + ‖� y‖2 + |�θ| + ‖�w‖2 =OP(1),
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By the first part of the theorem,

|τ̂| = oP(1).

Therefore,
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By Assumption A.2 and B.1,
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By Assumption B.1,
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Supplementary Material Design-robust two-way-fixed-effects regression 53

By Markov’s inequality, we obtain that
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By Hölder’s inequality,
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i

∥∥2
2 ≤

(
1
n

n∑
i=1

∣∣�′
i −�i

∣∣2(1+2/ω)

)ω/(2+ω)(
1
n

n∑
i=1

∥∥Ỹ ′
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By Markov’s inequality and Assumption A.4,
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By Assumption A.2,
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where (i) uses the fact that |π̂i(W i ) −π ′
i(W i )| ≤ 1. Thus, by Markov’s inequality,
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Putting (B.38), (B.39), and (B.40) together, we conclude that
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By Jensen’s inequality, (B.37), and (B.41),
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By Lemma A.2, it is easy to see that
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As a result,
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Together with (B.43), it implies that
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Appendix C: Solutions of the DATE equation

C.1 The case of two periods

When there are two periods, the DATE equation only involves four variables �(0, 0),
�(0, 1), �(1, 0),�(1, 1). Through some tedious algebra presented in Appendix C.4.1,
we can show that the DATE equation can be simplified into the following equation:

{
�(1, 1) −�(0, 0)

}{
�(1, 0) −�(0, 1)

}
= (ξ1 − ξ2 )

{(
�(1, 0) −�(0, 1)

)2 − (�(1, 0) +�(0, 1)
)}

. (C.1)

C.1.1 Difference-in-difference designs In the setting of difference-in-difference (DiD),
(0, 0) and (0, 1) are the only two possible treatment assignments. As a result, we should
set the support of the reshaped distribution to be S

∗ = {(0, 0), (0, 1)}. Then (C.1) reduces
to

�(0, 0)�(0, 1) = (ξ1 − ξ2 )
(
�(0, 1)2 −�(0, 1)

)= (ξ2 − ξ1 )�(0, 0)�(0, 1).
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It has a solution only when ξ2 − ξ1 = 1, that is, (ξ1, ξ2 ) = (0, 1), and hence τ∗(ξ) = τ2,
in which case any reshaped distribution � with �(0, 0),�(0, 1) > 0 is a solution. This
is not surprising because for DiD, no unit is treated in the first period, and thus τ1 is
unidentifiable. Nonetheless, τ2 is an informative causal estimand in the literature of DiD.
This implies that the RIPW estimator with any�with�(0, 0),�(0, 1)> 0, and�(0, 0) +
�(0, 1) = 1 yields a doubly robust DiD estimator.

C.1.2 Cross-over designs For a two-period cross-over design, (0, 1) and (1, 0) are the
only two possible treatment assignments. Since the support of � must contain at least
two elements, it has to be S

∗ = {(1, 0), (0, 1)}. Then the DATE equation reduces to

0 = (ξ1 − ξ2 )
{(
�(1, 0) −�(0, 1)

)2 − (�(1, 0) +�(0, 1)
)}

.

When ξ1 �= ξ2, it implies that

0 = (�(1, 0) −�(0, 1)
)2 − (�(1, 0) +�(0, 1)

)= (�(1, 0) −�(0, 1)
)2 − 1.

It never holds since �(1, 0),�(0, 1) > 0. By contrast, when ξ1 = ξ2 = 1/2, any � with
support (1, 0) and (0, 1) is a solution.

C.1.3 Estimating equally-weighted DATE for general designs When ξ1 = ξ2 = 1/2, the
DATE equation reduces to{

�(1, 1) −�(0, 0)
}{
�(1, 0) −�(0, 1)

}= 0

⇐⇒ �(1, 1) =�(0, 0) or�(1, 0) =�(0, 1).

If S∗ = {(1, 1), (0, 0), (1, 0), (0, 1)} in Assumption 3.2, that is, when all combinations of
treatments are possible, the solutions are(

�(1, 1),�(0, 0),�(0, 1),�(1, 0)
)= (a, a, b, 1 − 2a− b), a > 0, 2a+ b < 1

or
(
�(1, 1),�(0, 0),�(0, 1),�(1, 0)

)= (a, 1 − a− 2b, b, b), b > 0, a+ 2b < 1.

The uniform distribution on S
∗ is a solution, implying that the IPW weights deliver the

average effect in this case. If S∗ = {(1, 1), (0, 0), (0, 1)} (staggered adoption), we cannot
make �(1, 0) and �(0, 1) equal since the former must be zero while the latter must be
positive. Therefore, the solutions can be characterized as(

�(1, 1),�(0, 0),�(0, 1)
)= (a, a, 1 − 2a), a ∈ (0, 1/2). (C.2)

Again, the uniform distribution on S
∗ is a solution. However, we will show in the next

section that the uniform distribution is not a solution for staggered adoption designs
with T ≥ 3.

C.2 Staggered adoption with multiple periods

For staggered adoption designs, πi is supported on

Wsta
T � {w :w1 = · · · =wi = 0,wi+1 = · · · =wT = 1 for some i= 0, 1, � � � , T }.
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For notational convenience, we denote by w(j) the vector in Wsta
T with j entries equal

to 1 for j = 0, 1, � � � , T . Thus, the support S∗ of � must be a subset of Wsta
T . For general

weights, the DATE equation is a quadratic system with complicated structures. Nonethe-
less, when ξ1 = · · · = ξT = 1/T , the solution set is an union of segments on the T -
dimensional simplex with closed-form expressions. We focus on the equally-weighted
DATE in this section.

Theorem C.1. Let S∗ = {w(0),w(j1 ), � � � ,w(jr ),w(T )} with 1 ≤ j1 < · · · < jr ≤ T − 1. Then
the set of solutions of the DATE equation with support S∗ is characterized by the following
linear system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(w(T ) ) = T − jr
T

−�(w(jr ) ) + 1
T

r∑
k=1

jk�(w(jk ) ),

�(w(jk+1 ) ) +�(w(jk ) ) = jk+1 − jk
T

, k= 1, � � � , r − 1,

�(w(0) ) = 1 −�(w(T ) ) −
r∑

k=1

�(w(jk ) ),

�(w)> 0 iffw ∈ S
∗

(C.3)

Furthermore, the solution set of (C.3) is either an empty set or a 1-dimensional segment in
the form of {λ�(1) + (1 − λ)�(2) : λ ∈ (0, 1)} for some distributions�(1) and�(2).

The proof of Theorem C.1 is presented in Appendix C.4.2. In the following corollary,
we show that the solution set with S

∗ = Wsta
T is always nonempty with nice explicit ex-

pressions.

Corollary C.1. When S
∗ = Wsta

T , the solution set of (C.3) is {λ�(1) + (1 − λ)�(2) : λ ∈
(0, 1)} where

• if T is odd,

�(1)(w(T ) ) = (T + 1)2

4T 2 , �(1)(w(0) ) = T 2 − 1

4T 2 ,

�(1)(wj ) = I(j is odd)
T

, j = 1, � � � , T − 1,

and �(2)(w(j) ) =�(1)(w(T−j) ), j = 0, � � � , T ;

• if T is even,

�(1)(w(T ) ) =�(1)(w(0) ) = 1
4

, �(1)(wj ) = I(j is odd)
T

, j = 1, � � � , T − 1,

and �(2)(w(T ) ) =�(2)(w(0) ) = T + 2
4T

,

�(2)(wj ) = I(j is even)
T

, j = 1, � � � , T − 1.
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In particular, when T = 3 and S
∗ = Wsta

T , the solution set is{
(�(w(0) ),�(w(1) ),�(w(2) ),�(w(3) )

= λ
(

2
9

,
1
3

, 0,
4
9

)
+ (1 − λ)

(
4
9

, 0,
1
3

,
2
9

)
: λ ∈ (0, 1)

}
. (C.4)

Clearly, the uniform distribution on S
∗ is excluded. Thus, although the RIPW estima-

tor with a uniform reshaped distribution is inconsistent, the nonuniform distribution
(1/3, 1/6, 1/6, 1/3), namely the midpoint of the solution set, induces a consistent RIPW
estimator. For general T , it is easy to see that the midpoint is

�(w(T ) ) =�(w(0) ) = T + 1
4T

, �(w(j) ) = 1
2T

, j = 1, � � � , T − 1. (C.5)

This distribution uniformly assigns probabilities on the subset {w(1), � � � ,w(T−1)} while
puts a large mass on {w(0),w(T )}. Intuitively, the asymmetry is driven by the special roles
ofw(0) andw(T ): the former provides the only control group for period T while the latter
provides the only treated group for period 1.

Corollary C.1 offers a unified recipe for the reshaped distribution when the posi-
tivity Assumption 3.2 holds for all possible assignments. In some applications, certain
assignment never or rarely occurs and we are forced to restrict the support of � into a
smaller subset S∗. To start with, we provide a detailed account of the case T = 3. When
j1 = 1, j2 = 2, (C.4) shows that �(w(0) ),�(w(3) )> 0, and thus S

∗ must be Wsta
3 and can-

not be {w(1),w(2)}, {w(0),w(1),w(2)}, or {w(1),w(2),w(3)}. When j1 = 1, r = 1, via some
tedious algebra, the solution set of (C.3) is{

(�(w(0) ),�(w(1) ),�(w(2) ),�(w(3) )

= λ(0, 1, 0, 0) + (1 − λ)

(
1
3

, 0, 0,
2
3

)
: λ ∈ (0, 1)

}
. (C.6)

Thus, {w(0),w(1),w(3)} is the only support with j1 = 1, r = 1 that induces a nonempty
solution set of (C.3). Similarly, we can show that the only support with j2 = 1, r = 1 that
induces a nonempty solution set as{

(�(w(0) ),�(w(1) ),�(w(2) ),�(w(3) )

= λ(0, 0, 1, 0) + (1 − λ)

(
2
3

, 0, 0,
1
3

)
: λ ∈ (0, 1)

}
. (C.7)

In sum, Wsta
T , Wsta

T \ {w(1)}, Wsta
T \ {w(2)} are the only three supports with nonempty so-

lution sets, characterized by (C.4), (C.6), and (C.7), respectively.
For T = 3, {j1, � � � , jr } can be any nonempty subset of {1, 2}. Via some tedious algebra,

we can show that this continues to be true for T = 4. However, this no longer holds for
T ≥ 5. For instance, if {j1, � � � , jr } = {1, 2, 4, 5}, the second equation of (C.3) implies that

�(w(1) ) +�(w(2) ) =�(w(4) ) +�(w(5) ) = 1
T

, �(w(2) ) +�(w(4) ) = 2
T

.
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Under the support constraint, the first two equations imply that�(w(2) ),�(w(4) )< 1/T ,
contradicting with the third equation. Nonetheless, the contradiction can be resolved if
any of these four elements is discarded. If this is the case in practice, we can discard the
element that is believed to be the least likely assignment.

C.3 Other designs

In many applications, the treatment can be switched on and off at different periods for a
single unit. In general, a design is characterized by a collection of possible assignments
Sdesign. If any subset S∗ ⊂ Sdesign yields a nonempty solution set of the DATE equation,
we can derive a doubly robust estimator of the DATE. In this section, we consider several
designs with more than two periods, which are not staggered adoption designs.

First, we consider transient designs with zero or one period being treated and with
each period being treated with a nonzero chance, that is,

W tra
T ,1 =

{
w ∈ {0, 1}T :

T∑
t=1

wt ≤ 1

}
.

For notational convenience, we denote by w̃(0) the never-treated assignment and w̃(j)

the assignment with only jth period treated. The above design can be encountered, for
example, when the treatment is a natural disaster. The following theorem characterizes
all solutions of the DATE equation for any ξ.

Theorem C.2. When S
∗ = W tra

T ,1,� is a solution of the DATE equation iff there exists b > 0
such that

�(w̃(t ) )

{
1 −�(w̃(t ) ) − �(w̃(0) )

T

}
= ξtb, ∀t ∈ [T ].

In particular, when ξt = 1/T for every t, Theorem C.2 implies that�∼ Unif(W tra
T ,1 ) is

a solution. In fact, for any given�(w̃0 ) ∈ (0, 1),� is a solution if

�(·|W �= w̃(0) ) ∼ Unif
(
{w̃(1), � � � , w̃(T )}

)
,

whereW denotes a generic random vector drawn from�. The above decomposition can
be used to construct solutions for more general transient designs:

W tra
T ,k =

{
w ∈ {0, 1}T :

T∑
t=1

wt ≤ k
}

.

This design is common in marketing experiments where, for example, k is the maximal
number of coupons given to a user and each user can receive coupons in any combina-
tion of up to k time periods.



Supplementary Material Design-robust two-way-fixed-effects regression 59

Theorem C.3. When S
∗ = W tra

T , � is a solution of the DATE equation with ξt = 1/T (t =
1, � � � , T ), if

�

(
·|

T∑
t=1

W t = k′
)

∼ Unif
(
W tra
T ,k′ \W tra

T ,k′−1

)
, k′ = 1, � � � , k,

C.4 Proofs

For notational convenience, denote by h(�) = (h1(�), � � � , hT (�)) the left-hand side of
the DATE equation. We start by a simple but useful observation that, for any�,

1�
T h(�) = EW∼�

[(
1�
T diag(W ) − 1�

T ξW
�)J(W −EW∼�[W ]

)]
= EW∼�

[(
W� −W�)J(W −EW∼�[W ]

)]= 0. (C.8)

Thus, there is at least one redundant equation and for any matrix V ∈ R
T×(T−1) with

V �1T = 0,

h(�) = 0 ⇐⇒ V �h(�) = 0. (C.9)

C.4.1 Proof of equation ( C.1) Set V = (1, −1)� in (C.9). Then

V �h(�) = 0 ⇐⇒ h1(�) − h2(�) = 0.

As a result,

0 = EW∼�

[(
(W1, −W2 ) − (ξ1 − ξ2 )(W1,W2 )

)[ 1 −1
−1 1

][
W1 −EW∼�[W1]
W2 −EW∼�[W2]

]]

= EW∼�
[(
W1 +W2 − (ξ1 − ξ2 )(W1 −W2 )

)(
W1 −W2 −EW∼�(W1 −W2 )

)]
= EW∼�

[
W 2

1 −W 2
2 − (ξ1 − ξ2 )(W1 −W2 )2]

−EW∼�
[
W1 +W2 − (ξ1 − ξ2 )(W1 −W2 )

]
EW∼�(W1 −W2 )

= EW∼�
[
W1 −W2 − (ξ1 − ξ2 )(W1 −W2 )2]

−EW∼�
[
W1 +W2 − (ξ1 − ξ2 )(W1 −W2 )

]
EW∼�(W1 −W2 )

= (�(1, 0) −�(0, 1)
)− (ξ1 − ξ2 )

(
�(1, 0) +�(0, 1)

)
− {�(1, 0) +�(0, 1) + 2�(1, 1) − (ξ1 − ξ2 )

(
�(1, 0) −�(0, 1)

)}
× {�(1, 0) −�(0, 1)

}
= (�(1, 0) −�(0, 1)

)− (ξ1 − ξ2 )
(
�(1, 0) +�(0, 1)

)
− {1 +�(1, 1) −�(0, 0) − (ξ1 − ξ2 )

(
�(1, 0) −�(0, 1)

)}
× {�(1, 0) −�(0, 1)

}
.

Rearranging the terms yield{
�(1, 1) −�(0, 0)

}{
�(1, 0) −�(0, 1)

}
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= (ξ1 − ξ2 )
{(
�(1, 0) −�(0, 1)

)2 − (�(1, 0) +�(0, 1)
)}

. (C.10)

C.4.2 Proof of Theorem C.1 Let ej denote the jth canonical basis in R
T . Then

hj(�) = e�j EW∼�
[(

diag(W ) − ξW�)J(W −EW∼�[W ]
)]

.

We can decompose hj(�) into hj1(�) − ξjh2(�) where

hj1(�) = e�j EW∼�
[
diag(W )J

(
W −EW∼�[W ]

)]
,

h2(�) = EW∼�
[
W�J

(
W −EW∼�[W ]

)]
.

Then

hj1(�) = EW∼�
[
Wje

�
j J
(
W −EW∼�[W ]

)]
= EW∼�

[
Wje

�
j JW

]−EW∼�
[
Wje

�
j J
]
EW∼�[W ]

= EW∼�
[
Wj

(
Wj − 1�

TW

T

)]
−EW∼�[Wj ]e

�
j JEW∼�[W ]

= EW∼�
[
Wj

(
Wj − 1�

TW

T

)]
−EW∼�[Wj ]EW∼�

[
Wj − 1�

TW

T

]

= EW∼�[Wj ] − (EW∼�[Wj ]
)2 + EW∼�[Wj ]EW∼�

[
1�
TW

]
T

− EW∼�
[
Wj
(
1�
TW

)]
T

,

where the last equality follows from the fact that W 2
j = Wj . By (C.9), it is equivalent to

find� satisfying


hj(�) = hj+1(�) − hj(�) = 0, j = 1, 2, � � � , T − 1.

In this case, ξj+1 = ξj for any j, and thus

h(j+1)1(�) − hj1(�) = 0, j = 1, 2, � � � , T − 1. (C.11)

By definition,

Wj+1 −Wj = I(W =w(T−j) ). (C.12)

As a consequence, we have

EW∼�[Wj+1] −EW∼�[Wj ] =�(w(T−j) ),(
EW∼�[Wj+1]

)2 − (EW∼�[Wj ]
)2 =�(w(T−j) )2 + 2�(w(T−j) )EW∼�[Wj ],

and

EW∼�
[
Wj+1

(
1�
TW

)]−EW∼�
[
Wj
(
1�
TW

)]
= EW∼�

[
I(W =w(T−j) )

(
1�
Tw(T−j)

)]= (T − j)�(w(T−j) ).
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As a result,

h(j+1)1(�) − hj1(�)

=�(w(T−j) )

{
1 −�(w(T−j) ) − 2EW∼�[Wj ] + EW∼�

[
1�
TW

]
T

− T − j
T

}

=�(w(T−j) )

{
j

T
−�(w(T−j) ) − 2EW∼�[Wj ] + EW∼�

[
1�
TW

]
T

}
. (C.13)

Let

gj(�) = T − j
T

−�(w(j) ) − 2EW∼�[WT−j ] + EW∼�
[
1�
TW

]
T

. (C.14)

Thus, (C.11) can be reformulated as

�(w(j) ) = 0 or gj(�) = 0, j = 1, 2, � � � , T − 1. (C.15)

Since S
∗ = {w(0),w(j1 ), � � � ,w(jr ),w(T )}, �(w(jk ) ) > 0 for each k = 1, � � � , r. As a result,

(C.15) is equivalent to

gjr (�) = 0, gjk(�) − gjk+1 (�) = 0, k= 1, � � � , r − 1. (C.16)

Note that

WT−jk = 1 ⇐⇒ W ∈ {w(jk+1), � � � ,w(T )}.

The first equation is equivalent to

T − jr
T

−�(w(jr ) ) − 2�(w(T ) ) + 1
T

(
r∑

k=1

jk�(w(jk ) ) + T�(w(T ) )

)
= 0

⇐⇒ �(w(T ) ) = T − jr
T

−�(w(jr ) ) + 1
T

r∑
k=1

jk�(w(jk ) ). (C.17)

By (C.12),

EW∼�[WT−jk ] −EW∼�[WT−jk+1 ] = PW∼�
(
W ∈ {w(jk+1),w(jk+2), � � � ,w(jk+1 )}

)
= PW∼�(W =w(jk+1 ) ) =�(w(jk+1 ) ).

Therefore, the second equation of (C.15) can be simplified to

�(w(jk+1 ) ) +�(w(jk ) ) = jk+1 − jk
T

, k= 1, � � � , r − 1. (C.18)

Finally, the simplex constraint determines�(w̃(0) ) as

�(w(0) ) = 1 −�(w(T ) ) −
r∑

k=1

�(w(jk ) ). (C.19)
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Clearly, �(w(j1 ) ) determines all other �(W (jk ) )’s. Therefore, the solution set of (C.17)–
(C.19) is a one-dimensional linear subspace. The solution set of the DATE equation is
empty if it has no intersection with the set {� : �(w(jk ) ) > 0, r = 1, � � � , r}; otherwise, it
must be a segment, which can be characterized as {λ�(1) + (1 − λ)�(2) : λ ∈ (0, 1)}.

C.4.3 Proof of Theorem C.2 Let η = (�(w̃(1) ), � � � ,�(w̃(T ) )) ∈ R
T . Then the DATE

equation can be equivalently formulated as

T∑
j=1

(
diag(w̃(j) ) − ξw̃�

(j)

)
J(w̃(j) −η)ηj = 0.

Since w̃(j) = ej , diag(w̃(j) ) = eje�j and we can reformulate the above equation as

T∑
j=1

(ej − ξ)e�j J(ej −η)ηj = 0 ⇐⇒
T∑
j=1

fj(η)ej =
{

T∑
j=1

fj(η)

}
ξ,

where fj(η) = e�j J(ej − η)ηj . It can be equivalently formulated as an equation on η and
a scalar b:

T∑
j=1

fj(η)ej = bξ. (C.20)

This is because for any η that satisfies (C.20), multiplying 1�
T on both sides implies that

b= b(ξ�1T
)= T∑

j=1

fj(η).

Taking the jth entry of both sides, (C.20) yields that

fj(η) = ξjb. (C.21)

By definition,

fj(η) = ηj
(
e�j Jej − e�j Jη

)= ηj
(

1 − 1
T

−ηj + 1
T

T∑
j=1

ηj

)
.

Since� should be supported on {w̃(0), w̃(1), � � � , w̃(T )},

T∑
j=1

ηj =
T∑
j=1

�(w̃(j) ) = 1 −�(w̃(0) ).

Therefore, (C.21) is equivalent to

�(w̃(j) )

(
1 −�(w̃(j) ) − �(w̃(0) )

T

)
= ξjb.
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C.4.4 Proof of Theorem C.3 Let ‖w‖1 be the L1 norm ofw, that is, ‖w‖1 =∑n
i=1wi. For

given� such that

�
(·|‖w‖1 = k′)∼ Unif

(
W tra
T ,k′ \W tra

T ,k′−1

)
, k′ = 1, � � � , k,

By symmetry,

EW∼�
[
W |‖W‖1

]= ‖W‖1

T
1T .

By the iterated law of expectation,

EW∼�[W ] = E‖W‖1

[
EW∼�

[
W |‖W‖1

]]= EW∼�
[‖W‖1

]
T

1T .

Since J1T = 0, the DATE equation with ξ= 1T /T reduces to

EW∼�
[(

diag(W ) − 1T
T
W�

)
JW

]
= 0.

We will prove the following stronger claim:

EW∼�
[(

diag(W ) − 1T
T
W�

)
JW |‖W‖1 = k′

]
= 0, ∀k′ = 1, � � � , k.

Conditional on ‖W‖1 = k′,

JW =W − k′

T
1T , diag(W )W =W , W�W =W�1T = k′

Thus,

EW∼�
[(

diag(W ) − 1T
T
W�

)
JW |‖W‖1 = k′

]

= EW∼�
[(

diag(W ) − 1T
T
W�

)(
W − k′

T
1T

)
|‖W‖1 = k′

]

= EW∼�
[
W − k′

T
W − k′1T

T
+ k′21T

T 2 |‖W‖1 = k′
]

= 0.

C.5 A general solver via nonlinear programming

For a general design Sdesign = {w̌(1), � � � , w̌(K)}, the DATE equation can be formulated as
a quadratic system. The jth equation of DATE equation is

EW∼�
[
(ejW j −Wξj )T J

(
W −EW∼�[W ]

)]= 0, (C.22)

Let p = (�(w̌(1) ), � � � ,�(w̌(K) )) ∈ R
T ,A = (w̌(1), � � � , w̌(K) ) ∈ R

T×K , B(j) = (B(j)
1 , � � � ,

B
(j)
K ) ∈R

T×K , and b(j) = (b(j)
1 , � � � , b(j)

K )� ∈ R
K , where

B
(j)
k = J(ejw̌(k),j − w̌(k)ξj ) ∈ R

T , b
(j)
k = w̌�

(k)B
(j)
k ∈R.
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It is easy to see that B(j) = J(eje�j − ξjI )A and b(j) = diag(A�B(j) ). Then (C.22) can be
reformulated as

p�b(j) − p�(A�B(j))p= 0.

As a result, the DATE equation has a solution iff the minimal value of the following opti-
mization problem is 0:

min
T∑
j=1

{
p�b(j) − p�(A�B(j))p}2

, s.t., p�1 = 1, p≥ 0. (C.23)

We can optimize (C.23) via the standard BFGS algorithm, with the uniform distribution
being the initial value. When the minimal value with a given initial value is bounded
away from zero, we will try other randomly generated initial values to ensure a thorough
search. If none of the initial values yields a zero objective, we claim that the DATE equa-
tion has no solution. Note that (C.23) is a nonconvex problem, the BFGS algorithm is not
guaranteed to find the global minimum. Therefore, it should be viewed as an attempt to
find a solution of the DATE equation instead of a trustable solver.

On the other hand, when the DATE equation has multiple solutions, it is unclear
which solution can be found. In principle, we can add different constraints or regulariz-
ers to (C.23) in order to obtain a “well-behaved” solution. For instance, it is reasonable
to find the most dispersed reshaped function to maximize the sample efficiency. For this
purpose, we can find the solution that maximizes mink�(w̌(k) ). This can be achieved by
replacing the constraint p ≥ 0 in (C.23) by p ≥ c1 and find the largest c for which the
minimal value is zero by a binary search.

Appendix D: Aggregated AIPW estimator is not doubly robust in the

presence of fixed effects

We are not aware of other doubly robust estimators for DATE when the treatment and
outcome models are defined as in our paper. In the absence of dynamic treatment ef-
fects, it is tempting to treat each period as a cross-sectional data, estimate the time-
specific ATE τt by an aggregated AIPW estimator, and aggregate these estimates. To the
best of our knowledge, this estimator has not been proposed in the literature. However,
perhaps surprisingly, we show in this section that the aggregated AIPW estimator is not
doubly robust because of the fixed-effect terms in the outcome model.

Specifically, for time period t, the AIPW estimator for τt is defined as

τ̂t = 1
n

n∑
i=1

((
Yit − Ê

[
Yit(1)|Xi

])
Wit

P̂(Wit = 1|Xi )
−
(
Yit − Ê

[
Yit(0)|Xi

])
(1 −Wit )

P̂(Wit = 0|Xi )

+ Ê
[
Yit(1)|Xi

]− Ê
[
Yit(0)|Xi

])
.

Then the aggregated AIPW estimator is defined as

τ̂AIPW = 1
T

T∑
t=1

τ̂t .
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It is known that τ̂t is doubly robust in the sense that τ̂t is consistent if either P̂(Wit = 1)
or (Ê[Yit(1)|Xi], Ê[Yit(0)|Xi]) is consistent for all i and t. Importantly, the requirement
on the outcome model for the AIPW estimator is strictly stronger than that for the RIPW
estimator; the former requires bothmit and the fixed effects to be consistently estimated
while the latter only requiresmit to be consistent. It turns out that the extra requirement
leads to tricky problems of the AIPW estimator.

To demonstrate the failure of the AIPW estimator, we only consider the case with
sample size n= 1000 and a constant treatment effect to highlight that the failure is not
driven by small samples or effect heterogeneity. In particular, we consider a standard
TWFE model

Yit(0) = αi + λt +mit + εit , mit =Xiβt , τit = τ,

where
∑n
i=1 αi =

∑T
t=1 λt = 0. The other details are the same as Section 5.1.

Both the RIPW and the aggregated AIPW estimators require estimates of the treat-
ment and outcome models. First, we consider a wrong and a correct treatment model:

• (Wrong treatment model): set π̂i(w) = |{j :W j =w}|/n, that is, the empirical distri-
bution ofW i’s that ignores the covariate;

• (Correct treatment model): set π̂i(w) = |{j :W j =w,Xj =Xi}|/|{j :Xj =Xi}|, that is,
the empirical distribution ofW i’s stratified by the covariate.

With a large sample, π̂i in the second setting is a consistent estimator of πi. For the
aggregated AIPW estimator, we use the marginal distributions of π̂i as the estimates
of marginal propensity scores. Similarly, we consider a wrong and a correct outcome
model:

• (Wrong outcome model): m̂it = 0 for every i and t;

• (Correct outcome model): run unweighted TWFE regression adjusting for interac-
tion between Xi and time fixed effects, that is, XiI(t = t ′ ) for each t ′ = 1, � � � , t, and
set m̂it =Xiβ̂t .

With a large sample, the standard theory implies the consistency of β̂t , and hence m̂it ≈
mit . Unlike the RIPW estimator, the aggregated AIPW estimator requires the estimate of
full conditional expectations of potential outcomes, instead of merely m̂it . In this case, a
reasonable estimate of the outcome model can be formulated as

Ê
[
Yit(0)|Xi

]= α̂i + λ̂t +Xiβ̂t , Ê
[
Yit(1)|Xi

]= Ê
[
Yit(0)|Xi

]+ τ̂.

For short panels with T =O(1), the time fixed effects λt ’s can be estimated via the stan-
dard TWFE regression, which are known to be consistent. However, there is no way to
consistently estimate the unit fixed effect αi since only T samples Yi1, � � � , YiT can be
used for estimation. The central question is how to estimate αi for the aggregated AIPW
estimator. Here, we consider three strategies:

(1) using the plug-in estimate of αi’s, even if they are inconsistent;
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Figure 6. Boxplots of τ̂ − τ for the RIPW estimator, unweighted TWFE estimator, and the
three versions of AIPW: “AIPW (w/ FE)” for the one fit on the entire data with estimated fixed
effects,”AIPW (w/o FE)” for the one fit on the entire data with fixed effects zeroed out, and
“AIPW+CF (w/o FE)” for the cross-fitted one with fixed effects zeroed out.

(2) pretending that αi does not exist and setting α̂i = 0;

Note that the first strategy cannot be used with cross-fitting because it is impossible to
estimate αi without using the ith sample.

We then consider all four combinations of outcome and treatment modeling. Fig-
ure 6 presents the boxplots of τ̂−τ for the three versions of AIPW, RIPW, and unweighted
TWFE estimator.

First, we can see that all estimators are unbiased when both models are correct and
biased when both models are wrong. As expected, the RIPW estimator is also unbiased
when one of the model is correct, and the unweighted estimator is unbiased when the
outcome model is correct. However, none of AIPW estimators are doubly robust: the
AIPW estimator with estimated fixed effects is biased when the treatment model is cor-
rect, and the AIPW estimator that zeros out fixed effects with or without cross-fitting are
biased when the outcome model is correct.

The bias of AIPW estimator that zeros out the fixed effects can be attributed to bi-
ased estimates of the outcome model despite including the covariates. The bias of the
in-sample AIPW estimator can be attributed to the dependence between the outcome
model estimates and the treatment assignment. In fact, when T is small, this depen-
dence is nonvanishing no matter how fixed effects are estimated. On the other hand, the
AIPW estimator is valid under a correct treatment model but a wrong outcome model
only when the outcome model estimate is asymptotically independent of the assign-
ments. In sum, there is no simple way to estimate fixed effects to make the resulting
aggregated AIPW estimator doubly robust.
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Table 4. Summary statistics.

Variable Mean SD 1st Quartile 3rd Quartile

Reservation Diff. (in %) −8.89 14.94 −17.00 −1.00
Confirmed Cases 14.55 50.10 0.00 7.00
Vote Share 49.40 9.72 40.11 57.18
log(#Hospital Beds) 9.83 0.81 9.37 10.24

Appendix E: More details of the OpenTable data set

We collect the variables from different sources.

• Daily state-level year-over-year percentage change in seated diners provided by
OpenTable (OpenTable) (outcome variable): https://www.opentable.com/state-of-
industry.

• Indicator of whether the state of emergency has been declared (Perper, Cranley, and
Al-Arshani) (treatment variable): https://www.businessinsider.com/

california-washington-state-of-emergency-coronavirus-what-it-means-2020-3.

• Daily state-level accumulated confirmed cases (Dong, Du, and Gardner (2020)) (co-
variate): https://coronavirus.jhu.edu/.

• Vote share of Democrats based on the 2016 presidential election data (MIT Election
Data and Science Lab (2018)) (covariate): https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/VOQCHQ.

• Number of hospital beds (Zemel, Eldridge, Bracco, King, and Siemer ()) (covariate):
https://github.com/rbracco/covidcompare.

The summary statistics are reported in Table 4. We also plot the daily average of the
reservation difference and confirmed cases as well as the histograms of the other two
variables in Figure 7.

Figure 7. (Left) daily average of the reservation difference and confirmed cases. (Right) his-
tograms of number of hospital beds and vote share.

https://www.opentable.com/state-of-industry
https://www.opentable.com/state-of-industry
https://www.businessinsider.com/
http://california-washington-state-of-emergency-coronavirus-what-it-means-2020-3
https://coronavirus.jhu.edu/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
https://github.com/rbracco/covidcompare
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ
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