
Liao, Yuan; Todorov, Viktor

Article

Changes in the span of systematic risk exposures

Quantitative Economics

Provided in Cooperation with:
The Econometric Society

Suggested Citation: Liao, Yuan; Todorov, Viktor (2024) : Changes in the span of systematic risk
exposures, Quantitative Economics, ISSN 1759-7331, The Econometric Society, New Haven, CT, Vol.
15, Iss. 3, pp. 817-847,
https://doi.org/10.3982/QE2330

This Version is available at:
https://hdl.handle.net/10419/320308

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by-nc/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3982/QE2330%0A
https://hdl.handle.net/10419/320308
https://creativecommons.org/licenses/by-nc/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Supplementary Material
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Department of Economics, Rutgers University

Viktor Todorov
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This Appendix contains the proofs of all theoretical results in the paper.

Appendix A: Preliminary bounds

In this subsection, we collect some preliminary bounds that are used throughout the
proof. They hold both under the null and alternative hypotheses. Here and in the rest
of the proof, we assume that Assumptions A1–A3 hold. In fact, following a standard lo-
calization argument (see, e.g., Section 4.4.1 of Jacod and Protter (2011)), it is enough to
prove the results under the stronger version of Assumption A1.

SA1. We have Assumption A1 for s, t ∈ [0, T ].

Therefore, the proof below is done under Assumptions SA1, A2, and A3 without fur-
ther mention in the statements of the theorems, lemmas, and propositions. We also as-
sume that kn�n < ε so that the discrete factor model in equation (19) in the main text
holds. This is not a restriction because kn�n → 0 for all of our theoretical results in the
paper. Finally, we remind the reader the sequence ζp from Assumption A3, the tuning
parameters Kmax and gnp related to the selection of the number of factors given in equa-
tion (22) in the main text, and the parameter �̃ from the statement of Theorem 4.1.

Lemma A.1. Let p → ∞, �n → 0, kn → ∞, and kn�n → 0. Then we have for c = a, b:

(i) ‖RcFc‖2 =OP (pk2
n�

2�̃
n ).

(ii) ‖UcR
′
c‖2 =OP (pk2

n�
2�̃
n ).

(iii) ‖R′
c‖2 = OP (pkn�

2�̃
n ).
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Proof. Given the integrability conditions of Assumption SA1, we have for any constant
q > 0:

E

∣∣∣∣∫ ict �n

(ict −1)�n

αs,j ds

∣∣∣∣q ≤ Cq�n, E
(‖f c,t‖q + |εc,tj|q

) ≤ Cq,

E
∣∣�n

ict
Jj
∣∣q ≤ Cq,ι�

1−ι
n ,

(A.1)

for j = 1, 	 	 	 , p, t = 1, 	 	 	 , kn, and c = a, b, some arbitrary small ι > 0, and where Cq and
Cq,ι are constants that depend on q and ι, only. From here, we also have for q ≥ 2:

E|rc,tj|q ≤ Cq�
(�−1/2)q+1
n . (A.2)

With these bounds, we can now proceed with the proof of the lemma. Applying the
bounds in (A.1) and Hölder’s inequality yields

E

(
kn∑
t=1

r2
c,tjf

2
c,tk

)
≤ Ckn�

2�̃
n (A.3)

and, therefore,

‖RcFc‖2 =OP

(
pk2

n�
2�̃
n

)
. (A.4)

Next, given the C-conditional independence of βt,j , σt,j , and Yt,j across j from A2,
we have

E(rc,tjεc,tkrc,sjεc,sk ) = 0, for j 	= k and s 	= t . (A.5)

Using conditioning on C, the bounds in (A.1) and (A.2), Hölder’s inequality as well as
Assumption SA1, we have∣∣E(rc,tjεc,tjrc,sjεc,sj )

∣∣ ≤ C�2�̃
n , for s 	= t, (A.6)∣∣E(r2

c,tjε
2
c,tj

)∣∣+E
(
r2
c,tj

) ≤ C�2�̃
n . (A.7)

Combining the above three bounds, we get∥∥UcR
′
c

∥∥2 =OP

(
pk2

n�
2�̃
n

)
and

∥∥R′
c

∥∥2 =OP

(
pkn�

2�̃
n

)
. (A.8)

Lemma A.2. Let p → ∞, �n → 0, kn → ∞, and kn�n → 0. We have for c, d ∈ {a, b}:

(i) maxit
∑p

j=1 |E(εc,tiεc,tj|C )| ≤ C, for some positive constant C > 0.

(ii) ‖Uc‖ =OP (
√

(kn +p)ζp +
√

(kn +p)
√

pkn
n ), for the matrix operator norm.

(iii) 1
knp2

∑
ijt(εc,tiεc,tj −E(εc,tiεc,tj|C )) = OP ( 1

p
√
kn

).



Supplementary Material Changes in the span of systematic risk exposures 3

(iv) ‖ 1
kn
UcFc‖ = OP (

√
p
kn

), ‖ 1
knp

β′
dUcFc‖ = OP ( 1√

knp
+

√
�n√
kn

)

and 1
pkn

‖F ′
dU

′
dUcU

′
cβc‖ =OP (

√
kn√
p + 1).

(v) 1
p

∑p
j=1 | 1

pkn

∑
it βd,i(εc,tiεc,tj −E(εc,tiεc,tj|C ))|2 =OP ( 1

pkn
+

√
�n
kn

).

(vi) ‖ 1
p2kn

β′
d(UcU

′
c −E(UcU

′
c|C ))βc‖ =OP ( 1

p
√
kn

+
√
�n√
kn

).

Proof. We start with (i). We have
∑p

j=1 |E(εc,tiεc,tj|C )| = E(ε2
c,ti|C ) and since

supi≥1 E(ε2
c,ti ) < ∞ by Assumption SA1, the result follows.

To proceed further for (ii), we introduce the following notation:

ε̃c,tj = 1√
�n

σ̃cj�
n
ict
Wj , for c = a, b, j = 1, 	 	 	 , p, t = 1, 	 	 	 , kn, (A.9)

with σ̃c,j = σ�c/�n�−kn+1,j . The matrix constructed from ε̃c,tj is denoted with Ũc . We first
bound ‖Ũc‖. Let �̃u,c = 1

kn
E(ŨcŨ

′
c|F(�c/�n�−kn )�n ), which is a diagonal matrix with en-

tries σ̃2
c,j , and denote its counterpart in which σ̃2

c,j is replaced with σ2
c,j with �u,c . Theo-

rem 4.6.1 of Vershynin (2018) implies∥∥∥∥�̃−1/2
u,c

1
kn

ŨcŨ
′
c�̃

−1/2
u,c − I

∥∥∥∥ = OP

(
p

kn
+

√
p

kn

)
,

so we need a bound for ‖�̃u,c‖. For this, we can use triangular inequality, Assumptions
A2 and A3, and the fact that ‖ · ‖ ≤ ‖ · ‖F to get

‖�̃u,c‖ ≤ ‖�u,c‖ + ‖�̃u,c −�u,c‖F = OP

(
ζp + √

p

√
kn

n

)
. (A.10)

As a result, ‖Ũc‖ = OP (
√

(kn +p)ζp +
√

(kn +p)
√

pkn
n ). Therefore, it suffices to show

‖Uc − Ũc‖ = OP (
√
kn +p) in order to establish the bound for ‖Uc‖. First, note that

E|εc,tj − ε̃c,tj|2 ≤ C�n because of our assumption for σt,j . From here,

‖Uc − Ũc‖ ≤ ‖Uc − Ũc‖F ≤ C
√
pkn

√
�n = oP (

√
p). (A.11)

We continue with (iii). Using successive conditioning, we have

E
[
(εc,tiεc,tjεc,t ′i′εc,t ′j′ )|C

] = 0,

if t 	= t ′ or one of the indices i, i′, j, j′ differs from the others,
(A.12)

and of course E[εc,tiεc,tj ]2 ≤ C given our integrability assumptions in SA1. From here,
the result to be proved follows.

For the first of the bounds in (iv), given the definitions of f c,t and εc,tj as well as the
integrability assumptions in SA1, we have

E(εc,tjf c,tk ) = 0, E(εc,tjf c,tkεc,sjf c,sk )

{
= 0 if s 	= t,

≤ C if s = t
(A.13)
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and, therefore, ∥∥F ′
cU

′
c

∥∥2 = OP (pkn ), (A.14)

from which the first result in (iv) follows.
For the second bound in (iv), we use in addition the following result:∣∣∣∣∣E

[
βd,jk′

kn∑
t=1

εc,tif c,tk

kn∑
t=1

εc,tjf c,tk

]∣∣∣∣∣ ≤ C
√
kn�n, i 	= j, k, k′ = 1, 	 	 	 , K, (A.15)

for some constant C > 0. This follows from the C-conditional independence of the pro-
cesses βi, σi, and W̃i from βj , σj , and W̃j , for i 	= j, as well as the smoothness condition
for the processes σi and 
 in Assumption A2(i). We note that when c = d, the expectation
in the above inequality is equal to zero.

Finally, for the third result in (iv), we apply the Cauchy–Schwarz inequality and we
have ∥∥F ′

dU
′
dUcU

′
cβc

∥∥ ≤ ∥∥F ′
dU

′
d

∥∥∥∥UcU
′
cβc

∥∥. (A.16)

Given the above bound for ‖F ′
dU

′
d‖, we need only a bound for ‖UcU

′
cβc‖. Given the in-

dependence of Wi and Wj for i 	= j, and the integrability conditions for the processes
{σi}i≥1, we have

E

(
kn∑
t=1

εc,tiεc,tj

kn∑
t=1

εc,tiεc,tj′
∣∣∣F(�c/�n�−kn )�n

)
= 0, if i 	= j and j 	= j′, (A.17)

E

(
kn∑
t=1

εc,tiεc,tj

)2

≤
{
Ckn if i 	= j,

Ck2
n if i = j.

(A.18)

Therefore, given the integrability conditions for the processes βc,j , we have

E
(∥∥UcU

′
cβc

∥∥2) ≤ C
(
k2
n +pkn

)
. (A.19)

From here, the third bound in (iv) follows.
We turn next to the bound in (v). Using the C-conditional independence of the pro-

cesses βi, Wi, and σi from βj , Wj , and σj , for i 	= j, we have

E

( ∑
i 	=i′ or s 	=t

β′
d,iβd,i′

(̃
εc,tĩεc,tj −E(ε̃c,tĩεc,tj|C )

)(̃
εc,si′ ε̃c,sj −E(ε̃c,si′ ε̃c,sj|C )

)) = 0, (A.20)

where we denote ε̃c,ti = σ(ict −1)�n,i�
n
ict
Wi/

√
�n. Using the smoothness condition for the

processes {σi}i≥1 in Assumption SA1, we have

∑
j

( ∑
i 	=i′ or s 	=t

β′
d,iβd,i′

(
εc,tiεc,tj −E(εc,tiεc,tj|C )

)(
εc,si′εc,sj −E(ε̃c,si′ ε̃c,sj|C )

))
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−
∑
j

( ∑
i 	=i′ or s 	=t

β′
d,iβd,i′

(
εc,tiεc,tj −E(εc,tiεc,tj|C )

)(
εc,si′εc,sj −E(εc,si′εc,sj|C )

))

=OP

(
p3kn

√
�n

)
. (A.21)

From here, the result in (v) follows after taking into account the integrability conditions
for the processes β and {σi_i ≥ 1. The second result in (vi) can be shown in a similar
way.

For stating our next result, we need some notation. For c ∈ {a, b}, let Q̂c be the K ×K

diagonal matrix consisting of the first K eigenvalues of YcY
′
c/(pkn ), where K is the true

number of nonredundant factors at time c.

Lemma A.3. We have ‖Q̂c‖ + ‖Q̂−1
c ‖ + 1

p‖β′
cβ̂cQ̂

−1
c ‖ = OP (1).

Proof. Using Lemma A.1 and Lemma A.2, we have

1
pkn

∥∥YcY
′
c −βcF

′
cFcβ

′
c

∥∥
≤ 2

pkn

∥∥βcF
′
c(Uc +Rc )′

∥∥+ 1
pkn

‖Uc‖2 + 2
pkn

∥∥UcR
′
c

∥∥+ 1
pkn

‖Rc‖2 = oP (1).

Let Q̄c be the K × K diagonal matrix of top K eigenvalues of 1
pβc


′
c
cβ

′
c . We then

have ‖Q̂c − Q̄c‖ = oP (1) because, using Assumption SA1, we have 1
kn

‖F ′
cFc − 
′

c
c‖ =
OP ( 1√

kn
+

√
kn
n ). The eigenvalues of Q̄c equal those of (
′

c
c )1/2 1
pβ

′
cβc(
′

c
c )1/2, which

are bounded away from zero and infinity and, therefore, so are those of Q̂c . Then
‖Q̂−1

c ‖ = OP (1) and from here 1
p‖β′

cβ̂cQ̂
−1
c ‖ =OP (1).

Appendix B: Estimating the number of factors

Theorem B.1. Let Kmax = o(
√
kn ), and gn,p be such that

kn +p

knp
gnp = o(1), ζp +

√
pkn

n
= o(gnp ), �2�̃

n = o

(
kn +p

knp
gnp

)
. (B.1)

We then have

P(K̂a =Ka, K̂b =Kb, K̂mix = Kmix ) → 1.

We note that the condition �2�̃
n = o( kn+p

knp
gnp ) in the statement of the above theorem

is implied by Conditions (31)–(32) in Theorem 4.1. This is because from these condi-
tions, we have gnp → ∞ and (

√
pkn +p)�2�̃

n → 0.

Proof. First, note that for F̂K and β̂K being the estimated factors and betas using K

eigenvectors, we can write

V (K) := 1
pkn

∥∥Yc − β̂KF̂
′
K

∥∥2
F

=
∑
m>K

vc,m.
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Therefore, the criterion (22) is equivalent to the IC criterion in Bai and Ng (2002). From
here, the proof of the case K <Kc is very similar to that of Bai and Ng (2002), so we omit
it for brevity. However, there is a technical flaw in the published version of Bai and Ng
(2002) for the case K >Kc , so we present a proof of this case here using random matrix
theory.

Recall Sc = 1
knp

YcY
′
c , c ∈ {a, b}. We first bound maxm>Kc vc,m. Let us separately con-

sider two cases: Kc > 0 (there are factors) and Kc = 0 (there are no factors).
Case I: Kc > 0. For two semipositive definition matrices A, B, the a+b largest eigen-

value satisfy

λa+b(A+B) ≤ λa+1(A) + λb(B).

We will use this inequality and the following decomposition:

Sc = �+W ,

� = 1
knp

�F
′
cFc�

′, rank(�) =Kc , (B.2)

W = 1
knp

(Rc +Uc )MFc
(Rc +Uc )′,

where MFc
:= I − PFc

, and � = βc + (Uc + Rc )Fc(F
′
cFc )−1. For m > Kc , there is i =

1, 2, 	 	 	, so that m = Kc + i. Then, by making use of Lemma A.1 and Lemma A.2, we
have

vc,m = λm(Sc ) = λKc+i(W + �) ≤ λKc+1(�) + λi(W ) = λi(W )

≤ 2
knp

‖Rc‖2 + 2
knp

‖Uc‖2 ≤OP (δ),

δ :=
(

1
p

+ 1
kn

)(
ζp +

√
pkn

n

)
+�2�̃

n .

Let dnp = ( kn+p
knp

)gnp denote the penalty rate. Note that V (Kc ) is the rescaled residual
sum of squares when the true number of factors is used, which consistently estimates
1
p

∑
iE(σ2

c,i|C ). So, V (Kc ) > c is bounded away from zero with probability approaching
one. When K >Kc ,

� := logV (K) +Kdnp − (
logV (Kc ) +Kcdnp

) = log
V (K)
V (Kc )

+ (K −Kc )dnp

≥ log
(

1 −

∑
Kc<m≤K

vc,m

V (Kc )

)
+ dnp ≥ dnp −OP

( ∑
Kc<m≤Kmax

vc,m

)

≥ dnp −OP

(
max
m>Kc

vc,m

)
≥ dnp −OP (δ) > 0,

because of the rate condition in (B.1).
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Case II: Kc = 0. We have Sc = 1
knp

UcU
′
c , c ∈ {a, b}, whose eigenvalues are bounded

by 1
knp

‖Uc‖2 ≤ OP (δ). In addition, V (Kc ) still converges to 1
p

∑
iE(σ2

c,i|C ), which is
bounded away from zero. Hence, �≥ dnp −OP (δ) > 0.

Appendix C: Proof of Theorem 4.1

C.1 Outline of the proof

Since by Theorem B.1, the number of nonredundant factors over a given period can be
recovered with probability approaching one, we can conduct the proof assuming that
the true number of factors is known. We do so henceforth. The proof of Theorem 4.1 is
structured as follows.

Part I. PCA expansion. As discussed in Section 2, we have the following discrete fac-
tor model:

Yc = βcF
′
c +Uc +Rc , c = a, b, (C.1)

where recall Rc is a residual component containing the approximation error to the dis-
crete factor model. We can apply PCA to Yc . Using the definition of PCA, we will make
the following expansion:

‖Pβ̂a
− Pβ̂b

‖2
F − (Ba +Bb ) = μ̃a + μ̃b − μ̂ab +�5,

where Ba and Bb are certain centering terms, the first three terms on the right-hand
side of the above equality are the leading terms that jointly determine the asymptotic
distribution of the statistic under the null hypothesis, and �5 is a higher-order term. In
the above, Ba and Bb are the leading bias terms. Using the estimates B̂a and B̂b for them
leads to

kn
√
p
[‖Pβ̂a

− Pβ̂b
‖2
F − (B̂a + B̂b )

]
= kn

√
p(μ̃a + μ̃b − μ̂ab ) + kn

√
p
[
�5 +Ba +Bb − (B̂a + B̂b )

]
.

Finally, we also use the bias-mimicking projections that are in the term Âmix, and
hence we need to consider Pβ̂mix,o

and Pβ̂mix,e
. These two terms are the projection matri-

ces associated with β̂mix,o and β̂mix,e. We can get a similar decomposition for

Âmix = ‖Pβ̂mix,o
− Pβ̂mix,e

‖2
F − (B̂mix,o + B̂mix,e ), (C.2)

where B̂mix,o + B̂mix,e is the estimated bias term for ‖Pβ̂mix,o
− Pβ̂mix,e

‖2
F . Namely, we can

write

kn
√
pÂmix = kn

√
p(μ̃mix,o + μ̃mix,e − μ̂mix )

+ kn
√
p
[
�5,mix +Bmix,o +Bmix,e − (B̂mix,o + B̂mix,e )

]
.

The terms in the above decomposition are the natural counterparts of the ones for the
projection discrepancy Pβ̂a

− Pβ̂b
above. Putting things together, this will lead to an ex-
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pansion for the test statistic S . This expansion and the definition of all the terms in the

above decompositions will be given in Section C.2.

Part II. Higher-order terms. In this part of the proof, we will show that the higher-

order terms are negligible, in the sense that, for c = a, b and d = o, e, the following terms:

kn
√
p�5, kn

√
p�5,mix, kn

√
p(Bc − B̂c ), and kn

√
p(Bmix,d − B̂mix,d ) are all oP (1). As a re-

sult, under the null hypothesis,

S = kn
√
p(μ̃a + μ̃b − μ̂ab ) − kn

√
p(μ̃mix,o + μ̃mix,e − μ̂mix ) + oP (1).

Part III. Asymptotic null distribution. We will then derive the asymptotic distribu-

tion of the leading term. This is done in Section C.4.

Part IV. Bootstrap limit result. In the next step, we characterize the asymptotic be-

havior of the bootstrap statistic in Section C.5.

Part V. Asymptotic Test Size. In a final step in Section C.6, we use the results in parts

I–IV to derive the result in (35) concerning the asymptotic size of the test.

C.2 PCA expansion

Step 1. For c ∈ {a, b}, let Q̂c be the K × K diagonal matrix consisting of the first K

eigenvalues of YcY
′
c/(pkn ). By the definition of eigenvectors, YcY

′
cβ̂c/(pkn ) = β̂cQ̂c .

Expanding Yc using (C.1), we can verify that the following identity holds:

β̂c −βcHc = 1
kn

UcFcÂc +�1c , (C.3)

where

�1c = 1
pkn

UcU
′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c ,

Âc = 1
p
β′
cβ̂cQ̂

−1
c ,

Hc = 1
knp

F
′
cY

′
cβ̂cQ̂

−1
c .

(C.4)

Next, Lemma C.2 below shows that Hc is invertible with probability approaching one,

hence Pβc = PβcHc . As a result,

Pβ̂c
= Pβc + 1

p
(β̂c −βcHc )β̂′

c +βc�2cβ̂
′
c +βc

(
β′
cβc

)−1
H ′−1

c (β̂c −βcHc )′, (C.5)

where

�2c =Hc
1
p

[
H ′

cβ
′
cβcHc − β̂′

cβ̂c
](
H ′

cβ
′
cβcHc

)−1
. (C.6)
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From here and building on (C.3), we further expand (after some tedious algebra):

‖Pβ̂a
− Pβ̂b

‖2
F − (Ba +Bb ) = μ̃a + μ̃b − μ̂ab +�5,

μ̃c = 2

pk2
n

tr Â′
c

[
F

′
cU

′
cUcFc − BIASc

]
Âc , c ∈ {a, b},

μ̂ab = 2

pk2
n

tr Â′
aF

′
aU

′
aUbFbÂbĜ,

Bc = 2

pk2
n

tr Â′
cBIAScÂc = 2

k2
n

kn∑
t=1

tr Â′
cf̄c,t f̄

′
c,tÂcE

(
σ2
c,1|C

)
,

BIASc =
p∑
i=1

E
(
σ2
c,1|C

)
F

′
cFc ,

Ĝ := 1
p
β̂′
bβ̂a +H−1

b

(
1
p
β′
bβb

)−1

β′
bβa

(
β′
aβa

)−1
H ′−1

a ,

(C.7)

with �5 being a remainder term, whose lengthy decomposition will be given in Sec-
tion C.3.1, and we remind the reader our notation in (16) and (17) in the main text.

We then estimate Bc by

B̂c = 2

k2
n

tr
(
Q̂−1

c F̂ ′
cF̂cQ̂

−1
c

) ̂E
(
σ2
c,1|C

)
, c ∈ {a, b}.

As a result, we can write

‖Pβ̂a
− Pβ̂b

‖2
F − (B̂a + B̂b ) = μ̃a + μ̃b − μ̂ab +�5 +Ba +Bb − (B̂a + B̂b ). (C.8)

Step 2. We continue with Âmix, the bias-mimicking statistic. The expansion for this
term requires introducing significantly more notation. For c ∈ {a, b} and k ∈ {o, e}, let
Yc,k, Fc,k, Uc,k denote the columns of Yc , Fc , and Uc realized on k time points dur-
ing period c. Recall that β̂mix,k is constructed as the eigenvector using data Ymix,k =
(Ya,k, Yb,k ). Let Sf ,c,k = 1

kn
F

′
c,kFc,k. Then

1
knp

Ymix,kY
′
mix,k = 1

p
βaSf ,a,kβ

′
a + 1

p
βbSf ,b,kβ

′
b +�, (C.9)

which holds under both null and alternatives, and

�=
∑

c∈{a,b}

1
pkn

βcF
′
c,kU

′
c,k + 1

pkn
Uc,kU

′
c,k + 1

pkn
Uc,kFc,kβ

′
c + Rem1,

with Rem1 being a remainder term that depends on Ra and Rb in (C.1). Let Q̂mix,k be the
K × K diagonal matrix consisting of the first K eigenvalues of Ymix,kY

′
mix,k/(pkn ). By

the definition of the eigenvector defining β̂mix,k, we have an identity similar to (C.3):

β̂mix,k −βabHmix,k



10 Liao and Todorov Supplementary Material

= 1
kn

Ua,kFa,k
1
p
β′
aβ̂mix,kQ̂

−1
mix,k + 1

kn
Ub,kFb,k

1
p
β′
bβ̂mix,kQ̂

−1
mix,k

+ 1
pkn

Ua,kU
′
a,kβ̂mix,kQ̂

−1
mix,k

+ 1
pkn

Ub,kU
′
b,kβ̂mix,kQ̂

−1
mix,k + Rem, (C.10)

with the following notation:

βab = (βa, βb ), Hc,mix,k = 1
pnkn

F
′
c,kY

′
c,kβ̂mix,kQ̂

−1
mix,k, Hmix,k =

(
Ha,mix,k

Hb,mix,k

)
,

and where Rem is a remainder term depending on Ra, Rb similar to that in (C.3).
Let �2mix,k = Hmix,k

1
p[H ′

mix,kβ
′
abβabHmix,k − β̂′

mix,kβ̂mix,k](H ′
mix,kβ

′
abβabHmix,k )−1.

Then, similar to the identity (C.5), we have

Pβ̂mix,k
− PβabHmix,k

= 1
p

(β̂mix,k −βabHmix,k )β̂′
mix,k +βab�2mix,kβ̂

′
mix,k

+βabHmix,k
(
H ′

mix,kβ
′
abβabHmix,k

)−1
(β̂mix,k −βabHmix,k )′. (C.11)

Identities (C.10) and (C.11) hold under both the null and the alternative hypotheses.
Under the null that βb = βaH for some invertible matrix H,

βabHmix,k = βaLk, Lk := (Ha,mix,k +HHb,mix,k ). (C.12)

Lemma C.7 below shows 1√
p‖β̂mix,k −βabHmix,k‖ = oP (1). It follows that

I = 1
p
β̂′

mix,kβ̂mix,k = 1
p
H ′

mix,kβ
′
abβabHmix,k + oP (1) = 1

p
L′
kβ

′
aβaLk + oP (1).

Also, the eigenvalues of 1
pβ

′
aβa are bounded away from zero. Hence, by Lemma C.1, Lk is

invertible with probability approaching one. Hence, PβabHmix,k = PβaLk
= Pβa under the

null. Then the left-hand side of (C.11) can be replaced by Pβ̂mix,k
− Pβa .

Next, define

Umix,k = (Ua,k, Ub,k ), Fmix,k =
(

Fa,k

Fb,kH,

)
,

Ĝmix = 2
p
β̂′

mix,oβ̂mix,e, Âmix,k = 1
p
β′
aβ̂mix,kQ̂

−1
mix,k.

Then under the null, (C.10) can be rewritten as

β̂mix,k −βabHmix,k = 1
kn

Umix,kFmix,kÂmix,k +�1mix,k,

�1mix,k = 1
pkn

Umix,kU
′
mix,kβ̂mix,kQ̂

−1
mix,k + Rem,

(C.13)

for Rem that depends on Ra, Rb.
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Combine with (C.11) to obtain an identity similar to the one in (C.7) under the null,

‖Pβ̂mix,o
− Pβ̂mix,e

‖2
F = μmix,o +μmix,e −μmix,oe +�5,mix,

μmix,k = 2

pk2
n

tr Â′
mix,k

[
F

′
mix,kU

′
mix,kUmix,kFmix,k

]
Âmix,k,

μmix,oe = 2

pk2
n

tr Â′
mix,oF

′
mix,oU

′
mix,oUmix,eFmix,eÂmix,eĜmix,

where �5,mix is a remainder term similar to �5. Let

Bmix,k = 2

k2
n

tr Â′
mix,k

[
F ′
a,kFa,kE

(
σ2
a,1|C

)+H ′F ′
b,kFb,kHE

(
σ2
b,1|C

)]
Âmix,

B̂mix,k = 2

k2
n

tr Q̂−1
mix,kF̂

′
a,kF̂a,kQ̂

−1
mix,k

̂E
(
σ2
a,1|C

)+ 2

k2
n

tr Q̂−1
mix,kF̂

′
b,kF̂b,kQ̂

−1
mix,k

̂E
(
σ2
b,1|C

)
.

Then

Âmix = ‖Pβ̂mix,o
− Pβ̂mix,e

‖2
F − (B̂mix,o + B̂mix,e )

= (μmix,o −Bmix,o ) + (μmix,e −Bmix,e ) +μmix,oe

+ (Bmix,o − B̂mix,o ) + (Bmix,e − B̂mix,e ) +�5,mix.

Altogether, we have

‖Pβ̂a
− Pβ̂b

‖2
F − (B̂a + B̂b ) − Âmix

= μ̃a + μ̃b − μ̂ab − (μmix,o −Bmix,o ) − (μmix,e −Bmix,e ) −μmix,oe

+�5 + (Ba − B̂a ) + (Bb − B̂b ) − (Bmix,o − B̂mix,o )

− (Bmix,e − B̂mix,e ) −�5,mix. (C.14)

The term in the second line of the above expression is the leading term, jointly deter-
mining the asymptotic null distribution, while the terms in the third line of the above ex-
pression are higher-order terms. We need to show that, after multiplying them by kn

√
p,

these terms are asymptotically negligible.

Lemma C.1. Let λmin(A) and λmax(A), respectively, denote the minimum and maximum
eigenvalue of a semipositive definite matrix A. Suppose � is semipositive definite, and

λmax(�) <C, λmin
(
L′�L

)
> c

for constants c, C > 0. Then λmin(L′L) ≥ c/C. If L is a square matrix, then L is invertible.

Proof. Let v be the eigenvector of L′L so that v′L′Lv = λmin(L′L). Let θ = Lv. Let I be
a generic identity matrix. Then CI − � is semipositive definite, implying θ′�θ ≤ C‖θ‖2,
which is

Cλmin
(
L′L

) = Cv′L′Lv ≥ v′L′�Lv.
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Because L′�L − cI is semipositive definite, v′L′�Lv ≥ c. Hence, λmin(L′L) ≥ c/C. This
shows the singular values of L, which are square roots of the eigenvalues of L′L, are
nonzero. Hence, L is invertible if it is a square matrix.

C.3 Higher-order terms

According to (C.14), there are four higher-order terms:

�5, (Bc − B̂c ), (Bmix,k − B̂mix,k ), �5,mix, c = a, b, k= o, e.

We aim to show that, after multiplication by kn
√
p, these terms are all asymptotically

negligible.

C.3.1 Higher-order terms I: �5 and �5,mix In this subsection, we focus on �5 and
�5,mix. In particular, �5 has a lengthy expression, given as follows (�5,mix is defined sim-
ilarly):

�5 = − 2
p

tr
1
kn

Â′
aF

′
aU

′
a�1,b

1
p
β̂′
bβ̂a − 2

p
tr

1
kn

Â′
bF

′
bU

′
b�1,a

1
p
β̂′
aβ̂b

− 2
p

tr�′
1,a�1,b

1
p
β̂′
bβ̂a − 2

(
�4 +�3,a +�3,b + 2

p
‖�1,a‖2

F + 2
p

‖�1,b‖2
F

)
+ 4

p
tr

1
kn

Â′
aF

′
aU

′
a�1,a + 4

p
tr

1
kn

Â′
bF

′
bU

′
b�1,b. (C.15)

The expression for �5 depends on �1,c and �2,c , given in (C.4) and (C.6). It also depends
on �3,c , �4, which are defined as

�3,c = 2 tr(β̂c −βcHc )′βc�2,c + 2 tr
1
p

(β̂c −βcHc )′βc
(
β′
cβc

)−1
H ′−1

c (β̂c −βcHc )′β̂c

+p‖βc�2,c‖2
F + 2 tr β̂′

c(β̂c −βcHc )H−1
c �2,c

− tr(β̂c −βcHc )�′
2,cH

′−1
c (β̂c −βcHc )′,

�4 =
∑
c 	=d

tr
1
p
β̂c(β̂c −βcHc )′βd�2,dβ̂

′
d

+
∑
c 	=d

tr
1
p
β̂c(β̂c −βcHc )′βd

(
β′
dβd

)−1
H ′−1

d (β̂d −βdHd )′

+
∑
c 	=d

tr β̂c�
′
2,cβ

′
cβd

(
β′
dβd

)−1
H ′−1

d (β̂d −βdHd )′

+
∑
c 	=d

tr
1
kn

UcFcÂcH
−1
c

(
β′
cβc

)−1
β′
cβd

(
β′
dβd

)−1
H ′−1

d �′
1d

+ tr�1aH
−1
a

(
β′
aβa

)−1
β′
aβb

(
β′
bβb

)−1
H ′−1

b �′
1b + tr β̂a�

′
2,aβ

′
aβb�2,bβ̂

′
b.

(C.16)
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The above expression for �5 can be derived after tedious algebraic calculations.
Here, we illustrate the sources of all the terms in �5. From (C.5), by substituting the ex-
pression for β̂c −βcHc , we have Pβ̂c

− Pβc = g1,c + · · · + g5,c , where

g1,c = 1
pkn

UcFcÂcβ̂
′
c ,

g2,c = 1
p
�1cβ̂

′
c ,

g3,c = βc�2cβ̂
′
c ,

g4,c = βc
(
β′
cβc

)−1
H ′−1

c

1
kn

Â′
cF

′
cU

′
c ,

g5,c = βc
(
β′
cβc

)−1
H ′−1

c �′
1c .

Therefore,

‖Pβ̂a
− Pβ̂b

‖2
F =

∑
d,c

‖gd,c‖2
F +

∑
c,d1 	=d2

tr
(
g′
d1,cgd2,c

)−
∑
d1,d2

tr
(
g′
d1,agd2,b

)
.

(1) In
∑

d,c ‖gd,c‖2
F , the leading terms are ‖g1,c‖2

F + ‖g4,c‖2
F . The higher-order terms

are: ‖g2,c‖2
F + ‖g5,c‖2

F =OP ( 1
p‖�1c‖2 ), and ‖g3,c‖2

F =OP (‖ 1
pβ̂

′
c(β̂c −βcHc )‖2 ).

(2) In
∑

c,d1 	=d2
tr(g′

d1,cgd2,c ), all terms are of higher-order, which involves terms like

OP ( 1
p‖�1c‖2 + ‖ 1

pkn
F

′
cU

′
cβc‖2 + ‖ 1

pβ̂
′
c(β̂c −βcHc )‖2 + ‖ 1

knp
F

′
cU

′
c�1c‖).

(3) In
∑

d1,d2
tr(g′

d1,agd2,b ), only tr(g′
1,ag1,b ) and tr(g′

4,ag4,b ) are the leading terms, all

other terms are of higher order, involving OP ( 1
p‖�1c‖2 + ‖ 1

pkn
F

′
cU

′
cβd‖2 + ‖ 1

pβ̂
′
d(β̂c −

βcHc )‖2 + ‖ 1
knp

F
′
cU

′
c�1d‖) for c, d ∈ {a, b}.

We start with establishing some preliminary bounds in Lemmas C.2–C.5. With their
help, we derive the bounds for �5 and �5,mix that we need in Lemmas C.6 and C.7.

Lemma C.2. Assume ζp = O(
√
kn ∧ √

p) and pkn�n = Op(1), as p, n → ∞. Under both

null and alternatives, ‖β̂c −βcHc‖ ≤OP (
√

p
kn

+ ζp√
p +δ4 ) and ‖�1c‖ ≤OP (

√
p

kn
+ ζp√

p +δ4 ),

where �1c = 1
pkn

UcU
′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c and

δ4 =
∥∥∥∥ 1
pkn

UcR
′
cβ̂c + 1

pkn
RcY

′
cβ̂c

∥∥∥∥. (C.17)

Also, ‖Hc‖ + ‖H−1
c ‖ =OP (1).

Proof. Recall that Q̂c is a diagonal matrix consisting of the top K eigenvalues of
Y ′
cYc/(knp). From Lemma A.3, ‖Q̂c‖ = OP (1) = ‖Q̂−1

c ‖. Also, recall that

β̂c −βcHc
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= 1
kn

UcFcÂc

+ 1
pkn

UcU
′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c︸ ︷︷ ︸

�1c

. (C.18)

The first term ‖ 1
kn
UcFcÂc‖ ≤ ‖ 1

kn
UcFc‖OP (1) ≤ OP (

√
p/kn ) by Lemma A.2 (iv). The

second term∥∥∥∥ 1
pkn

UcU
′
cβ̂cQ̂

−1
c

∥∥∥∥ ≤ oP (1)
1

pkn

∥∥U ′
c

∥∥2‖β̂c‖ = OP

(√
p

kn
+ 1√

p

)
ζp,

using β̂c = OP (
√
p), Lemma A.2 (ii), the condition pkn�n = Op(1) and Lemma A.3. For

the third and fourth terms, we have∥∥∥∥ 1
pkn

UcR
′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c

∥∥∥∥ ≤OP (1)δ4,

by making again use of Lemma A.3. Together, because ζp = O(
√
kn ), ‖β̂c − βcHc‖ ≤

OP (
√

p
kn

+ ζp√
p + δ4 ).

Finally, to show ‖Hc‖ + ‖H−1
c ‖ = OP (1), we have proved 1√

p‖β̂c − βcHc‖ = oP (1).
Hence,

I = 1
p
β̂′
cβ̂c = 1

p
H ′

cβ
′
cβcHc + oP (1).

This then implies that all singular values of Hc are bounded away from zero and infinity.

Lemma C.3. Under both null and alternatives,

1
p
β′
d(β̂c −βcHc ) = OP

(
1
p

+ 1√
pkn

+ δ4

p
√
kn

+ δ4�
1/4
n√

pkn

+ �
1/4
n

kn
+ ζp�

1/4
n

p
√
kn

+
√
�n√
kn

+ δ5

)
,

and

1
p
β̂′
d(β̂c −βcHc ) =OP

(
1
p

+ δ4

p
√
kn

+ δ4�
1/4
n√

pkn

+ ζp�
1/4
n

p
√
kn

+
√
�n√
kn

+ 1
kn

+ δ2
4

p
+ δ5

)
,

for c, d ∈ {a, b}, and where δ5 := 1
pkn

1
pβ

′
cUcR

′
cβ̂cQ̂

−1
c + 1

pkn
1
pβ

′
cRcY

′
cβ̂cQ̂

−1
c , and δ4 is de-

fined in (C.17).

Proof. Recall that, for Rc being the matrix of discretization error in the factor model,

1
p
β′
d(β̂c −βcHc ) = 1

knp
β′
dUcFcÂc + 1

pkn

1
p
β′
dUcU

′
cβ̂cQ̂

−1
c

+ 1
pkn

1
p
β′
dUcR

′
cβ̂cQ̂

−1
c + 1

pkn

1
p
β′
dRcY

′
cβ̂cQ̂

−1
c .
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It is easy to see for the first two terms on the right-hand side of the above equality that

1
knp

β′
dUcFcÂc ≤

∥∥∥∥ 1
knp

β′
dUcFc

∥∥∥∥‖Âc‖ ≤OP

(
1√
knp

+
√
�n√
kn

)
OP (1),

1
pkn

1
p
β′
dUcU

′
cβ̂cQ̂

−1
c ≤OP (1)

∥∥∥∥ 1

p2kn

β′
d

(
UcU

′
c −E

(
UcU

′
c|C

))∥∥∥∥‖β̂c −βcHc‖

+OP (1)

∥∥∥∥ 1

p2kn

β′
d

(
UcU

′
c −E

(
UcU

′
c|C

))
βc

∥∥∥∥+OP

(
p−1)

≤OP

((
1

p
√
kn

+ �
1/4
n√
pkn

)
‖β̂c −βcHc‖ +

√
�n√
kn

+p−1
)

≤OP

(
1
p

+ 1
kn

√
p

+ δ4

p
√
kn

+ δ4�
1/4
n√

pkn

+ �
1/4
n

kn
+ ζp�

1/4
n

p
√
kn

+
√
�n√
kn

)
,

because E(UcU
′
c|C ) is a diagonal matrix with bounded elements and by application of

Lemma A.2(vi), (v), and (vi) as well as Lemma C.2. Combining these bounds and using
the definition of δp, we get the first result of the lemma.

For the second result of the lemma, we have

1
p
β̂′
d(β̂c −βcHc ) ≤ 1

p
β′
d(β̂c −βcHc ) + 1

p
‖β̂c −βcHc‖2.

From here, the result to be proved follows from the bound for the first result of the lemma
derived above plus application of Lemma C.2.

Lemma C.4. Suppose
√
p

kn
= O(ζ3

p ) and pkn�n =Op(1), as p, n→ ∞. Let

δ6 := 1
pkn

F
′
dU

′
dUcR

′
cβ̂cQ̂

−1
c + 1

pkn
F

′
dU

′
dRcY

′
cβ̂cQ̂

−1
c

and �1c := 1
pkn

UcU
′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c .

Under both null and alternatives, for c, d ∈ {a, b},

F
′
dU

′
d�1c =OP

(
1 +

√
kn

p
+ δ6

)
+OP

(
1 + p

kn

)
ζp +OP

(√
p

kn
+

√
kn

p

)
δ4ζp

+OP

(
1√
kn

+
√
kn

p

)
ζ2
p.

Proof. Recall that F
′
dU

′
d�1c = 1

pkn
F

′
dU

′
dUcU

′
cβ̂cQ̂

−1
c + 1

pkn
F

′
dU

′
dUcR

′
cβ̂cQ̂

−1
c + 1

pkn
×

F
′
dU

′
dRcY

′
cβ̂cQ̂

−1
c .

First, ( 1
pkn

F
′
dU

′
dUcU

′
cβc )2 = OP (1 + kn

p ), ‖UcFc‖ = OP (
√
knp), and ‖Uc‖ =

OP (
√

(kn +p)ζp ), by Lemma A.2 and because pkn�n = Op(1). Hence, by using Lem-
ma A.2, Lemma C.2, and the the expression (C.3) for β̂c −βcHc , we have

1
pkn

F
′
dU

′
dUcU

′
cβ̂c = 1

pkn
F

′
dU

′
dUcU

′
cβc + 1

pkn
F

′
dU

′
dUcU

′
c(β̂c −βcHc )
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≤ 1
pkn

F
′
dU

′
dUcU

′
cβc +OP (1)

1

pk2
n

‖FcUc‖2‖Uc‖2

+ 1
pkn

‖FcUc‖‖Uc‖2‖�1c‖

≤OP

(
1 +

√
kn

p

)
+OP

(
1 + p

kn

)
ζp +OP

(√
p

kn
+

√
kn

p

)
δ4ζp

+OP

(
1√
kn

+
√
kn

p

)
ζ2
p.

Lemma C.5. Let p → ∞, �n → 0, kn → ∞, and kn�n → 0. Under both null and alterna-
tives, we have for c = a, b,

δ2
4

p
= 1

p

∥∥∥∥ 1
pkn

UcR
′
cβ̂c + 1

pkn
RcY

′
cβ̂c

∥∥∥∥2

=OP

(
�2�̃
n

)
, (C.19)

‖δ6‖
pkn

=
∥∥∥∥ 1

p2k2
n

F
′
cU

′
cUcR

′
cβ̂cQ̂

−1
c + 1

p2k2
n

F
′
cU

′
cRcY

′
cβ̂cQ̂

−1
c

∥∥∥∥ =OP

(
��̃
n√
kn

)
, (C.20)

‖δ5‖2 =
∥∥∥∥ 1

p2kn

β′
cUcR

′
cβ̂cQ̂

−1
c + 1

p2kn

β′
cRcY

′
cβ̂cQ̂

−1
c

∥∥∥∥2

=OP

(
�2�̃
n

)
. (C.21)

Proof. First, we note that

‖β̂c‖2 = OP (p), and ‖βc‖2 =OP (p), (C.22)

from the assumption for βc and the fact that each column of β̂c/
√
p is an eigenvector

(and hence has a norm of 1). From here, all results follow by application of the Cauchy–
Schwarz inequality and Lemmas A.1 and A.2.

Lemma C.6. Suppose kn → ∞, pζ8
p = o(k2

n ), k2
nζ

8
p = o(p3 ), and pkn�

2�̃
n → 0 as p, n →

∞. Then, under both the null and alternatives, kn
√
p�5 = oP (1).

Proof. From the definition of �5 and since ‖βc‖2 + ‖β̂c‖2 = OP (p), it is easy to see that
to bound it, it suffices to derive bounds for the following terms:

1
p

‖�1c‖2,

∥∥∥∥ 1
p
β̂′
c(β̂d −βdHd )

∥∥∥∥2

,

∥∥∥∥ 1
pkn

F
′
cU

′
cβd

∥∥∥∥2

,∥∥∥∥ 1
knp

F
′
cU

′
c�1d

∥∥∥∥, c, d ∈ {a, b},

provided ‖Hc‖+‖H−1
c ‖ =OP (1). These terms are bounded in Lemmas A.2, C.2, C.3, C.4,

and ‖Hc‖ + ‖H−1
c ‖ =OP (1) is shown Lemma C.2.

Applying these lemmas, for c, d ∈ {a, b}, we get

�5 ≤OP

(∥∥∥∥ 1
pkn

F
′
cU

′
cβd

∥∥∥∥2

+
∥∥∥∥ 1
knp

F
′
cU

′
c�1d

∥∥∥∥+ 1
p

‖�1,c‖2 +
∥∥∥∥ 1
p
β̂′
c(β̂d −βdHd )

∥∥∥∥2)
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≤OP

(
1

k2
n

+ 1

p2 + δ2
4

p
+ δ6

knp
+ δ2

5 + δ4
4

p2

)
+OP

(
1

knp
+ 1

k2
n

)
ζp +OP

(
1

k
3/2
n p

+ 1

p2

)
ζ2
p

+OP

(
1

p1/2k
3/2
n

+ 1

k
1/2
n p3/2

)
δ4ζp +OP

(
�n

kn

)
,

where δ4, δ5, δ6 are defined in the statements of Lemmas C.2, C.3, C.4 repeated here:

δ4 :=
∥∥∥∥ 1
pkn

UcR
′
cβ̂c + 1

pkn
RcY

′
cβ̂c

∥∥∥∥,

δ5 := 1
pkn

1
p
β′
cUcR

′
cβ̂cQ̂

−1
c + 1

pkn

1
p
β′
cRcY

′
cβ̂cQ̂

−1
c ,

δ6 := 1
pkn

F
′
cU

′
cUcR

′
cβ̂cQ̂

−1
c + 1

pkn
F

′
cU

′
cRcY

′
cβ̂cQ̂

−1
c .

(C.23)

Hence, to show
√
pkn�5 = oP (1), it suffices to have ζp = o(

√
p), pζ2

p = o(k2
n ), k2

nζ
4
p =

o(p3 ) and pkn�n = OP (1) (implied by the requirements of the lemma), and in addition

show that
√
pkn( 1

p1/2k
3/2
n

+ 1
k

1/2
n p3/2

)δ4ζp = o(1) and
√
pkn(

δ2
4
p + δ4

4
p2 + δ6

knp
+ δ2

5 ) = oP (1).

The last results follow by application of Lemma C.5 and the conditions kn → ∞, kn�n →
0 and pkn�

2�̃
n → 0.

Lemma C.7. Under both the null and alternatives, and under the same condition as in
Lemma C.6, kn

√
p�5,mix = oP (1). Also, 1√

p‖β̂mix,k −βabHmix,k‖ = oP (1), for k = o, e.

Proof. The proof is the same as that of Lemma C.6, as the higher-order terms of �5,mix

and �5 are of the same type. In addition, exactly as the proof of Lemma C.2, we have

1√
p

‖β̂mix,k −βabHmix,k‖ ≤ 1√
p
OP

(√
p

kn
+ ζp√

p
+ δ4

)
= oP (1), k= o, e.

C.3.2 Higher-order terms II: Bias estimation Recall the definitions: B̂c = 2
kn

tr(Q̂−1
c ) ×

̂E(σ2
c,1|C ) and Bc = 2

k2
n

∑kn
t=1 tr Â′

cf̄c,t f̄
′
c,tÂcE(σ2

c,1|C ). Here, B̂c is an estimate of Bc , where

we estimate E(σ2
c,1|C ) by

̂E
(
σ2
c,1|C

)
:= 1

pkn
‖Ûc‖2

F (1 +Kc/kn ) + 1

p2 tr
(
β̂′
cD̂cβ̂c

)
,

with D̂c = diag{σ̂2
c,1, 	 	 	 , σ̂2

c,p} being the p × p diagonal matrix of estimates of the id-
iosyncratic variances, and Kc is the number of factors in period c ∈ {a, b}.

The goal of this section is to show that
√
pkn(B̂c − Bc ) = oP (1), and

√
pkn(B̂mix,k −

Bmix,k ) = oP (1). This is established in Lemma C.10 below, which uses the auxiliary re-
sults in Lemmas C.8 and C.9. Before giving these results, we provide the rationale behind
̂E(σ2

c,1|C ). A naive estimator of E(σ2
c,1|C ) is 1

pkn
‖Ûc‖2

F , which however underestimates the

volatility because of a higher-order bias in 1
pkn

‖Ûc‖2
F for estimating 1

pkn
‖Uc‖2

F . This bias
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can be derived and estimated as follows. We have

Uc − Ûc = (β̂c −βcHc )F̂ ′
c +βcHc

1
p
β̂′
c(βcHc − β̂c )H−1

c F
′
c +βcHc

1
p
β̂′
cUc +βcHc

1
p
β̂′
cRc

= g1 + · · · + g6,

g1 = 1
kn

UcFcÂcF̂
′
c ,

g2 = βcHc
1
p
β̂′
cUc ,

g3 = 1
pkn

UcU
′
cβ̂cQ̂

−1
c F̂ ′

c ,

g4 = − 1

p2kn

βcHcβ̂
′
cUcU

′
cβ̂cQ̂

−1
c H−1

c F
′
c ,

g5 = − 1
pkn

βcHcβ̂
′
cUcFcÂcH

−1
c F

′
c ,

g6 = Rem3,

(C.24)

where Rem3 means remaining terms that depend on Rc . Hence,

‖Ûc‖2
F − ‖Uc‖2

F =
6∑

d=1

‖gd‖2
F +

∑
d1,d2=1, 			,6:d1 	=d2

tr
(
g′
d1
gd2

)−
6∑

d=1

2 tr
(
U

′
cgd

)
.

Here, ‖g1‖2
F + ‖g2‖2

F − 2 tr(U
′
cg1 ) − 2 tr(U

′
cg2 ) is the leading term. To estimate its com-

ponents, note that FcÂc can be estimated by F̂cQ̂
−1
c and note the identity 1

kn
F̂ ′
cF̂c = Q̂c .

Hence, 1
knp

[‖g1‖2
F + ‖g2‖2

F − 2 tr(U
′
cg1 ) − 2 tr(U

′
cg2 )] can be estimated by

δc := −Kc

kn

1
pkn

‖Ûc‖2
F − 1

p2 tr
(
β̂′
cD̂cβ̂c

)
.

Therefore, we can correct the bias of ‖Ûc‖2
F by

̂E
(
σ2
c,1|C

)
:= 1

pkn
‖Ûc‖2

F − δc = 1
pkn

‖Ûc‖2
F (1 +Kc/kn ) + 1

p2 tr
(
β̂′
cD̂cβ̂c

)
. (C.25)

Lemma C.8. Let p → ∞, �n → 0, kn → ∞, and kn�n → 0. Under both null and alterna-
tives, we have for c = a, b,

√
p

k2
np

2

∥∥β̂′
cRcU

′
cUcFc

∥∥+
√
p

knp
2

∥∥β̂′
cRcU

′
cβc

∥∥ = OP

(
��̃
n

)
, (C.26)

√
p

knp
2

∥∥R′
cβ̂c

∥∥2 = OP

(√
p�2�̃

n

)
, (C.27)

√
p

pkn
F

′
cR

′
cβ̂c = OP

(√
p��̃

n

)
,

√
p

k2
np

3

∥∥β̂′
cUcU

′
cUcR

′
cβ̂c

∥∥ = oP (1), (C.28)
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√
p

k2
np

3

∥∥β̂′
cUcU

′
cRcY

′
cβ̂c

∥∥ =OP

((
1 +

√
p

kn

)
��̃
n

)
, (C.29)

√
p

knp
2

∥∥∥∥β̂′
cRcU

′
c

(
1

pkn
UcU

′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cV

−1
c

)∥∥∥∥
= oP (1). (C.30)

Proof. The proof of all results of the lemma follows by application of the Cauchy–
Schwarz inequality and the bounds derived in the proof of Lemma A.1.

Lemma C.9. Suppose ζ2
pp = o(k3

n ), ζn = o(p3/4 ), ζn = o(
√
knp), and p�2�̃

n → 0 and

pkn�n =Op(1). Then
√
p

p2kn
β̂′
cUcU

′
cβ̂c = oP (1).

Proof. We have
√
p

p2kn
β̂′
cUcU

′
cβ̂c ≤ v1 + v2 + v3 where

v1 =
√
p

p2kn
(β̂c −βcHc )′UcU

′
cβ̂c +

√
p

p2kn

H ′
cβ

′
cUcU

′
c(β̂c −βcHc ),

v2 =
√
p

p2kn

H ′
cβ

′
c

(
UcU

′
c −EUcU

′
c|C

)
βcHc ,

v3 =
√
p

p2kn

H ′
cβ

′
cE

(
UcU

′
c|C

)
βcHc .

For v1, we apply Lemma C.2 and Cauchy–Schwarz,

v1 ≤OP

(
1

pkn

)
‖Uc‖2‖β̂c −βcHc‖ ≤OP

(
p+ kn

pkn

)
ζp

(√
p

kn
+ ζp√

p
+ δ4

)
= oP (1).

For v2, we apply Lemma A.2(vi) ‖ 1
p2kn

β′
d(UcU

′
c −E(UcU

′
c|C ))βc‖ = OP ( 1

p
√
kn

+
√
�n√
kn

). So,

v2 = oP (1). Finally, v3 =OP (p−1/2 ).

Lemma C.10. Suppose kn → ∞, pζ8
p = o(k2

n ), k2
nζ

8
p = o(p3 ), p�2�̃

n → 0, and pkn�n =
Op(1), as p, n → ∞. Under both null and alternatives,

√
pkn‖B̂c − Bc‖ = oP (1), for c ∈

{a, b}. Also,
√
pkn(B̂mix,k −Bmix,k ) = oP (1) for k ∈ {o, e}.

Proof. Define

B̃c = 2

k2
n

kn∑
t=1

tr Q̂−1
c f̂c,t f̂

′
c,t Q̂

−1
c

1
pkn

p∑
i=1

kn∑
s=1

ε̂2
c,si =

2

k3
np

tr
(
Q̂−1

c F̂ ′
cF̂cQ̂

−1
c

)‖Ûc‖2
F .

We first show
√
pkn‖B̃c −Bc‖ = oP (1), and then show

√
pkn‖B̂c − B̃c‖ = oP (1).

First, because ε2
c,ti are C-conditionally cross-sectionally independent and given As-

sumptions SA1 and A2, we have

√
p

kn

kn∑
t=1

f̄c,t f̄
′
c,t

1
knp

kn∑
s=1

p∑
i=1

(
E
(
σ2
c,1|C

)− ε2
c,si

) = oP (1).
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For
√
pkn‖B̃c − Bc‖ = oP (1), it remains to show

√
p

k2
np

(ÂcF
′
cFcÂ

′
c )‖Uc‖2

F −
√
p

k2
np

×
(Q̂−1

c F̂ ′
cF̂cQ̂

−1
c )‖Ûc‖2

F = oP (1).
The left-hand side is bounded by the sum of the following three terms:

a1 =
√
p

k2
np

∥∥FcÂc − F̂cQ̂
−1
c

∥∥2‖Uc‖2
F +

√
p

k2
np

∥∥F̂cQ̂
−1
c

∥∥2‖Uc − Ûc‖2
F ,

a2 = 2

∥∥∥∥ √
p

k2
np

(
Â′

cF
′
c − Q̂−1

c F̂ ′
c

)
FcÂc

∥∥∥∥‖Uc‖2
F ,

a3 =
√
p

k2
np

∥∥F̂cQ̂
−1
c

∥∥2
p∑
i=1

kn∑
t=1

(ε̂c,ti − εc,ti )εc,ti.

To proceed, note that F̂c = p−1Y
′
cβ̂c implies F̂cQ̂

−1
c − FcÂc = U

′
cβ̂cQ̂

−1
c /p +

R′
cβ̂cQ̂

−1
c /p. Also, recall the expansion in (C.24). Then, for a1, by using Lemma A.2,

Lemma A.3, and Lemma C.2, we have

1
pkn

‖Ûc −Uc‖2
F ≤OP (1)

1
p

‖β̂c −βcHc‖2 +OP (1)
1
kn

∥∥∥∥ 1
p
β̂′
cRc

∥∥∥∥2

F

+OP (1)
1

knp
2 ‖β̂c‖2‖Uc‖2

≤OP

(
ζ2
p

kn
+ ζ2

p

p
+ δ2

4

p

)
+OP (1)

1
kn

∥∥∥∥ 1
p
β̂′
cRc

∥∥∥∥2

F

, (C.31)

1
kn

∥∥F̂cQ̂
−1
c − FcÂc

∥∥2 ≤OP

(
ζ2
p

kn
+ ζ2

p

p

)
+OP (1)

1
kn

∥∥∥∥ 1
p
β̂′
cRc

∥∥∥∥2

F

. (C.32)

Therefore, with ζ2
p = o(

√
p∧ kn√

p ), which is implied by the conditions in the statement of

the lemma, we have a1 = oP (1).
For a2, we note 1

knp
‖Uc‖2

F = OP (1). Also, β̂c − βcHc = 1
kn
UcFcÂc + �1c . Lemma C.4

showed
√
p

knp
‖F ′

cU
′
c�1c‖ = oP (1) under the conditions of the current lemma. Also,

Lemma C.8 showed OP (
√
p

knp
)‖F ′

cR
′
cβ̂c‖ = oP (1) because

√
p��̃

n → 0. Then combined

with Lemma A.2, and under the condition that p = o(k2
n ),

a2 ≤ OP (
√
p)

∥∥∥∥ 1
kn

(
Â′

cF
′
c − Q̂−1

c F̂ ′
c

)
Fc

∥∥∥∥ ≤OP

( √
p

knp

)∥∥F ′
cU

′
cβ̂c

∥∥+OP

( √
p

knp

)∥∥F ′
cR

′
cβ̂c

∥∥
≤ OP

( √
p

knp

)∥∥F ′
cU

′
cβc

∥∥+OP

( √
p

k2
np

)∥∥F ′
cU

′
c

∥∥2 +
√
p

knp

∥∥F ′
cU

′
c�1c

∥∥+ oP (1) = oP (1).

Finally, for a3, we need
√
p

knp
tr[(Ûc −Uc )′Uc ] = oP (1), which is bounded using (C.24),

a3 ≤OP

( √
p

knp

)
tr
[
(Ûc −Uc )′Uc

]
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≤ oP (1)
√
p

k2
np

∥∥F ′
cU

′
cUcFc

∥∥+ oP (1)
√
p

knp

∥∥F ′
cU

′
c�1c

∥∥
+OP

(
1√
kn

)∥∥∥∥ 1
p
β̂′
c(βcHc − β̂c )

∥∥∥∥+ oP (1)
√
p

knp
2

∥∥β̂′
cUcU

′
cβ̂c

∥∥
+ oP (1)

√
p

knp

∥∥∥∥ 1
p
β̂′
cRcU

′
cβc

∥∥∥∥
+ oP (1)

√
p

knp
2

∥∥β̂′
cRcU

′
c(β̂c −βcHc )

∥∥
≤ oP (1) +OP (1)

√
p

k2
np

2

∥∥β̂′
cRcU

′
cUcFc

∥∥+OP (1)
√
p

knp
2

∥∥β̂′
cRcU

′
cβc

∥∥
+OP (1)

√
p

knp
2

∥∥β̂′
cRcU

′
c�1c

∥∥+OP (1)
√
p

k2
np

3

∥∥β̂′
cUcU

′
cUcR

′
cβ̂c

∥∥
+OP (1)

√
p

k2
np

3

∥∥β̂′
cUcU

′
cRcY

′
cβ̂c

∥∥.

Here, we used the Lemma C.9, showing
√
p

p2kn
β̂′
cUcU

′
cβ̂c ≤ oP (1), under the condi-

tions of the current lemma. Also, Lemma C.3 showed
1

p
√
kn

β̂′
c(β̂c −βcHc )

≤OP

(
1

p
√
kn

+ δ4

pkn
+ δ4�

1/4
n√

pkn
+ ζp�

1/4
n

pkn
+

√
�n

kn
+ 1

k
3/2
n

+ δ2
4

p
√
kn

+ δ5√
kn

)
= oP (1),

with the last result due to the conditions of the current lemma. The asymptotic negligi-
bility of a3 then follows by application of Lemma C.8 provided p�2�̃

n /kn → 0.
To show

√
pkn‖B̂c − B̃c‖ = oP (1), note that

B̃c = 2

k3
np

tr
(
Q̂−1

c F̂ ′
cF̂cQ̂

−1
c

)‖Ûc‖2
F ,

B̂c = 2

k2
n

tr
(
Q̂−1

c F̂ ′
cF̂cQ̂

−1
c

) ̂E
(
σ2
c,1|C

)
, c ∈ {a, b}.

From Lemma A.3, ‖Q̂−1
c ‖ = OP (1) and together with the identity 1

kn
F̂ ′
cF̂c = Q̂c , we have

1
kn

tr(Q̂−1
c F̂ ′

cF̂cQ̂
−1
c ) = OP (1). Also, by (C.25), ̂E(σ2

c,1|C ) := 1
pkn

‖Ûc‖2
F − δc , where |δc| =

OP ( 1
kn

+ 1
p ). Hence, using (C.31), Lemma C.2 and Lemma C.8, we have

√
pkn‖B̂c − B̃c‖ = 2kn

√
p

k2
n

tr
(
Q̂−1

c F̂ ′
cF̂cQ̂

−1
c

)∣∣∣∣ 1
pkn

‖Ûc‖2
F − ̂E

(
σ2
c,1|C

)∣∣∣∣
≤ OP (

√
p)

∣∣∣∣ 1
pkn

‖Ûc‖2
F − ̂E

(
σ2
c,1|C

)∣∣∣∣ = OP (
√
pδc )

≤ OP (
√
p)OP

(
1
kn

+ 1
p

)
= oP (1).
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As for
√
pkn‖B̂mix,k −Bmix,k‖, note that

Bmix,k = 2

k2
n

tr Â′
mix,k

[
F ′
a,kFa,kE

(
σ2
a,1|C

)+H ′F ′
b,kFb,kHE

(
σ2
b,1|C

)]
Âmix,

B̂mix,k = 2

k2
n

tr Q̂−1
mix,kF̂

′
a,kF̂a,kQ̂

−1
mix,k

̂E
(
σ2
a,1|C

)+ 2

k2
n

tr Q̂−1
mix,kF̂

′
b,kF̂b,kQ̂

−1
mix,k

̂E
(
σ2
b,1|C

)
.

Also, Amix,k = 1
pβ

′
aβ̂mix,kQ̂

−1
mix,k and F̂c,k = p−1Y

′
c,kβ̂mix,k imply

F̂c,kQ̂
−1
mix,k − Fc,k

1
p
β′
cβ̂mix,kQ̂

−1
mix,k = 1

p
U

′
c,kβ̂mix,kQ̂

−1
mix,k + 1

p
R′
c,kβ̂mix,kQ̂

−1
mix,k,

where Fa,k
1
pβ

′
aβ̂mix,kQ̂

−1
mix,k = Fa,kÂmix,k and Fb,k

1
pβ

′
bβ̂mix,kQ̂

−1
mix,k = Fb,kH

′Âmix,k

when βb = βaH. From here, the proof of
√
pkn‖B̂mix,k − Bmix,k‖ follows from the same

arguments, so we omit it for brevity.

C.4 Asymptotic null distribution

Lemmas C.6, C.7, and C.10 show that kn
√
p�5 = oP (1), kn

√
p�5,mix = oP (1),

√
pkn(B̂c −

Bc ) = oP (1) and
√
pkn(B̂mix,k − Bmix,k ) = oP (1), for c ∈ {a, b} and k ∈ {o, e}. It then fol-

lows from (C.14) that

√
pkn‖Pβ̂a

− Pβ̂b
‖2
F − (B̂a + B̂b ) − √

pknÂmix

= √
pkn

[
μ̃a + μ̃b − μ̂ab − (μmix,o −Bmix,o ) − (μmix,e −Bmix,e ) −μmix,oe

]
+ oP (1), (C.33)

where we recall here the definitions of these terms:

μ̃c = 2

pk2
n

tr Â′
c

[
F

′
cU

′
cUcFc −

p∑
i=1

E
(
σ2
c,1|C

)
F

′
cFc

]
Âc , c ∈ {a, b},

μ̂ab = 2

pk2
n

tr Â′
aF

′
aU

′
aUbFbÂbĜ,

μmix,k = 2

pk2
n

tr Â′
mix,k

[
F

′
mix,kU

′
mix,kUmix,kFmix,k

]
Âmix,k,

μmix,oe = 2

pk2
n

tr Â′
mix,oF

′
mix,oU

′
mix,oUmix,eFmix,eÂmix,eĜmix,

Bmix,k = 2

k2
n

tr Â′
mix,k

[
F ′
a,kFa,kE

(
σ2
a,1|C

)+H ′F ′
b,kFb,kHE

(
σ2
b,1|C

)]
Âmix.

We now derive the asymptotic distribution of the leading term. Using the notation
in (C.41),

√
pkn

[
μ̃a + μ̃b − μ̂ab − (μmix,o −Bmix,o ) − (μmix,e −Bmix,e ) −μmix,oe

]
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= 2Ẑa(Âa ) + 2Ẑa(Âa ) − 2Ẑab(Âa, ÂbĜ) − 2Ẑmix,o(Âmix,o, HÂmix,o )

− 2Ẑmix,e(Âmix,e, HÂmix,e )

+ 2Ẑmix(Âmix,o, HÂmix,o, Âmix,eĜmix, HÂmix,eĜmix ). (C.34)

Also, recall that the left-hand side is
√
pkn‖Pβ̂a

−Pβ̂b
‖2
F − (B̂a + B̂b )−√

pknÂmix +oP (1).

Lemma C.11 below shows that Âc
P−→ Āc , Ĝ

P−→ Ḡ, Âmix,k
P−→ Āmix, and Ĝmix,k

P−→
2I, for some Āc , Ḡ, and Āmix. In particular, Āmix does not depend on k. Hence,
by Lemma C.12 below, (C.34) also holds up to oP (1) term if on the right-hand side
(Âc , Ĝ, Âmix,k, Ĝmix ) is replaced by (Āc , Ḡ, Āmix, 2I ). That is,

√
pkn‖Pβ̂a

− Pβ̂b
‖2
F − (B̂a + B̂b ) − √

pknÂmix

= 2Ẑa(Āa ) + 2Ẑa(Āa ) − 2Ẑab(Āa, ĀbḠ) − 2Ẑmix,o(Āmix, HĀmix )

− 2Ẑmix,e(Āmix, HĀmix ) + 2Ẑmix(Āmix, HĀmix, 2Āmix, 2HAmix ) + oP (1)

= 1√
p

p∑
i=1

zi,n + oP (1), (C.35)

for some zi,n. Lemma C.12 below implies

1√
p

p∑
i=1

zi,n
L|F−−→ √

VZ, (C.36)

where Z is a standard normal random variable defined on an extension of the original
probability space and independent of F and V is some C-adapted strictly positive ran-
dom variable.

C.4.1 An auxiliary probability bound We restate here some notation that will be used
in showing the next lemma. We define

Âc = 1
p
β′
cβ̂cQ̂

−1
c ,

Ĝ = 1
p
β̂′
bβ̂a +H−1

b

(
1
p
β′
bβb

)−1

β′
bβa

(
β′
aβa

)−1
H ′−1

a ,

Âmix,k = 1
p
β′
aβ̂mix,kQ̂

−1
mix,k,

Ĝmix = 2
p
β̂′

mix,oβ̂mix,e,

Jn := 1
p
β′
cβ̂c = ÂcQ̂c ,

�f ,c := 
′
c
c ,

Dn = K ×K diagonal matrix of the diagonal elements of J′
n


′
c
cJn,
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Q̂c = K ×K diagonal matrix of top K eigenvalues of YcY
′
c/(pkn ),

Q̄c = K ×K diagonal matrix of top K eigenvalues of
1
p
βc


′
c
cβ

′
c ,

Q̄∗
c = K ×K diagonal matrix of top K eigenvalues of �1/2

f ,c �β,c�
1/2
f ,c ,

Q̄mix = K ×K diagonal matrix of top K eigenvalues of

�
1/2
β,a(0.5�f ,a + 0.5H�f ,bH

′ )�1/2
β,a.

Lemma C.11. Under the null hypothesis, provided ζp/p → 0 and pkn�n = Op(1) as
p, n → ∞, we have

(1) ‖Âc − Āc‖+‖Ĝ− Ḡ‖+‖ 2
pβ̂

′
bβ̂a − Ḡ‖ =OP (T̂n + 1√

kn
+ 1√

p + ζp
p ) = oP (1), for some

(Āc , Ḡ) adapted to C, where

T̂n =
∥∥∥∥ 1
p
βc�f ,cβ

′
c − 1

pkn
YcY

′
c

∥∥∥∥
≤ OP

(
1√
kn

+
√
kn

n
+ 1√

p

∥∥∥∥ 1
kn

RcFc

∥∥∥∥+ 1
pkn

∥∥UcY
′
c

∥∥+ 1
pkn

∥∥RcY
′
c

∥∥).

(2) Âmix,k
P−→ Āmix and Ĝmix,k

P−→ 2I, for an Āmix adapted to C.

Proof. (1) Note that the top K eigenvalues of 1
pβc


′
c
cβ

′
c are also those of �1/2

f ,c
1
pβ

′
cβc ×

�
1/2
f ,c . Also from Assumptions SA1 and A2, we have ‖ 1

pβ
′
cβc − �β,c‖ = OP (p−1/2 ). Hence,

as the proof of Lemma A.3, we have∥∥Q̂c − Q̄∗
c

∥∥ ≤ ∥∥Q̄c − Q̄∗
c

∥∥+ ‖Q̂c − Q̄c‖ ≤ ‖�f ,c‖
∥∥∥∥ 1
p
β′
cβc −�β,c

∥∥∥∥+ T̂n ≤OP

(
T̂n +p−1/2).

Meanwhile, 1
kn
F

′
cFc = �f ,c +OP (k−1/2

n +√
kn/n). Hence,

Hc = 1
knp

F
′
cY

′
cβ̂cQ̂

−1
c = �f ,cÂc +OP

(
1√
kn

+
√
kn

n
+

∥∥∥∥ 1
knp

F
′
cR

′
cβ̂c

∥∥∥∥).

This implies that singular values of Âc are bounded away from zero and infinity.
We now show that the eigenvalues of J′

n�f ,cJn converge in probability. We have

J′
n�f ,cJn = 1

p2kn

β̂′
cY cY

′
cβ̂c + oP (T̂n ) = Q̂c +OP (T̂n ) = Q̄∗

c +OP

(
T̂n +p−1/2).

Then ‖Dn − Q̄∗
c‖ ≤ OP (T̂n + p−1/2 ). We now prove the convergence of Jn following the

same argument as in Bai (2003). First, singular values of Jn are bounded away from zero,
which follows from the fact that singular values of Âc and Q̂c are bounded away from
zero. From 1

pkn
Y cY

′
cβ̂c = β̂cQ̂c , left multiply 1

pβ
′
c ,[

1
p
β′
cβc�f ,c + J−1

n OP (T̂n )

]
Jn = JnQ̂c .
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Note that each column of �
1/2
f ,c JnD

−1/2
n is a unit vector (whose Euclidean norm is

one), so that they are also eigenvectors. Also, D−1
n and Q̂c are commutable because both

are diagonal. Thus, left multiply by �
1/2
f ,c and right multiply by D

−1/2
n ,

[
�

1/2
f ,c

1
p
β′
cβc�

1/2
f ,c + J−1

n OP (T̂n )

]
�

1/2
f ,c JnD

−1/2
n = �

1/2
f ,c JnQ̂cD

−1/2
n = �

1/2
f ,c JnD

−1/2
n Q̂c .

Then by the assumption that Q̄∗
c has distinct diagonal elements, the sin-theta theorem

implies ‖�1/2
f ,c JnD

−1/2
n −Mc‖ = OP (T̂n +p−1/2 ) where columns of Mc are the eigenvectors

of �1/2
f ,c �β,c�

1/2
f ,c . So, ‖Jn −�

−1/2
f ,c McQ̄

1/2
c ‖ = OP (T̂n ). Recall that Âc = JnQ̂

−1
c . Hence,

‖Âc − Āc‖ =OP

(
T̂n +p−1/2), Āc = �

−1/2
f ,c McQ̄

∗−1/2
c . (C.37)

Finally, we bound Ĝ. Lemma C.2 implies, for δ4 defined in (C.17),∥∥∥∥ 2
p
β̂′
bβ̂a − 2H ′

b�β,baHa

∥∥∥∥+
∥∥∥∥ 2
p
β̂′
bβ̂a − Ĝ

∥∥∥∥ = OP

(
1√
kn

+ ζp

p
+ δ4√

p
+ 1√

p

)
,

where �β,ba is the probability limit of 1
pβ

′
bβa. Meanwhile,

‖Hc −�f ,cĀc‖ = ‖�f ,cÂc −�f ,cĀc‖ + ‖Hc −�f ,cÂc‖

=OP

(
1√
kn

+
∥∥∥∥ 1
knp

F
′
cR

′
cβ̂c

∥∥∥∥+ T̂n + 1√
p

)
. (C.38)

This implies∥∥∥∥ 2
p
β̂′
bβ̂a − Ḡ

∥∥∥∥+ ‖Ḡ− Ĝ‖ =OP

(
1√
kn

+ 1√
p

+
∥∥∥∥ 1
knp

F
′
cR

′
cβ̂c

∥∥∥∥+ T̂n + ζp

p
+ δ4√

p

)
= oP (1),

where Ḡ = 2Ā′
b�f ,c�β,ba�f ,cĀa. The last result above follows by applying Lemma A.1

and Lemma A.2, and making use of ζp/p → 0, which is assumed in the statement of the
lemma.

(3) Recall that Q̂mix,k contains top eigenvalues of the sample covariance from
(Ya,k, Yb,k ), which are equal to the top K eigenvalues of 1

2pβa�f ,aβ
′
a + 1

2pβb�f ,bβ
′
b up to

oP (1). Under the null hypothesis, they also converge to the distinct eigenvalues of Q̄mix.

Thus, we have proved Q̂mix,k
P−→ Q̄mix. These eigenvalues are also bounded away from

zero and infinity so long as those of �f ,b, �β,a, and H do.
Under the null, 1

2pβa�f ,aβ
′
a + 1

2pβb�f ,bβ
′
b = βa�f ,mixβ

′
a where �f ,mix := 0.5�f ,a +

0.5H�f ,bH
′. Then the same argument for ‖Jn − �

−1/2
f ,c McQ̄

1/2
c ‖ = OP (T̂n ) in part (1) can

be repeated here to show∥∥∥∥ 1
p
β′
aβ̂mix,k −�

−1/2
f ,mixMmixQ̄

1/2
mix

∥∥∥∥ = oP (1), (C.39)
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where the columns of Mmix are the eigenvectors of �1/2
f ,mix�β,a�

1/2
f ,mix. Hence, under the

null,

Âmix,k = 1
p
β′
aβ̂mix,kQ̂

−1
mix,k

P−→ Āmix := �
−1/2
f ,mixMmixQ̄

−1/2
mix . (C.40)

To find the probability limit of Ĝmix,k, we recall Hc,mix,k = 1
pnkn

F
′
c,kY

′
c,kβ̂mix,kQ̂

−1
mix,k,

and Lk := (Ha,mix,k + HHb,mix,k ). Then Hc,mix,k = 0.5�f ,c
1
pn

β′
cβ̂mix,kQ̂

−1
mix,k + oP (1),

which with (C.39) imply

Ha,mix,k = 0.5�f ,a
1
pn

β′
aβ̂mix,kQ̂

−1
mix,k + oP (1)

P−→ 0.5�f ,aĀmix,

Hb,mix,k
P−→ 0.5�f ,bH

′Āmix.

This shows that Lk converges in probability to some L̄ that does not depend on k ∈
{o, e}. From (C.12),

oP (1) = 1√
p

‖β̂mix,k −βabHmix,k‖F = 1√
p

‖β̂mix,k −βaL̄‖F + oP (1).

Thus, Ĝmix,k = 2
pβ̂

′
mix,oβ̂mix,e = 2

pβ̂
′
mix,oβaL̄+ oP (1) = 2

pβ̂
′
mix,oβ̂mix,o + oP (1)

P−→ 2I.

C.4.2 An auxiliary CLT result Consider the following statistics for c = a, b, and k= o, e:

Ẑc(ζ1 ) = 1√
pkn

×
p∑
i=1

[(
kn∑
t=1

εc,tif
′
c,tζ1

)(
kn∑
t=1

ζ′
1εc,tif c,t

)
− tr

(
ζ′

1F
′
cFcζ1

)
E
(
σ2
ci|C

)]
,

Ẑab(ζ1, ζ2 ) = 1√
p

p∑
i=1

(
1√
kn

kn∑
t=1

εa,tif
′
a,tζ1

)(
1√
kn

kn∑
t=1

ζ′
2εb,tif b,t

)
,

Ẑmix,k(ζ1, ζ2 ) = 1√
p

×
p∑
i=1

[∥∥γ′
a,k,iζ1 + γ′

b,k,iζ2
∥∥2 − 1

kn

∑
c=a,b

tr
(
ζ′

1F
′
c,kFc,kζ1

)
E
(
σ2
c,1|C

)]
,

Ẑmix(ζ1, ζ2, ζ3, ζ4 ) = 1√
p

p∑
i=1

(
γ′
a,o,iζ1 + γ′

b,o,iζ2
)(
ζ′

3γa,e,i + ζ′
4γb,e,i

)
,

(C.41)

for some K ×K matrices ζ1, ζ2, ζ3, ζ4, and where

γa,k,i = 1√
kn

∑
t∈Tk

εa,tif a,t , γb,k,i = 1√
kn

∑
t∈Tk

εb,tif b,t , k= o, e,

with To = {1, 3, 	 	 	 , 2�(kn − 1)/2� + 1} and Te = {2, 4, 	 	 	 , 2�kn/2�}.
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We note that for two K ×K matrices A, B, we can write

tr
(
A′F ′

cU
′
cUcFcB

) =
p∑
i=1

[
kn∑
t=1

εc,tif
′
c,tB

kn∑
t=1

A′f c,tεc,ti

]
,

trA′[F ′
mix,kU

′
mix,kUmix,kFmix,k

]
A =

p∑
i=1

∥∥γ′
a,k,iA+ γ′

b,k,iHA
∥∥2

,

where the matrix H in the second line arises from the definition: Fmix,k =
(F

′
a,k, H ′F ′

b,k )′.
We stack together the above random variables into a vector. Let ζ = (ζ1, 	 	 	 , ζ12 ) for

{ζi}i=1, 			,12 being a set of K ×K matrices. We then set

Ẑ(ζ ) = (
Ẑb(ζ1 ), Ẑa(ζ2 ), Ẑab(ζ3, ζ4 ), Ẑmix,o(ζ5, ζ6 ), Ẑmix,e(ζ7, ζ8 ),

Ẑmix(ζ9, ζ10, ζ11, ζ12 )
)
. (C.42)

The next theorem states a CLT for Ẑ(ζ ).

Lemma C.12. Let {ζk}k=1, 			,12 be C-adapted K ×K matrices and set ζ = (ζ1, 	 	 	 , ζ12 ). We
have the following convergence as p → ∞, �n → 0, and kn → ∞ with kn�n → 0:

Ẑ(ζ )
L|C−−→ V (ζ )1/2Z, (C.43)

where Z is a standard normal random vector defined on an extension of the original prob-
ability space and independent of C, and V (ζ ) is some C-adapted positive semidefinite ma-
trix.

In addition, if ζ̂ − ζ = oP (1), we have

Ẑ(ζ̂ ) − Ẑ(ζ ) = oP (1). (C.44)

Proof. In the proof, we will denote with Cn a C-adapted random variable that can
change from line to line, depends on n and kn, and is OP (1). We can write

Ẑ(ζ ) =
p∑
i=1

zi(ζ ). (C.45)

We will apply Theorem VIII.5.25 in Jacod and Shiryaev (2003) to establish the conver-
gence in (C.43). It suffices to show the following three convergence results:

p∑
i=1

E
(
zi(ζ )|C

) P−→ 0, (C.46)

p∑
i=1

[
E
(
zi(ζ )z′

i(ζ )|C
)−E

(
zi(ζ )|C

)
E
(
z′
i(ζ )|C

)] P−→ V (ζ ), (C.47)

p∑
i=1

(E
(∣∣zi(ζ )

∣∣3|C
) P−→ 0. (C.48)
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Using Assumption SA1 and the fact that E(|εt,i|q + ‖f t‖qF ) < Cq, for any q > 1 and C-
adapted random variable that depends on q but not on t and i, we have∣∣∣∣∣

p∑
i=1

E
(
zi(ζ )|C

)∣∣∣∣∣ = OP

(√
p
kn

n

)
and

p∑
i=1

(E
(∣∣zi(ζ )

∣∣3) −→ 0. (C.49)

Therefore, to establish the convergence result of the theorem, we need to establish the
convergence of the second conditional moments above. We will show here the conver-
gence of the top three by three block of the matrix, with the rest of the convergence
results in (C.47) being established in an analogous way. Toward this end, we denote the
first three elements of zi(ζ ) with zb,i, za,i, and zab,i, and we further set

Vc(ζ ) = E
(
σ4
c,i|C

)∥∥
′
cζζ

′
c

∥∥2
F

,

Vab(ζ1, ζ2 ) = E
(
σ2
b,iσ

2
a,i|C

)
tr
(
ζ′

1
a

′
aζ1ζ

′
2
b


′
bζ2

)
.

(C.50)

With this notation, we will show
∑p

i=1 E(z2
b,i|C )

P−→ Vb(ζ1 ),
∑p

i=1 E(z2
a,i|C )

P−→ Va(ζ2 ) as

well as
∑p

i=1 E(z2
ab,i|C )

P−→ Vb(ζ3, ζ4 ). We start with the first of them. Using the fact that

E(εb,tif b,t|F(ibt −1)�n
∩ C ) = 0K×1 (for 0K×1 being K × 1 vector of zeros) and the integra-

bility conditions of Assumption SA1, we have∣∣∣∣∣E
([(

1√
kn

kn∑
t=1

εb,tif
′
b,tζ1

)(
1√
kn

kn∑
t=1

εb,tiζ
′
1f b,tζ2

)]2∣∣∣C)

−E

[(
1
kn

kn∑
t=1

ε2
b,tif

′
b,tζ1ζ

′
1f b,t

)2∣∣∣C]

− 2

k2
n

kn∑
t=1

kn∑
s=1

E
(
ε2
b,tiε

2
b,si

(
f

′
b,tζ1ζ

′
1f b,s

)2
|C
)∣∣∣∣∣ ≤ Cn√

kn

. (C.51)

In addition, using the smoothness conditions for the processes 
 and σi, we have∣∣∣∣∣ 1

k2
n
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and by CLT for i.i.d. random variables,

1
kn

kn∑
t=1

[
�n
ibt
W �n

ibt
W ′]

�2
n

= IK + Cn√
kn

. (C.53)
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Further, we have

E
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, (C.54)

for some C-adapted random variable that does not depend on i. From here, we have∑p
i=1 E(z2

b,i|C )
P−→ Vb(ζ1 ) and similarly

∑p
i=1 E(z2

a,i|C )
P−→ Va(ζ2 ). Next, following similar

steps as above, we get
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Using the law of iterated expectations, we can write

E
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where we denote F̃ (i)
t = C ∨ σ(W̃s,i : s ≤ t ) and σ2

ba,i,t = E(σ2
b,iσ

2
a,i|F̃

(i)
t ) for t ≤ b. Using

a martingale representation theorem (Theorem II.4.33 of Jacod and Shiryaev (2003)),
we have σ2

ba,i,t = E(σ2
b,iσ

2
a,i|F̃

(i)
0 ) + ∫ t

0 σ̃s,i dW̃s,i, for some σ̃s,i adapted to F̃ (i)
s and with

E(
∫ b

0 σ̃2
s,i ds|C ) < ∞ almost surely. From here, by applying a law of iterated expectations,

we get
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As a result, we have
∑p

i=1 E(z2
ab,i|C )

P−→ Vab(ζ3, ζ4 ). Next, we have

E
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∣∣C ∪Fb

)

= E

( ∑
s,t:s≥t

ε2
a,sif a,sζ1ζ

′
1f a,sεa,tif a,tζ1

∣∣C ∪Fb

)

+E

( ∑
s,t:s>t

εa,sif a,sζ1ζ
′
1ε

2
a,tif a,tf a,tζ1
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)
, (C.58)

and from here, by using the integrability conditions of Assumption SA1 and apply-

ing the Cauchy–Schwarz inequality, we have
∑p

i=1 E(za,izab,i|C )
P−→ 0. In a similar way,∑p

i=1 E(zb,izab,i|C )
P−→ 0. The convergence result in (C.47) for the rest of the elements of
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the matrix
∑p

i=1[E(zi(ζ )z′
i(ζ )|C ) −E(zi(ζ )|C )E(z′

i(ζ )|C )] follows the same steps as above.
From here, the CLT result in (C.43) follows.

We are left with showing (C.44). Note that we can write
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By applying the CLT result in (C.43) for ζ1 being a matrix with 1 at the (k, k) element and
zeros elsewhere, for k= 1, 	 	 	 , K, we see that

1√
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and similarly
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)(
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kn

kn∑
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= OP (1). (C.61)

From here, if ζ̂i − ζi = oP (1), for i = 1, 	 	 	 , 4, we have the asymptotic negligibility result
in (C.44) for the first four elements of the vector. Similar analysis can be done for the rest
as well.

C.5 Bootstrap limit result

The statistic in the cross-sectional bootstrap is given by

S∗ := kn
√
p
[‖Pβ̂∗

a
− Pβ̂∗

b
‖2
F − (

B̂∗
a + B̂∗

b

)− ‖Pβ̂∗
o
− Pβ̂∗

e
‖2
F + (

B̂∗
mix,o + B̂∗

mix,e

)]
.

The following lemma establishes the CLT result that needs to be proved.

Lemma C.13. Suppose Conditions (31)–(32) in Theorem 4.1 hold. Under the null,

S∗ − S
L|F−−→ √

VZ,

where V is defined in (C.36) and Z is a standard normal random variable defined on an
extension of F and independent from it.

Proof. The asymptotic expansion of the bootstrap statistics is very similar to the ex-
pansion of the original one. We omit the details in order to avoid repeating the same
arguments. As a result, we have

kn
√
pS∗ = 1√

p

p∑
i=1

z∗
i,n + oP (1), (C.62)
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where z∗
i,n is drawn at random with replacement from {zi,n : i ≤ p} in (C.35). With the

notation z̄n := 1
p

∑p
i=1 zi,n, we have

S∗ − S = √
p

(
1
p

p∑
i=1

z∗
i,n − z̄n

)
+ oP (1). (C.63)

We note that

E
(
z∗
i,n|F

) = z̄n and Var
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= 1

p
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n = V + oP (1). (C.64)

Indeed, let Wp be a p-dim multinomial random vector that extracts p outcomes
from zi,n with replacement, each with probability 1/p. Let zn = (z1,n 	 	 	 zp,n ). Then
Var( 1√

p

∑
i z

∗
i,n|F ) = 1

p Var(z′
nWp ) = 1

pz
′
nCov(Wp )zn. From here, the second result in

(C.64) follows because Cov(Wp ) = I − 1
p1p1′

p.
In addition, suppose V > 0 is bounded away from zero, a claim we show at the end

of the proof. Then

a1 := Var
(
z∗
i,n|F

)1/2

√
V

P−→ 1,

a2 := Var
(
z∗
i,n|F

)−1/2(S∗ − S
) L|F−−→ N (0, 1),

S∗ − S = √
Va1a2

L|F−−→ √
VZ,

(C.65)

and the result to be proved follows.
We are left thus with showing that the limiting variance V is strictly positive almost

surely. We can decompose zi,n in (C.36) into z(1)
i,n and z(2)

i,n , corresponding to the part due
to ‖Pβ̂a

− Pβ̂b
‖2
F and ‖Pβ̂o

− Pβ̂e
‖2
F , respectively. From the above CLT result, we have

1
p

p∑
i=1

⎛⎝z(1)
i,n

z(2)
i,2

⎞⎠ L|C−−→
(
Z(1)

Z(2)

)
, (C.66)

where (Z(1), Z(2) ) is C-conditionally zero-mean bivariate normal vector. With this no-
tation, we have V = Var(Z(1)|C ) + Var(Z(2)|C ) − 2 Cov(Z(1), Z(2)|C ). Since Var(Z(1)|C ) +
Var(Z(2)|C ) > 0 a.s. (because of our assumption for nonvanishing idiosyncratic volatil-
ity in A2(i)), to establish V > 0 a.s., we need to show that Z(1) and Z(2) are not C-
conditionally perfectly positively correlated, that is, that there is no C-adapted random
variable φ such that Z(2) = φZ(1).

To show this, we can look at terms in z(1)
i,n and z(2)

i,n of the type εb,tiεb,si(f
′
b,tζ

′
1ζ2f b,s ).

These summands are uncorrelated with the rest of the summands in z(1)
i,n and z(2)

i,n and

generate positive variance in Z(1) and Z(2). However, they generate dependence in Z(1)

and Z(2) of the opposite sign depending on whether both s and t correspond to odd or
even increments or whether one of them correspond to odd increment and the other one
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to even increment. To see this note that, these summands appear in Ẑb(Ab ) and in: (1)
Ẑmix,o(Amix, HAmix ) if s, t both correspond to odd increments, (2) Ẑmix,e(Amix, HAmix )
if s, t both correspond to even increments, and (3) Ẑmix,e(Amix, HAmix, 2Amix, 2HAmix )
is one of s, t corresponds to odd increment and the other one to an even one. Therefore,
we cannot have Z(2) = φZ(1) for C-adapted random variable φ. This proves that V > 0
a.s.

C.6 Asymptotic test size

Proof. Expressions (C.35), (C.36) (C.63), and Lemma C.13 show the convergences of S
and S∗ − S under the null. More specifically, these results imply

S = Xn + yn, Xn := 1√
p

p∑
i=1

zi,n, yn = oP (1),

S∗ − S = X∗
n + y∗

n , Xn := 1√
p

p∑
i=1

(zi,n − z̄n ), y∗
n = oP (1),

√
V−1

Xn
L−→ Z,

√
V−1

X∗
n

L−→ Z∗,

and Z and Z∗ being standard normal random variables. Let q∗ be the τth upper quantile
of S∗ − S so that P(S∗ − S > q∗ ) = τ. Since V is strictly positive almost surely, we have

P(S∗ − S > q∗ ) = P(S̃∗ − S̃ > q̃∗ ), where S̃ = √
V−1S , S̃∗ = √

V−1S∗, and q̃∗ = √
V−1

q∗.
Therefore, we need to show P(S > q∗ ) = P(S̃ > q̃∗ ) → τ.

To this end, first note that S̃∗ − S̃ L−→ Z∗ implies q̃∗ P−→ q̃, for q̃ being the τth upper
quantile of Z by, for example, Lemma 21.2 of Van der Vaart (2000). For any δ > 0,

P(S̃ > q̃+ δ) ≤ P
(
S̃ > q̃+ δ,

∣∣̃q∗ − q̃
∣∣< δ

)+ P
(∣∣̃q∗ − q̃

∣∣> δ
) ≤ P

(
S̃ > q̃∗)+ o(1),

P
(
S̃ > q̃∗) ≤ P

(
S̃ > q̃∗,

∣∣̃q∗ − q̃
∣∣< δ

)+ o(1) ≤ P(S̃ > q̃− δ) + o(1).

Therefore, P(S̃ > q̃+ δ) + o(1) ≤ P(S̃ > q̃∗ ) ≤ P(S̃ > q̃− δ) + o(1), which implies∣∣P(S̃ > q̃∗)− τ
∣∣ ≤ ∣∣P(S̃ > q̃+ δ) − τ

∣∣+ ∣∣P(S̃ > q̃− δ) − τ
∣∣+ o(1)

≤ ∣∣P(S̃ > q̃+ δ) − P(Z > q̃+ δ)
∣∣+ ∣∣P(S̃ > q̃− δ) − P(Z > q̃− δ)

∣∣
+ ∣∣P(Z > q̃+ δ) − P(Z > q̃)

∣∣+ ∣∣P(Z > q̃− δ) − P(Z > q̃)
∣∣+ o(1)

≤ o(1) +Cδ,

for some C > 0 that depends on the density of Z. Because δ > 0 is arbitrarily small, P(S >

q∗ ) = P(S̃ > q̃∗ ) → τ.
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Appendix D: Proof of Theorem 4.2

We remind the reader of following notation, which is going to be used in this section:

βc = the true beta, c ∈ {a, b},

β(k)
c = see (4), c ∈ {a, b}, k= 1, 	 	 	 , 4,

βr
c = see (5), c ∈ {a, b},

βab = (βa, βb ),

βmix = unique columns of βab.

Recall that q∗ = q∗
τ{S∗ − S } is the bootstrap quantile so that P(S∗ − S > q∗ ) = τ, for

some significance level τ > 0. We reject the null if S > q∗. Let

A := ‖Pβ̂a
− Pβ̂b

‖2
F − (B̂a + B̂b ) − ‖Pβ̂mix,o

− Pβ̂e
‖2
F − (B̂mix,o + B̂mix,e ).

Also, let A∗ be its bootstrap version. Let g∗ be the bootstrap quantile so that P(A∗ −A>

g∗ ) = τ. Then S = √
pknA and S∗ = √

pknA∗ and q∗ = √
pkng

∗. The key to the proof is
to show that under the alternative, A is bounded away from zero and A∗ −A = oP (1).

Specifically, from Proposition D.1 below, P(A > c0 ) → 1 for some constant c0 > 0.
Also, Lemma D.3 below shows P(g∗ > c0 ) → 0. Combining these two results, we get

P
(
S < q∗) = P

(
A< g∗) ≤ P

(
A< g∗, g∗ ≤ c0

)+ P
(
g∗ > c0

) ≤ P(A< c0 ) + o(1) = o(1).

Hence, P(S > q∗ ) → 1 under the two alternatives considered in the theorem.

D.1 The behavior of S under the alternative

We show in this section that P(A > c0 ) → 1, for some constant c0 > 0. We start with an
auxiliary result concerning the true factor loadings.

Lemma D.1. Suppose either alternative hypothesis (i) or (ii) of Theorem 4.2 holds:
Alternative (i): there is an invertible matrix H so that βa = (β(1)

b H, 0p×K3 ), and βb =
(β(1)

b , β(3)
b ). Then there is m> 0 so that

‖P
β(1)
b

− Pβb
‖2
F >m.

Alternative (ii): Ka = Kb, and there are c, C > 0 so that ‖βb‖ ≤ Cp1/2 and

min
H∈RKa×Ka

1√
p

‖βaH −βb‖F > c.

Then there is m> 0 so that

‖Pβa − Pβb
‖2
F >m.
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Proof. (i) We will show that ‖P
β(1)
b

− Pβb
‖2
F =Kb −Ka.

Write g = β(3)
b and βb = (β(1)

b , g). In addition, let A = β(1)′
b β(1)

b , and B = β(1)′
b g,

T = g′g − B′A−1B. Because both A and β′
bβb are invertible, we have det(β′

bβb ) =
det(A) det(T ). Then det(T ) 	= 0, meaning that T is invertible. We then apply the matrix
block inversion formula:

(
β′
bβb

)−1 =
(
A−1 +A−1BT−1B′A−1 −A−1BT−1

−T−1B′A−1 T−1

)
.

Next, let Ma = I − P
β(1)
b

. Some algebra shows

Pβb
− P

β(1)
b

=MagT
−1g′Ma =LL′, L= MagT

−1/2.

Next, T = g′g − g′P
β(1)
b
g = g′Mag. So, L′L= T−1/2g′MagT

−1/2 = I. This implies

Pβb
− P

β(1)
b

=L
(
L′L

)−1
L′.

As such, ‖Pβb
− P

β(1)
b

‖2
F = tr(L(L′L)−1L′ ) =Kb −Ka.

(ii) Note that the result holds by taking m= c/C, because

c < min
H∈RKa×Ka

1√
p

‖βaH −βb‖F = 1√
p

‖Pβaβb −βb‖F = 1√
p

∥∥(Pβa − Pβb )βb

∥∥
F

≤ ‖Pβa − Pβb
‖F 1√

p
‖βb‖ ≤ C‖Pβa − Pβb

‖F .

Proposition D.1. Suppose Conditions (31)–(32) in Theorem 4.1 hold. Under either the
alternative (i) or the alternative (ii), P(A> c0 ) → 1 for some constant c0 > 0.

Proof. The expansion (C.5) holds for c ∈ {a, b} under either the null or the alternative
hypotheses. Let βr

c denote the nonzero unique columns of βc . Thus, under either alter-
native hypothesis, ‖Pβ̂c

− Pβr
c
‖F = oP (1). This implies

‖Pβ̂a
− Pβ̂b

‖F ≥ ‖Pβr
a
− Pβr

b
‖F −

∑
c∈{a,b}

‖Pβ̂c
− Pβr

c
‖F ≥ ‖Pβr

a
− Pβr

b
‖F − oP (1).

By Lemma D.1, under either alternative (i) or alternative (ii), ‖Pβr
a
− Pβr

b
‖F > c1 for

some constant c1 > 0. In addition, B̂a + B̂b = OP (k−1
n ) because of Lemma C.10 and since

Ba =OP (k−1
n ) and Bb = OP (k−1

n ). Hence, with probability approaching one,

‖Pβ̂a
− Pβ̂b

‖2
F − (B̂a + B̂b ) > c1/2. (D.1)

Next, we show that ‖Pβ̂mix,o
−Pβ̂mix,e

‖2
F − (B̂mix,o + B̂mix,e ) = oP (1) under the alterna-

tive, where β̂mix,k is the PCA estimates for beta from the data matrix Ymix,k. As above,
we have (B̂mix,o + B̂mix,e ) = oP (1), so we focus on proving ‖Pβ̂mix,o

− Pβ̂mix,e
‖2
F = oP (1).
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From (C.9), which holds also under the alternatives, the eigenvalues of 1
knp

Ymix,k ×
Y

′
mix,k converge to those of 1

pβa�f ,aβ
′
a + 1

pβb�f ,bβ
′
b.

We now show that: (1) Diagonal entries of Q̂mix,k are bounded away from zero;
(2) ‖ 1√

p (β̂mix,k −βabHmix,k )‖ = oP (1).

Alternative (i): βa = (β(1)
b H, 0p×K3 ), and βb = (β(1)

b , β(3)
b ), so K2 +K4 = 0. Here, H is

a K1 ×K1 invertible matrix. In this case, both βa and βb are p×Kb-dimensional where
Kb =K1 +K3.

Recall Sf ,c,k = 1
kn
F

′
c,kFc,k, which is Kb ×Kb-dimensional. Also, let Ssub

f ,a,k denote the
K1 ×K1 upper block submatrix of Sf ,a,k. Then

1
p
βaSf ,a,kβ

′
a + 1

p
βbSf ,b,kβ

′
b = 1

p
βbŜf ,kβ

′
b, Ŝf ,k := Sf ,b,k +

(
H−1Ssub

f ,a,kH
′−1 0

0 0

)
.

The top Kb eigenvalues are bounded from below by those of ( 1
pβ

′
bβb )1/2Ŝf ,k( 1

pβ
′
bβb )1/2,

which are bounded away from zero under the assumption that those of 1
pβ

′
bβb and Sf ,b,k

are bounded away from zero. Therefore, Q̂−1
mix,k =OP (1).

For (2), using Lemma C.7, we have ‖ 1√
p (β̂mix,k − βabHmix,k )‖ = oP (1). They imply

that the eigenvalues of H ′
mix,kβ

′
abβabHmix,k are bounded away from zero, so PβabHmix,k

exists. In addition, under this alternative, Kmix = Kb and βabHmix,k = βbH̄b, for some
square matrix H̄b. The fact ‖ 1√

p (β̂mix,k − βabHmix,k )‖ = oP (1) implies H̄b is invertible

with probability approaching one. Hence, PβabHmix,k = Pβb
. Thus,

‖Pβ̂mix,o
− Pβ̂mix,e

‖F ≤ ‖Pβ̂mix,o
− PβabHmix,o‖F + ‖Pβ̂mix,e

− PβabHmix,e‖F
+ ‖PβabHmix,o − PβabHmix,e‖F

≤ oP (1) + ‖PβabHmix,o − PβabHmix,e‖F = oP (1), (D.2)

where the second inequality follows from the expression in (C.11) that ‖Pβ̂mix,k
−

PβabHmix,k‖F = oP (1).

Alternative (ii). βa = β(2)
a , βb = β(2)

b , and Ka = Kb. Also, there is c > 0 so that with
probability approaching one,

min
H∈RK×K

1√
p

‖βaH −βb‖F > c.

Denote with βmix a p × Kmix matrix whose columns are the unique components of
the factor loadings over the two periods. For this matrix, the eigenvalues of 1

pβ
′
mixβmix

are bounded away from zero. Then 1
pβaSf ,a,kβ

′
a + 1

pβbSf ,b,kβ
′
b = 1

pβmixMβ′
mix for

some invertible matrix M whose eigenvalues are bounded away from zero. As a re-
sult, the top Kmix eigenvalues of 1

pβmixMβ′
mix are bounded from below by those of

( 1
pβ

′
mixβmix )1/2M( 1

pβ
′
mixβmix )1/2, which in turn are bounded away from zero. Therefore,

Q̂−1
min,k =OP (1).
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In addition, there is a Kmix × Kmix matrix H̄ so that βabHmix,k = βaHa,mix,k +
βbHb,mix,k = βmixH̄. Applying Lemma C.7, we have ‖ 1√

p (β̂mix,k − βmixH̄ )‖ = ‖ 1√
p ×

(β̂mix,k−βabHmix,k )‖ = oP (1). This implies I = 1
pβ̂

′
mix,kβ̂mix,k = H̄ ′ 1

pβ
′
mixβmixH̄+oP (1).

Hence, H̄ is invertible and, therefore,

PβabHmix,k = PβmixH̄
= Pβmix .

Thus, similar to (D.2), we have ‖Pβ̂mix,o
− Pβ̂mix,e

‖F ≤ oP (1).

In addition, B̂mix,o + B̂mix,e = oP (1). Hence,

‖Pβ̂mix,o
− Pβ̂e

‖2
F − (B̂mix,o + B̂mix,e ) = oP (1).

Combining with (D.1), we have shown that under the two alternatives, there is a constant
c0 = c1/4, such that P(A> c0 ) → 1.

D.2 The behavior of the bootstrap quantile under the alternative

Recall that g∗ is the bootstrap quantile so that P(A∗ −A> g∗ ) = τ for some significance
level τ > 0. All results in this subsection hold under either alternative (i) or alternative
(ii) of Theorem 4.2.

Lemma D.2. Suppose Conditions (31)–(32) hold. We have A∗ −A = oP (1).

Proof. In the proof of Proposition D.1, we have shown that ‖Pβ̂mix,o
− Pβ̂mix,e

‖2
F −

(B̂mix,o + B̂mix,e ) = oP (1) under the two alternatives. Similarly, their bootstrap coun-
terpart is oP (1). The proof of this can be established in the same way as showing
‖Pβ̂mix,o

− Pβ̂mix,e
‖2
F − (B̂mix,o + B̂mix,e ) = oP (1), and we omit this for brevity. In addition,

B̂c = oP (1) and B̂∗
c = oP (1). It remains to show the following under the two alternatives:∥∥P ∗̂

βa
− P ∗̂

βb

∥∥2
F

− ‖Pβ̂a
− Pβ̂b

‖2
F = oP (1).

Let β∗
a and β∗

b denote the bootstrap counterparts of βa and βb, respectively, ob-
tained by randomly drawing from the rows of (βa, βb ) with replacement. We have
‖P ∗̂

βc
− P∗

βr
c
‖2
F = oP (1) and ‖Pβ̂c

− Pβr
c
‖2
F = oP (1). Thus, it suffices to show∥∥P∗

βr
a
− P∗

βr
b

∥∥2
F

− ‖Pβr
a
− Pβr

b
‖2
F = oP (1).

This will be the case if we can show that both ‖P∗
βr
a
− P∗

βr
b
‖2
F and ‖Pβr

a
− Pβr

b
‖2
F converge

in probability to the same limiting constant under either alternative.
For the convergence of ‖Pβr

a
− Pβr

b
‖2
F , under alternative (i), the proof of Lemma D.1

shows that ‖Pβr
a
− Pβr

b
‖2
F = Kb −Ka. Under alternative (ii), we have βr

a = βa and βr
b = βb

and

‖Pβr
a
− Pβr

b
‖2
F =Ka +Kb − 2 tr(PβaPβb )

P−→Ka +Kb − 2 tr
(
�−1
β,a�β,ab�

−1
β,b�

′
β,ab

)
.

The proof of the bootstrap counterpart is very similar, noting that 1
pβ

∗′
a β

∗
b = 1

pβ
′
aβb +

oP (1) = �β,ab + oP (1).
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Lemma D.3. Suppose Conditions (31)–(32) in Theorem 4.1 hold. We have P(g∗ > c0 ) → 0,
for the constant c0 > 0 in Proposition D.1.

Proof. From Lemma D.2, we have A∗ −A = oP (1). This implies P(A∗ −A> c0 ) = oP (1).
Let J := P(A∗ −A> g∗ ). Because τ > 0 is the significance level,

P(J ≥ τ) ≤ P
(
J ≥ τ, g∗ > c0

)+ P
(
g∗ < c0

) ≤ P
(
P
(
A∗ −A> c0

) ≥ τ
)+ P

(
g∗ < c0

)
= o(1) + P

(
g∗ < c0

)
.

Meanwhile, P(J ≥ τ) → 1 because of the definition of g∗. Thus, P(g∗ > c0 ) → 0.

Appendix E: Proof of Theorem 4.3

In addition to Assumptions SA1, A2, and A3, we will assume throughout this section,
without further mention, that Assumption A4 holds as well. Denote

Ẑn = √
pkn

[
μ̃a + μ̃b − μ̂ab − (μmix,o −Bmix,o ) − (μmix,e −Bmix,e ) −μmix,oe

]
.

Then the decomposition of S in Section C.2 shows

S = Ẑn + R̂A− R̂Amix,

where

R̂A := √
pkn�5 − √

pkn

∑
c∈{a,b}

(B̂c −Bc ),

R̂Amix := √
pkn�5,mix − √

pkn

∑
k∈{o,e}

(B̂mix,k −Bmix,k ).

In Section C.4, we have shown that Ẑn converges in distribution, provided kn, p → ∞,
ζp/p → 0, and pkn�n = Op(1). Previously, we have also shown that both R̂A and R̂Amix

are oP (1) under the conditions in (31)–(32) in the statement of Theorem 4.1, and in par-
ticular under the assumption p

k2
n
ζ8
p → 0.

In this section, by assuming A4, we aim to show that both R̂A and R̂Amix have the
same higher-order expansion (proved in Lemmas E.7 and E.8):

R̂A =
√
p

kn

[
tr(B3 ) − 2M

]+ oP (1) + oP

(√
p

kn

)1/2

,

R̂Amix =
√
p

kn

[
tr(B3 ) − 2M

]+ oP (1) + oP

(√
p

kn

)1/2

,

(E.1)

whereB3 = [8BĀQ̄−1Ā′+4C2 −6C2H̄ ′�βH̄],B := 
c

′
cE(σ2

1c|C )2,C= Ā′
c

′
cE(σ2

c,1|C )Ā
and

M = E
(
σ2
c,1|C

)
tr Q̄−1(tr 2�f ĀQ̄Ā′ − 2Kc

)+ 4 tr�f ĀQ̄−1
c Ā′(E(σ2

c,1|C
))2

,
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with Ā, Q̄, H̄ defined in Lemma E.2. Then, given these results, it will follow that

R̂A− R̂Amix = oP (1) + oP

(√
p

kn

)1/2

,

under the rate conditions of the current theorem (and in particular when p

k2
n
ζ8
p → κ for

some finite κ≥ 0). So, this weakens the condition from requiring κ= 0 to allowing κ≥ 0.

The analysis of
√
pkn�5 and

√
pkn�5,mix is done in Section E.1 and of

√
pkn ×

(
∑

c∈{a,b}(B̂c −Bc ) −∑
k∈{o,e}(B̂mix,k −Bmix,k )) in Section E.2. Prior to that, we establish

the following preliminary result.

Lemma E.1. Let p→ ∞, kn → ∞, and kn = o(p3/2 ). We then have for c, d ∈ {a, b}:

(i) 1√
p

1
p2kn

β′
cUcU

′
cUdU

′
dβd = oP (1),

(ii) W −E(W |C ) = oP (1), where W := 1√
p

1
pk2

n
F

′
dU

′
dUcU

′
cUcFc .

(ii) W2 −E(W2|C ) = oP (1), where W2 :=
√
p

pk2
n

trF
′
cU

′
cUcFc .

Proof. The case c 	= d is easier than the case c = d, so we focus on the latter case. The

proof is straightforward calculation.

We focus on an arbitrary element, say M := 1√
p

1
p2kn

g′UcU
′
cUcU

′
ch, where g and h are

two arbitrary columns of βc . Then it is straightforward to check that

E
(
M2|C

) =OP

(
k2
n

p3 + kn

p2 + 1
kn

+ 1
p

)
= oP (1),

as long as kn = o(p3/2 ).

As for W and W2, it is also straightforward to check that the C-conditional variance

of an arbitrary element of W is of the order OP ( 1
kn

+ 1
p ) = oP (1). Similarly, the variance

of W2 = OP ( 1
k2
n

) = oP (1).

E.1 Asymptotic expansion of �5 and �5,mix

We introduce the following notation related with the higher-order terms of Âmix:

�2mix,k = Hmix,kJmix,k, �3mix,k = 1
kn

√
p

(dmix,1 + dmix,2 ),

�4mix = 1
kn

√
p

(gmix,1 + gmix,2 + gmix,3 ),

�5,mix = 1
kn

√
p

(cmix,1 + cmix,2 ) − 2(�4mix +�3mix,even +�3mix,odd ),

(E.2)
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where, for k, k1, k2 = o, e, we denote

Jmix,k := 1
p

[
H ′

mix,kβ
′
abβabHmix,k − β̂′

mix,kβ̂mix,k
](
H ′

mix,kβ
′
abβabHmix,k

)−1
,

dmix,1 = kn
√
p tr

[
p�2mix,k(p�2mix,k )′

1
p
β′
abβab

]
+ 2kn

√
p tr β̂′

mix,k(β̂mix,k −βabHmix,k )Jmix,k

− kn
√
p tr(β̂mix,k −βabHmix,k )′(β̂mix,k −βabHmix,k )Jmix,k,

dmix,2 = 2kn
√
p tr(β̂mix,k −βabHmix,k )′βab�2mix,k

+ 2kn
√
p tr

1
p

(β̂mix,k −βabHmix,k )′βa
(
β′
aβa

)−1

×L′−1
k (β̂mix,k −βabHmix,k )′β̂mix,k,

gmix,1 = kn
√
p tr�′

2mix,oβ
′
abβab�2mix,eβ̂

′
mix,eβ̂mix,o,

gmix,2 = kn
√
p

∑
k1 	=k2

tr
1
p
β̂′

mix,k2
β̂mix,k1 (β̂mix,k1 −βabHmix,k1 )′βab�2mix,k2

+ kn
√
p

∑
k1 	=k2

tr
1
p

(β̂mix,k1 −βabHmix,k1 )′βa
(
β′
aβa

)−1

×L′−1
k2

(β̂mix,k2 −βabHmix,k2 )′β̂mix,k1

+ kn
√
p tr�1mix,oL

−1
odd

(
β′
aβa

)−1
L′−1

even�
′
1mix,e,

gmix,3 = kn
√
p

∑
k1 	=k2

tr
1
kn

Âmix,k1L
−1
k1

(
β′
aβa

)−1
L′−1
k2

�′
1mix,k2

Umix,k1Fmix,k1

+ kn
√
p

∑
k1 	=k2

tr�′
2mix,k1

β′
abβa

(
β′
aβa

)−1
L′−1
k2

(β̂mix,k2 −βabHmix,k2 )′β̂mix,k1 ,

cmix,1 = − 2√
p

tr Â′
mix,oF

′
mix,oU

′
mix,o�1mix,e

1
p
β̂′

mix,eβ̂mix,o

− 2√
p

tr Â′
mix,eF

′
mix,eU

′
mix,e�1mix,o

1
p
β̂′

mix,oβ̂mix,e

+ 4√
p

tr Â′
mix,oF

′
mix,oU

′
mix,o�1mix,o + 4√

p
tr Â′

mix,eF
′
mix,eU

′
mix,e�1mix,e,

cmix,2 = − 2
p

tr�′
1mix,o�1mix,e

1
p
β̂′

mix,k2
β̂mix,k1 − 4kn√

p
‖�1mix,o‖2

F − 4kn√
p

‖�1mix,e‖2
F .

(E.3)

We start with showing that some probability limits associated with estimation based
on the different sets of data considered in the construction of the test are the same.

Lemma E.2. There are some matrices H̄, Ā, Q̄ such that Âc , Âmix,k
P−→ Ā, Ĝ := 2

pβ̂
′
aβ̂b

P−→
2I, Gmix := 2

pβ̂
′
mix,oβ̂mix,e

P−→ 2I, Q̂c , Q̂mix,k
P−→ Q̄, and also Hc , 2Hc,mix,k

P−→ H̄.
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Proof. (i) Convergence of Âc , Âmix,k. From Lemma C.2, and expression (C.38), 1√
p ×

‖β̂c − βcHc‖ = oP (1), and Hc = �f ,cĀc + oP (1), where Āc = �
−1/2
f ,c McQ̄

∗−1/2
c ; columns

of Mc are the eigenvectors of �1/2
f ,c �β,c�

1/2
f ,c , and Q̄∗

c is a K × K diagonal matrix of top

K eigenvalues of �1/2
f ,c �β,c�

1/2
f ,c . Under Assumption A4, �β,c , �f ,c do not vary over time,

and hence we can conclude that Hc
P−→ H̄ and Āc = Ā, for H̄ and Ā that do not depend

on c ∈ {a, b}. Therefore, 1√
p‖β̂c − βcH̄‖ = oP (1). For βb = βaH, and with the identity

1
pβ̂

′
aβ̂a = I, we can write

1
p
β̂′
aβ̂b = 1

p
β̂′
aβbHb + oP (1) = 1

p
β̂′
aβaH̄H̄−1HH̄ + oP (1) = H̄−1HH̄ + oP (1).

If H = I (assumed in A4), the probability limit of the above is the identity matrix. Also,

(C.37) implies Âc
P−→ Ā.

In addition, by (C.40), Âmix,k
P−→ Āmix := �

−1/2
f ,mixMmixQ̄

−1/2
mix where Q̄mix is K × K di-

agonal matrix of top K eigenvalues of �1/2
β,a�f ,mix�

1/2
β,a; �f ,mix := 0.5�f ,a + 0.5H�f ,bH

′

and the columns of Mmix are the eigenvectors of �
1/2
f ,mix�β,a�

1/2
f ,mix. When H = I, and

�β,a = �β,b, �f ,c = �f (assumed in A4), we have �f ,mix = �f , Q̄∗
c = Q̄mix, Mc = Mmix.

This implies Āmix = Ā.

(ii) Convergence of Ĝ, Ĝmix. From Lemma C.11, Ĝ = Ḡ+ oP (1) = 2
pβ̂

′
bβ̂a + oP (1)

P−→
2I.

(iii) Convergence of Q̂c , Q̂mix,k, and Hc , Hmix,k. From the proof of Lemma C.11,
Q̂c = Q̄∗

c + oP (1) = Q̄mix, Q̂mix,k = Q̄mix + oP (1), Ha,mix,k = 0.5�f ,aĀmix + oP (1), and

Hb,mix,k = 0.5�f ,bH
′Āmix + oP (1). Also, from (i) we showed Hc

P−→ H̄ = �f Ā. Hence, we

can simply write the probability limit as Q̄ := Q̄mix, H̄ = �f Ā, and conclude 2Hc,mix,k
P−→

H̄.

Lemma E.3. Suppose ζ2
pp = o(k3

n ), ζ4
pkn = o(p3 ), kn = o(p2 ), and ζ2

p = o(
√
knp). Recall

the definitions of �1c and �1mix,k in (C.4) and (C.13). Then, for c, d ∈ {a, b},

1√
p
F

′
dU

′
d�1c =

⎧⎨⎩oP (1) +
√
p

kn
B
[
ĀQ̄−1 + oP (1)

]
, c = d,

oP (1), c 	= d,

where B := 
c

′
cE(σ2

1c|C )2. And for k1, k2 ∈ {o, e},

1√
p
F

′
mix,k1

U
′
mix,k1

�1mix,k2 =
⎧⎨⎩oP (1) +

√
p

kn
B
[
ĀQ̄−1 + oP (1)

]
, k1 = k2,

oP (1), k1 	= k2.

Proof. We have the following identity:

1√
p
F

′
dU

′
d�1c = W1HcQ̂

−1
c +W2ÂcQ̂

−1
c + Rem1 + Rem2,
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W1 = 1√
p

1
pkn

F
′
dU

′
dUcU

′
cβc ,

W2 = 1√
p

1

pk2
n

F
′
dU

′
dUcU

′
cUcFc ,

Rem1 = 1√
p

1
pkn

F
′
dU

′
dUcU

′
c�1cQ̂

−1
c ,

Rem2 = 1√
p

(
1

pkn
F

′
dU

′
dUcR

′
cβ̂cQ̂

−1
c + 1

pkn
F

′
dU

′
dRcY

′
cβ̂cQ̂

−1
c

)
.

Using Cauchy–Schwarz and Lemma C.4, Rem1 = oP (1) because ζ2
pp = o(k3

n ), ζ4
pkn =

o(p3 ), and ζ2
p = o(

√
knp), and ζpδ4( 1√

kn
+

√
kn
p ) = oP (1). In addition, Lemma A.2 implies

that W1 = oP (1) under the condition kn = o(p2 ), which is needed for the convergence of
its variance.

Using the C-conditional independence of Uc from Ud , for c 	= d, we have E(W2 ) = 0.

On the other hand, if d = c, then E(W2|C ) =
√
p

kn
Bc + OP (p−1/2 ). Also, Lemma E.1 shows

that the C-conditional variance of each element of W2 is oP (1). Then by Lemma E.2 and

Assumption A4, W2ÂcQ̂
−1
c =

√
p

kn
B[ĀQ̄−1 + oP (1)] +OP (p−1/2 ).

We can bound 1√
pF

′
mix,k1

U
′
mix,k1

�1mix,k2 in a similar way:

1√
p
F

′
mix,k1

U
′
mix,k1

�1mix,k2 = oP (1) +E(W2,mix|C )Âmix,k1Q̂
−1
mix,k2

,

where W2,mix = 1√
p

1
pk2

n
F

′
mix,k1

U
′
mix,k1

Umix,k2U
′
mix,k2

Umix,k2Fmix,k2 . If k1 = k2 = e,

E(W2,mix|C ) =
√
p

kn

1

p2kn

∑
t is even

∑
c∈{a,b}

∑
i,j≤p

E
(
f c,tf

′
c,tε

2
c,tiε

2
c,tj|C

)
.

If kn is also an even number, then
∑

t is even
∑

c∈{a,b} 1 = kn, so E(W2,mix|C ) =
√
p

kn
B +

OP ( 1√
pkn

). Ifkn is an odd number, then
∑

t is even
∑

c∈{a,b} 1 = kn−2, so thatE(W2,mix|C ) =
kn−2
kn

√
p

kn
B + OP ( 1√

pkn
) =

√
p

kn
B + O(

√
p

k2
n

+ 1√
pkn

). The same proof also carries over to the

case k1 = k2 = “o.” Altogether, we have proved E(W2,mix|C ) =
√
p

kn
B + OP (

√
p

k2
n

+ 1√
pkn

), if

k1 = k2. Therefore, by Lemma E.2,

kn
√
p

[
1
p
F

′
mix,k1

U
′
mix,k1

�1mix,k2

]
= oP (1) +

√
p

kn
BÂmix,k1Q̂

−1
mix,k2

= oP (1) +
√
p

kn
B
(
ĀQ̄−1 + oP (1)

)
. (E.4)

Finally, if k1 	= k2, we trivially have E(W2,mix ) = 0.

Lemma E.4. Recall �1c = 1
pkn

UcU
′
cβ̂cQ̂

−1
c + 1

pkn
UcR

′
cβ̂cQ̂

−1
c + 1

pkn
RcY

′
cβ̂cQ̂

−1
c . Assume

ζ3
p = O(kn

√
p), ζ4

pp = o(k3
n ), and kn = o(p3/2 ). Then kn√

p‖�1,c‖2 = oP (1).
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Proof. We write �1c = 1
pkn

UcU
′
cβ̂cQ̂

−1
c +Rem, where Rem denotes a term that depends

on Rc . Then

kn√
p

‖�1c‖2 ≤ 2kn√
p

∥∥∥∥ 1
pkn

UcU
′
cβ̂cQ̂

−1
c

∥∥∥∥2

+ Rem

≤ B + 2 tr Q̂−1
c H ′

cvcHcQ̂
−1
c + Rem,

B = 2kn√
p

∥∥∥∥ 1
pkn

UcU
′
c(β̂c −βcHc )Q̂−1

c

∥∥∥∥2

≤OP

(
1√

pp2kn

)
‖Uc‖2‖β̂c −βcHc‖2,

vc = 1√
p

1

p2kn

β′
cUcU

′
cUcU

′
cβc .

Lemma A.3 showed ‖Q̂−1
c ‖ = OP (1). Using Lemma C.2, we have that ‖β̂c − βcHc‖ ≤

OP (
√

p
kn

+ ζp√
p + δ4 ). Lemma A.2 also bounds ‖Uc‖. The assumption that ζ3

p =O(kn
√
p),

ζ4
pp = o(k3

n ), and knζ
3 = o(p5/2 ) then imply that B = oP (1). In addition, Lemma E.1

showed vc = oP (1). Combining these two results, we have the result of the lemma.
Finally, the term Rem depends on the remainder term Rc , whose effect is also neg-

ligible. In fact, the effect of Rc is given in δ4, defined in (C.23). By Lemma C.5, Rem is
negligible under the conditions of the current lemma.

Lemma E.5. Suppose ζ2
p = o(p3/4kn ), ζ2

p = o(p3/2 ), pζ4
p = o(k6

n ), p = o(k4
n ), and kn =

o(p3/2 ).
(i) Recall �2c =Hc

1
p [H ′

cβ
′
cβcHc − β̂′

cβ̂c ](H ′
cβ

′
cβcHc )−1. Then

1
p

(β̂c −βcHc )′(β̂c −βcHc ) = Cn + 1
kn

[
C+ oP (1)

]
,

1
p
β̂′
d(β̂c −βcHc ) = An +

⎧⎨⎩
1
kn

[
C+ oP (1)

]
if c = d,

0 if c 	= d,

p�2c = Bn − 1
kn

[
H̄C+ oP (1)

]
,

where An, Bn, and Cn are such that [‖An‖2
F + ‖Bn‖2

F + ‖Cn‖2
F ]kn

√
p = oP (1), and C =

Ā′
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′
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(ii) Recall �2mix,k =Hmix,kJmix,k in (E.2). Then
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⎧⎨⎩

1
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,

where A∗
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n are such that [‖A∗
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√
p = oP (1).
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Proof. (i) By (C.3),
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From Lemmas C.2, C.3, and C.4, we have [‖C1,cd‖2
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F ]kn
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The first term in the above expansion of 1
p (β̂d −βdHd )′(β̂c −βcHc ) is zero, if d 	= c.

If d = c, then by making use of Assumption A4,
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.

This implies the expansion result for 1
p (β̂c − βcHc )′(β̂c − βcHc ) in the lemma. We can

show the one for 1
pβ̂

′
d(β̂c −βcHc ) in a similar way.

Next, by Lemma C.3, for G1 = 1
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.

Also, 1√
p‖β̂c −βcHc‖ = oP (1) implies ( 1
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′
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′
cβcHc )−1 P−→ I, and by Lemma E.2, Hc
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Hence, for Bn := Hc(G1 −An ), we have ‖Bn‖2
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.
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(ii) By (C.13),
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(E.5)

Exactly as the proof of Lemmas C.2, C.3, and C.4, we can show that [‖C∗
1‖2

F + ‖C∗
2‖2

F +
‖C∗

3‖2
F ]kn

√
p = oP (1).

Next, if k1 	= k2, using successive conditioning and Assumption A4, we have

E
(
F

′
mix,k2

U
′
mix,k2

Umix,k1Fmix,k1

) = 0, if k1 	= k2.

We turn to the case k1 = k2. If k1 = e, then
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∑
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.

If kn is also even, then the above equals 1
kn

c


′
cE(σ2

c,1|C ) due to Assumption A4. If

kn is odd, then the above equals kn−2
k2
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c

′
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c,1|C ), again by Assumption A4. Also,

Lemma E.2 shows Âmix,k = Ā+ oP (1). Thus,
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.

The case k1 = k2 = o follows by the same argument. This yields the expression for
1
pβ̂

′
mix,k2

(β̂mix,k1 −βabHmix,k1 ) and 1
p (β̂mix,k1 −βabHmix,k1 )′(β̂mix,k1 −βabHmix,k1 ) in the

lemma.
Finally, the expansion for pJmix,k follows by similar arguments. More specifically, an

expansion for 1
p‖β̂mix,k −βabHmix,k‖ would imply

(
1
p
H ′
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′
abβabHmix,k

)−1

= 1
p
β̂′

mix,kβ̂mix,k + oP (1) = I + oP (1).
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Let A∗
n = C∗

1 +C∗
2 +C∗

3 and G∗
1 = 1
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′
mix,kβ

′
ab(βabHmix,k − β̂mix,k ). Then
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We can write B∗
n := (G∗

1 − A∗
n )[I + oP (1)] satisfying ‖B∗
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p = oP (1), and from here

the result in the lemma for pJmix,k follows:
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.

Lemma E.6. Recall the definitions of �3,c , �4 in (C.16), and of �3mix,k, �4mix in (E.2).
Then
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√
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√
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where C= Ā′
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cE(σ2

c,1|C )Ā.

Proof. (i) Bound for �3,c and �3mix,k. Recall

kn
√
p�3,c = d1 + d2,
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Lemma C.3 gives bounds for 1
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Lemma E.5, p�2c = Bn− 1
kn

[H̄C+oP (1)] and 1
pβ̂

′
c(β̂c −βcHc ) =An+ 1

kn
[C+oP (1)], with

(‖An‖2
F + ‖Bn‖2

F )kn
√
p= oP (1). Also, by Lemma E.2, H−1

c
P−→ H̄−1. Altogether,

d1 = oP (1) + oP

(√
p

kn

)1/2

+
√
p

kn

[
trC2(H ′�βH̄ − I

)+ oP (1)
]
.



46 Liao and Todorov Supplementary Material

The bound for �3mix,k can be shown in a similar way. Recall the definitions of dmix,1

and dmix,2 in (E.3). The term d2,mix = oP (1) + oP (
√
p

kn
)1/2, and the term dmix,1 is the lead-
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This implies the bound for kn
√
p�3mix,k = dmix,1 + dmix,2.

(ii) Bound for �4 and �4mix. We have
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(E.6)

Lemma C.3 provides a bound for 1
pβ

′
d(β̂c − βcHc ) and 1

pβ̂
′
d(β̂c − βcHc ). Also,

Lemma C.2 derived bound for �1a. We can then apply the Cauchy–Schwarz inequality

and Lemma C.3 to verify that g2 = oP (1) + oP (
√
p
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)1/2. As for g3, it follows from Lemmas

E.3 and E.5 that, when c 	= d, 1√
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We are left with the term g1, which is the leading one in the expansion of kn
√
p�4. It

follows from Lemma E.5 that since βb = βa,

g1 = oP (1) + oP
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This leads to the bound for �4.
We can proceed in an analogous way for �4mix. Recall the definitions of gmix,1 	 	 	

gmix,3 in (E.3). As above, we have gmix,2 + gmix,3 = oP (1) + oP (
√
p

kn
)1/2 and gmix,1 is
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the leading term in the expansion. From Lemma E.2, 1
pβ̂

′
mix,eβ̂mix,o = I + oP (1), and

Hc,mix,k = 0.5H̄ + oP (1). From Lemma E.5, since βb = βa (from Assumption A4),
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This leads to the expansion result for �4mix in the lemma.

Lemma E.7. Recall �5,mix defined in (E.2). Suppose ζ2
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Proof. We use the expression for �5 in (C.15) and write
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The expansion of �5,mix follows analogously from Lemmas C.2, E.2, E.3, E.5, and E.6.
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E.2 Asymptotic expansion of B̂c and B̂mix,k
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Lemma E.8. We have
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As for
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We start with a2 and a3. Recall (C.24) for the expansion of Uc − Ûc = ∑6
j=1 gj . We can

write
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As for terms that involve
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under the condition p =O(k2
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Here, term g6 depends on Rem, which is negligible.

Together, a2 =
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We are left with
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pkn(B̂mix,k − Bmix,k ). Its proof is analogous to the one for√
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F ,



52 Liao and Todorov Supplementary Material
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mix,kF
′
c,kFc,kÂmix
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Recall (C.24) for the expansion of Uc − Ûc = ∑6
j=1 gj . Also, recall the identity,
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Putting together all of these results, we get the expansion for kn
√
p(B̂mix,k − Bmix,k ) in

the lemma.
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