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Optimal HAR inference

Liyu Dou
Singapore Management University and The Chinese University of Hong Kong, Shenzhen

This paper considers the problem of deriving heteroskedasticity and autocorre-
lation robust (HAR) inference about a scalar parameter of interest. The main as-
sumption is that there is a known upper bound on the degree of persistence in
data. I derive finite-sample optimal tests in the Gaussian location model and show
that the robustness-efficiency tradeoffs embedded in the optimal tests are es-
sentially determined by the maximal persistence. I find that with an appropriate
adjustment to the critical value, it is nearly optimal to use the so-called equal-
weighted cosine (EWC) test, where the long-run variance is estimated by projec-
tions onto q type II cosines. The practical implications are an explicit link between
the choice of q and assumptions on the underlying persistence, as well as a corre-
sponding adjustment to the usual Student-t critical value. I illustrate the results in
two empirical examples.

Keywords. Heteroskedasticity and autocorrelation robust inference, long-run
variance.

JEL classification. C12, C18, C22.

1. Introduction

This paper considers the problem of deriving appropriate corrections to standard er-
rors when conducting inference with autocorrelated data. The resulting heteroskedas-
ticity and autocorrelation robust (HAR) inference has applications in OLS and GMM
settings.1 Computing HAR standard errors involves estimating the “long-run variance”
(LRV) in econometric jargon. Classical references on HAR inference in econometrics in-
clude Newey and West (1987) and Andrews (1991), among many others. The Newey–
West/Andrews approach is to use t- and F-tests based on consistent LRV estimators and
to employ the critical values derived from the normal and chi-squared distributions.
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1For instance, OLS/GMM with HAR inference has been used in many econometric applications, such as
testing long-horizon return predictability in finance (see, e.g., Koijen and Van Nieuwerburgh (2011) and Ra-
pach and Zhou (2013)) and estimating impulse response functions by local projections in macroeconomics
(see, e.g., Jordà (2005)).
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The resulting HAR standard errors are asymptotically justified in a large variety of cir-
cumstances.

Small sample simulations,2 however, show that the Newey–West/Andrews approach
can lead to false rejections of the null far too often. A large subsequent literature (sur-
veyed in Müller (2014)) employs alternative asymptotics that is often more accurate in
finite samples and thus demonstrates better performance for controlling the null rejec-
tion rate. To implement these procedures in practice, however, the user must choose a
tuning parameter. One example is the choice of b in the fixed-b scheme,3 in which a
fixed-b fraction of the sample size is used as the bandwidth in kernel LRV estimators.
Another example is the choice of q in orthonormal series HAR tests,4 in which the LRV is
estimated by projections onto q mean-zero low-frequency orthonormal functions. The
choice of the tuning parameter embeds a tradeoff between bias and variability of the
LRV estimator. It subsequently leads to a size-power tradeoff in the resulting HAR infer-
ence. Previous studies address this tradeoff by restricting attention to HAR tests that are
based on kernel and orthonormal series LRV estimators. They derive the optimal tuning
parameter based on second-order asymptotics and under criteria that average functions
of type I and type II errors with different weights.5 It is not clear, however, whether the
resulting HAR tests would remain optimal in finite samples if those restrictions were not
imposed. Moreover, as demonstrated later, the choice of LRV estimator or HAR test is
empirically relevant. Therefore, it would be useful to have guidelines for practitioners to
implement HAR inference with certain senses of optimality.

The purpose of this paper is to provide formal finite-sample efficiency results of HAR
inference about a scalar parameter of interest, without restricting the class of tests and
with commonly used notions of optimality in hypothesis testing. Specifically, I derive
optimal (weighted average power maximizing scale invariant) HAR tests in the Gaussian
location model, under nonparametric assumptions on the underlying spectral density.
In addition, I find that with an appropriate adjustment to the critical value, it is nearly
optimal to use a type of t-test with the LRV estimated by equal-weighted projections
onto q type II cosines, which is known as the equal-weighted cosine (EWC) test in the
literature (cf. Müller (2004, 2007), Lazarus, Lewis, Stock, and Watson (2018)).

The main assumption in this paper is that there exists an upper bound on the degree
of persistence in data. In time-series terminology and from a spectral perspective, this
amounts to specifying a worst-case steepest, or “uniformly maximal” spectral density
function f in class F , which is the collection of all plausible spectra and is of a nonpara-
metric nature, as opposed to possibly strong parametric classes.6 In theory, such prim-

2See, e.g., den Haan and Levin (1997, 1998) for early Monte Carlo evidence of the large size distortions of
HAR tests computed using the Newey–West/Andrews approach.

3See pioneering papers by Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2002, 2005).
Also, see Jansson (2004), Müller (2004, 2007), Phillips (2005), Phillips, Sun, and Jin (2006, 2007), Sun, Phillips,
and Jin (2008), Atchadé and Cattaneo (2011), Gonçalves and Vogelsang (2011), Sun and Kaplan (2012), Sun
(2014a); and Sun (2014b), among many others.

4See, e.g., Müller (2004, 2007), Phillips (2005), Ibragimov and Müller (2010); and Sun (2013), among many
others.

5See, for example, Sun, Phillips, and Jin (2008) and Lazarus, Lewis, and Stock (2021).
6For parametric examples, Robinson (2005) assumes that the underlying persistence is of the “fractional”

type and derives consistent LRV estimators under that class; Müller (2014) assumes that the underlying
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itives may contain smoothness restrictions (e.g., bounds on derivatives) and/or shape
restrictions (e.g., monotonicity). But, for convenience in actual implementations, I sug-
gest the practitioners follow the convention of measuring persistence by fitting a simple
AR(1) model to data to determine a reasonable f .

As it turns out, the finite-sample efficiency bounds, the best choice of q, and the criti-
cal value adjustment in the nearly optimal EWC test are essentially governed by the max-
imal persistence. The practical implication is that once the maximal persistence in data
is appropriately determined, the EWC test with adjusted critical value can be used with-
out much loss of efficiency. The resulting implementation is straightforward and only
involves estimating an AR(1) model and making a simple adjustment to the Student-
t critical value for the EWC test. Furthermore, this procedure can be easily adapted to
regression models. I discuss these practical matters in detail below in Section 5. In addi-
tion, I illustrate the implementation in two empirical examples in Section 6 concerning
confidence interval construction and hypothesis testing with autocorrelated data.

This paper makes three main contributions. First, I establish a finite-sample the-
ory of optimal HAR inference in the Gaussian location model under a simplifying ap-
proximation. To do so, I follow Müller (2014) and recast HAR inference as a problem
of inference about the covariance matrix of a Gaussian vector. The spectrum, as an
infinite-dimensional nuisance parameter, complicates the solution of the problem. To
make progress, I use insights from the so-called least favorable approach and identify
the “least favorable distribution” over the class F . The resulting optimal test embeds
robustness-efficiency tradeoffs in hypothesis testing. This optimal tradeoff is a function
of the underlying primitive F , namely the serial correlations one is willing to correct for
under the null, and the alternative dependency that one desires the test to orient power
toward.

Second, I find that nearly optimal inference can be obtained by using the EWC
test, but only after an adjustment to the Student-t critical value. The practical impli-
cations are an explicit link between the choice of q and assumptions on the underlying
spectrum, as well as a corresponding adjustment to the Student-t critical value. In de-
tail, consider a second-order stationary scalar time series yt . The spectral density of yt
scaled by 2π is given by the function f : [−π, π] �→ [0, ∞). To test H0 : E[yt ] = 0 against
H1 : E[yt ] �= 0, the EWC test uses a t-statistic

t
q
EWC = Y0√√√√ q∑

j=1

Y 2
j /q

, (1)

where Y0 is the sample mean of yt and Yj , j = 1, 2, � � � , q are q weighted averages of yt as
Yj = T−1

√
2
∑T

t=1 cos(πj(t − 1/2)/T )yt . These weighted averages can be approximately
thought of as independently normally distributed, each with variance T−1f (πj/T ). As
mentioned earlier, the choice of q embeds a bias and variance tradeoff of the LRV esti-
mator

∑q
j=1 Y

2
j /q. The conventional wisdom is to choose q sufficiently small such that

long-run property can be approximated by a stationary Gaussian AR(1) model, with coefficient arbitrarily
close to one and derives uniformly valid inference methods that maximize weighted average power.
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Figure 1. Power function plot of a weighted average power (WAP) bound induced test, optimal
EWC test, and size-adjusted EWC test using q = 3. Notes: Under the alternative, the mean of yt is
δT−1/2 and yt follows a Gaussian white noise. Under the null, the “uniformly maximal” function
of F corresponds to an AR(1) with coefficient 0.8. Sample size T = 100.

{Yj }
q
j=1 can be treated as i.i.d. normals. By doing so, one avoid possibly large bias in esti-

mating the LRV, and the resulting EWC test has less size distortions when the Student-t
critical value is employed. In contrast, the new EWC test suggests using a larger q and an
appropriately enlarged critical value for more powerful inference. Both the choice of q
and the critical value adjustment depend on the class F .

Figure 1 illustrates this second contribution in testing E[yt ] = 0, f ∈ F against the
local alternative E[yt ] = δT−1/2 for T = 100, where yt follows a Gaussian white noise and
the “uniformly maximal” function of F corresponds to an AR(1) model with coefficient
0.8. In this context, to avoid size distortions larger than 0.01, one needs to choose q = 3
when the Student-t critical value is employed. The new EWC test, however, has q = 6 and
inflates the Student-t critical value by a factor of 1.13. Moreover, it is nearly as powerful
as a weighted average power bound induced test. It has a 28.9% efficiency gain over the
size-adjusted EWC test using q = 3, in order to achieve the same power of 0.5.7

Third, I propose a simple adjustment to the critical value of the EWC test. The ad-
justed critical value is computed easily, by inverting a one-dimensional numerical in-
tegral. For practical convenience, I offer a rule of thumb to adjust the Student-t critical
value of the EWC test in Table 2, as follows. Under a series of classes F where the largest
persistence is parameterized as an AR(1) with coefficient ρ = 1 − c/T , Table 1 lists the

7By efficiency gain, I mean the increase of δ2 in percent for the size-adjusted EWC test using q = 3 in
order to achieve the same power of the new EWC test. I note that one cannot directly appeal to Pitman
efficiency measure (the increase of the number of observations required to achieve the same power) in the
context of Figure 1, since the sample size T is fixed at 100. A different calculation, however, shows that for
T = 77 the size-adjusted EWC test using q = 6 has power of around 0.5, under the same δ such that the EWC
test using q = 3 yields power of 0.5 for T = 100.
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Table 1. Optimal q and adjustment factor of the Student-t critical value of level α EWC.

c 5 10 20 30 40 50 77

ρ 0.95 0.9 0.8 0.7 0.6 0.5 0.23
α= 0.05 (3, 1.55) (4, 1.26) (6, 1.13) (7, 1.07) (9, 1.05) (12, 1.04) (19, 1.02)

Note: Based on a series of classes F , in which the “uniformly maximal” function corresponds an AR(1) with coefficient
ρ = 1 − c/T . Sample size T is 100, but the resulting optimal choice of q (almost) remains unchanged for fixed c ≤ 40 and for
T = 200, 500, 1000.

optimal choice of q and the adjustment factor of the Student-t critical value for selected
c (and ρ for fixed T ). It turns out that the resulting optimal choice of q (almost) remains
unchanged as T varies, for fixed c ≤ 40. More interestingly, for fixed q and T , the ad-
justment factor does not change substantially under other types of F . Table 2 collects
the adjustment factors in (augmented) Table 1 for selected q. In the event that the same
q is optimally chosen under different c, the largest adjustment factor (corresponding
to the largest c) is suggested in the rule of thumb. In case researchers pick a value of q
by some other means, I suggest adjusting the corresponding Student-t critical value di-
rectly according to Table 2. Otherwise, Section 5.1 provides guidance on determining a
reasonable f , the subsequent critical value adjustment, and the selection of q.

This paper relates to a large literature. First, unlike the majority of the HAR liter-
ature, I consider optimal HAR inferences without restricting the class of tests. Second,
the majority of the literature addresses the sampling variability of LRV estimators via the
so-called fixed-b asymptotics, and further accounts for bias by higher-order adjustment
to the fixed-b critical value.8 In contrast, I concurrently tackle bias and variance in es-
timating the LRV by a first-order adjustment in the spirit of employing fixed smoothing
asymptotics under strong persistence in Sun (2014a). Even so, the resulting adjusted crit-
ical value is easily computed without simulations under a simplifying structure. Third,
this paper contributes to the uniform size control literature developed by Müller (2014),
Preinerstorfer and Pötscher (2016), Pötscher and Preinerstorfer (2018, 2019), and Müller
and Watson (2022). I analytically derive powerful tests that uniformly control size over
arguably large classes of models, while Müller (2014) numerically determines powerful
tests under a possibly restricted parametric class of models. Preinerstorfer and Pötscher
(2016) and Pötscher and Preinerstorfer (2018, 2019) focus on size distortions and power

Table 2. Rule of thumb for adjustment factor of the Student-t critical value of level α EWC.

q 3 4 6 8 9 10 11 12 16 20

α= 0.05 1.55 1.37 1.17 1.15 1.09 1.09 1.07 1.05 1.03 1.03

Note: Each q is justified as the optimal choice of level α EWC test, under some class F and for sample size T . An example
of the corresponding class F is the one in which the “uniformly maximal” function corresponds to an AR(1) model with coeffi-
cient ρ = 1 − c/T as in Table 1. Only the largest adjustment factor is displayed should the same q emerge as the optimal choice
under different c.

8See, for example, Velasco and Robinson (2001), Sun, Phillips, and Jin (2008), Sun (2011, 2013, 2014c);
and Lazarus, Lewis, and Stock (2021).
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deficiencies of given HAR tests, allowing for general classes of models. Müller and Wat-
son (2022) derive finite-sample size control results in general spatial settings without the
simplifying structure considered in this paper but offer limited analytical results on the
efficiency side.

The suggestion of using a larger q and enlarged critical values for the EWC test mir-
rors recent recommendations for nonparametric inference, such as those of Armstrong
and Kolesár (2018, 2020). In different contexts, Armstrong and Kolesár and I both stress
the advantage of accepting bias in estimating a nonparametric function and then us-
ing a suitably adjusted critical value to account for the maximum bias. Our frameworks
are, however, different. I consider a Gaussian experiment in which the heteroskedastic-
ity is governed by an unknown nonparametric function and is thus more in the spirit of
Lehmann and Stein (1948), while the main focus in Armstrong and Kolesár (2018) is an
unknown regression function in the mean of a homoskedastic Gaussian experiment.

The remainder of the paper is organized as follows. Section 2 sets up the model and
discusses preliminaries. Section 3 derives efficiency results under an essential simplifi-
cation, which are theoretically investigated in more general settings in Section 4. Sec-
tion 5 converts the theoretical insights into practical guidance and discusses the imple-
mentation in regression models. Section 6 provides empirical illustrations with a self-
contained guide to implementation. Interested practitioners can skip the theoretical
discussions and read Section 6 directly. Proofs and computational details are provided
in the Appendices.

2. Model and preliminaries

The paper concerns inference about μ in the location model,

yt = μ+ ut , t = 1, 2, � � � , T , (2)

where μ is the population mean of yt and ut is a mean-zero stationary Gaussian pro-
cess with absolutely summable autocovariances γ(j) = E[utuy−j ]. The spectrum of yt
scaled by 2π is given by the even function f : [−π, π] �→ [0, ∞) defined via f (λ) =∑∞

j=−∞ cos(jλ)γ(j). With y = (y1, y2, � � � , yT )′ and e= (1, 1, � � � , 1)′,

y ∼ N
(
μe, 	(f )

)
, (3)

where 	(f ) has elements 	(f )j,k = (2π )−1
∫ π
−π f (λ)e−i(j−k)λdλ with i = √−1. The loca-

tion model (2) is often considered a stylized setting to provide theoretical insights into
HAR inference.9 As simple as it is, this model is empirically relevant in a number of situa-
tions. For example, the statistical study of unconditional equal predictive ability (UEPA)
concerning competing forecasts in financial and macroeconomic contexts amounts to
testing an unconditional mean-zero condition in (2) with yt being the produced loss dif-
ferential series.

9For HAR studies based on the Gaussian location model see, for example, Velasco and Robinson (2001),
Jansson (2004), Sun, Phillips, and Jin (2008), Sun (2011, 2013, 2014c), Müller (2014), Lazarus, Lewis, and
Stock (2021), among many others.
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Throughout the paper, I mainly focus on presenting and analyzing new efficiency
results for HAR inference in the univariate Gaussian location model (3), and discuss the
implications for conducting inference about a nonconstant regressor in regression set-
tings. The ideas and methods explored in the simplest model (3) can often be used as
a foundation for studying HAR inference in multivariate location models and general
GMM settings, potentially involving additional complications.10 Formal generalizations
of this paper’s efficiency results along those lines are, however, not straightforward and
beyond the scope of the paper.

The HAR inference problem in (3) concerns testing H0 : μ = 0 (otherwise, subtract
the hypothesized mean from yt ) against H1 : μ �= 0 based on the observation y. The
derivation of powerful tests in this problem is complicated by the fact that the alternative
is composite (μ is not specified under H1) and the presence of the infinite-dimensional
nuisance parameter f . I follow standard approaches to deal with μ and mainly focus on
tackling the nuisance parameter f in this paper.

It is useful to take a spectral transformation of the model (3). In particular, as intro-
duced in the Introduction, consider the one-to-one transformation from {yt }Tt=1 into the
sample mean Y0 = T−1∑T

t=1 yt and the T − 1 weighted averages:

Yj = T−1
√

2
T∑
t=1

cos
(
πj(t − 1/2)/T

)
yt , j = 1, 2, � � � , T − 1. (4)

Define 
 as the T ×T matrix with first column equal to T−1e, and (j+ 1)th column with
elements T−1

√
2 cos(πj(t − 1/2)/T ), t = 1, � � � , T , and ι1 as the first column of IT . Then

Y = (Y0, Y1, � � � , YT−1 )′ =
′y ∼ N
(
μι1, �0(f )

)
, (5)

where �0(f ) =
′	(f )
. The HAR testing problem becomesH0 : μ= 0 against H1 : μ �= 0
based on the observation Y .

A common device for dealing with the composite alternative in the nature of μ is to
search for tests that maximize weighted average power over μ. For analytical tractability,
I follow Müller (2014) to consider a Gaussian weighting function for μ with mean zero
and variance η2. The scalar η2 governs whether closer or distant alternatives are em-
phasized by the weighting function. For a given f , and thus known �0(f )1,1, the choice
η2 = (κ − 1)�0(f )1,1 effectively changes the testing problem to H ′

0 : Y ∼ N (0, �0(f ))
against H ′

1 : Y ∼ N (0, �1(f )), where �1(f ) = �0(f ) + (κ − 1)ι1ι
′
1�0(f )1,1. This trans-

forms the problem into one of inference about covariance matrices. The hyperparam-
eter κ specifies a weighted average power criterion. As argued by King (1987), it makes
sense to choose κ in a way such that good tests have approximately 50% weighted av-
erage power. The choice of κ = 11 would induce the resulting best 5% level (infeasible)
test (reject if Y 2

0 > 3.84�0(f )1,1) to have power of approximately P(χ2
1 > 3.84/11) ≈ 56%.

I thus use κ= 11 throughout the implementations.

10For formal discussions of HAR inference in general GMM settings see, for example, Sun (2014b), Hwang
and Sun (2017, 2018).
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In most applications, it is reasonable to impose that if the null hypothesis is rejected
for some observation Y , then it should also be rejected for the observation aY , for any
a > 0. By standard testing theory,11 any test satisfying this scale invariance property can
be written as a function of Ys = Y/

√
Y ′Y . The density of Ys under H ′

i , i = 0, 1 is equal
to (see Kariya (1980) and King (1980))

hi,f
(
ys
)= C

∣∣�i(f )
∣∣−1/2(

ys′�i(f )−1ys
)−T/2

(6)

for some constant C.
By restricting to scale invariant tests, the HAR testing problem has been further

transformed into H ′′
0 : “Ys has density h0,f ” against H ′′

1 : “Ys has density h1,f .” The
problem remains nonstandard due to the presence of nuisance parameter f . To make
progress, I first consider directing power at a flat spectrum f1 = 1 (white noise) when
demonstrating how to derive efficiency bounds in Section 3. In this case, the alterna-
tive H ′′

1 then becomes a single hypothesis H ′′
1,f1

: “Ys has density h1,f1 ,” where �1(f1 ) =
κT−1 diag(1, κ−1, � � � , κ−1 ). Moreover, under the null, I assume f belongs to an explicit
function class F and seek scale invariant tests that uniformly control size over F . In Sec-
tion 4.1, I robustify insights from the white noise case to ones where power is directed
at a nonflat spectrum f̃1, or when minimax bounds are concerned if f belongs to a class
G ⊂ F under H1.

The testing problem is now reduced to distinguishing the composite null H ′′
0

from a single alternative. A well-known general solution to this type of problem pro-
ceeds as follows (cf. Lehmann and Romano (2005)). Suppose � is some probability
distribution over F , and the composite null H ′′

0 is replaced by the single hypothe-
sis H ′′

0,� : “Ys has density
∫
h0,f d�(f ).” Any ad hoc test ϕah that is known to be of

level α under H ′′
0 also controls size under H ′′

0,�, because
∫
ϕah(ys )

∫
h0,f (ys )d�(f )dys =∫ ∫

ϕah(ys )h0,f (ys )dysd�(f ) ≤ α. By Neyman–Pearson lemma, the likelihood ratio test
of H ′′

0,� against H ′′
1,f1

, denoted by ϕ�,f1 , yields a bound on the power of ϕah. Further-
more, if ϕ�,f1 also controls size under H ′′

0 , then it must be the best test of H ′′
0 against

H ′′
1,f1

and the resulting power bound is the lowest possible one. In the jargon of statis-
tical testing, the distribution that yields the best test (should it exist) is called the “least
favorable distribution,” and I denote it by �∗ throughout the paper. Unfortunately, there
is no systematic way of deriving such a distribution. I make progress along this line in
the following sections.

3. Finite-sample efficiency results

In this section, I impose a simplifying Whittle-type diagonal structure on the implied co-
variance matrices �0 of the effective observation Y , specify a priori that F possesses a
most persistent spectrum, and analytically derive the resulting least favorable distribu-
tion, and thus obtain the optimal test. More specifically, I make the following assump-
tions.

11See, for example, Chapter 6 in Lehmann and Romano (2005).
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Assumption 3.1. For all f ∈ F , �0(f ) = T−1 diag(f (0), f (π/T ), � � � , f (π(T − 1)/T ).

Assumption 3.1 specifies an approximation of �0(f ) in the spirit of Whittle (1951). It
holds exactly when yt follows a Gaussian white noise or a demeaned Gaussian random
walk process. For stationary yt with f falling into popular parametric classes, Müller and
Watson (2008) find that the covariance matrix of (Y0, Y1, � � � , Yq )′ is nearly diagonal for
fixed q and large T . For F being a nonparametric class, Choudhuri, Ghosal, and Roy
(2004) has shown the mutual contiguity of the Whittle measure with the actual distribu-
tion of the data for a Gaussian time series; Golubev, Nussbaum, and Zhou (2010) has es-
tablished asymptotic equivalence in the sense of Le Cam’s deficiency measure between
an experiment of observing a stationary centered Gaussian sequence and another of
observing Y under a diagonal covariance structure analogous to Assumption 3.1.

Under Assumption 3.1 and the weighted average power criterion, as specified by a
given κ, I now seek powerful tests as functions of Ys = Y/

√
Y ′Y in the problem of

Hd
0 : Y ∼ N

(
0, T−1 diag

(
f (0), f (π/T ), � � � , f

(
π(T − 1)/T

)))
, f ∈ F (7)

against Hd
1,f1

: Y ∼ N
(
0, κT−1 diag

(
1, κ−1, � � � , κ−1)),

where the superscript d denotes the Whittle-type diagonal structure in Assumption 3.1.

Assumption 3.2. (a) There exists a f ∈ F such that f (0)
f (φ) ≤ f (0)

f (φ) , for all φ ∈ [−π, π] and

f ∈ F .

(b) f (πj/T ) ≥ f (π(j + 1)/T ), j = 0, 1, � � � , T − 2.

(c) F contains all kinked functions defined by fa(φ) = max{f (φ), af (0)}, for a ∈ [0, 1].

Assumption 3.2(a) states the existence of a “uniformly maximal” function in F in
terms of persistence. Loosely speaking, more persistent processes have higher values of
f (0)/f (φ). As such, one could understand it as restricting the degree of persistence a
priori. When additional parametric assumptions are imposed on F , such as the local-
to-unity parametrization in Müller (2014), Assumption 3.2(a) amounts to bounding the
degree of mean reversion from below. However, I stress that one is not committing to
any parametric classes here, even if f is defined from a parametric model. For example,
suppose f is the spectrum of an AR(1) model with coefficient 0.8. Then the resulting
F not only covers all stationary AR(1) models with coefficient less than 0.8, but it also
contains many other empirically relevant models, such as ARMA models whose spectra
may oscillate but the implied persistence is bounded above by that of f . Assumption
3.2(a) can often be implied by global shape restrictions assumed in the nonparametric
inference literature. For example, when F is the class in which the first derivative of the
log spectrum is bounded in magnitude by a positive constant C, the implied “maximal
persistence” function emerges as f (0)/f (φ) = exp(Cφ).

Assumptions 3.2(b) and (c) regularize F , such that the least favorable distribution
over F exists and puts a point mass on an element in it. Inspection of the proof of The-
orem 3.3 shows that Assumptions 3.2(b) is sufficient and may not be necessary. But I
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stress that, even so, one is not committing to a shape restriction for all spectra in F .
Furthermore, a stronger monotonicity assumption on f , that is, it is nonincreasing not
only at λ = πj/T , j = 0, 1, � � � , T − 1, but also over [0, π], is often satisfied in the smooth-
ness classes F discussed above. Thus, given Assumption 3.2(a), Assumptions 3.2(b) is
arguably fairly mild.

3.1 Optimal test

The optimal HAR test under Assumptions 3.1 and 3.2 is stated in the following theorem.

Theorem 3.3. Let F be a set of f satisfying Assumption 3.2 with the “uniformly maximal”
function f . Under Assumption 3.1 and for a given κ that specifies a weighted average
power criterion:

(i) If κ ≤ f (0)/f (π/T ), then the best weighted average power maximizing scale in-
variant test of H0 : μ= 0 against H1 : μ �= 0 is the trivial randomized test.

(ii) If κ > f (0)/f (π/T ), then the best level α weighted average power maximizing scale
invariant test ϕ∗ of H0 : μ = 0 against H1 : μ �= 0 rejects for large values of

Y 2
0 + f (0)

q∗∑
j=1

Y 2
j /f (πj/T )

Y 2
0 + κ

q∗∑
j=1

Y 2
j

(8)

for a unique 1 ≤ q∗ ≤ T − 1, and with the critical value cvq∗ such that the test is of
level α under f = f .

The proof of part (i) of Theorem 3.3 is simple. Notice that if 1/κ−1 ≤ f (0)/f (π/T ),

then the alternative Hd
1,f1

is included in the null Hd
0 . Any nontrivial size-controlling test

thus cannot be more powerful than the trivial randomized test in this case.
The idea of the proof for part (ii) of Theorem 3.3 is to conjecture and verify that the

least favorable distribution �∗ puts a point mass on a function in F . The logic is as fol-
lows. Suppose the conjecture is true and �∗ concentrates on the function f ∗. By the
Neyman–Pearson lemma, the optimal test of Hd

0,�∗ against Hd
1,f1

is

ϕ�∗,f1 = 1

⎡
⎢⎢⎢⎢⎢⎢⎣
Y 2

0 + f ∗(0)
T−1∑
j=1

Y 2
j /f

∗(πj/T )

Y 2
0 + κ

T−1∑
j=1

Y 2
j

> cv

⎤
⎥⎥⎥⎥⎥⎥⎦

,

for some cv ≥ 0. On the other hand, as discussed in Section 2, for �∗ to be the least favor-
able distribution, one needs ϕ�∗,f1 to uniformly control size under Hd

0 . Intuitively, this
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Figure 2. Least favorable distribution of Hd
0 against Hd

1,f1
as a point mass on f ∗. Notes: The

“uniformly maximal” function f is the normalized spectrum of an AR(1) model with coefficient
0.8. I use κ= 11 for f ∗

1 . Sample size T is 100.

requires Hd
0,�∗ to be as indistinguishable as possible from Hd

1,f1
. This somewhat implies

that, after appropriate normalization, the function f ∗ must mimic the discontinuous
function of φ as f ∗

1 (φ) = κ−11[φ �= 0] + 1[φ = 0]. As illustrated by Figure 2, the function
f ∗ must then be kink-shaped, given the presence of f . I further show that the optimal
location of the kink in f ∗ in conjunction with the resulting cv is equivalent to ignoring Yj

with index j > q∗. This then gives rise to the optimal test statistic (8). The formal proof
of Theorem 3.3 is given in Appendix A.

Comment 1. Theorem 3.3 shows that we can only be confident about a HAR test
if we are willing to make a priori assumptions about the persistence properties of the
data. Furthermore, it gives an explicit recipe for devising optimal tests as functions of the
underlying primitive, namely the largest persistence one is willing to consider (without
such assumptions, informative inference is impossible, as shown by Pötscher (2002)).

Comment 2. It is known from Preinerstorfer and Pötscher (2016), Pötscher and
Preinerstorfer (2018, 2019) that if AR(1) structures are allowed in the Gaussian location
model, typical HAR tests will have size equal to one. This is essentially caused by the
so-called singularity points that correspond to AR(1) processes with roots near −1 and
1. In the current context, Assumption 3.1 implicitly precludes AR(1) processes with a
coefficient close to −1: Their averaged absolute correlations for the implied �0, as Fig-
ure 3 illustrates for (Y0, Y1, � � � , Yq )′ with various choices of q, are not negligible so that
the Whittle diagonal structures are no longer appropriate approximations; Assumption
3.1(a) implies an upper bound on the AR(1) coefficient so that the very close vicinity of
1 is also precluded.

In samples of size T = 100 and when f corresponds to an AR(1) with coefficient 0.8,
Theorem 3.3 implies the optimal q∗ to be 7. The null rejection probabilities of this op-
timal test in AR(1) models are plotted against the coefficient ρ in Figure 3. The size-
controlling properties of the optimal test are well demonstrated for processes less per-
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Figure 3. Average absolute correlations for �0 and size performance of the optimal test using
q∗ = 7 in AR(1) Gaussian location model with root ρ. Notes: The f function of F corresponds to
an AR(1) with coefficient 0.8. Sample size T = 100. Average absolute correlation on the left y-axis;
size on the right y-axis. Size computed based on 50,000 simulations.

sistent than f . For more persistent processes on the right end, the inferior size perfor-
mance is well expected and consistent with the insights of Preinerstorfer and Pötscher
(2016). For processes on the left end, it turns out that the optimal test also controls size
well. But because these models are precluded, the explanation for this size property is
beyond the scope of Theorem 3.3.

More interestingly, the above size-controlling features of the optimal test extend to
more complicated error dynamics than AR(1). For example, Figure 4 reports the average
absolute correlations for �0 and null rejection probabilities of the optimal test using
q∗ = 7 in AR(2) Gaussian location models with roots ρ1 and ρ2. An AR(2) with at least one
root near −1 is again incompatible with Assumption 3.1, yet the optimal test controls
size well in that model. In addition, the size distortions are not severe as long as one root
is not near 1.

Comment 3. The optimal test (8) can be rewritten as∣∣∣∣∣ Y0√√√√√ q∗∑
j=1

w∗
j Y

2
j

∣∣∣∣∣≥ 1, (9)

which is of a familiar t-statistic form where the implied LRV estimator is a weighted
orthonormal series one with weights w∗

j = [κ cvq∗ −f (0)/f (πj/T )](1 − cvq∗ )−1, j =
1, 2, � � � , q∗ for an “endogenously” determined number q∗ of weighted averages of yt .
Note that neither does this statistic form emerge by restricting the class of LRV estima-
tors a priori nor does it start by considering functions of (Ys

1 , � � � , Ys
q )′ for some fixed q

as in Müller (2014).
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Figure 4. Average absolute correlations for �0 and size performance of the optimal test using
q∗ = 7 in AR(2) Gaussian location model with roots ρ1 and ρ2. Notes: The “uniformly maximal”
function of F corresponds to an AR(1) with coefficient 0.8. Sample size T is 100. Panel (a) based
on q = 8. Panel (b) based on 10,000 simulations.

Inspection of the proof of Theorem 3.3 reveals that the determination of the implied
weights {w∗

j } and q∗ embeds classical robustness-efficiency tradeoffs in optimal testing.
On the one hand, for a given f ∈ F , the null rejection probability of test (9) is

P

(∣∣∣∣∣ Y0√√√√√ q∗∑
j=1

w∗
j Y

2
j

∣∣∣∣∣> 1

)
= P

(
f (0)Z2

0
q∗∑
j=1

f (πj/T )w∗
j Z

2
j

≥ 1

)
, (10)

where {Zj }
q∗
j=0 are q∗ + 1 i.i.d. standard normals. Under Assumption 3.2(a), it is not hard

to see that (10) as a functional of f is maximized at f , as long as the weights {w∗
j } are all

positive. (And this observation breaks down when negative weights emerge.) As such,
one needs these implied weights to be positive such that the optimal test in its origi-
nal form ϕ�∗.f1 uniformly controls the null rejection frequencies under Hd

0 and then the
“least favorable” argument can be applied. For given κ and f , suppose one starts by con-
sidering q̃ = 1, 2, � � �, and thus uses the accordingly determined cvq̃, it is found that the
positiveness criterion is less likely to be satisfied as q̃ increases. In this sense, a smaller q̃
is preferred to achieve better robustness properties. On the other hand, one may desire
to use a larger q̃ for efficiency purposes. It is these tradeoffs that essentially pin down q∗
and the implied weights: One shall include the largest possible number of weighted aver-
ages such that the positiveness conditions are satisfied; the accordingly implied weights
are optimal in the sense that the resulting statistic is equivalent to a likelihood ratio one
based on all weighted averages and inherits its efficiency properties in Theorem 3.3.12

12One may wonder why t tests based on q(< q∗ ) Yj ’s and the accordingly derived weights are not least
favorable as well. As it turns out, the corresponding kinked-shaped functions, as plausible least favorable
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Table 3. q∗ in the optimal test and f parameterized as AR(1) with coefficient ρ.

ρ 0 0.05 0.15 0.3 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

q∗ 99 51 31 22 15 13 12 11 10 9 7 6 5 3

Note: The “uniformly maximal” function corresponds to an AR(1) with coefficient ρ. Sample size T is 100.

The above robustness-efficiency tradeoffs continue to hold when the testing prim-
itives (κ and f ) vary. Intuitively, a larger κ or a less persistent f implies that it is easier

to distinguish Hd
0 from Hd

1,f1
and a larger q∗ is expected. It is instructive to illustrate it

in cases where f is parameterized as an AR(1) with coefficient ρ, and Table 3 reports
the corresponding q∗. Unsurprisingly, q∗ is monotonically decreasing in ρ, reflecting the
need to satisfy more stringent size constraints (robust to larger sets of data generating
processes). It is also worth noting that if the sequence of ρ is understood as fixed in
asymptotic thought experiments, then the notion of persistence under consideration is
only a relative concept, and the O(T−1 ) local-to-zero spectra for all f ∈ F will be effec-
tively flat and correspond to the white noise case in large samples. In that event, Table 3
suggests that q∗ → ∞ as T → ∞, and one has to appeal to asymptotic expansions to
further analyze finite-sample size-power tradeoffs and the optimal rate of q∗. Said dif-
ferently, one shall understand Theorem 3.3 as in thought experiments in which strong
autocorrelations or large persistence is still of concern in large samples and interpret the
curvature of f at frequencies close to zero, for say ρT = 1 − c/T , as the primitive.

Comment 4. For t-statistic using a conventional weighted cosine LRV estimator with
predetermined positive weights {wj }, referred to as weighted cosine tests hereafter, the
null rejection probability at a given f and critical value cv is

P

(∣∣∣∣∣ Y0√√√√ q∑
j=1

wjY
2
j

∣∣∣∣∣> cv

)
= P

(
f (0)Z2

0

cv2
q∑

j=1

f (πj/T )wjZ
2
j

≥ 1

)
, (11)

which is always maximized at f . The critical value cv at level α can readily be obtained
by equating α to the following formula of Bakirov and Székely (2006):

P

(
Z2

0 ≥
q∑

j=1

ζjZ
2
j

)
= 2

π

∫ 1

0

(
1 − u2)(q−1)/2

du√√√√ q∏
j=1

(
1 − u2 + ζj

) , (12)

where ζj = cv2 f (πj/T )/f (0)wj . The robustness-efficiency tradeoffs now manifest in
terms of choosing q and using its associated adjusted critical value cvaq such that (12) is

maximized at {ζ̃j = (cvaq )2κ−1wj }
q
j=1, and thus the maximum power at Hd

1,f1
is achieved.

candidates, all lie outside F due to Assumption 3.2(b). This observation, together with Assumption 3.2(c),
ensures that the identified least favorable function f ∗ associated with q∗ exists and is unique.
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If one desires to direct power at say f̃1 instead of f1, then the critical value adjustments
will not change for any given q, and the optimal selection of q now makes (12) reach its
largest value at {ζ̃j = (cvaq )2κ−1f̃1(πj/T )/f̃1(0)wj }

q
j=1. In this sense, robustness and effi-

ciency constraints are sequentially addressed. In contrast, the optimal test ϕ
�∗, f̃1

(see
details in Corollary 4.4) and the resulting optimal weights {w∗

j } in the t-statistic form (9)

vary simultaneously with f̃1, rendering it less operationally straightforward as compared
to the weighted cosine tests.

The above discussion, of course, applies to the class of EWC tests, for which wj = q−1

for any given q. In that case, if f is further parameterized using the limiting local-to-zero
spectra under local-to-unity asymptotics, that is, 1/(π2j2 + c2 ) for some c > 0, (cvaq )2

mirrors the critical value of an F statistic (with p = 1) from fixed-smoothing asymptotics
under strong (local-to-unity) persistence in Sun (2014a). Moreover, (cvaq )2 is of a hump
shape as a function of q for any given and finite c (see Figure 3 in Sun (2014a)). The
optimal choice of q then amounts to exploiting that hump shape and picking the q such
that the vector that stacks q replicates of (cvaq )2κ−1q−1 and T − 1 − q zeros majorizes all
other candidate vectors of the same form. In face of c = ∞, cvaq monotonically decreases
in q. As a result, one shall utilize all information in the data and optimally choose q =
T − 1.

Intuitively, this q shall also balance the worst absolute bias (|f (0) − q−1∑q
j=1 f (πj/

T )|) and variability of the LRV estimator q−1∑q
j=1 Y

2
j in a testing-optimal sense. Accord-

ingly, the adjusted critical value cvaq accounts for this maximum bias in the spirit of Arm-
strong and Kolesár. However, since cvaq is determined in a rather more complicated way
than in their settings, I choose not to discuss further these bias-variance tradeoffs. Fur-

thermore, I note that because the implied weights {w∗
j }

q∗
j=1 in the optimal test do not de-

pend on the associated critical value cvq∗ in a straightforward way, and thus may bring
another layer of complications, neither will I formally compare q∗ in the optimal test
with the MSE or testing optimal q in the EWC class in this paper.

Comment 5. One may wonder whether Theorem 3.3 is limited by only orienting
power toward f1. As it turns out, the insights can be generalized to accommodate pos-
sibly more complex alternatives. I relegate the formal analysis along this line to Sec-
tion 4.1.

3.2 The optimal EWC test

By using higher-order expansions, Lazarus, Lewis, and Stock (2021) derive a size-power
frontier for kernel and orthonormal series HAR tests under an asymptotic framework.
The EWC test is shown to achieve that frontier in their context. It is, however, not clear
how the EWC test performs in the current context. The efficiency bounds derived in the
last section provide a natural benchmark to gauge the performance of an ad hoc test. In
this section, I take up the EWC test as the ad hoc test and discuss its properties.

I have two related goals. The first is to study the (weighted average) power properties
of the EWC test relative to the optimal test in Theorem 3.3. As it turns out, the EWC test
is close to optimal, under an appropriate choice of q and with the adjusted critical value,
which is just discussed in Comment 4 above. I refer to this new EWC test as the optimal
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Table 4. Weighted average power (WAP) of the optimal test and the optimal EWC test.

ρ 0.50 0.60 0.70 0.80 0.90 0.95 0.98

q in optimal EWC 12 9 7 6 4 3 1
critical value adj. factor 1.04 1.05 1.07 1.13 1.26 1.55 1.87
WAP of optimal EWC 0.507 0.492 0.472 0.438 0.351 0.233 0.088
WAP of optimal test 0.507 0.493 0.475 0.442 0.358 0.239 0.091

Note: The “uniformly maximal” function corresponds to an AR(1) with coefficient ρ. Nominal level is 5%. Sample size T is
100.

EWC hereafter. My second goal is to draw the following practical implications of the
optimal EWC test via its comparison with the conventional EWC test: One should use
the EWC test with a larger q and appropriately enlarged critical values for more powerful
HAR inference.

3.2.1 Power of the optimal EWC test Consider the type of F in Table 3, that is, the “uni-
formly maximal” function f of the class F corresponds to an AR(1) with coefficient ρ.
As ρ varies, Tables 4 displays the crucial ingredients (q and adjustment factor relative to
Student-t critical value) in the optimal EWC test, its resulting weighted average power
and the efficiency bound induced by the optimal test. Two observations are immediate.
First, the optimal EWC test is nearly as powerful as the optimal test. This observation
remains when a different type of class F is considered in Table 5. Second, the selections
of q in the optimal EWC test and q∗ in the optimal test are not necessarily equal. After
all, as explained in Comments 3 and 4 above, they are determined in arguably different
robustness-efficiency tradeoff mechanisms. It is worth noting that q in the optimal EWC
test can be somewhat sensitive to numerical errors in evaluating (12) when f is relatively
flat. This, however, does not have any substantial consequence in theory.

3.2.2 Practical implications Recall that the conventional wisdom in implementing the
EWC test is to use a sufficiently small q and to employ the Student-t critical value. I
find, however, that it is better to use a larger q and to employ an enlarged critical value.
Take the example from Figure 2 as an illustration: The “uniformly maximal” function
f corresponds to an AR(1) with coefficient 0.8 and the sample size is fixed to be 100.
According to conventional wisdom, one needs to use q = 3 in the usual EWC test to
obtain size distortions less than 0.01. The optimal EWC test, however, selects a larger
q = 6 (highlighted in Table 4), and the corresponding Student-t critical value must be
inflated by a factor of 1.13 for exact size control. An apple-to-apple comparison then

Table 5. Weighted average power (WAP) of the optimal test and the optimal EWC test.

C 10.0 5.6 3.2 1.8 1.0 0.6 0.2 0.1

WAP of optimal EWC 0.286 0.361 0.418 0.453 0.482 0.500 0.526 0.533
WAP of optimal test 0.288 0.364 0.419 0.457 0.484 0.501 0.527 0.536

Note: The “uniformly maximal” function of F is f (φ) = exp(−Cφ). Nominal level is 5%. T is 100.
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Figure 5. Power function plot of the test ϕ∗, the optimal and conventional EWC tests. Notes:
Under the alternative, the mean of yt is δT−1/2(1 − ρ1 )−1 and yt follows a Gaussian AR(1) with
coefficient ρ1. Under the null, the f of F corresponds to an AR(1) with coefficient 0.8. Sample
size T is 100.

reveals that the size-adjusted weighted average power of the usual EWC test (0.39) has
about 12% loss as compared to that of the optimal EWC test (0.438, as highlighted in
Table 4).

The superior power property of the optimal EWC test is further evident when local
alternatives are considered. In particular, in the context of the above example, I con-
sider μ = δT−1/2(1 − ρ1 )−1 under the alternative. Panels (a) and (b) of Figure 5 plot the
power of the optimal test ϕ∗, the optimal EWC test, and the size-adjusted EWC test us-
ing q = 3 for various δ under ρ1 = 0 and ρ1 = 0.8, respectively. As can be seen in panel
(a), even though the optimal EWC test underrejects under the null, it is more powerful
than the EWC test using q = 3 in detecting local deviations from the null. Specifically,
by using the optimal EWC test, a 28.9% efficiency improvement is obtained in order to
achieve the same power of 0.5. In the case in which ρ1 = 0.8, the efficiency gain is larger
(47.6%), since the optimal EWC test then exactly controls size by construction. Further-
more, given that the optimal EWC test is nearly as powerful as the overall optimal test ϕ∗
in terms of weighted average power under the white noise alternative, it is not surprising
to see that the power functions of these two tests are almost identical.

4. Theoretical generalizations

The finite-sample efficiency results in Section 3 are derived under seemingly restrictive
assumptions. In particular, when power is directed at the white noise alternative a prior,
the optimal test ϕ∗ possesses a precise sense of optimality, and the optimal EWC is nu-
merically found to be nearly as powerful as ϕ∗. More importantly, the existing efficiency
results are entirely based on the Whittle-type diagonal structure. It is natural to ask how
limited these simplifying assumptions are in eliciting theoretical insights in HAR infer-
ence. Said differently, can the insights on efficiency in Section 3 be generalized to more
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general settings? In this section, I take up these questions and discuss the theoretical
generalizations.

4.1 Power directions and minimax efficiency results

First of all, I devise optimal tests that direct power at a nonflat f̃1, and, more generally,
a nonsingleton class G ⊂ F under H1. For analytical tractability, I maintain Assumption
3.1 and also impose a Whittle-type structure on �1(f ), which automatically holds under
f1.

Assumption 4.1. For all f ∈ G, �1(f ) = T−1 diag(κf (0), f (π/T ), � � � , f (π(T − 1)/T ).

Adopting the conventional scale invariance and weighted average power maximiz-
ing criteria, I now seek powerful tests as functions of Ys = Y/

√
Y ′Y in the problem of

Hd
0 : Y ∼N

(
0, T−1 diag

(
f (0), f (π/T ), � � � , f

(
π(T − 1)/T

)))
, f ∈ F (13)

against Hd
1,G : Y ∼ N

(
0, T−1 diag

(
κf (0), f (π/T ), � � � , f

(
π(T − 1)/T

)))
, f ∈ G,

under the following assumption that nests Assumption 3.2 as a special case (G = {f1}).

Assumption 4.2. (a) There exists a f ∈ F such that f (0)
f (φ) ≤ f (0)

f (φ) , for all φ ∈ [−π, π] and

f ∈ F .

(b) There exists a f ∈ G such that f (0)
f (φ) ≥ f (0)

f (φ)
, for all φ ∈ [−π, π] and f ∈ G.

(c) f (πj/T )/f (πj/T ) ≥ f (π(j + 1)/T )/f (π(j + 1)/T ), j = 0, 1, � � � , T − 2.

(d) F contains all kinked functions defined by fθ(φ) = rθ(φ)f (φ), in which, for θ ∈
[0, π], rθ(φ) = 1 if |φ| ≤ θ and rθ(φ) ∈ [1, ∞) if |φ| > θ.

(e) G contains all kinked functions defined by gθ(φ) = r′θ(φ)f (φ), in which, for θ ∈
[0, π], r ′θ(φ) = 1 if |φ| ≤ θ and r′θ(φ) ∈ [0, 1] if |φ| > θ.

Intuitively, relative persistence between the null and alternative hypotheses matters
in distinguishing them. In Section 3, because the alternative is fixed at a constant sin-
gleton, the “uniformly maximal” spectral density plays a vital role in deriving “least fa-
vorable” results. Now, under Assumption 4.2, f/f posits the largest possible relative per-
sistence and is thus expected to be an important primitive in eliciting similar efficiency
results. It turns out that this intuition is correct and I formalize it below as a minimax
result.

I follow Lehmann and Romano (2005) to define the necessary notation in the HAR
context. Let �0 and �1 denote distributions of f over F and G, respectively. Let ϕ�0,�1

be the most powerful level α weighted average power maximizing scale invariant test
for testing H0,�0 against H1,�1 , in which H0,�0 and H1,�1 are simple hypotheses defined
analogously to H ′′

0,� in Section 2, and let β�0,�1 be its weighted average power for a given
κ. Suppose �0 and �1 are such that supf∈F E[ϕ�0,�1 (y )] ≤ α and inff∈G E[ϕ�0,�1 (y )] =
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β�0,�1 , then ϕ�0,�1 maximizes inff∈G E[ϕ(y )] among all valid level α tests ϕ of H0. The
following theorem makes further optimal statements about the minimax weighted av-
erage power bound β�0,�1 among all possible candidates of �0 and �1.

Theorem 4.3. Under Assumptions 3.1, 4.1, and 4.2,

(i) If κf (0)/f (0) ≤ f (π/T )/f (π/T ), then the smallest β�0,�1 among all possible pairs
of �0 and �1 is α and is attained by the trivial randomized test.

(ii) If κf (0)/f (0) > f (f )(π/T )/f (π/T ), then the following test ϕ∗ identifies the least
favorable pair of distributions (�∗

0, �∗
1) in the sense that:

β�∗
0,�∗

1
≤ β�0,�1

for all possible pairs of �0 and �1, in which ϕ∗ rejects for large values of

Y 2
0 + f (0)

q∗∑
j=1

Y 2
j /f (πj/T )

Y 2
0 + κf (0)

q∗∑
j=1

Y 2
j /f (πj/T )

(14)

for a unique 1 ≤ q∗ ≤ T − 1, and with the critical value cvq∗ such that the test is of
level α under f = f and attains its minimax power β�∗

0,�∗
1

at f = f .

The proof strategy of Theorem 4.3 is similar to that of Theorem 3.3. I prove both of
them and the two immediate corollaries within a coherent framework in Appendix A.

Corollary 4.4. Let G = {f̃1} for some f̃1 that is not necessarily equal to the flat f1 so that
f = f̃1 in the sense of Assumption 4.2(b). Under Assumptions 3.1, 4.1, 4.2:

(i) If κf̃1(0)/f (0) ≤ f̃1(π/T )/f (π/T ), then the best weighted average power maximiz-
ing scale invariant test of H0 : μ = 0 against H1 : μ �= 0 is the trivial randomized
test.

(ii) If κf̃1(0)/f (0) > f̃1(π/T )/f (π/T ), the best level α weighted average power max-
imizing scale invariant test ϕ∗ of H0 : μ = 0 against H1 : μ �= 0 rejects for large
values of

Y 2
0 + f (0)

q∗∑
j=1

Y 2
j /f (πj/T )

Y 2
0 + κf̃1(0)

q∗∑
j=1

Y 2
j /f̃1(πj/T )

(15)

for a unique 1 ≤ q∗ ≤ T − 1, and with the critical value cvq∗ such that the test is of
level α under f = f .



1126 Liyu Dou Quantitative Economics 15 (2024)

Corollary 4.5. Let F and G be sets of f satisfying Assumption 4.2 and with f = f1. Under
Assumptions 3.1 and 4.1, the weighted average power of the optimal test in Theorem 3.3
gives the minimax power bound in the sense of Theorem 4.3.

4.2 Near optimality of EWC tests

It is found in Section 3.2 that the so-called optimal EWC test nearly archives the ef-
ficiency bound when power is directed at the white noise (f1). It is tempting to ask
whether such findings remain in more realistic situations, especially given that effi-
ciency bounds are derived in Section 4.1 when power is oriented toward nonflat alter-
natives.

I first maintain the Whittle diagonal structure with AR(1) f as before (coefficient

ρ0) but consider power directions at possibly nonmonotonic f̃1 of AR(2) processes with
roots ρ1 and ρ2. In panel (a) of Figure 6, I do not endogenize the test statistics for each
(ρ0, ρ1, ρ2 ) combination. More precisely, the boxplots are for the difference in weighted
average powers of the ϕ∗ and the new EWC tests that are initially designed to be (nearly)
optimal at f1 (as in Section 3) but are now at f̃1 for various (ρ1, ρ2 )’s. In contrast, panel (b)
leverages Corollary 4.4 to endogenize f̃1 in obtaining the efficiency bound and in select-
ing q for the optimal EWC test. I note that for the existence of the optimal test in those
cases I restrict the ranges of ρ1 and ρ2 such that Assumption 4.2(c) is satisfied, but the
corresponding spectral density f̃1 may still be nonmonotone. Displayed results in panel
(a) suggest that the new EWC test is nearly as powerful as the test ϕ∗ at AR(2) alternatives,
even if both are derived under different rationales and neither possesses a well-defined

Figure 6. Boxplots of weighted average power differences between ϕ∗ and EWC tests. Notes:
The “uniformly maximal” function of F corresponds to an AR(1) with coefficient ρ0 ∈ [0.8, 0.9].
Powers are directed at AR(2) alternatives with roots ρ1 and ρ2 (−0.8 ≤ ρ1(ρ2 ) ≤ 0.8 in panel (a);
0 ≤ ρ1 ≤ 0.8 and −0.8 ≤ ρ2 ≤ 0 in panel (b)). Sample size T is 100, and the level of significance is
5%.
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Figure 7. Boxplots of weighted average power for weighted cosine tests. Notes: The “uniformly
maximal” function f corresponds to an AR(1) with root ρ0. Powers are directed at AR(2) alterna-
tives with roots ρ1 and ρ2 (−0.7 ≤ ρ1(ρ2 ) ≤ 0.7). 5% tests using q weighted cosines are consid-
ered, in which 1000 sets of random positive weights are used for each (ρ0, ρ1, ρ2 ). Sample size T

is 100.

sense of optimality by construction. Panel (b) corroborates the near optimality feature
of the optimal EWC test when ϕ∗ is by design optimal according to Corollary 4.4 at a
restricted yet considerably large set of AR(2) alternatives. I note that the appearance of
negative values in Figure 6 might be attributed to numerical errors in calculating the
critical values for both tests.13

It is noted in Comment 3 of Section 3.1 that both the optimal and EWC tests belong to
the so-called weighted cosine tests. I investigate whether the near optimality is a unique
feature of EWC tests in that class. Specifically, I consider such tests using q weighted
cosines but with 1000 sets of random positive weights that are normalized to sum to
one. The critical values are obtained such that these tests exactly control size at AR(1) f
with coefficient ρ0. Figure 7 displays boxplots of the resulting weighted average power
at AR(2) alternatives with roots ρ1 and ρ2. Note that q∗ is by construction 7 and 5 when
power is directed at f1 in panels (a) and (b), respectively. It is found that the dispersion of
weighted average power is relatively small at q∗ across all tests and all AR(2) alternatives,
suggesting that there may exist a set of weighted cosine tests, including the EWC test,
that nearly achieve the efficiency bounds. In fact, the EWC test included is not even the

13For numerical stability, I set the tolerance level to be 0.003 around 0.05 in order to obtain the critical
values, so it is not surprising to have numerical errors in approximating rejection probabilities to be of
the order 10−3. With a smaller tolerance level, the numerical integration of (12) using 2000-point Gaussian
quadrature may still produce complex-valued numbers. Moreover, in obtaining cvq∗ for ϕ∗, because the
positiveness conditions, and thus the integral expression of (12) may not hold a priori for a given q̃, I first
simulate 100,000 ϕ∗ under f to determine a preliminary q∗ and then use a bisection method to obtain
a more precise cvq∗ while checking the positiveness conditions. In the above senses, the plots in Figure 6
are bound by small numerical and simulation errors, and negative values are not evidence to dismiss the
theories.
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best one, as its q is not optimized yet. Furthermore, the comparisons of boxplots across
different q hint that one might need to choose weights (test statistic) more judiciously
when a relatively large q is used, and the theoretical insights so far recommend the EWC
test as a good candidate so long as the adjusted critical value is adopted.

4.3 Relaxation of the Whittle-type approximation

The theoretical discussions so far are entirely based on the Whittle-type diagonal struc-
ture. For both theoretical interest and practical relevance, it is natural to ask whether
the above insights on optimal HAR inference continue to hold without that structure. To
that end, I maintain the criteria of weighted average power maximizing and scale invari-
ance and still direct power at the flat spectrum f1. The goal is to seek powerful tests as
functions of Ys = Y/

√
Y ′Y in the problem of

He
0 : Y ∼N

(
0, �0(f )

)
, f ∈ F (16)

against He
1,f1

: Y ∼N
(
0, κT−1 diag

(
1, κ−1, � � � , κ−1)),

where the superscript e denotes the exact model. Note that He
1,f1

is identical to Hd
1,f1

,
because �1 exactly becomes diagonal under f1.

First of all, I note that it is, in general, difficult to derive the optimal test of (16). This
is mainly due to the complicated manner by which f enters �0(f ). In this case, even if it
is true that the least favorable distribution puts a point mass on some function f ∗ ∈ F ,
its determination seems rather difficult. Despite so, one still can obtain bounds on the
power of any size-controlling test by using the bounding approach of Elliott, Müller, and
Watson (2015). Recall from Section 2 that for any probability distribution � over F , the
likelihood ratio test of H ′′

0,� against H ′′
1,f1

yields such a power bound. If the power of a
valid ad hoc test ϕah is close to the power bound for some �, then ϕah is known to be
close to optimal, as no substantially more powerful test exists. It turns out that the in-
sights from the diagonal model are useful in guessing a good � and in suggesting the
near optimality of the EWC test in the exact model. In particular, for a given a in [0, 1],
let �a be a point mass distribution on the kinked function fa(φ), as was defined in As-
sumption 3.2(c). For every a, the likelihood ratio test of H ′′

0,�a
against H ′′

1,f1
yields a power

bound. I numerically search for a such that the resulting power bound is minimized.
Denote this a by a† and the resulting � by �†. The power bound I employ to gauge the
efficiency of ad hoc tests is then the power of

ϕ�†,f1
= 1
[(
Y ′�0(fa† )Y

)−1(
Y ′�1(f1 )Y

)
> cv

]
, (17)

for some cv such that E[ϕ�†,f1
] = α under H ′′

0,�a
. It turns out that the EWC test essentially

achieves this bound, after appropriate critical value adjustment and optimally choos-
ing q.
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For an EWC test with a given q, the null rejection probability at a given f and critical
value cv now becomes

P

(∣∣∣∣∣ Y0√√√√ q∑
j=1

Y 2
j /q

∣∣∣∣∣≥ cv

)
= P

(
Z2

0
q∑

j=1

λj(f )Z2
j

≥ 1

)
, (18)

in which {λj(f )}
q
j=1 are positive eigenvalues of M(cv, q)�0,q(f ) (normalized by the mag-

nitude of the only negative eigenvalue),14 where �0,q(f ) is the upper left (q+1)× (q+1)
block matrix of �0(f ) and M(cv, q) = diag(−1, cv2 /q, cv2 /q, � � � , cv2 /q). By the same ar-
guments in Section 3, (18) is maximized at f such that all λj(f )’s are jointly minimized.
The opaque mapping from λj(f ) back to f , however, prevents us from explicitly identi-
fying the null rejection probability maximizer(s) like f under Assumption 3.2, rendering
the critical value adjustment generally infeasible. In spatial settings, Müller and Wat-
son (2022) consider a parametric F with a well-defined bound on the parameter as a
benchmark model to obtain feasible adjustment and then robustify the size-controlling
property of the resulting EWC-type test in more general model classes using the above
eigenvalue insights.

I, however, take a numerical approach: I approximate f as a linear combination f̂

of basis functions, numerically search the weights such that resulting f̂ maximizes (18)
under an additional assumption that f is nonincreasing over [0, π],15 and obtain the
critical value cva,e

q accordingly in the same way as in Section 3. See Appendix B for the
computational details. I then proceed as in Section 3.2 to select q optimally. In the con-
text of Tables 3 and 4 (AR(1) f ), it is found that the difference between cvaq and cva,e

q is
considerably small and the largest size distortion of 5% level EWC test using cvaq is of the
order 10−3 in the exact model. These numerical findings are considerably robust when
different F ’s are considered.16

Tables 6 and 7 summarize the weighted average power of the optimal EWC test and
the weighted average power bound induced by (17), paralleling the exercises in Tables 4
and 5, respectively. As can be seen, for most F considered, the optimal EWC test essen-
tially achieves the corresponding weighted average power bound, and thus possesses a
notion of near optimality in the spirit of Lemma 1 in Elliott, Müller, and Watson (2015).
I note that the relatively larger difference between the weighted average power of the
optimal EWC test and the corresponding bound (e.g., under large ρ in Table 6 and under
large C in Table 7) is not informative about the efficiency of the optimal EWC test, since
it can arise either because the bound is far from the least upper bound, or because the
ad hoc test is inefficient.

The practical implications of using the EWC test from Section 3.2.2 remain. In the
exact model and in the context of Figure 5, the conventional wisdom and the optimal

14See Lemma 1(i) in Müller and Watson (2022) for the proof that there is only one negative eigenvalue.
Note the sign difference between M(cv, q) here and D(cv) in their context.

15The benchmark models considered in Müller and Watson (2022) all satisfy this shape restriction.
16I refer interested readers to Tables 7, 12, 13, 14, and 15 in an earlier version of this paper (cf. Dou (2020))

for numerical details. I choose not to include them in this version for the sake of space.
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Table 6. Weighted average power (WAP) bound and the WAP of the optimal EWC test.

ρ 0.50 0.60 0.70 0.80 0.90 0.95 0.98 0.99

WAP of optimal EWC 0.501 0.486 0.465 0.432 0.345 0.228 0.095 0.067
WAP bound 0.505 0.493 0.475 0.440 0.359 0.254 0.133 0.087

Note: The f function of F corresponds to an AR(1) with coefficient ρ. All f in F are nonincreasing over [0, π]. Nominal
level is 5%. Sample size T is 100.

EWC test continue to suggest using 3 and 6 for q, respectively, but the corresponding
Student-t critical value has to be enlarged by a slightly higher factor of 1.14 for exact size
control. In terms of weighted average power, there is a 14% gain by using the optimal
EWC test. This efficiency advantage is further evident when the local alternative μ =
δT−1/2(1 − ρ1 )−1 is considered with power directed at ρ1 = 0 and even with cvaq, as in
Figure 1. I reiterate the general takeaway here: One should use the EWC test with a larger
q and appropriately enlarged critical values for more powerful HAR inference.

5. Practical implementation

In this section, I discuss the practical implementation of the optimal EWC test in the
location model and extend it to inference about a scalar parameter in regression models.

5.1 Location model

Recall that the above theoretical discussions suggest the advantage of using a larger q

and adjusted critical value when implementing the EWC test, and this new test pos-
sesses a notion of near optimality under pre-specified efficiency criteria and a smooth-
ness class F . As a practical matter, one might like to estimate the smoothness class F , in
particular the associated f , from data. Unfortunately, the attempt is not useful in theory.
This is because the (nearly) optimal tests depend on F , and a “larger” F incorporating
sampling uncertainties potentially leads to a lower power. Put differently, one cannot
estimate F and still control size (cf. Pötscher (2002)).

But how to determine a reasonable f in actual implementations? Given the analogy
between the optimal EWC test and the test considered in Sun (2014a) when f is parame-
terized in the local-to-unity form (see Comment 4 in Section 3), I follow Sun (2014a) and
suggest the practitioners calibrate f in the following way when testing about the popula-

tion mean of an observed scalar time series {yt }Tt=1. One first computes the OLS estimator

Table 7. Weighted average power (WAP) bound and the WAP of the optimal EWC test.

C 10.0 5.6 3.2 1.8 1.0 0.6 0.2 0.1

WAP of optimal EWC 0.307 0.368 0.425 0.460 0.486 0.501 0.524 0.530
WAP bound 0.321 0.381 0.431 0.466 0.488 0.505 0.527 0.534

Note: The f function of F is f (φ) = exp(−Cφ). Nominal level is 5%. Sample size T = 100.
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ρ̂ = (
∑T

t=2 ût ût−1 )−1(
∑T

t=2 û
2
t−1 ), where ût = yt − T−1∑T

t=1 yt in the location model, and
takes ĉ that satisfies ĉ = T (1 − ρ̂). To reduce the randomness of ρ̂, and hence ĉ, one can
use ρ̃ that is closest to ρ̂ in a discretized grid over [0, 1], and thus let ĉ = T (1 − ρ̃). The f

is then calibrated by f̃ such that f̃ (πj/T ) = 1/(π2j2 + ĉ2 ).17

After obtaining a reasonable f , one proceeds to appropriately choose q that max-

imizes (12) with {ζj = (cvaq )2κ−1q−1}
q
j=1, in which, for 5% testing, cvaq is computed by

Bα,q cvnaq (α) with cvnaq being the Student-tq critical value and the adjustment factor Bα,q

read directly from Table 2. For a generic α level of significance, one solves for the cor-
responding cvaq(α) by equating α to (12) with {ζj = (cvaq(α))2f̃ (πj/T )/f̃ (0)q−1}

q
j=1. The

evaluations of (12) involve numerical integration but are straightforward to compute. In
case the researcher comes with a choice of q a priori and concerns 5% testing, she shall
simply appeal to Table 2 to obtain cvaq and proceed to the following step without further
considerations of q.

With μ0 being the hypothesized population mean under the null, the researcher
computes q+ 1 cosine weighted averages {Y0}

q
j=0 of {yt }Tt=1: Y0 = T−1∑T

t=1(yt −μ0 ) and

Yj = T−1
√

2
∑T

t=1 cos(πj(t − 1/2)/T )yt , j = 1, 2, � � � , q, and reject the null hypothesis at

level α if |Y0/
√
q−1

∑q
j=1 Y

2
j | > cvaq(α).

5.2 Extension to regression models

Consider the linear regression model

Rt = xtβ+ z′
tδ+ εt , t = 1, � � � , T ,

where β is the scalar parameter of interest, and zt are additional controls in the re-
gression. Let x̃t = xt − (

∑T
t=1 xtzt )(

∑T
t=1 ztzt )−1zt be the residual from regressing xt

on zt . Let β̂(ε̂t ) be the coefficient estimate (residual) from regressing Rt on x̃t . Sup-

pose T−1∑T
t=1 x̃

2
t

p→ σ2
x̃x̃ and T−1/2∑T

t=1 x̃tεt ⇒ N (0, σ2
x̃ε ), then

√
T (β̂−β) ⇒ N (0, ω2 ),

where ω2 = σ2
x̃ε/σ

4
x̃x̃. It is not hard to see that the generated series

yt = β̂+ x̃t ε̂t

T−1
T∑
t=1

x̃2
t

≈ β+ x̃tεt

σ2
x̃x̃

(19)

behave approximately like observations from the location model (2) with β replacing μ

and the persistence of x̃tεt being the main source of serial correlation that is concerned
in HAR inference about β.

For conducting inference using OLS estimates with HAR standard errors in the above
regression models, I suggest first generating the series (19) from preliminary OLS esti-
mates and proceeding as in the location model in Section 5.1 to implement the optimal

17This calibration is also analogous to that of Müller and Watson (2022) in spatial settings via a local-to-
unity-type parametrization. Alternatively, one could choose the regularity of f via a rule of thumb similar
to Fan-Gijbels or Silverman rules of thumb for local polynomial and density estimation, as considered in
Armstrong and Kolesár (2020), and formally justify the procedure under auxiliary assumptions.
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EWC test, in which the primitive f is calibrated using the persistence of x̃tεt . It is, how-
ever, worth noting that the extension of the theoretical insights from the location model
to regression models requires that x̃tεt is stationary and the partial sum of x̃t is roughly
linear (T−1∑rT

t=1 x̃
2
t ≈ rσ2

x̃ for 0 ≤ r ≤ 1),18 which may be implausible in some applica-
tions. In those situations, I refer the readers to, for instance, Müller and Watson (2023)
and Ibragimov and Müller (2010), respectively, for valid inference approaches.

6. Empirical illustrations

The purpose of this section is twofold. First, I demonstrate the empirical relevance of
the choice of LRV estimator or HAR test statistic in confidence interval construction and
hypothesis testing with autocorrelated data, even in simple settings. Second, I illustrate
the implementation of the proposed optimal EWC test in these empirical examples.

I focus on intervals of the familiar “estimator plus and minus a standard error times
a critical value” form. Relatedly, the HAR test statistic of concern is in the usual t-statistic
form. In this context, the choice of LRV estimator/HAR test statistic amounts to selecting
a combination of the standard error and the critical value. In particular, I consider An-
drews’ (1991) LRV estimator ω̂2

A91 with a quadratic spectral kernel and bandwidth selec-
tion using an AR(1) model and critical value from standard normal distribution; Kiefer,
Vogelsang, and Bunzel’s (2000) Bartlett kernel estimator ω̂2

KVB with bandwidth equal to
the sample size and nonstandard critical value derived from their fixed-b asymptotics;
Sun, Phillips, and Jin’s (2008) quadratic spectral estimator ω̂2

SPJ with a bandwidth that
trades off asymptotic type I and type II errors in rejection probabilities, in which the
shape of the spectrum is approximated by an AR(1) model and the weight parameter is
chosen to be 30; Lazarus et al.’s (2018) status quo recommendation for practice, EWC
test using their suggested rule of thumb q = 0.4T 2/3 and Student-tq critical value; EWC
tests using ad hoc choices of q as 3, 9, and 12 and respective Student-t critical value;
and my proposal in this paper, the optimal EWC test using adjusted critical value and
optimally selected q.

In the first empirical example, I consider the simple task of constructing a 95% con-
fidence interval for the population mean of U.S. unemployment. Figure 8 plots the
monthly observations from January 1948 to December 2019, and the square of their
87 cosine weighted averages: Y0 = T−1∑T

t=1(yt − μ0 ) and Yj = T−1
√

2
∑T

t=1 cos(πj(t −
1/2)/T )yt , j = 1, 2, � � � , 86 using μ0 = 4.5 for illustration purpose only. Intuitively, most
of the existing HAR inference approaches treat the first few averages as independent and
identically distributed normals. But, as in panel (b), it may be implausible in the current
example. The theory developed in this paper, however, finds it advantageous to exploit
the potential heteroskedasticity of these averages, which, to some extent, reflects the
underlying persistence in the original series.

To proceed, I suggest practitioners fit an AR(1) to the series. The resulting OLS es-
timate ρ̂ provides a reasonable measure of persistence, which is 0.9918 for U.S. unem-
ployment. To reduce the effect of randomness, one then finds ρ̃ that is closest to ρ̂ in a

18See Section 5 in Müller (2014) for details.
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Figure 8. U.S. unemployment rate. Notes: Series LNS14000000 of the Bureau of Labor Statistics
from 1948:1 to 2019:12 (Bureau of Labor Statistics, 2024). Weighted averages are normalized by
Y 2

0 , and μ0 = 4.5 is used for illustration purposes only.

reasonably fine grid over [0, 1], for which I choose 0.99. After that, one deploys a frame-
work commonly used to model large sample persistence, namely the local-to-unity pa-
rameterization as ρ = 1 − c/T , to obtain ĉ = T (1 − ρ̃) = 8.64, a key ingredient to adjust
the Student-t critical value to accommodate the above heteroskedasticity issue in the
presence of strong autocorrelation. Lastly, one selects the q such that the resulting EWC
test with the adjusted critical value is most powerful according to a well-defined effi-
ciency criterion. The numerical determination of the adjustment and q are straightfor-
ward and detailed in Section 5.1 and I omit them here for brevity. In case the researcher
comes with a choice of q a priori, she shall simply refer to Table 2 to obtain the adjusted
critical value and proceed without considering q further.

Table 8 lists the margin of error in symmetric confidence intervals of the U.S. unem-
ployment population mean using the above eight methods. Interestingly, the lengths of
these intervals vary by more than a factor of three, which demonstrates the empirical rel-
evance of the choice of LRV estimator/HAR test with strongly autocorrelated time-series
data. Moreover, as q increases, the margin of error for conventional EWC tests shrinks.
Thus, it is not surprising to see that Lazarus et al.’s (2018) EWC test using q = 36 leads
to the shortest length. Yet, the resulting confidence interval may have a coverage rate
below 95%, since their test is primarily designed to accommodate persistence no larger
than 0.7. In contrast, the optimal EWC test uses q = 4 but inflates the Student-t4 critical
value by a factor of 1.33, which, to some extent, adapts to the underlying persistence and
achieves efficiency in some testing-optimal sense.

Now, let us consider the problem of comparing the predictive accuracy of infla-
tion forecasts. In particular, consider a benchmark forecast sequence (F0,t )t=1, ���,T and
J competing forecasts (Fj,t )t=1, ���,T ;1≤j≤J for the series (F†

t )t≥1. The measure of perfor-
mance of the benchmark method relative to the jth competitor is usually defined as
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Table 8. 95% confidence intervals for U.S. unemployment population mean.

ω̂2
A91 ω̂2

KVB ω̂2
SPJ ω̂2

LLSW ω̂2
Y,3 ω̂2

Y,9 ω̂2
Y,12 ω̂2

OEWC

m.e. 0.658 1.125 1.956 0.535 1.319 0.963 0.834 1.517

Note: Same data as in Figure 8. All confidence intervals are symmetric around the sample mean μ̂ = 5.73 with endpoints
μ̂±m.e., where the margin of error m.e. is reported in the table.

yj,t ≡L(F†
t , Fj,t )−L(F†

t , F0,t ) with L(·, ·) being a pre-defined loss function. The problem
of testing unconditional equal predictive ability (UEPA) for these two forecasts is formal-
ized as testing the hypothesis HUEPA

0 : E[yj,t ] = 0. The arguably most popular method to
do the task is Diebold and Mariano’s (1995) test, which is essentially a t-test with an
appropriate choice of LRV estimator and critical value, as in the first empirical example.

I follow Li, Liao, and Quaedvlieg (2021a) to select eight inflation forecasting methods
from those constructed by Medeiros, Vasconcelos, Veiga, and Zilberman (2021) for the 1-
month-ahead and 12-month-ahead forecasts of Consumer Price Index (CPI). It includes
four traditional methods (random walk, AR(1), Bayesian vector-autoregression (BVAR),
and factor model) and four other machine-learning-based methods (LASSO, elastic net
(ElNet), bagging, and random-forecast regression (RF-OLS)). Table 9 lists the counts of
null rejections using the sample period January 1990 to December 2004 and differentials
in quadratic losses among the eight methods, with each column being the benchmark.
It turns out the choice of test again matters empirically in evaluating inflation forecasts.

For the implementation of the optimal EWC test, take the comparison of 12-month-
ahead forecasts between LASSO and RF-OLS as an example. A similar calculation as in
the unemployment example first finds that the underlying persistence is only 0.125, yet
the four popular tests under consideration have not reached a unanimous conclusion.
Moreover, even if one dogmatically follows the practical guide (and uses the local-to-
unity parameterization that is otherwise meant for strong persistence modeling), the
corresponding optimal choice of q = 14 is close to Lazarus et al.’s (2018) rule of thumb
suggestion (q = 12) and the critical value adjustment factor is close to 1 (1.006). This
demonstrates the usefulness of the optimal EWC test even with weakly dependent data,
especially given that Lazarus et al.’s (2018) EWC test is also theoretically justified for such
data in Lazarus, Lewis, and Stock (2021).

Table 9. Rejection counts of UEPA among competing inflation forecasts.

RW AR BVAR LASSO ElNet Factor Bagging RF-OLS

ω̂2
A91 (6, 6) (4, 3) (2, 3) (4, 3) (4, 3) (4, 6) (1, 2) (5, 6)

ω̂2
KVB (6, 1) (1, 1) (0, 2) (1, 1) (1, 0) (1, 3) (1, 0) (1, 4)

ω̂2
SPJ (6, 3) (3, 3) (0, 2) (3, 2) (3, 2) (4, 6) (1, 2) (4, 6)

ω̂2
LLSW (5, 3) (3, 2) (0, 2) (2, 2) (3, 2) (3, 4) (1, 1) (3, 6)

Note: Monthly inflation forecasts are constructed by Medeiros et al. (2021) and downloaded from Li, Liao, and Quaedvlieg
(2021b). The period used for illustration is 1990:1 to 2004:12. Each cell contains (#1, #2) where #1 and #2 are counts of rejec-
tions of UEPA between the benchmark (column) and other 7 forecasting methods, using 1-month-ahead and 12-month-ahead
forecasts.
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A further investigation of the 12-month-ahead forecasts between LASSO and RF-
OLS using a rolling window (of the same width 180 months) over other time periods,
however, reveals that the testing conclusions may not be time consistent for the same
test, including Lazarus et al.’s (2018) EWC test and the optimal EWC test proposed in
this paper. This somewhat raises the necessity to study finer testing problems to evaluate
competing inflation forecasts, such as testing conditional equal predictive ability (CEPA)
as in Giacomini and White (2006) and conditional superior predictive ability (CSPA) as in
Li, Liao, and Quaedvlieg (2021a). Alternatively, one can insist on testing UEPA but need
valid HAR inference methods even under possible nonstationarity. I leave it for future
research.

Appendix A: Proofs in Sections 3.1 and 4.1

I first note that due to the scale invariance restriction, it is without loss of generality to
impose the normalization on f such that f (0) = 1 throughout the proofs. Moreover, I
note that, for generic f and f ′ and borrowing the definition of H ′′ from Section 2, the
likelihood ratio test of H ′′

0,f : “Ys has density h0,f ” against H ′′
1,f ′ : “Ys has density h1,f ′ ”

only depends on {f (πj/T )/f ′(πj/T )}T−1
j=1 under Assumption 3.1, where the density form

of h is in (6). Furthermore, define function m(·) such that m(πj/T ) = f (πj/T )/f ′(πj/T ).
For f ∈ F and f ′ ∈ G and under Assumption 4.2(a,b), denotes the set of such m by M,
and note that the function m = f/f traces out the largest relative persistence among all
pairs of f and f ′ or is the “uniformly maximal” m of M in the sense of Assumption 3.2(a)
or 4.2(a). Also, Assumption 4.2(c) assumes the monotonicity of m in the exact sense of
Assumption 3.2(b). Having these features of m in the background, I prove some useful
auxiliary lemmas below.

I introduce some additional notation. Let {Zj }nj=0 be i.i.d. standard normals through-

out this section. For ζ ∈Rn+ and n ≥ 1, let Jn(ζ ) = P(Z2
0 ≥∑n

j=1 Z
2
j ζi ) and define Kn(ζ ) =

P(Z2
0 ≤∑n

j=1 Z
2
j ζi ). For each 1 ≤ q̃ ≤ T − 1, and 0 <α< 1, define cvq̃ such that

P

(
(1 − cvq̃ )Z2

0 >

q̃∑
j=1

[
cvq̃ κm(πj/T ) − 1

]
Z2
j

)
= α, (20)

and condition condq̃,

max
j=1,2, ���, q̃

{
cvq̃ κm(πj/T ) − 1

}
< 0 or min

j=1,2, ���, q̃

{
cvq̃ κm(πj/T ) − 1

}
> 0. (21)

Further, for ζ, ξ ∈ Rn+, we call ξ weakly majorizes ζ (ξ �w ζ) iff
∑k

j=1 ξj ≥ ∑k
j=1 ζj for

1 ≤ k≤ n. If, in addition,
∑n

j=1 ξj =∑n
j=1 ζj , we say that ξ majorizes ζ (ξ � ζ).

A.1 Auxiliary lemmas

Lemma A.1. For any ζ∗ ∈ Rn+, define D+(ζ∗ ) ≡ {ζ ∈ Rn+|ζj ≥ ζ∗
j ∀ 1 ≤ j ≤ n} and D−(ζ∗ ) ≡

{ζ ∈ Rn+|ζj ≤ ζ∗
j ∀ 1 ≤ j ≤ n}. Then Jn(ζ∗ ) ≥ Jn(ζ ) for any ζ ∈ D+(ζ∗ ) and Jn(ζ∗ ) ≤ Jn(ζ )

for any ζ ∈ D−(ζ∗ ). Both equalities hold only if ζ = ζ∗.
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Proof. For any ζ ∈ D+(ζ∗ ), the event {Z2
0 ≥ ∑n

j=1 Z
2
j ζj } ⊂ {Z2

0 ≥ ∑n
j=1 Z

2
j ζ

∗
j }. Thus

Jn(ζ∗ ) ≥ Jn(ζ ). In the case ζj > ζ∗
j for some 1 ≤ j ≤ n, {Z2

0 ≥ ∑n
j=1 Z

2
j ζj } � {Z2

0 ≥∑n
j=1 Z

2
j ζ

∗
j } and Jn(ζ∗ ) > Jn(ζ ). For any ζ ∈ D−(ζ∗ ), the event {Z2

0 ≥ ∑n
j=1 Z

2
j ζj } ⊃

{Z2
0 ≥ ∑n

j=1 Z
2
j ζ

∗
j }. Thus Jn(ζ∗ ) ≤ Jn(ζ ). In the case ζj < ζ∗

j for some 1 ≤ j ≤ n, {Z2
0 ≥∑n

j=1 Z
2
i ζi} � {Z2

0 ≥∑n
j=1 Z

2
i ζ

∗
i } and Jn(ζ∗ ) < Jn(ζ ).

Corollary A.2. For any ζ∗ ∈Rn+, D+(ζ∗ ) and D−(ζ∗ ) are as defined in Lemma A.1. Then
Kn(ζ∗ ) ≤ Kn(ζ ) for any ζ ∈ D+(ζ∗ ) and Kn(ζ∗ ) ≥ Kn(ζ ) for any ζ ∈ D−(ζ∗ ). Both equali-
ties hold only if ζ = ζ∗.

Proof. Simply note that Kn(ζ ) = 1 − Jn(ζ ). The conclusions then follow from Lemma
A.1.

Remark A.3. (i) A corrected version of Remark 4 in Bakirov (1996) can lead to the same
set of conclusions of Lemma A.1 with a different relationship (ξ � ζ or ζ � ξ). The
exact statement in that article is flawed; that is, the stated relationship Jn(ξ) ≥
Jn(ζ ) is not necessarily true under weak majorizations. A trivial counterexample
is that ξ = (2, 0, 0, � � � , 0) �w ζ = (0, 0, 0, � � � , 0) but J(ξ) < J(ζ ) = 1. The corrected
statement is Jn(ξ) ≥ Jn(ζ ) if ξ � ζ and ξj > 0, ζj > 0 for all j. This is proved by
making use of the (Schur) convexity of Jn(·) and invoking Caramata inequality.

(ii) The discussion in (i) and Lemma A.1 provide somewhat complementary suffi-
cient conditions to explore the possible monotone properties of Jn(·) over Rn+.
Unfortunately, they have not fully characterized the necessary conditions of
Jn(ξ) ≥ Jn(ζ ). Under the conditions (ξ̄ − ζ̄ )(1, 1, � � � , 1) + ζ � ξ and

∑n
j=1 ξi ≥∑n

j=1 ζi where ξ̄ =∑n
j=1 ξj/n and ζ̄ =∑n

j=1 ζj/n, it is less obvious to compare J(ξ)
and J(ζ ) unless ζ lies at the boundary.

Lemma A.4. For ζ ∈ Rn+ and n ≥ 1, Jn(ζ ) = 2
π

∫ 1
0

(1−u2 )(n−1)/2du√∏n
j=1(1−u2+ζj )

and J1(ζ1 ) = 2
π ×

arcsin 1√
1+ζ1

.

Proof.

Jn(ζ ) = 1
π

∫ ∞

0

dt

√
t(1 + t )

√√√√ n∏
j=1

(
1 + (1 + t )ζj

) = 1
π

∫ 1

0

s(n−1)/2 ds√√√√(1 − s)
n∏

j=1

(s + ζj )

= 2
π

∫ 1

0

(
1 − u2)(n−1)/2

du√√√√ n∏
j=1

(
1 − u2 + ζj

) , (22)

where the first equality follows from Lemma 2 of Bakirov and Székely (2006), the second
equality follows by a change of variable s = 1/(1 + t ), and (22) follows by another change
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of variable u= √
1 − s. The expression (22) at n = 1 becomes

J1(ζ1 ) = 2
π

∫ 1

0

du√(
1 − u2 + ζ1

) = 2
π

arcsin
1√

1 + ζ1
,

which follows from a change of variable v = u/
√

1 + ζ1 and the fact that the antideriva-
tive of (1 − v2 )−1/2 is arcsinv.

Lemma A.5. For 0 <α< 1,

(a) cv1 exists if and only if m(π/T ) �= κ−1. m(π/T ) ≶ κ−1 if and only if 1 ≶ cv1.

(b) cond1 holds if m(π/T ) �= κ−1.

Proof. (a) In (20) at q̃ = 1, if m(π/T ) = κ−1, there does not exist a cv1 and α such that
(20) holds. On the other hand, a rearrangement of the event in (20) at q̃ = 1 gives

P
(
Z2

0 +Z2
1 >

(
Z2

0 + κm(π/T )Z2
1
)

cv1
)= α.

It follows that m(π/T ) ≶ κ−1 if and only if 1 ≶ cv1. Moreover, if m(π/T ) > κ−1, the sec-
ond part of Lemma A.4 in conjunction with (20) at q̃ = 1 gives

cv1 = 1

κm(π/T ) sin2(απ/2) + cos2(απ/2)
,

which always exists for every 0 <α< 1. In a similar vein, if m(π/T ) < κ−1, we have

cv1 = 1

κm(π/T ) cos2(απ/2) + sin2(απ/2)
,

which always exists. Thus, cv1 exists if and only if m(π/T ) �= κ−1. (b) follows from the
above that cond1 holds if m(π/T ) �= κ−1.

In what follows, I fold most of the parts corresponding to cvq > 1 in the proofs. Partly,
this is because they can be worked out by exactly symmetric arguments. Also, the most
relevant results from these auxiliary lemmas in establishing part (2) of Theorems 3.3,
4.3, and Corollary 4.4 are when κ >m(π/T )−1, which is equivalent to cvq < 1 for all q by
Lemmas A.5 and A.10.

Lemma A.6. For m(π/T ) �= κ−1 and 0 <α< 1, if condq̃ is violated for some 1 < q̃ ≤ T − 2,
then condq is also violated for any q̃+ 1 ≤ q ≤ T − 1.

Proof. Suppose condq̃ is violated while condq̃+1 holds. We have

max
j=1,2, ���, q̃

{
cvq̃ κm(πj/T ) − 1

}≥ 0 and min
j=1,2, ���, q̃

{
cvq̃ κm(πj/T ) − 1

}≤ 0. (23)

Consider minj=1,2, ���, q̃+1{cvq̃+1 κm(πj/T ) − 1} > 0. We must have cvq̃+1 < 1; other-
wise, (20) does not hold at q̃+1. On the other hand, 0 < minj=1,2, ���, q̃+1{cvq̃+1 κm(πj/T )−
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1} ≤ minj=1,2, ���, q̃{cvq̃+1 κm(πj/T ) − 1}. This, in conjunction with the second part of (23),
implies that cvq̃ < cvq̃+1 < 1, which we next show is impossible. Suppose cvq̃ < cvq̃+1 < 1
is true. Denote A+

q̃ = {j|1 ≤ j ≤ q̃, cvq̃ κm(πj/T ) − 1 > 0} (A+
q̃ �= ∅; otherwise, (20) is vio-

lated for q̃). Now (20) at q̃ gives

α = P

(
(1 − cvq̃ )Z2

0 >

q̃∑
j=1

[
cvq̃ κm(πj/T ) − 1

]
Z2
j

)

= P

(
Z2

0 >
1

1 − cvq̃

∑
j∈A+

q̃

[
cvq̃ κm(πj/T ) − 1

]
Z2
j + 1

1 − cvq̃

∑
j /∈A+

q̃

[
cvq̃ κm(πj/T ) − 1

]
Z2
j

)

≥ P

(
Z2

0 >
1

1 − cvq̃

∑
j∈A+

q̃

[
cvq̃ κm(πj/T ) − 1

]
Z2
j

)
(24)

>P

(
Z2

0 >
1

1 − cvq̃+1

∑
j∈A+

q̃

[
cvq̃+1 κm(πj/T ) − 1

]
Z2
j

)
(25)

>P

(
Z2

0 >
1

1 − cvq̃+1

∑
j∈A+

q̃

[
cvq̃+1 κm(πj/T ) − 1

]
Z2
j

+ 1
1 − cvq̃+1

∑
j /∈A+

q̃

[
cvq̃+1 κm(πj/T ) − 1

]
Z2
j

)
(26)

>P

(
Z2

0 >
1

1 − cvq̃+1

q̃+1∑
j=1

[
cvq̃+1 κm(πj/T ) − 1

]
Z2
j

)
= α,

where (24) is due to the fact that P(A ≥ C + B) ≥ P(A ≥ C ) when A, B, C are indepen-
dent random variables and B ≤ 0 almost surely. The inequality (25) is due to Lemma A.1
and the fact that for any j ∈ A+

q̃ , 1
1−cvq̃

[cvq̃ κm(πj/T ) − 1] < 1
1−cvq̃+1

[cvq̃+1 κm(πj/T ) − 1]

under cvq̃ < cvq̃+1 < 1. The inequality (26) is due to Lemma A.1.
The other half of (23) corresponds to cvq̃+1 > 1 and the proof is exactly symmetric to

the above. Overall, we have for m(π/T ) �= κ and 0 < α < 1, if condq̃ is violated for some
1 < q̃ ≤ T − 2, then condq is also violated for any q̃+ 1 ≤ q ≤ T − 1 by inductions.

Corollary A.7. For m(π/T ) �= κ−1 and 0 <α< 1, if condq̃ holds for some 3 ≤ q̃ ≤ T − 1,
then condq also holds for any 2 ≤ q ≤ q̃− 1.

Proof. This is the contrapositive statement of Lemma A.6.

Corollary A.8. For m(π/T ) �= κ−1 and 0 <α< 1, either one of the following will hold:

(a) there exists a unique 1 ≤ q∗ ≤ T − 2 such that condq is satisfied for all 1 ≤ q ≤ q∗
and violated for all q∗ + 1 ≤ q ≤ T − 1;

(b) condq is satisfied for all 1 ≤ q ≤ T − 1. In this case, define q∗ = T − 1.
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Proof. If condT−1 holds, by Corollary A.7, (b) is true. Otherwise, if condT−2 holds, then
(a) is true with q∗ = T − 2. Otherwise, given that cond1 always holds by Lemma A.5,
backward inductions lead (a) to be true for a unique 1 ≤ q∗ ≤ T − 3.

Corollary A.9. If m equals 1 and 0 <α< 1, then condq holds for all 1 ≤ q ≤ T − 1.

Proof. In this case, F = G = {m} = {f1} and condT−1 is trivially satisfied. It follows that
condq holds for all 1 ≤ q ≤ T − 1 by Corollary A.7.

Lemma A.10. For m(π/T ) �= κ−1, 0 <α< 1, and q∗ as defined in Corollary A.8, either one
of the following will hold:

(a) cvq > 1 for all 1 ≤ q ≤ q∗, and if q∗ ≥ 2, cvq+1 > cvq, q = 1, 2, � � � , q∗ − 1;

(b) cvq < 1 for all 1 ≤ q ≤ q∗, and if q∗ ≥ 2, cvq+1 < cvq, q = 1, 2, � � � , q∗ − 1.

Proof. Lemma A.5 leads to the conclusions for q∗ = 1. We now focus on q∗ ≥ 2. Sup-
pose κm(π/T ) > 1, then Lemma A.5 implies that cv1 < 1. Suppose there exists a q̃ =
min{q|2 ≤ q ≤ q∗, cvq > 1}. (I note that cvq cannot be 1 for any q ≤ q∗; otherwise, (20)
cannot hold at the corresponding q.) Then we must have

max
j=1,2, ���, q̃−1

{
cvq̃−1 κm(πj/T ) − 1

}
< max

j=1,2, ���, q̃−1

{
cvq̃ κm(πj/T ) − 1

}
≤ max

j=1,2, ���, q̃

{
cvq̃ κm(πj/T ) − 1

}
< 0.

This is a contradiction, because minj=1,2, ���, q̃−1{cvq̃−1 κm(πj/T ) − 1} > 0. It subse-
quently implies that cvq < 1 for all 1 ≤ q ≤ q∗. Moreover, for each j = 1, � � � , q∗, Rj(x) =
[κm(πj/T )x − 1]/(1 − x) is monotonically increasing in (0, 1). (To see this, note that
κm(πj/T ) − 1 > κm(πj/T ) cvq∗ −1 > 0 for every 1 ≤ j ≤ q∗.) For (20) to hold sequentially,
we necessarily need cvq+1 < cvq, q = 1, 2, � � � , q∗ − 1. (Otherwise, the LHS of (20) would
always be below α by Lemma A.1.) Part (b) is proved, and part (a) holds by symmetric
arguments.

Lemma A.11. For m(π/T ) �= κ−1, 0 < α < 1, and q∗ as defined in Corollary A.8, if
additionally m(πj/T ) ≥ m(π(j + 1)/T ), j = 0, 1, � � � , T − 2, and q∗ < T − 1, then
κ−1(m(πj/T ))−1 ≥ cvq∗ for j > q∗.

Proof. Define Q(x, q) = P((1 − x)Z2
0 >

∑q
j=1[xκm(πj/T ) − 1]Z2

j ). Given m(πj/T ) ≥
m(π(j + 1)/T ), j = q∗ + 1, � � � , T − 2, it suffices to show κ−1(m(π(q∗ + 1)/T ))−1 ≥ cvq∗ .
Suppose not; then we must have κ−1(m(π(q∗ + 1)/T ))−1 < cvq∗ . Suppose κm(π/T ) > 1,
then cvq∗ < 1 by Lemma A.10:

Q
(
cvq∗ , q∗ + 1

)= P

(
[1 − cvq∗ ]Z2

0 >

q∗+1∑
j=1

[
cvq∗ κm(πj/T ) − 1

]
Z2
j

)

<P

(
[1 − cvq∗ ]Z2

0 >

q∗∑
j=1

[
cvq∗ κm(πj/T ) − 1

]
Z2
j

)
=Q

(
cvq∗ , q∗)= α.
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On the other hand, 0 < κ−1(m(π(q∗ + 1)/T ))−1 < cvq∗ < 1. Then

Q
(
κ−1(m(π(q∗ + 1

)
/T
))−1

, q∗ + 1
)

= P

([
1 − κ−1(m(π(q∗ + 1

)
/T
))−1]

Z2
0 >

q∗+1∑
j=1

[(
m
(
π
(
q∗ + 1

)
/T
))−1

m(πj/T ) − 1
]
Z2
j

)

= P

([
1 − κ−1(m(π(q∗ + 1

)
/T
))−1]

Z2
0 >

q∗∑
j=1

[(
m
(
π
(
q∗ + 1

)
/T
))−1

m(πj/T ) − 1
]
Z2
j

)

=Q
(
κ−1(m(π(q∗ + 1

)
/T
))−1

, q∗)>Q
(
cvq∗ , q∗)= α,

where the last but one inequality follows from the fact that Q(·, q∗ ) is monotoni-
cally decreasing in (0, cvq∗ ) under κm(π/T ) > 1. By the continuity of Q(·, q∗ + 1)
and the intermediate value theorem, there must exist a number, denoted by cvq∗+1,
such that Q(cvq∗+1, q∗ + 1) = α. There is a contradiction, because condq∗+1 now
holds, violating Corollary A.8. Suppose κm(π/T ) < 1 instead, the proof follows by
almost symmetric arguments as above. Overall, we have κ−1(m(π(q∗ + 1)/T ))−1 =
minq∗+1≤j≤T−1 κ

−1(m(πj/T ))−1 ≥ cvq∗ .

A.2 Proof of Theorem 4.3

Part 1 holds by the definition of β�0,�1 and by simply recognizing that the alterna-
tive Hd

1,f
(defined analogous to Hd

1,f1
) is included in the null Hd

0 . Any nontrivial size-

controlling test thus cannot be more powerful than the trivial randomized test, which
does not depend on any �0 nor �1.

In part 2, m(π/T ) > κ−1. Under Assumption 4.2(a,b,c) and for 0 < α < 1, Corol-
lary A.8 shows that there exists a unique q∗ such that either (i) condq holds for
1 ≤ q ≤ q∗ and is violated for q∗ + 1 ≤ q ≤ T − 1, or (ii) condq holds for all 1 ≤
q ≤ T − 1, where we define q∗ = T − 1. I conjecture that the pair of least favor-
able distributions (�∗

0, �∗
1) put probability masses on functions {f ∗} ⊂ F and {g∗} ⊂

G, in which f ∗(φ) = f (φ)1[|φ| ≤ πq∗/T ] + a∗(φ)f (φ)1[|φ| > πq∗/T ] and g∗(φ) =
f (φ)1[|φ| ≤ πq∗/T ] + b∗(φ)f (φ)1[|φ| > πq∗/T ], for a∗(φ) ≥ 1 and b∗(φ) ≤ 1 such that
a∗(φ)f (φ)/(b∗(φ)f (φ)) = (κ cvq∗ )−1 for |φ| > πq∗/T . Assumption 4.2(d,e) ensures that
such two sets of functions are nonempty as long as the pair of functions (a∗, b∗) exists.
This true by Lemma A.11 (m(φ) ≤ (κ cvq∗ )−1 for |φ| >πq∗/T ).

Now first let b∗(φ) = 1 for all φ and a∗(φ) = (κ cvq∗ m(φ))−1. The best level α test of
Hd

0,f ∗ against Hd
1,g∗ is

ϕf ∗,g∗ = 1

[ Y 2
0 +

T−1∑
j=1

Y 2
j /f

∗(πj/T )

Y 2
0 + κ

T−1∑
j=1

Y 2
j /g

∗(πj/T )

> cv

]
,
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for some cv ≥ 0 such that EPY ,f∗ [ϕf ∗,g∗(Ys )] = α, where P
Y , f̃ denotes the joint distribu-

tion of Y at f = f̃ under Hd
0 . It follows that

α = PY ,f ∗

( Y 2
0 +

T−1∑
j=1

Y 2
j /f

∗(πj/T )

Y 2
0 + κ

T−1∑
j=1

Y 2
j /g

∗(πj/T )

> cv

)

= PY ,f ∗

(
Y 2

0 +
T−1∑
j=1

Y 2
j /f

∗(πj/T ) > cv

(
Y 2

0 + κ

T−1∑
j=1

Y 2
j /g

∗(πj/T )

))

= P

(
(1 − cv)Z2

0 >

T−1∑
j=1

[
cvκf ∗(πj/T )/g∗(πj/T ) − 1

]
Z2
j

)

= P

(
(1 − cv)Z2

0 >

q∗∑
j=1

[
cvκm(πj/T ) − 1

]
Z2
j +

T−1∑
j=q∗+1

[cv/ cvq∗ −1]Z2
j

)
, (27)

where the last equality follows from the definition of f ∗ and g∗. Because Y is a

continuous random vector, the critical value cv is unique. By matching (27) with

(20) at q̃ = q∗, we have cv = cvq∗ . Also, the events {
Y 2

0 +∑T−1
j=1 Y 2

j /f
∗(πj/T )

Y 2
0 +κ

∑T−1
j=1 Y 2

j /g
∗(πj/T )

> cvq∗ } and

{
Y 2

0 +∑q∗
j=1 Y

2
j /f (πj/T )

Y 2
0 +κ

∑q∗
j=1 Y

2
j /f (πj/T )

> cvq∗ } are equivalent P
Y , f̃ -almost surely, uniformly in f̃ ∈ F . The

rejection regions defined by ϕf ∗,g∗ and the optimal test statistic in (14) are thus identi-

cal.

It remains to check the following conditions: (1) ϕf ∗,g∗ is also the best level α test

of Hd
0,�∗

0
against Hd

1,�∗
1
; (2) ϕf ∗,g∗ uniformly controls size Hd

0 and has its largest size

distortion at f ; (3) ϕf ∗,g∗ attains β�∗
0,�∗

1
at f ; and (4) for any other (�0, �1 ), β�∗

0,�∗
1

≤
β�0,�1 .

For (1), note that ϕf ∗,g∗ is of exact size α under H0,�∗
0
:

∫
ϕf ∗,g∗(ys )

∫
h0,f (ys )d�∗

0(f )dys =
∫

ϕf ∗,g∗(ys )h0,f ∗(ys )dys
∫

h0,f d�
∗
0(f )

=EPY ,f∗ [ϕf ∗,g∗(Ys )] = α,

where the second equality holds because the set of distributions of ϕf ∗,g∗ is degener-

ate under �∗
0. By the same logic, the rejection probabilities of ϕf ∗,g∗ under H1,g∗ and
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H1,�∗
1

are identical. Because the best level α test of Hd
0,�∗

0
against Hd

1,�∗
1

is unique, (1)

holds.
For (2), consider a given f̃ ∈ F ,

EP
Y , f̃

[
ϕf ∗,g∗(Y )

]= P
Y , f̃

( Y 2
0 +

q∗∑
j=1

Y 2
j /f (πj/T )

Y 2
0 + κ

q∗∑
j=1

Y 2
j /f (πj/T )

> cvq∗

)

= P

(
[1 − cvq∗ ]Z2

0 >

q∗∑
j=1

[
cvq∗ κm(πj/T ) − 1

] f̃ (πj/T )
f (πj/T )

Z2
j

)

= P

(
Z2

0 >
1

1 − cvq∗

q∗∑
j=1

[
cvq∗ κm(πj/T ) − 1

] f̃ (πj/T )
f (πj/T )

Z2
j

)
(28)

≤ P

(
Z2

0 >
1

1 − cvq∗

q∗∑
j=1

[
cvq∗ κm(πj/T ) − 1

]
Z2
j

)
= α,

where (28) follows from (b) in Lemma A.10 under the condition m(π/T ) > κ−1,
and the inequality follows from the definition of q∗ and Lemma A.1 under Assump-
tion 4.2(a).

For (3), consider a given g̃ ∈ G and let P1
Y , g̃ denote the joint distribution of Y under

Hd
1, g̃,

EP1
Y , g̃

[
ϕf ∗,g∗(Y )

]= P1
Y , g̃

( Y 2
0 +

q∗∑
j=1

Y 2
j /f (πj/T )

Y 2
0 + κ

q∗∑
j=1

Y 2
j /f (πj/T )

> cvq∗

)

= P

(
[1 − cvq∗ ]Z2

0 >

q∗∑
j=1

[
cvq∗ −κ−1(m(πj/T )

)−1] g̃(πj/T )

f (πj/T )
Z2
j

)

= P

(
Z2

0 >
1

1 − cvq∗

q∗∑
j=1

[
cvq∗ −κ−1(m(πj/T )

)−1] g̃(πj/T )

f (πj/T )
Z2
j

)

≥ P

(
Z2

0 >
1

1 − cvq∗

q∗∑
j=1

[
cvq∗ −κ−1(m(πj/T )

)−1]
Z2
j

)
,

where the inequality follows from Corollary A.2 under Assumption 4.2(b). In this sense,
β�∗

0,�∗
1
=EP1

Y ,f
[ϕf ∗,g∗(Y )].
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For (4), because ϕf ∗,g∗ uniformly controls size under Hd
0 , it also controls size under

Hd
0,�0

. Then by the definition of β�0,�1 ,

β�0,�1 ≥
∫

ϕf ∗,g∗
(
ys
)∫

h1, g̃
(
ys
)
d�1(g̃)dys ≥ inf

g̃∈G
EP1

Y , g̃

[
ϕf ∗,g∗(Y )

]= β�∗
0,�∗

1
.

A.3 Proofs of Theorem 3.3 and Corollary 4.5

Proof of Corollary 4.5 follows immediately from those in Section A.2 with f = f1. Theo-
rem 3.3 is a special case of Corollary 4.5 with G = {f1}, and its results follow by realizing
that β�∗

0,�∗
1
, in that case, is simply the weighted average power of test (8) at f1.

A.4 Proof of Corollary 4.4

Corollary 4.4 is a special case of those considered in Theorem 4.3 with G = {f̃1}. The proof
thus follows directly from those in Section A.2.

Appendix B: Computational details in Section 4.3

In this section, I explain in detail how to numerically identify the null rejection proba-
bility maximizer of the EWC test in testing (16).

Let the n + 1 node points {xi}ni=0 define a partition of the interval I = [0, π] into
n subintervals Ii = [xi−1, xi], i = 1, 2, � � � , n, each of length hi = xi − xi−1, and x0 =
0, xn = π. Let C0(I ) denote the space of continuous functions on I, and P1(Ii ) de-
note the space of linear functions on Ii. Let {ςi}ni=0 be a set of basis functions for the
space Fh of continuous piecewise linear functions defined by Fh = {f : f ∈ C0(I ), f |Ii ∈
P1(Ii )}. The basis functions {ςi}ni=0 are normalized such that ςj(xi ) = 1[i = j], i, j =
0, 1, � � � , n. By approximating f via f̂ = ∑n

i=0 f (xi )ςi and by (12), I approximate (18)
by

P

(
Z2

0
q∑

j=1

λj(f̂ )Z2
j

≥ 1

)
= 2

π

∫ 1

0

(
1 − u2)(q−1)/2

du√√√√ q∏
j=1

(
1 − u2 + λj(f̂ )

) , (29)

which is a function of the n-dimensional vector (f (x1 ), f (x2 ), � � � , f (xn ))′. (By normal-
ization, f (x0 ) = 1.) With pre-computed {�0(ςi )}ni=0, the computation of (29) takes very

little computing time for each f̂ , and it is feasible to obtain a global maximizer of (29)
subject to implied constraints on (f (x1 ), f (x2 ), � � � , f (xn ))′ from a given F . I additionally
assume that the underlying spectrum is nonincreasing over [0, π].

In actual implementations, I choose n = 50, and {xi}50
i=0 are log-spaced nodes in

[0, π]. The basis functions {ςi}ni=0 are chosen to be the hat functions

ςi(x) =

⎧⎪⎪⎨
⎪⎪⎩

(x− xi−1 )/hi if x ∈ Ii,

(xi+1 − x)/hi+1 if x ∈ Ii+1,

0 otherwise.

(30)
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I pre-compute {�0(ςi )}ni=0 with a 5000-point Gaussian quadrature for each nonzero ele-
ment. Since each ςi is compactly supported, these numerical integrations are nearly pre-
cise. For every (f (x1 ), f (x2 ), � � � , f (xn ))′, �0(f̂ ) is simply a linear combination of these
pre-computed covariance matrices. Note, however, that the ultimate objective function
I will optimize is (29), which involves �0(f ) implicitly through λj(f̂ ). In an unreported
exercise, for a given EWC test and a parametric AR(1) class F with coefficient vary-
ing over a fine grid, I compare the rejection probabilities following the described ap-
proximate procedure and an “exact” procedure in which each entry of �0(f ) is evalu-
ated by numerical integrations via Mathematica. The differences in the rejection prob-
abilities are at most of the order 0.0001. I thus hold on to the above choice of n and
{xi}50

i=0.
I proceed in three steps to identify the null rejection probability maximizer for a fixed

EWC test of (16), in terms of (f (x1 ), f (x2 ), � � � , f (xn ))′:

(i) Program up the null rejection probability at a given (f (x1 ), f (x2 ), � � � , f (xn ))′ ∈
Rn+, and with a given q and reasonable cv (e.g., cvaq) from (29), where �0(f̂ ) =∑n

i=0 f (xi )�0(ςi ) with pre-computed {�0(ςi )}ni=0.

(ii) Randomly draw 100 n-dimensional vectors (f (x1 ), f (x2 ), � � � , f (xn ))′ such that
each vector corresponds to some f ∈ F . This is, in general, a challenging task
since the number of numerical constraints to be checked increases exponen-
tially with n for higher-order smoothness constraints. For feasibility, I focus on
two types of smoothness classes: the class F in which f corresponds is AR(1)
with coefficient ρ and f ∈ F is nonincreasing over [0, π]; and the class F in
which f ∈ F is Lipschitz continuous in logs with Lipschitz constant C. It is
not hard to see that for the first type, it suffices to check the monotonicity
constraint consecutively and the lower boundedness condition. For the second
type, by the result of Beliakov (2006), the complexity of checking the global Lip-
schitz condition is reduced to consecutive checking of local Lipschitz condi-
tions.

(iii) Use every n-dimensional vector drawn in Step (ii) as the initial condition to
optimize the null rejection probability function programmed in Step (i), sub-
ject to linear constraints induced by smoothness class F (as described in Step
(ii)).

Under the above specifications, it takes about 1 to 2 minutes to complete the optimiza-
tion using fmincon in MATLAB via parallel computing in 12 cores.
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