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Department of Economics, Rutgers University

VIikTOR TODOROV
Kellogg School of Management, Northwestern University

This Appendix contains the proofs of all theoretical results in the paper.

APPENDIX A: PRELIMINARY BOUNDS

In this subsection, we collect some preliminary bounds that are used throughout the
proof. They hold both under the null and alternative hypotheses. Here and in the rest
of the proof, we assume that Assumptions A1-A3 hold. In fact, following a standard lo-
calization argument (see, e.g., Section 4.4.1 of Jacod and Protter (2011)), it is enough to
prove the results under the stronger version of Assumption Al.

SA1. We have Assumption Al fors, t € [0, T1.

Therefore, the proof below is done under Assumptions SA1, A2, and A3 without fur-
ther mention in the statements of the theorems, lemmas, and propositions. We also as-
sume that k,A, < ¢ so that the discrete factor model in equation (19) in the main text
holds. This is not a restriction because k,A,, — 0 for all of our theoretical results in the
paper. Finally, we remind the reader the sequence ¢, from Assumption A3, the tuning
parameters Knax and g, related to the selection of the number of factors given in equa-
tion (22) in the main text, and the parameter @ from the statement of Theorem 4.1.

LEmMMA A.l. Let p — o0, Ay, — 0, k,, — 00, and k,A, — 0. Then we have for ¢ = a, b:
(i) [RcFc|I> = Op(pk2A2®).
(i) [|UCR,I? = Op(pk2AZT).
(ii) R, = Op(pkaA2®).
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Proor. Given the integrability conditions of Assumption SA1, we have for any constant

qg>0:
ifA, q
E / aS,jds SCqAn» (||fc[||q+|eC t]lq) q
(if—D)A, (A1)
q 1—¢
E|A;?§Jj| <Cq AT
forj=1,...,p,t=1,...,ky, and c = a, b, some arbitrary small « > 0, and where C,; and
Cy,. are constants that depend on ¢ and ¢, only. From here, we also have for g > 2:
Elre, 1|7 < CoAR™ /27, (A2)

With these bounds, we can now proceed with the proof of the lemma. Applying the
bounds in (A.1) and Holder’s inequality yields

kn
-2 ~
E(Z r2if c,tk) < Ck,AZ® (A.3)
t=1
and, therefore,
IRcFcll* = Op(pkiA57). (A.4)

Next, given the C-conditional independence of B, ;, oy ;, and Y, ; across j from A2,
we have

E(re,ij€c ke, si€c,sk) = 0, for j# k and s # ¢. (A.5)

Using conditioning on C, the bounds in (A.1) and (A.2), Holder’s inequality as well as
Assumption SA1l, we have

|E(re, €, i7e,si€c,s)| < CAZ®,  fors+#t, (A.6)
[E(r2 €2 )| +E(r2 ;) < CAZ®. A7)

Combining the above three bounds, we get

AL % 2 %

[TeR|"™ = 0p(phAL7) and - [R[" = Op(pkaty™). (A8)
LEMMA A.2. Let p — oo, A, — 0, k,, — o0, and k,A, — 0. We have for ¢, d € {a, b}:

(i) max;, Z _1 |E(€c,ri€c,4j|C)| < C, for some positive constant C > 0.

() ||1U.|l = Op(/(kn + P)p++/ (kn+ p)y/ pk”) for the matrix operator norm.

(111) 2 let(fc ti€e,tj — E(ec, i€, Ijlc)) = Op( pf)
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. 177 7 || — 1 T7T T I — 1 VA,
(iv) ”HUCFCH—OP(\/]%),”mB;UCFc”—OP(m“F\/E)
—) = = =
and S| F,U,UU Bl = Op(Le +1).

1 0P 1 _ _ 2 1 VA
W) > j:1|m > it Ba,i(€c ii€c,ij — E(€c, ri€c, 1|C))| —OP(m'F—n")-

S L@ (T (T VA
Vi) || By(UeU, —~ E(UTIC)BCN = Op(53 + V2.

Proor. We start with (i). We have Zp L [E(E i€, 10| = E(e

Sup;>1 E (€ c.1i) < 00 by Assumption SA1, the result follows.
To proceed further for (ii), we introduce the following notation:

~ 1

with o, = Ole/An)= kn+1 I The - matrix constructed from €. ;; is denoted with U.. We first
bound ||UC|| Let, .= E(UCU | FLe/An)—Kn) An), which is a dlagonal matrix with en-

24l0) and since

'&CJA;‘?W}, forc=a,b,j=1,...,p,t=1,..., kp, (A.9)

tries 0' o) and denote its counterpart in which & (T 1s replaced with a' w1th S.u,c. Theo-
rem 4.6.1 of Vershynin (2018) implies

S-12 1 ~ ~ s p p
2u,c/ k_nUc é uc/ _IHZOP<k_n+ k—n>’

so we need a bound for ||§u,c||. For this, we can use triangular inequality, Assumptions
A2 and A3, and the fact that || - || < || - || to get

~ ~ [kn,
||2u,c|| = ||2u,c|| + ||Eu,c - Eu,c”F = 0P<§p + x/ﬁ 7) (A.10)

As a result, ||l7€|| = Op(\/(kn+ p)p ++/ (kn+ p)y ka"). Therefore, it suffices to show

U, — Uell = Op(ykn + p) in order to establish the bound for |[U,|. First, note that
Eléc,ij — €,4|? < CA, because of our assumption for oy ;. From here,

[Ue = Uell < 11U = Ucllp < Cy/ phny/An = 0p(/D). (A.11)

We continue with (iii). Using successive conditioning, we have

E[(&c ri€c,ij€c,vi€c,rj)|C] =0,
(A.12)
if 1 # ¢’ or one of the indices i, i/, j, j’ differs from the others,

and of course E[€, ;€. tj]z < C given our integrability assumptions in SAl. From here,
the result to be proved follows.

For the first of the bounds in (iv), given the definitions of fc’t and €. ;; as well as the
integrability assumptions in SA1, we have

o =0 ifs#t¢,
E(Ec,tjfc,zk) =0, E(e,, ijc tk€e, ijc sk) { . (A.13)
<C ifs=t
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and, therefore,
|F.U.|* = Op(pkn), (A.14)

from which the first result in (iv) follows.
For the second bound in (iv), we use in addition the following result:

<CVkphA,, i#j kK =1,...K, (A.15)

kn kn
E |:Bd,jk’ D eif e Y Ecife, tk:|
=1 =1

for some constant C > 0. This follows from the C-conditional independence of the pro-
cesses B3, o, and I/T/, from B;, o}, and I/T/j, for i # j, as well as the smoothness condition
for the processes o; and A in Assumption A2(i). We note that when ¢ = d, the expectation
in the above inequality is equal to zero.

Finally, for the third result in (iv), we apply the Cauchy-Schwarz inequality and we
have

|F, 0,006 < |[F,T 0.7, A16
Given the above bound for IIF;U; |, we need only a bound for ||UCU/C Bc|l. Given the in-
dependence of W; and W; for i # j, and the integrability conditions for the processes
{oi}i>1, we have

kn kn
E (Z €c ii€e,ij ) Ecyii€e,if
=1

f(Lc/Aann)An) =0, ifi#jandj#j, (A.17)
t=1

k 2 es
z Cky, ifis#],
E Ec,tigc,tj) < { T (A.18)
<; Ck? ifi=j.
Therefore, given the integrability conditions for the processes B, j, we have

E(|UU.Bc|?) < C(K2 + pkn). (A.19)

From here, the third bound in (iv) follows.
We turn next to the bound in (v). Using the C-conditional independence of the pro-
cesses 3;, W;, and o; from B, W}, and o, for i # j, we have

]E( Z By iBa,ir(€c,1i€c,ij — B(€c,1i€c,4|C)) (€c sir€e,sj — E(Ec,si'?c,sjlc))> =0, (A.20)
i#1’ or s#t

where we denote €, ;; = a(ic—1)A,,iA% Wi/~/Ap. Using the smoothness condition for the
t
processes {o;};>1 in Assumption SAl, we have

Z( Z B;zyiﬁd,i’ (Ec,ligc,tj - E(Ec,tigc,tjlc)) (Ec,si’gc,sj - E(Ec,si’gc,sjlc))>

J il or s#t
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— Z( > By iBai(EetiEe,j — E(Eeii€e,410)) (€c,sie,sj — E(Ec,sa@c,sjla))

Jj il or s#t
= O0p(P*kn/An). (A21)

From here, the result in (v) follows after taking into account the integrability conditions
for the processes B and {o;_i > 1. The second result in (vi) can be shown in a similar
way. O

For stating our next result, we need some notation. For ¢ € {a, b}, let QC bethe K x K
. . . L. . ~ <~/ .
diagonal matrix consisting of the first K eigenvalues of Y. Y ./(pk,), where K is the true
number of nonredundant factors at time c.

Lemma A.3. We have | Ocll + 107111 + %118.8:0; ' = Op(1).

Proor. Using Lemma A.1 and Lemma A.2, we have

1

ok |Y.Y, — BF.FeB.|

i = 77 ’ L 77 112 i 17 R/ L 2 _
= e |BeFeUet Re)' |+ =Tl + = [UeRe| + IR = 0p (D).

Let Q. be the K x K diagonal matrix of top K eigenvalues of ;BcA.AcB;. We then
have Q. — Q.|| = op(1) because, using Assumption SAl, we have k—ln IF.Fe — ALA || =
OP(J% +,/%n). The eigenvalues of Q. equal those of (A’CAC)I/Z%B’CBC(A’CAC)I/Z, which

are bounded away from zero and infinity and, therefore, so are those of O.. Then
10711l = Op(1) and from here |8, B0 "I = Op(1). m

APPENDIX B: ESTIMATING THE NUMBER OF FACTORS

THEOREM B.1. Let Knax = o(v/ky), and gy, , be such that

kn+p | pky, 25 kn+p
—_ =o0(1), +,/ — = , AT =o| —— . B.1
K p 8np=0(1) {p " 0(&np) n o K p 8np (B.1)

We then have
P(Ea =Ky, k\b =Ky, Emix = Knix) = 1.
We note that the condition Aff’ =0 k,;’:;p gnp) in the statement of the above theorem

is implied by Conditions (31)-(32) in Theorem 4.1. This is because from these condi-
tions, we have g,, — oo and (\/pk, + p)A27 — 0.

ProOE. First, note that for Fx and Bx being the estimated factors and betas using K
eigenvectors, we can write

1 — o~
V(K)i=——|Ye - BxFg| =Y vem
Pkn

m>K
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Therefore, the criterion (22) is equivalent to the IC criterion in Bai and Ng (2002). From
here, the proof of the case K < K, is very similar to that of Bai and Ng (2002), so we omit
it for brevity. However, there is a technical flaw in the published version of Bai and Ng
(2002) for the case K > K., so we present a proof of this case here using random matrix
theory.

Recall . = k YCY c € {a, b}. We first bound max,,. x, v¢,,m. Let us separately con-
sider two cases: Kc > 0 (there are factors) and K. = 0 (there are no factors).

Casel: K, > 0. For two semipositive definition matrices A4, B, the a + b largest eigen-
value satisfy

Agib(A+ B) < Agv1(A) + Ap(B).

We will use this inequality and the following decomposition:

Se=T+W,
|
I'=—®FF®, rank(I)=K,, (B.2)
knp
W = (Rc +UC)MFC(RC+UC)/7

knp

where My =1 — Pz, and ® = B, + (U, + Rc)fc(f/cfc)‘l. For m > K., there is i =
1,2,..., so that m = K. + i. Then, by making use of Lemma A.1 and Lemma A.2, we
have

Ve,m = Am(Se) = A 4i(W +T) <Ak 41 (D) + A, (W) = A (W)

= =
knp npP
1 1 Pkn 2%
di=—+— A/ AP,
(p i kn> (g” V)T
Let dpp = ( k > 2 gnp denote the penalty rate. Note that V'(K,) is the rescaled residual
sum of squares when the true number of factors is used, which consistently estimates

1 Z E(o?,|C). So, V' (K.) > ¢ is bounded away from zero with probability approaching
one When K> K.,

V(K)

A:=logV (K) + Kdyp — (logV (K¢) + Kedyp) = log ——— R
C

+ (K - K¢)dpp

Ve,m

K.<m=<K
> lOg(l — W) + dnp > dnp - 0P< Z Uc,m)

Kc<m=Kmax

> dpp — Op( max vcym)

m>K,

= dnp —O0p(8) >0,

because of the rate condition in (B.1).
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Case II: K, = 0. We have S, = ﬁUCU/c, ¢ € {a, b}, whose eigenvalues are bounded
by ﬁ”ﬁcnz < Op(8). In addition, V' (K,) still converges to %ZiE(OﬁilC)’ which is
bounded away from zero. Hence, A > d,,, — Op(8) > 0. O

APPENDIX C: PROOF OF THEOREM 4.1
C.1 Outline of the proof

Since by Theorem B.1, the number of nonredundant factors over a given period can be
recovered with probability approaching one, we can conduct the proof assuming that
the true number of factors is known. We do so henceforth. The proof of Theorem 4.1 is
structured as follows.

Part I. PCA expansion. As discussed in Section 2, we have the following discrete fac-
tor model:

Y.=BF,+Uc+R., c=a,b, (C.1)

where recall R, is a residual component containing the approximation error to the dis-
crete factor model. We can apply PCA to Y .. Using the definition of PCA, we will make
the following expansion:

1P3, — Pg, Il — (Ba + By) = fia + iy — fhap + As,

where B, and B, are certain centering terms, the first three terms on the right-hand
side of the above equality are the leading terms that jointly determine the asymptotic
distribution of the statistic under the null hypothesis, and As is a higher-order term. In
the above, B, and By, are the leading bias terms. Using the estimates B, and Bj, for them
leads to

kny/P[IPg, — P, I7 — (Ba+ By)]
= kn/P(Fa + B — ) + kn/P[As + Ba + By — (B + By)].

Finally, we also use the bias-mimicking projections that are in the term Ay, and
hence we need to consider Pg . and Pz . These two terms are the projection matri-

ces associated with B\mix,() and Bmix, .. We can get a similar decomposition for
Amix = 1Pg,.. . = Ppoy, JF — Bmix,o + Bmix.e), (C.2)

where Emix,(, + §mix,e is the estimated bias term for 1Pg,.... — PB

2
: mixe ll%- Namely, we can
write

kn\/ﬁ;l\mix = kn\/ﬁ(limix,o + ﬁmix,e - ﬁmLx)
+ kn\/ﬁ[AS,mix + Bmix,o + Bmix,e - (Emix,o + Emix,e)]-

The terms in the above decomposition are the natural counterparts of the ones for the
projection discrepancy P — P, above. Putting things together, this will lead to an ex-
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pansion for the test statistic S. This expansion and the definition of all the terms in the
above decompositions will be given in Section C.2.

Part I1. Higher-order terms. In this part of the proof, we will show that the higher-
order terms are negligible, in the sense that, for c = a, b and d = o, ¢, the following terms:
kn/PAs, kn/DAs mix, kn/P(Be — E), and k,, ./p(Bmix,a — ’B\mix,d) are all op(1). As a re-
sult, under the null hypothesis,

S= kn\/ﬁ(,a:a + ﬁb - ﬁab) - kn\/ﬁ(,a:mix,o + ,a:mix,e - ﬁmix) +op(1).

Part II1. Asymptotic null distribution. We will then derive the asymptotic distribu-
tion of the leading term. This is done in Section C.4.

Part IV. Bootstrap limit result. In the next step, we characterize the asymptotic be-
havior of the bootstrap statistic in Section C.5.

Part V. Asymptotic Test Size. In a final step in Section C.6, we use the results in parts
I-IV to derive the result in (35) concerning the asymptotic size of the test.

C.2 PCA expansion

Step 1. For ¢ € {a, b}, let QC be the K x K diagonal matrix consisting of the first K
eigenvalues of 767/6/ (pky). By the definition of eigenvectors, YCV/CZ%\C /(pkn) = BeOe.
Expanding Y . using (C.1), we can verify that the following identity holds:

o~ o~

1 — —
Bc - BCHC = k_UchAc + Alc, (C-?))
n
where
1l — any L o1
Alc = pkn UcUcBCQc + pkn UCRcBCQc + pkchycBCQc ’
< 1 A A—1
AC - _BcBC c (C4)
p
1 5 5 A-1
H.= koncYch .

Next, Lemma C.2 below shows that H, is invertible with probability approaching one,
hence Pg, = Pg. 4. As aresult,

1 ~ ~ —~ _ ~
Pg = Po.+ 5 (Be = BeHOB. + BebacB. + Be(Bebe) 'HI V(B - BeHe),  (C5)
where

1 ~ _
Soc=He- [HLBBH: — BLBe](HLBLBH.) g (C.6)
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From here and building on (C.3), we further expand (after some tedious algebra):

1P, — Pg, Il — (Ba + Bb) = fia + b — fap + As,

2
,uc_—trA’[FU U.F, —BIAS] ¢, cela, bl
pk;

2 e
Mab = —— 2 tI'A F U JUbFpApG,

n

5 (C.7)
BC_TtrA BIAS, A ZtrACfc Ji AE(02,1]0),

Pn n,l

P
BIAS. = Y E(0?,|C)F Fe,
i=1

A

1 -1 _
=—Bbﬁa+H (;Bé,ﬁb) By Ba(BLBa) " HL,

with As being a remainder term, whose lengthy decomposition will be given in Sec-
tion C.3.1, and we remind the reader our notation in (16) and (17) in the main text.
We then estimate B, by

o —

= 2
Be= 5 (0 ' FeFeQ. )E(oZ,[C), ¢ € la, L

n

As a result, we can write
I1Pg, = P, IF — (Ba+ By) = ia+ Fip — Bap + A5+ Ba+ By — (Ba+ By).  (C8)

Step 2. We continue with Ap;,, the bias-mimicking statistic. The expansion for this
term requlres introducing significantly more notation. For ¢ € {q, b} and k € {0, e}, let
Yc, o F o.k» Uc k denote the columns of Y., F., and U, realized on k time points dur-
ing period c. Recall that Bmlx x is constructed as the eigenvector using data lex, K=
Yoo You)-Let Sy en = - LF. Fc k- Then

1
knp

- 1 S ,
Y mix & Y mix, k = ;,Ban,a,kBa + ;.Bbe,b,ka +4, (C.9)

which holds under both null and alternatives, and

s= %

ce{a,b}

ckU k+—UckUc _c,kFcka/c-i-Reml,
Pkn n

pk

with Rem; being a remainder term that depends on R, and R;, in (C.1). Let lex « be the
K x K diagonal matrix consisting of the first K eigenvalues of Y iy x lex «/(pky). By
the definition of the eigenvector defining ,Bmlx x» we have an identity similar to (C.3):

Bmix,k — BabHmix, k
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1— — 1 ,~ o~
= _Ua,kFa,k;B;Bmix,ka}ka +

1 — — 1 ~ ~_
- —Up, i Fp,k— B} Bmix, k Oy 1
n p ’

kn

+

1 - — = ~
k Ua,kUa,kBmix,kaiX’k

n

|
i+ Rem, (C.10)

with the following notation:

1
Pnky

Bab = (Ba) Br), H ¢ mix,k =

F..Y. B O-1 Ha,mix,k
Fc,kYCkamiX,kaika) HIIliX,k = H - ,
b, mix, k

and where Rem is a remalnder term depending on Ra, Rb similar to that in (C.3).

Let A21nlx k= HmLX, [H/ mix, kB b.Bamelx, - 'Bmlx k,Bmlx,k](Hmlx kB bBameIX,k)
Then, similar to the identlty (C.5), we have

Pﬁmixyk - P.Bameix,k
1 ~ -, —~
= ;(Bmix,k - Bameix,k)B;nix,k + BabAZmix,kﬁinix,k

/ 1.~
+ Bamelx, (H mix, k,B bBameIX k) (,Bmix,k - Bameix,k)/~ (C.11)

Identities (C.10) and (C.11) hold under both the null and the alternative hypotheses.
Under the null that 8, = 8,H for some invertible matrix H,

BabHmix, k = BaLk, Ly = (H g mix,k + HHp mix,k)- (C.12)
Lemma C.7 below shows # ||Emix,k — BapHmix kIl = op(1). It follows that
1~ —~ 1 1
I= ;B;njxykﬁmix,k = ;Hr/mx,kB;bBahHmix,k +op(l)= ;L}(B;Ba[fk +op(1).

Also, the eigenvalues of % B, B, are bounded away from zero. Hence, by Lemma C.1, Ly is
invertible with probability approaching one. Hence, Pg,u,,, , = Pp,L, = Pp, under the
null. Then the left-hand side of (C.11) can be replaced by Plgmix,k — Pg,.

Next, define

— S — — F
Umix,k = (Ua,k» Ub,k)» Fmix,k = (Fb L/i,]lfl ) ’

~ —~ ~ ~ 1 ~ ~_3
Gmix = ;,B;nixyoﬁmix,e’ Amix,k = ;B;Bmix,kaixyk-

Then under the null, (C.10) can be rewritten as

Emix,k — BapHmix, k = k_Umix,kaix,kAmix,k + Almix k>
" (C.13)

s A
Aimix,k = Umix, k U mix, k Bmix, k Qix x T Rem,

n

for Rem that depends on R, Rp.
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Combine with (C.11) to obtain an identity similar to the one in (C.7) under the null,

- - 2 _ . . . .
”P.Bmix,a - P.Bmix,e ”F = Mmix,o + Mmix,e — Mmix,oe T AS,I’HIX’

2 ~
l-Lmix,k - pk — tr Ale k[ le,kUle kUmIX kalx k]Amix,k,
n
— — ~ ~
Mmix,oe = tr A;mx OF mix,oU mix, o Umix,eF mix,eAmix,eGmix;
n

where A5 nix is a remainder term similar to As. Let

2
Buix,k = 2 trA;nlx k[ Fa ik FakE(0y 211C) +H'Fy  F), kHE(‘Tb 1|C)] mix
n

—
-~

/\ —~~ A—l —
Bmlx, tr lex k* a, kF(l kalX k ( : | ) tI' lex ka,kakamix,k]E(o-Iillc)'
Then
-/Zl\mix = ”Pﬁmix,o - Pﬁmix,e ||%" - (§mix,0 + §mix,e)
= (Mmix,o - Bmix,o) + (Mmix,e - Bmix,e) + Kmix, oe
+ (Bmix,o - Emix,o) + (Bmix,e - Emix,e) + AS,mix-
Altogether, we have
IPg, — P, |5 — (Ba + Bp) — Amix
= ﬁa + :a:b - ﬁab - (Mmix,o - Bmix,o) - (,Uvmix,e - Bmix,e) — Mmix, oe
+ A5 + (Ba - Ea) + (Bb - Eb) - (Bmix,o - Emix,o)
- (Bmix,e - Emix,e) - A5,mix- (C-14)

The term in the second line of the above expression is the leading term, jointly deter-
mining the asymptotic null distribution, while the terms in the third line of the above ex-
pression are higher-order terms. We need to show that, after multiplying them by &,,./p,
these terms are asymptotically negligible.

LemMmA C.1. Let Apin (A) and Amax(A), respectively, denote the minimum and maximum
eigenvalue of a semipositive definite matrix A. Suppose 2, is semipositive definite, and

Amax(2) < C, Amin (L/EL) >
for constants ¢, C > 0. Then Amin(L'L) > ¢/C. If L is a square matrix, then L is invertible.

Proor. Let v be the eigenvector of L'L so that v'L'Lv = Apin (L'L). Let 6 = Lv. Let I be
a generic identity matrix. Then CI — 3 is semipositive definite, implying 6’26 < C||0]?,
which is

C)‘min(L/L) = CU/L/LU > U/L/ELU.
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Because L'3L — cI is semipositive definite, v'L'%Lv > ¢. Hence, Ay, (L'L) > ¢/C. This
shows the singular values of L, which are square roots of the eigenvalues of L'L, are
nonzero. Hence, L is invertible if it is a square matrix. O

C.3 Higher-order terms

According to (C.14), there are four higher-order terms:

~

AS) (Be — EL‘)’ (Bmix,k - Bmix,k)» AS,mix, c=a,bk=o,e.

We aim to show that, after multiplication by k,.,/p, these terms are all asymptotically
negligible.

C.3.1 Higher-order terms I: As and As mix In this subsection, we focus on As and
As, mix. In particular, As has a lengthy expression, given as follows (A5 iy is defined sim-
ilarly):

2 1 ~ —— 1~ ~ 2 1l ~ o — ~ o~
AS:_;trk_nA;FaUaAl,b;B;;Ba_;trk_nA;)FbUbAl.a B;Bb

Sl

2 1 ~ ~ 2 2
— S tr A} 4A1p—B)Ba — 2<A4 + A3+ A3 5+ = ALl + —||A1,b||%>
p p p P

+ ;trk—A;F;U;ALa + ;trk—A;F;U;ALb. (C.15)
n n

The expression for A5 depends on A; . and Ay, ¢, given in (C.4) and (C.6). It also depends
on Az ¢, A4, which are defined as

—~ 1 ~ _ ~ —~
AS,C = Ztr(BC - BCHC)/BCAZ,C + 2t1‘ ;(BC - BcHC)/Bc(B/cBC) lHéil(BC - BCHC)/BC

+ Bl cll% +2tr BL(Be — BeHOH; A,
—tr(Be — BeH o)Ay JH. " (Be — BeH.,

1 _ _~ -~
Ag=) tr 5 BeBe = BeHe) Baba By

c£d
1~ =~ - =173 l
+ 2t Be(Be = BeHe) Ba(Bba) "H 7N By — BaHa) (C.16)
c#d
+) tr ECA/Z,cBéBd(B;Bd)ilH;;I(Ed — BaHy)'
c#£d

1 - — ~ 1., — _
YU AN (B5e) BB, H
c#d

+tr A Hy Y (B,B4) BB (B, By) T HY T A, + tr Budh Bl BrA 5 B).
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The above expression for As can be derived after tedious algebraic calculations.
Here, we illustrate the sources of all the terms in As. From (C.5), by substituting the ex-
pression for Ec — BcH., we have PEC — Pg.=g1,c+ -+ g5,c, where

1
pkn

81,c = UCFCZCE/Cr

1 —~
82,c = ;Alcﬁ/cy
83,c = BCAZCB\/C’

1,01
ga.c = Be(BLBe) ' H.' —AFT.,
n

-1 _
85,c = BC(B/cBC) Hé- IA/lc

Therefore,

1Pg, — PaIiE = lgacli+ Y tr(gy 8re) — Y (8 o8dsb)-
d,C C,dlyédz dl)dZ

(1) In Zd cga, cIIF, the leading terms are g1, /1% + [1g4, C||F The higher-order terms
are: [|g2,cl1% + l1g5,cl% = Op (3 1A1c]®), and llgs,cllF = Op(ll 5 BL(Be — BHO)I?).

@ In} . 424, t1(8y, cgdz ¢), all terms are of higher- order which involves terms like
Op(181cl1? + I 51 F U Bell? + 15 BL(Be = BeHOI? + 525 F U Al

@ Ind 4 4 tr(g:jl o8dy,b), only tr(gy ,81,5) and tr(gy ,&a, b) are the leading terms, all
other terms are of higher order, involving Op(—||Alc||2 + || F U.B4l2 + |12 ,Bd(ﬁc —
BHO? + | 75 F U Awal) for ¢, d € a, b

We start with establishing some preliminary bounds in Lemmas C.2-C.5. With their
help, we derive the bounds for As and A5 ix that we need in Lemmas C.6 and C.7.

LEMMA C.2. Assume gp =OWkn A /P) and pk A, =0,(1), as p, n — oo. Under both
null and alternatives, ||Bc Bch | < Op( / + +84) and ||Arc] < Op(f + f + 84),

where Ay = pkn UCUCBCQC pkn UCR/CBCQC pkn RCYCBCQC

04 = ‘ (C.17)

~ 1 — o~
4 cBC + chycﬁc .

Also, ||H|l + |H Y| = Op(1).

PrROOE. Recall that Q. is a diagonal matrix consisting of the top K eigenvalues of
Y/Y./(ky,p). From LemmaA.3, | Q.|| = Op(1) = || Q.|| Also, recall that

Ec - ,Bch
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B0 (C.18)

U.R.B.0O;"
n

iS)
x~
N
=

Age

The first term ||kl U.F A < ||éﬁcfc||0p(l) < Op(/p/kn) by Lemma A.2 (iv). The

second term
< (1)—1 [T P18l = 0p [ L2 + —
o
=k, 1 e ¢ Pk, JP

using EC = Op(/p), Lemma A.2 (ii), the condition pk,A, = O,(1) and Lemma A.3. For
the third and fourth terms, we have

i
C
PKn

5.0 vp, 1 )g,,,

pk

s~ A 1~
C QC C Qc

< O0p(1)8y4,
2 <O0p(1)d4

Pkn

by making again use of Lemma A.3. Together, because {, = O(vky), ||Ec — BcH:| <

OP(\/7+ + 84).

Finally, to show ||H.|| + ||Hc‘1|| = Op(1), we have proved ﬁ”lﬁ\c — BcH |l = op(1).
Hence,

——B Be= H/B BcHc +op(1).

This then implies that all singular Values of H. are bounded away from zero and infinity.
O

LEmMA C.3. Under both null and alternatives,

1 64 Y A1/4 1/4 ) 1/4+\/I >
7E

1, -~ 1 {
—By(Be = BcHe) =0 <—+ +——+
Pl bk ke ks K pk

and

84 54A1/4 PRI A VA1 52
+55

PN RN RN RN AT

]]:?rcc;d € {a, b}, and where 85 := k pBCUcR’ B.O: ! + pk chR Y.B.0:!, and 84 is de-
ned in (C.17).

1 -~ 1
;Z?d(ﬁc — BcH,) 0p<

Prookr. Recall that, for R, being the matrix of discretization error in the factor model,

\UF A, \U.U.B.0;"

1 ~ 1
- /( c— ch):
de B B knp

— A 11 —t A
LUR.BO; ' + E;B;RCYCBCQC L
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It is easy to see for the first two terms on the right-hand side of the above equality that

1 — — ,/
B/U~F~A-§’ LUCF| 1A |I<0< )0 1),
knp dY cl cc cl'c P \/— \/— P
1 1 ,— —r~ ~ 1
pkn;BchULBchlsop(l)” 2 Bd( ~E(U.T,c) HIIBC BeH:|

Bd(UcU E(UCU |C))Bc +OP( )

1 AVAEN /A
<0 (<—+ 2 )HBC—BC ¢ L p‘l)
’ pPVkn N Pkn Vkn
-0 (1 1 84 54A1/4 A4 s AL/ \/An)
P
P RdP ok pkn  kn plke VK

because E(Ucﬁ;w ) is a diagonal matrix with bounded elements and by application of
Lemma A.2(vi), (v), and (vi) as well as Lemma C.2. Combining these bounds and using
the definition of 6 ,, we get the first result of the lemma.

For the second result of the lemma, we have

1~ ~ 1 ~ 1 ~
—By(Be — BeHe) < —By(Be — BeHe) + —I1Be — BeHe 1.
p p p

From here, the result to be proved follows from the bound for the first result of the lemma
derived above plus application of Lemma C.2. O

Lemma C.4. Suppose }g—f = 0(5?,) and pk,A, = 0p,(1), as p, n — oo. Let

86 =

FU,UR.BO;
n

FqU4R:Y B0,
n

and Ay = S-UU B0 + U RBO ' + SR Y B0
Under both null and alternatwes, forc,de {a b},

L k k
F;U;AlC=0p<1+ /?n+36>+013<1+ki;>{p+01)< /k%Jr /?”)645

1 Vk
+Op( n>§127
Vkn p
ProOE. Recall that F, U, A = FdUdU U.B.O7' + %F;U;UCRQECQ? + o X
FdUdRCY ,BCQC
kn TF I — T —
First, ( FdUdUcU Be)? = Op(1 + ) WUFell = Op(Vknp), and |Ucll =

Op(/(kn+ p)g“p) by Lemma A.2 and because pknAn = Op(1). Hence, by using Lem-
ma A.2, Lemma C.2, and the the expression (C.3) for Be — ,BCHC, we have

l o —— — ~

UdU U Be+

F, U;Ucv/c(ﬁc - BCHC)
n
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1 -/ 5/ 5 55/ ]. = 77 12077 12
 FaUaUcUcBe+ OP(I)?”FCUCH Ul

n PKy

=

1 ——
. IFUNTU NP 1A

n

ky kn
coris ) o oo S

1 vk
+Op (— + ) é’%
Vkn p
Lemma C.5. Let p — 00, Ay — 0, ky, — o0, and kA, — 0. Under both null and alterna-
tives, we have for c = a, b,

+

O

% _ 1 H L OR B+ L RY.Be T Op(A%®), (C.19)
p  plpkn € pkn © € "
LSISJ - ' pz%if’j;mze;ﬁc@;l T pZLk%F;U;Rj;ﬁCQC—I - op< jki) (C.20)
1851% = ) ﬁﬁzﬁcﬁcﬁc@# + ﬁB;Rc?Lﬁc@‘l T Op(A%7). (C.21)
Proor. First, we note that
IBel>=0p(p), and [Bcl> =Op(p), (C.22)

from the assumption for 8. and the fact that each column of g,/ /P is an eigenvector
(and hence has a norm of 1). From here, all results follow by application of the Cauchy-
Schwarz inequality and Lemmas A.1 and A.2. O

LemMA C.6. Suppose k, — oo, p{8 = o(k%), k3¢5 = o(p*), and pknA2% — 0as p,n—
oo. Then, under both the null and alternatives, k,./pAs = op(1).

Proo¥r. From the definition of A5 and since || 8.||? + II,@\CII2 = Op(p), itis easy to see that
to bound it, it suffices to derive bounds for the following terms:

1 , 1., - z 1 —— |?
—[lArell®, —B(Ba— BaHa) | , —F.UBa| >
p p Pkn

1 FU.A ¢, d€{a, b}

knp cYeRld||» ’ » Uy

provided || H.|| + ||H§1 | = Op(1). These terms are bounded in Lemmas A.2, C.2, C.3,C.4,
and |H.|| + |H || = Op(1) is shown Lemma C.2.
Applying these lemmas, for ¢, d € {a, b}, we get
)

2
A5§0P<

1 ——
pTFCUCBd
n

1 ——
+ H mFCUcAId

1 s 14 -
+ —lA1,cllI” + | =B(Ba — BaHy)
p p
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1 1 8 & 5 1 1 1
sop(—+ +24 +52+—4)+0p< )g +0P< +—>§2
k% p p knp 5 p2 knp k2 p ki/zp pz p

1 1 A,
+0P< + )34{ +0P<—>,
pl/zkf/z k,11/2p3/2 I kn

where 84, 85, 8¢ are defined in the statements of Lemmas C.2, C.3, C.4 repeated here:

~ 1 — ~
04 := ‘ ¢ cﬁc + %RCY;BC ,
855 = T '"U.R.B.0:" 'R.Y.B.0:1, (C.23)
n
. ]. — =/ = 5 A—1 ]. -/ =/ -/ = -1
66 = mFCUCUCRCBCQC + chUcRCYcBCQ(; .

Hence, to show ,/pk,As = op(1), it suffices to have ¢, = o(\/p), p{f7 =o(k2), kﬁ{f, =
o(p?) and pk,A, = Op( 1) (implied by the requirements of the lemma), and in addition

show that ,/pk,( I/Zkg/z + P 3/2)64{1,,_0(1) and ./pk, ( 2 + > +62)_0p(1)
The last results follow by apphcatlon of Lemma C.5 and the condltlons k — 00, kpA, —
0 and pk,A%% — 0. O

LemMA C.7. Under both the null and alternatives, and under the same condition as in
Lemma C.6, k;./PAs mix = op(1). Also, ﬁ | Bmix, k — BabHmix k| = op(1), fork = o, e.

Proor. The proofis the same as that of Lemma C.6, as the higher-order terms of A5 mix
and As are of the same type. In addition, exactly as the proof of Lemma C.2, we have

| s 4
ﬁ”ﬂmix,k_ﬁamelxk”_ f (,/ +7%+54>=0P(1)» k=o,e. O
C.3.2 Higher-order terms II: Bias estimation Recall the definitions: I§c =2 tr(@gl) X
]E(a- 1|C) and B, = 2 Zk” tr A/ fc tfc / C]E(o- 1|C) Here, BC is an estimate of B, where
we estimate E(o? 11C) by

—

]E(Uc2,1|c)

Uc2(1+Ke/kn) + — 7 tr(BLDcBe),

with D, = diag{o?, ..., 32 ,} being the p x p diagonal matrix of estimates of the id-
iosyncratic variances, and K. is the number of factors in period ¢ € {a, b}.

The goal of this section is to show that ﬁkn(ﬁc — B:) =o0p(1), and ﬁkn(gmix,k —
Bnix k) = op(1). This is established in Lemma C.10 below, which uses the auxiliary re-
sults in Lemmas C.8 and C.9. Before giving these results, we provide the rationale behind

/\

]E(a g |C). A naive estimator of E(o? <1 |C) is k I U 1|2 % which however underestlmates the
volatility because of a higher-order bias in > kn I UC || for estlmatlng || U.|? - This bias
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can be derived and estimated as follows. We have

~ ~ ~ 1 ~ — 1 ~— 1~
Ue—Ue= (B — BeHO)F. + BCHCEE(BCHC —Bo)H'F. + BCHCEB;UC + BCHCEB;RC
=81+ +g6

1
g1=k chAF/

n

1~ —
g2 - BCH Bc
(C.24)
— A A1
g3 = pkn UCUcBCQc lFé»

1 ) o~ _
g1=———BHB.UU,BO; ' H'F,,
14 kn

1 — — =
g5 = —pknBchB UF.A Hc 'F.,
g6 = Rems,

where Rem3s means remaining terms that depend on R.. Hence,

6
TG = 1T ell7 =) llgall% + > tr(g, 84,) ZZtr 124).

d=1 dl,d2:1,“.,61d175d2

Here, ||g1 ||F + ||g2||F - 2tr(ch1) 2tr(UCg2) is the leading term. To estlmate its com-
ponents, note that F. A. can be estimated by F, Q and note the identity . Fe F'F.=0..

Hence, k > (g1 IIF + ||g2||F — 2tr(ch1) — 2tr(UCg2)] can be estimated by

5c:=_k_7”U6”F p tr(Bch c)-

Therefore, we can correct the bias of || U, I 129 by

—

E(Ucz,ﬂc) =

||U 151+ Ke/kn ) p tr(BLDcBe)- (C.25)

Lemma C.8. Let p — o0, A, — 0, k,, — o0, and k,A,, — 0. Under both null and alterna-
tives, we have for c = a, b,

kffz |B.RUUF,| i VP | BLRT.B.| = 0p(a7), (C.26)
P | RBe|? = Op(/PAZF),  (C27)
knpz cHc¢ =up P n ) .
LERBe=0p((P]), S| BT TR =or),  (C2)
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fg |B.UU.RY Be| =Op ((1 +./ ﬁ)&’?)» (C.29)
kyup kn
] — o 1 — o~ 1 -
k‘/fz B/CRCU/c<_pkn U.U.BO " + ok R.B.O: '+ pknRCY/CBCVC‘1> H
n
=op(l). (C.30)

Proor. The proof of all results of the lemma follows by application of the Cauchy-
Schwarz inequality and the bounds derived in the proof of Lemma A.1. O

LEmMMA C.9. Suppose (i-,p = o(k3), & = 0o(p¥*), &n = o(knp), and pAZ® — 0 and
Pknln = U U Bc—OP(l)

Proor. We have */— B’U U Ec < vy + v2 + v3 where

V] = \/_ ﬁch) UcU BC \2/? c,B/cUcU/C(Ec - BcH,.),
p kn ky

vy = \/— ,B (U U EU U |C),BL o
P n

vg = *2/5 H.B.E(U.U.|C)BcHe..
P kn

For vy, we apply Lemma C.2 and Cauchy-Schwarz,

' 7213 +ky
Ul5OP(pkn>”Uc||2”BC_BchHSOP<pp >§p< jp_+84>=01)(1)'
For vz, we apply Lemma A.2(vi) || 2k B, (U, U _E(U.U |C))Bc||—0p( -+ JA_n) So,
v2 = op(1). Finally, v3 = Op(p~ 1/2) .

LemMmA C.10. Suppose k, — oo, pgp = o(k?), k2§p =o(p3), pA%® — 0, and pk,A, =
O,(1), as p,n — oc. Under both null and alternatives, ./pky ||BC B.|| =op(1), for c
{a, b}. Also, \/—k (Bmlx,k - mlx,k) _Op(l)fOI‘kE {o, e}.

ProoF. Define

P kn

k2 ZtrQ 1fofcth ZZ csz= ﬁﬁA )“U ||F
n =1 i=1 s=1
We first show ./pk, || B — B¢ = op(1), and then show ﬁkn||§c — Bl =op(1).

First, because €2 ,; are C-conditionally cross-sectionally independent and given As-

sumptions SA1 and A2, we have

kll

chsztk ZZ cllc CSl)_OP(l)

slll
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For ./pkn|Be — Bell = op(1), it remains to show ‘[(Z FF AU — % x
(O FLFO Tl = op(1).
The left-hand side is bounded by the sum of the following three terms:

_ P |FeAc— E.O7 21T + % |F.0 1T — Teli2,
n

SP(3F,

n

~O;'F))F A,

a2=2‘

P ky

||ﬁCch|| ZZ(Q ti — €c,ti)€c,ti-

i=1 t=1

_To_proceed, note that F. = p~'Y.B. implies F.Q0;'! — F.A. = U.B.O-'/p +
R.B.0-1/p. Also, recall the expansion in (C.24). Then, for a;, by using Lemma A.2,
Lemma A.3, and Lemma C.2, we have

1 ~ — 1 ~ 11~ |7
—Ucn%sop(l)—nﬁc—BCHC||2+OP(1)— —BLR.
pkn knll p F
+0p(1) 2||,3c|| 1T |I*
knp
R CO Y 1~ |?
50p<k—"+—"+—4)+0p(1k —B.Rc| ,  (C31)
n p p ni P F
2 2 2
| PN 2 4 4 1~
—|F.0' = F.A.|° <0p( 22 —P> Op(1 ~B'R C.32
kn” CQC c c” = P(kn+ P) + Op( kn ch c - ( )

Therefore, with ¢ 127 =o(/PA % ), which is implied by the conditions in the statement of
the lemma, we have a1 =op(1).

For az, we note 7-||Uc|% = Op(1). Also, Be — BeHe = iUCEZC + Are. Lemma C.4
showed L ||F U, Aicll = op(1) under the conditions of the current lemma. Also,
Lemma C. 8 showed Op(k )||F ECH = op(1) because ﬁAf’ — 0. Then combined
with Lemma A.2, and under the condition that p = o(k2),

<00 (L) |FU.Be| + 0n(ZL )| Firi |
np

<Op (f>|}F U Bc||+0P<k p)“F/U/ "+ I;HF/CU/CAMH+"P(1)=0P(1)'

n

1 o A s
az < Op(/p) H k—(AcF/c ~ Q. 'F)F.
n

Finally, for a3, we need % tr[(U, — U.)'U.] = op(1), which is bounded using (C.24),

VP

0350P<k »
n

)tr[(ﬁc ~-U)U]
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<op(1) 2p||F U,UCF| +0p(1)£||F U A

+or(h)* p IIBCUCU B

1 1~ ~
+O - — - /C CHC_ C
P(\/E)’PB (B Be)

f

H B.R.U.B.

+op(1)7 ZHBRU(Bc BcH.)||

<op(1)+0p(1) ||B R.U,UCF.| +0p(D)7 PRy IIBCR U.Be|

2p2

+0p(1) ||BCUCU’CUCR;EC||

+ OP(l) 2 p3 HE/L‘UCU;RC?/CEC “ .
kyp

Here, we used the Lemma C.9, showmg BCU U. ,BC < op(1), under the condi-
tions of the current lemma. Also, Lemma C.3 showed

ﬁc(ﬁc BcH.)
p\/7

1 5, S4AL* AVE /A 1 52 85
SOP( ! 450 +§p n >=0P(1),

—t+ —+ + +
p\/E pkn ~ /Pkn Pkn kn 3/2 p\/_ \/_

with the last result due to the conditions of the current lemma. The asymptotic negligi-
bility of a3 then follows by application of Lemma C.8 provided pA2? /k, — 0.
To show ./pk,||B. — B:|| = op(1), note that

~ 2 e 1l
B. = ——tr(Q; ' FLE.O. )1 UM%
kyp

~ 2 A -
B. = i tr(Q7 \FLF. 07 )E(0?,4]C),  cefa, b

n

From Lemma A.3, ||QC 1| = Op(1) and together with the 1dent1ty T F’Fc QC, we have

/\

Etr(QC 1F'F.Q:1) = Op(1). Also, by (C.25), E(o?,|C) := mHUan — 8¢, where |§;| =
Op(k—ln + %). Hence, using (C.31), Lemma C.2 and Lemma C.8, we have

~ o~ 1 -~ —
VPknllBe = Be|| = Z‘F 1(Q; FFeQ; )’pTHUcn%—E(oE,JC)’
n
1 = Y
< op(ﬁ)‘pTHUcn% - E(crf,ﬂc)‘ =O0p(V/Pdc)
n

1 1
< OP(\/ﬁ)OP<k— + ;) =op(1).
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As for \/ﬁkn||§mix,k — Bnix « |I, note that

2 R
Buixk = 1 e Ay [Fo o FaiE(021]C) +H’Fé,ka,kHE(fff,lIC)]Amix’
n

o~

2 -~ -~ —
2 -1 2
Buix,k = 12 i lex k kFa kalX k ( T41 |C) tr lex ka,kakamix,kE(Ub,l |C)

n

15 ~ 7 ~ =~ .
Also, Amix,k = ;B;Bmix,kaixyk and Fc,k =p 1Yc,kﬂmix,k 1mply
ﬁ N—1 F 1 = N ! — _R N—1
Ckamix,k - c,k;BcBmlx,kaiX’k p c kBmlx,kalX k + P) ¢, kBle;kaix,k’

where Fak B Bmlkulek = F, kAInIXk and Fbk BmeleleXk = FpH' Alek
when B, = ,8aH From here, the proof of ,/pk, ||Ble % — Bmix k|| follows from the same
arguments, so we omit it for brevity. O

C.4 Asymptotic null distribution

Lemmas C.6, C.7, and C.10 show that k,,./pAs = op(1), ky/PAs mix = op(1), ﬁkn(ﬁc -
B.) = op(1) and /pk;(Bmix,k — Bmix,x) = op(1), for c € {a, b} and k € {o, e}. It then fol-
lows from (C.14) that

VPknllPg, — Pg, I3 — (Ba + Bp) — /PknAmix

= «/ﬁkn[/ja + ﬁb - ﬁab - (Mmix,o - Bmix,o) - (:U«mix,e - Bmix,e) - Mmix,oe]
+op(1), (C.33)

where we recall here the definitions of these terms:

- 2
MC_thrA/ |:F U UcFC ZE CllC)F Fc:|AC’ CE{a,b},
n i=1

2 AN e — o~ A~
Rabp = —5 2 tI'A/F U JUnFpApG,

n

2 — — — — -~
Mmix, k = pk — r Al’nlx k[ m1x,kUmix,kUmix,kaixyk]AmiX.k’
n
~, —, _ _ ~ ~
Mmix, 0e = tI' Ale, mix, o Umix, o Umix, e F'mix, e Amix, e Gmix
n

2
Buix k = P trAm [ Fo i Fa kB (o) Zic)+H Fy, 1 .Fp, kHE(Ub 1|c)] mix-

n

We now derive the asymptotic distribution of the leading term. Using the notation
in (C.41),

\/Ekn[,a:a + ﬁb - ﬁab - (Mmix,o - Bmix,o) - (I—Lmix,e - Bmix,e) - Mmix,oe]
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= Z/Z\a(;l\a) + Z’Z\a(;l\a) - Ziab(;l\a; 2})6) - 2/Z\mix,o(;1\mix,oy H;l\mix,o)
- szix,e(Amix,e, HAmix,e)
+ 2Zmix(Amix,o, HAmix,o, Amix,eGmix’ HAmix,eGmix)- (C.34)

Also, recall that the left-hand side is ,/pk, ”PEa - Pﬁb ||12¢ - (§a + §b) - ﬁknﬁmix +op(1).

~ P - AP = -~ P - ~ P
Lemma C.11 below shows that Ac - A¢, G - G, Anixk = Amix, and Gpix k —

21, for some A., G, and Api. In particular, Amix does not depend on k. Hence,
by Lemma C.12 below, (C.34) also holds up to op(1) term if on the right-hand side
(ZC, G, ;‘Imix,k, Gmix) is replaced by (Ae, G, Amix, 21). That is,

VPknlPg, — Pg, |13 — (Ba+ By) — /PhknAmix
= Z/Z\a(/_la) + zza(lea) - zzab(lzla; /_lbé) - 2/Z\mix,o(/_lmix; H/_lmlx)
Z’Z\mix,e(/_lmb(v H/_lmlx) + 2/Z\mix(lzlmixr HIZlmix: 2121mix: 2H Anix) +op(1)

sz,ﬁoP(l), (C.35)

for some z; ,. Lemma C.12 below implies

Zzz VY (C.36)

where Z is a standard normal random variable defined on an extension of the original
probability space and independent of F and V is some C-adapted strictly positive ran-
dom variable.

C.4.1 An auxiliary probability bound We restate here some notation that will be used
in showing the next lemma. We define

o~

1 ~ o~
A. = =B.BO: Y,

p
~ ]_ ~ -~ -1 ]. / -1 / 7 -1 7—1
G = ;Bbﬁa +H, (;Bbﬂb) ByBa(B,Ba) H,

~
Amix,k = ;B;.Bmix,kaixyky

2

~ , ~
Gmix = ; IBmiX, O.Bmix, er

1 ~ ~ o~
= ;:B/L,Bc = Ach»

Efyc = A/CAC,

= K x K diagonal matrix of the diagonal elements of J;, A, A.J,,,
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O. = K x K diagonal matrix of top K eigenvalues of Y.Y./(pky),

_ 1
Q. = K x K diagonal matrix of top K eigenvalues of ;,BCA’CAC B.,

0*f = K x K diagonal matrix of top K eigenvalues of 2]1/ SEB,CE}{ f,

c
Omix = K xK diagonal matrix of top K eigenvalues of
420554 +05HS  ,H)S 2.
LemMA C.11. Under the null hypothesis, provided {,/p — 0 and pk,A, = O,(1) as
p, n— 0o, we have ) )
WA= Al +1G =Gl + 158, Ba— Gl = Op(Tu+ =+ J5 + ) = op(1), for some
(A¢, G) adapted to C, where

/

1 1 — —
T, = H ;,Bczf,cﬁ/c - %YCYC

50P(%*\F v

2) Apmix k L Ay and Grmix.k Lo, for an A,y adapted to C.

+ T+ IRTL).

PROOF (1) Note that the top K eigenvalues of + ,BCA/ A.B. are also those of 2}{?%32& X

2 . Also from Assumptions SA1 and A2, we have I —,8’ Be — 3p,cll = Op(p~Y/?). Hence,
as the proof of Lemma A.3, we have

+ Tn = OP(Tn + pil/z).

~ - - ~ = 1
|0c = Ok <[ Qc = Ok | +10c — Qcll < 12l ;Béﬁc —3p.

Meanwhile, %FLE =3+ Op(kn*'* + /kn/n). Hence,

~ o~ ~ 1 k
—1 n /
= A Op| — — FR
O, =3fcAc+ p< _kn+,/ - +Hknp Bc)

This implies that singular values of A, are bounded away from zero and infinity.
We now show that the eigenvalues of J; 2 .J, converge in probability. We have

H, =

knp

]. _~— =/ ~ ~ -~ - o~
];Ef,c-]n = pz—kB/CYCY/CBc +op(Ty) = Qc +Op(Ty) = Qi + OP(Tn + p—1/2)'
n

Then || D,, — Q?II = OP(?,I + p~Y/2). We now prove the convergence of J, following the

same argument as in Bai (2003). First, singular values of J,, are bounded away from zero,

which follows from the fact that singular values of 4, and Q. are bounded away from
— a2 )

zero. From ﬁYcYc Bc = B0, left multiply %B/c,

1 ~ ~
[;Blcﬂczf,c +Jn10P(Tn)i|Jn :Jch-
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Note that each column of 21/ 2] D, 1/2

one), so that they are also elgenvectors Also, D;;! and O. are commutable because both
are diagonal. Thus, left multiply by 2 / and right multiply by D,, 212,

is a unit vector (whose Euclidean norm is

1 10~
[ 312 R 3240y IOP(T)]E”ZJD V2 =3 %1,0.0," =31/21,0; 2 0.

Then by the assumption that O has distinct diagonal elements, the sin-theta theorem
implies ||21/2J DY M| =0p(T, + p~1/?) where columns of M, are the eigenvectors

ole/zﬁﬁ 021/2 So, |/, — 2_1/2 1/2|| —OP(Tn) Recall that AC_JnQC . Hence,
IAc = Al =0p(To+ p7%),  Ac=3; /M0 (C.37)

Finally, we bound G.Lemma C.2 implies, for §4 defined in (C.17),

+H Bbﬁa_ H 0P<L+§_p+6—4+ 1)

2/\/\
ZB,Ba—2H,3 5 poH
[~z WS R A

where 35 ;, is the probability limit of % B}, Ba. Meanwhile,

IHe =3 cAcl = 155, cAc = Sp, e Al + | He — S Acll

1 1
=Op<—+H —_F, "R.B, +7, +—> (C.38)
Vkn knp ¢ " NI
This implies
{p
BB H—HIG G||—O< ‘ FR/B +1, +—+—)=0(1),
H b AW/ f AT )

where G = 2A4}3 ¢ .35 5,3 f,c Aa. The last result above follows by applying Lemma A.1
and Lemma A.2, and making use of {,,/ p — 0, which is assumed in the statement of the
lemma.

(3) Recall that anx, x contains top eigenvalues of the sample covariance from
(Yy,k, Yp 1), which are equal to the top K eigenvalues of ,BaEf B+ 7 ,BbEf »B}, up to
op(1). Under the null hypothesis, they also converge to the distinct eigenvalues of Omix-

Thus, we have proved Qmix, k LY Omix. These eigenvalues are also bounded away from
zero and infinity so long as those of 2, 28,4, and H do.

Under the null, ﬁBaEf,uB; + %,Bbzfybﬁ/b = Ba2f mixB, where % nix == 0.52¢ , +
0.5HZ ,H'. Then the same argument for ||/, — 2]7’1/2 1/2|| = 0p(T,) in part (1) can
be repeated here to show

1 ,~ _ -
H;B;Bmix,k =3 MmOy | = 0p(1), (C.39)
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where the columns of M, are the eigenvectors of s 2 EB,,IEI/ Izmx Hence, under the

null,

f,mix

~ _ -1/2 ~—1/2
Amix,k = ,8 Bmlx,kalxk _> Ale = f,n/limeiXQmi){ . (C.40)

To find the probability limit of G iy «, we recall He, miy x = 1 F/C k?;, 4 Bmix, kél;l}x o

and Lk = (Ha mix, k + HHb mlx,k) Then Hc mix,k — 0. 52]‘ cp B Ble kale + oP(l);
which with (C.39) imply

1 —~ ~ P -
Ho,mix k = o.szf,ap—B;Bmix,ka;k +o0p(1) = 0.53 1,4 Amix,
n

P _
Hp mix,k = 0.52¢ pH' Amix.

This shows that L; converges in probability to some L that does not depend on k €
{o, e}. From (C.12),

1 ~ 1 ~ _
op(1) = —=|Bmix,k — BabHmix k|F = —=IBmix,k — BaLllF +op(1).
NI NS

-~

~ -~ ~ ~ P
Thus, Gumix,k = 2By, oBmix.e = 2 Bpyiy oBal +0p(1) = 2B, Bumix,o +0p(1) > 21. O

C.4.2 Anauxiliary CLT result Consider the following statisticsforc =a, b,and k = o, e:

= 1
Zc(gl) =

kn

kn
3 (z T, ta) (2 gia,n?c,t) . tr(éiféfcél)E(ofiIC)}

i=1 =1

3

X

2ab({lr {2)=i2( Zea tzfa,[§1)<\/—zgzeb tsz z),

i=1 ”tl t=1

(C41)

%\H 3

Znix,k({l, L) =

Kqﬁ

1 T
[|}7akt§1+7bkz§2” T > tr(gch,kFC,kgl)E(Ucz,l|C)i|7

i=1 c=a,b

P
Zmix({1, L2, {3, {a) = Z Ya,0,i81 + V0 i82) (&3Ya,ei + L4¥b,e0i)s

77

for some K x K matrices {1, {2, {3, {4, and where

Ya k,i= —F7— Zea tzfa zr Yb,k,i = —F7— Zeb tlfb t k=o,e,
\4 ”te77( v ”1677(

with 7, ={1,3,...,2[(k, — 1)/2] + 1} and To = {2, 4, ..., 2| kn/2]}.
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We note that for two K x K matrices A, B, we can write

/cv/cvf ZZ{ZecttfctBZAfctecﬂ}

P
tr A'[F [ mix, kUmlx kUle kale Z||Y;,k,iA+7/b,k,i

where the matrix H in the second line arises from the definition: F mix k =
(Far HFp 1)

We stack together the above random variables into a vector. Let { = ({1, ..., {12) for
{¢iti=1,..,12 being a set of K x K matrices. We then set

Z() = (Zp(&1), Za(£2)s Zap (L3, £8) Zimix,0 (L35 £6)r Zimix,e ({7, L8),
Zmix(L9, (10, Q115 $12)). (C.42)

The next theorem states a CLT for Z (£)-

LemMA C.12. Let {{y}k=1,..,12 be C-adapted K x K matrices and set { = ({1, ..., {12). We
have the following convergence as p — oo, A, — 0, and k, — oo with k,A, — 0:

Z(z) V(g)”zz (C.43)

where Z is a standard normal random vector defined on an extension of the original prob-
ability space and independent of C, and V' ({) is some C-adapted positive semidefinite ma-
ITix. -

In addition, ifz — {=op(1), we have

Z(Q) - Z() =op(D). (C.44)

Proor. In the proof, we will denote with C, a C-adapted random variable that can
change from line to line, depends on » and k,, and is Op(1). We can write

p
Z( =Y zu(d). (C.45)

We will apply Theorem VIII.5.25 in Jacod and Shiryaev (2003) to establish the conver-
gence in (C.43). It suffices to show the following three convergence results:

p
Y E(z(0)Ic) >0, (C.46)
=1
P P
Y [E(z:(Dz(DIC) — E(zi(DIC)E(Z(DIC) ] = V(&) (C.A7)

i=1

p
Y E&(|z(0I1c) = o. (C.48)

i=1
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Using Assumption SAl and the fact that E(Je; ;|7 + ||]_‘t||1q,) < Cy, for any g > 1 and C-
adapted random variable that depends on ¢ but not on ¢ and i, we have

p

D_E(:()(C)

i=1

kn P
:op<@7> and Z(E(|zi(g)\3)—>o. (C.49)
i=1

Therefore, to establish the convergence result of the theorem, we need to establish the
convergence of the second conditional moments above. We will show here the conver-
gence of the top three by three block of the matrix, with the rest of the convergence
results in (C.47) being established in an analogous way. Toward this end, we denote the
first three elements of z;({) with z;, ;, z4,;, and z, ;, and we further set

Ve() =E(o 10) [ALLEAc]
Van(£1, £2) =E (0}, ;07 ,|C) tr(1 AaA, L1 5 Ap AL £2).

(C.50)

With this notation, we will show Zf’:lE(zg,AC) E Vi (£1), ZleE(ziAC) E Va(&>) as
well as Z E(zab 1C) LN Vy(L3, {4). We start with the first of them. Using the fact that

E(Eb,”-fbyt| (-1)A, NC) =0k« (for 0.1 being K x 1 vector of zeros) and the integra-
bility conditions of Assumption SA1, we have

(K Vi ;Eb f’fbvfﬁ) (E;eb i&if, tgzﬂz\c)

k
1 &K, — =
_]E|:<k_25§,tifb,t§1§1fb,t> ‘C:|
nt:l

kn k
n Kn L _ C
k?_ ZZE 6% tzelz) sz fb,tglgifb,s)zlc) = \/ki (C.51)
n =1 s=1 n

In addition, using the smoothness conditions for the processes A and o;, we have

kn
Z ebttebst fbtf:lglfbs ’C

i MQN

1
_2
n

[AZbWAZ”W/] Lk [A'Z)WA”,)W] /
(o-bl|C) tr AbZTAbﬁQAbZTAbZIQ
n

=1 n s=1

< Cy/ ﬁ, (C.52)
n

and by CLT for i.i.d. random variables,

1 G [awanw] c

Kn =1 Af,

(C.53)

%m
S
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Further, we have

k 2 k
1 <8 - = 1 L — —
E|:(k_ Ze%,ﬁfb,tflélfb,) )C} _E(k_zelza.tifbvfglgifbvf ¢
L — mi=1

for some C-adapted random variable that does not depend on i. From here, we have
f):1]E(Z§,i|C) E 3, (£1) and similarly Zle]E(ziAC) LN Va(£2). Next, following similar
steps as above, we get

1 1 Fn (Afb ) A:’ WA:‘ w’
( ab, llc) p |:Ub i a ltr(AaA;é'zgiAbk— Z t Azt r AZ§3§4> ‘C:|
=1 n

SCnl< ﬁ+L) (C.55)
p\V n  k,

Using the law of iterated expectations, we can write

L (A W) NWALW
E |:0-b i Z Ag N Ua,i
n

t=1

b (& W) NLWALW
c} :IE|:Z o aga,i,,,\c}, (C.56)
n

=1

where we denote £ =C v o(W,; : s < ) and of, = E(O‘b i% ,Iftm) for t < b. Using
a martingale representation theorem (Theorem I1.4.33 of Jacod and Shiryaev (2003)),
we have a,fa = E(Ub iTa l|}'(§’)) + fo o5, dW; i, for some oy ; adapted to ]-'(’) and with
E( fo ", ds|C) < oo almost surely. From here, by applying a law of iterated expectations,
we get

. o (A7) A WA W k)
k_E[Ug,ZZ ul AZ ! O-C%,i C:| ]E(O'b i a l|C) < an (C57)
n t=1 n F
As a result, we have Z E(zab 1C) LN V.p ({3, {4). Next, we have
E(Z Ea,si?a,sgl giga,tifa,tga,ui?a,ugl |C U ]:b)
s,tu
= E( Z Ei,si?a,sgl gi?a,sga,ti?a,tgl |C U fb)
S, 18>t
+]E( Z Ed,Si?a,sglgl €, tzfa tfa tgl ’C U J:b) (C.58)

S, t:s>t
and from here, by using the integrability conditions of Assumption SA1 and apply-
ing the Cauchy-Schwarz inequality, we have Y7 | E(z4,izp,:|C) £ 0. In a similar way,

le E(zp,izap,i|C) L 0. The convergence result in (C.47) for the rest of the elements of
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the matrix Zf’zl [E(z:({)z;({)|C) — ]E(zi(g)|C)E(z; (£)|C)] follows the same steps as above.
From here, the CLT result in (C.43) follows.
We are left with showing (C.44). Note that we can write

p
/Z\c(§1)=%§tr{§i[( ch tlfcz)< ch tzT/cz)

n t=1 n t=1
E(afﬂC)ACA’C} O } (C.59)
By applying the CLT resultin (C.43) for {; being a matrix with 1 at the (k, k) element and
zeros elsewhere, for k =1, ..., K, we see that
7 Z[( Z €cuife, ,) ( Z € il ,> — (oijC)foc} =0p(1)  (C.60)
n =1 n =1 kn

and similarly
\/_Z[( Z €b,iif b, t>< Zea ifa ,)}Op(l). (C.61)
” t=1 ’l t=1

From here, if Z —¢i=op(l),fori=1,...,4, we have the asymptotic negligibility result
in (C.44) for the first four elements of the vector. Similar analysis can be done for the rest
as well. O

C.5 Bootstrap limit result

The statistic in the cross-sectional bootstrap is given by
8* = kn/P[IPg; — Pgy 7 — (B} + B}) — 1Pgs — Pa 1l + (Buix,o + Biix, o) |-
The following lemma establishes the CLT result that needs to be proved.
LeMmma C.13. Suppose Conditions (31)—(32) in Theorem 4.1 hold. Under the null,
st-s 2 Wz,

whereV is defined in (C.36) and Z is a standard normal random variable defined on an
extension of F and independent from it.

Proor. The asymptotic expansion of the bootstrap statistics is very similar to the ex-
pansion of the original one. We omit the details in order to avoid repeating the same
arguments. As a result, we have

P
kny/PS* = Z opl), (C.62)

S\
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where Z;k,ﬂ is drawn at random with replacement from {z; , : i < p} in (C.35). With the

LSP  zin, wehave

notation z, := >

1< )
—8=ﬁ<; ZZZ‘_n—zn>+0p(1). (C.63)
i=1
We note that

P
E(z},|F) =z, and Var(%z.z;'jn\f):%Zzﬁn—zﬁzv+op(1). (C.64)

i i=1

Indeed, let W, be a p-dim multinomial random vector that extracts p outcomes
from z;, with replacement, each with probability 1/p. Let z, = (z1,...2p,n). Then
Var(\/» i ln|]—') 1 Var(z;le) = —z nCov(W),)z,. From here, the second result in

(C.64) follows because Cov(Wy,) =1 — > lpl/p.
In addition, suppose V > 0 is bounded away from zero, a claim we show at the end
of the proof. Then

1/2
Vi F
ap = ar(—l) _) 1,

NAY
_ L|F
as = Var(z;n|.7:) 1/2(8* =) L>/\/(0, 1),
L|F
-S= \/]_Mlaz L> \/]72,

and the result to be proved follows.

We are left thus with showing that the limiting variance V is strictly positive almost
surely. We can decompose zj » in (C.36) into z(l) and 2(2) corresponding to the part due
to [|Pg, — P.Bb Ik % and IPg, — Pg, 112 T respectlvely From the above CLT result, we have

P (1
L cC (2
: Z (2) <z<2>> , (C.66)

where (211, 2?) is C-conditionally zero-mean bivariate normal vector. With this no-
tation, we have V = Var(Z2(1|C) + Var(Z?®|C) — 2Cov(ZD, 2)|C). Since Var(ZM|C) +
Var(Z2®)|C) > 0 a.s. (because of our assumption for nonvanishing idiosyncratic volatil-
ity in A2(i)), to establish V > 0 a.s., we need to show that Z(!) and 2® are not C-
conditionally perfectly positively correlated, that is, that there is no C-adapted random
variable ¢ such that Z2) = ¢z,
To show this, we can look at terms in z(l) and z of the type €, si€p, S,(fb e g“gfb s

() ) and

(C.65)

These summands are uncorrelated with the rest of the summands in z; ; and z;
generate positive variance in Z() and Z(®), However, they generate dependence in z
and Z@ of the opposite sign depending on whether both s and ¢ correspond to odd or

even increments or whether one of them correspond to odd increment and the other one
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to even increment. To see this note that, these summands appear in Z,(E;J and in: (1)
Zmix,o(Amix» H Amiy) if s, £ both correspond to odd increments, (2) Znix, e (Amix, H Amix)
if 5, £ both correspond to even increments, and (3) Zmix, e (Amix» H Amix» 2Amix» 2H Amix)
is one of s, ¢ corresponds to odd increment and the other one to an even one. Therefore,
we cannot have 2 = ¢ Z(1 for C-adapted random variable ¢. This proves that V > 0
a.s. O

C.6 Asymptotic test size

Prookr. Expressions (C.35), (C.36) (C.63), and Lemma C.13 show the convergences of S
and §* — S under the null. More specifically, these results imply

1 p
S =X+ Xy :Zﬁ;Zi,m yn=o0p(1),

1 & B
S*—8 = X;+y;, Xn:=ﬁ2(2i,n—zn), yi=op(1),
i=1

wWx, 5 z,
Wix: 5 7

and Z and Z* being standard normal random variables. Let g* be the 7th upper quantile
of §* — S so that P(S* — S > ¢*) = 7. Since V is strictly positive almost surely, we have
P(S* — S > ¢*) =P(S* — 8§ > §*), where S = «/V_IS, St = «/V_IS*, and §* = ﬁ_lq*.
Therefore, we need to show P(S > ¢g*) = IP(§> g — 7.

To this end, first note that $* — S L 7 implies g* E g, for g being the rth upper
quantile of Z by, for example, Lemma 21.2 of Van der Vaart (2000). For any é > 0,

P(S>G+6) <P(S>G+35,

7"~ a| <) +P(7" ~ 7| > 8) <P(E>7F") + o),

P(S>G)<P(S>7" |7~ G| <8) +o(l) <P(S>G—8)+o(l).

Therefore, P(S > § + 8) + o(1) <P(S > §*) <P(S > § — &) + o(1), which implies

P(S>G) 71| <|PS>G+8) —7|+[PSE>G—8)— 7| +0(1)
<PE>G+8)-P(Z>G+8)|+[PS>G—8)—P(Z>G—9)
+[P(Z>G+8) —P(Z>|+|P(Z>G—8) —P(Z> )| +o(1)
<o(1)+C3,

for some C > 0 that depends on the density of Z. Because § > 0 is arbitrarily small, P(S >
) =PS>7) - . O
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APPENDIX D: PROOF OF THEOREM 4.2

We remind the reader of following notation, which is going to be used in this section:

Bc =the true beta, c € {a, b},

BY) =see @), celablk=1,...,4,
B. =see (5), ce{a, b},

Bab = (Ba, Bb),

Bmix = unique columns of B,p.

Recall that ¢* = ¢{S* — S} is the bootstrap quantile so that P(S* — S > g*) = 7, for
some significance level 7 > 0. We reject the null if S > g*. Let

A:=|Pg, —Pg, |7 — (Bu+By) — IPg,, , — P17 — Bmix,o + Bmix,e)-

Also, let A* be its bootstrap version. Let g* be the bootstrap quantile so that P(A* — A >
g*)=r.Then S = /pk,A and §* = ,/pk, A" and q* = ,/pk,g*. The key to the proof is
to show that under the alternative, .4 is bounded away from zero and A* — A= op(1).
Specifically, from Proposition D.1 below, P(A > ¢y) — 1 for some constant ¢y > 0.
Also, Lemma D.3 below shows P(g* > ¢p) — 0. Combining these two results, we get

P(S<q")=P(A<g*)<P(A<g* g" <co) +P(g" > co) <P(A<cp)+o(l)=0(1).

Hence, P(S > ¢*) — 1 under the two alternatives considered in the theorem.

D.1 The behavior of S under the alternative
We show in this section that P(A > ¢g) — 1, for some constant ¢y > 0. We start with an

auxiliary result concerning the true factor loadings.

LemMA D.1. Suppose either alternative hypothesis (i) or (ii) of Theorem 4.2 holds:
Alternative (i): there is an invertible matrix H so that B, = (Bél)H, 0,xK3), and By =
(Blgl), 51(73))' Then there is m > 0 so that

1P = Pay Il > m.
Alternative (ii): K, = K}, and there are ¢, C > 0 so that || B,|| < Cp'/? and

. 1
min  ——

H— > C.
i —=l1BaH = Byllr

Then there is m > 0 so that

IPg, — Pg,lI% > m.
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Prookr. (i) We will show that || P

B

Write g = ,823) and B, = (,8;1), g). In addition, let 4 = Bél)/ﬁél), and B = B;”/g,

T = g'g — B A"'B. Because both A4 and B,Bp are invertible, we have det(B)8,) =

det(A)det(T). Then det(T) # 0, meaning that T is invertible. We then apply the matrix
block inversion formula:

m - Pg, %2 =Kp, — K.

o1 [AT'+A'BTT'BATY —47 BT
(BbBb) = _T—IB/A—I T—l °

Next, let M, =1 — Pﬁm. Some algebra shows
b

Pg, — P M,gT'¢M,=LL, L=M,gT "2

1 =
b B;,)

Next, T =g'g — g'Pym g =g'Mag.S0, L'L = T-1/2¢'M,gT~1/? = I. This implies
b

-1
P, — Py =L(L'L)" L',

Assuch, [P, — Py |2 =tr(L(L'L)"L") = K} — K,.
b
(ii) Note that the result holds by taking m = ¢/ C, because

1 1 1
c< min —|B.H — BpllF=——=IPg,Br — BsllF =—=| (P, — Pg,)
ke U7 Ba Bo NG B8.Bb — Bp \/I_?“ 8 Bs BbHF
1
<\Pg, — Pp,llIF—=IBsll < CllPg, — Pg,llr. O

VP

ProrosiTiON D.1. Suppose Conditions (31)—(32) in Theorem 4.1 hold. Under either the
alternative (i) or the alternative (ii), P(A > co) — 1 for some constant ¢ > 0.

Proor. The expansion (C.5) holds for ¢ € {a, b} under either the null or the alternative
hypotheses. Let 8. denote the nonzero unique columns of .. Thus, under either alter-
native hypothesis, ||P/§C — PgrllF = op(1). This implies

1P, — P, llF = IPg; — Parllr — Y 1Pg, — Pgrllr = I1Pg;, — Pl — op(1).
cela,b}
By Lemma D.1, under either alternative (i) or alternative (ii), | Pgr, — PB{, lF > c1 for

some constant c¢; > 0. In addition, Ea + Eb = Op(k,jl) because of Lemma C.10 and since
B, =Op(k;!) and B, = Op(k;; ). Hence, with probability approaching one,

1P, — Pg, Il — (Ba + By) > c1/2. (D.1)

Next, we show that ||PEmiX’0 — PEmix,e II% — (Emix,o + Emix,e) =op(1) under the alterna-
tive, where Emix,k is the PCA estimates for beta from the data matrix Vmix,k. As above,
we have (Bnix, o + Bmix,e) = op(1), so we focus on proving IPs ... —Pg_. . II% =op(1).
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From (C.9), which holds also under the alternatives, the eigenvalues of Y nix x %

Ymmk converge to those of pBQEf,aBa + pﬁsz,bﬁb.

We now show that: (1) Diagonal entries of Qnix x are bounded away from zero;

(@) 1| 75 (Bmix, & — BabHumix, )| = 0p(1).

Alternative (i): B, = (,BI(JI)H, 0,xk3), and B = (,821), Bf’)), so Ky + K4 =0. Here, H is
a K x K invertible matrix. In this case, both 8, and B, are p x Kj,-dimensional where
Ky =K; + K3.

Recall S¢ ¢ x = T FC «Fc.x, which is K;, x Kj,-dimensional. Also, let SJSJIb denote the
K1 x Kj upper block submatrix of Sy, , x. Then

1 1 S B - H7lssb g=1 ¢
;Ban,a,kBi,Jr;Bbsf,b,kﬁb=;/3b5f,kl3b, Sf,k5=5f,b,k+< f'(‘)"k NE

The top K, eigenvalues are bounded from below by those of (- Bbﬁb)l/sz k(= Bbﬁb)l/z

which are bounded away from zero under the assumption that those of 11, B, Bob and St bk
are bounded away from zero. Therefore, lex k= =O0p(1).

For (2), using Lemma C 7, we have || = (,Bmlx, — BabHmix, k)| = op(1). They imply
that the eigenvalues of H| . , B;, Bamelx « are bounded away from zero, so Pg_,m,;.
exists. In addition, under this alternatlve, Kmix = Kp and BpHmix k = ByH), for some
square matrix Hj. The fact | = (Bmlx, — BapHmix )| = op(1) implies Hy, is invertible

with probability approachlng one Hence, Pg g = Pg,. Thus,

mix, k

”Pﬁmix,o o Pﬁmix,e ”F S ”Pﬁmix,o o PﬁameinU ”F + ”Pﬁmix,e o P'Bameine ”F
+ ”PBameix,o - PBameix,e ”F
= OP(]-) + ||PBahHmix,o - P.BahHmiX,c ”F = OP(]-)I (Dz)

where the second inequality follows from the expression in (C.11) that |Pg —
Pg oy Hyiy i IIF = 0P (1).

Alternative (ii). B, = B2, By = ,BE)Z), and K, = K,. Also, there is ¢ > 0 so that with
probability approaching one,

min H— > C.

min fnﬁa Byllr
Denote with Bnix @ p x Knpix matrix whose columns are the unique components of
. . . . . 1
the factor loadings over the two periods. For this matrix, the eigenvalues of ;B;mxﬁmix
are bounded away from zero. Then %,Ban,a,kB; + %Bbe,b,kB;J = %BmixMB;nix for
some invertible matrix M whose eigenvalues are bounded away from zero. As a re-
sult, the top Kpnix eigenvalues of 1 ijXMB’ are bounded from below by those of
( BmmBmIX)I/ZM (5 BrnixBmix) 172 wh1ch in turn are bounded away from zero. Therefore,
=Op(1).

min,k —
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In addition, there is a Kpix x Kmix matrix H so that B.pHmixx = BaHamixk +
By Hp,mix,k = Pmix/l. Applying Lemma C.7, we have || (Bmixk — Bmixt)|l = Il 7 x
(Bmix,k = Bab Hmix, )| = 0p(1). This implies I = 5B, .\ Bmix.k = H' By BmixH +0p(1).
Hence, H is invertible and, therefore,

Pﬁameix,k = P,Bmlxl:l = P.Bmix'
Thus, similar to (D.2), we have ||P§mix . Pﬁmax JE = op(1).
In addition, §mix,0 + §mix,e =op(1). Hence,

||PEmix,o - PB\G ”% - (EmiX,O + Emix,e) = OP(I)-

Combining with (D.1), we have shown that under the two alternatives, there is a constant
co = ¢1/4, such that P(A > ¢p) — 1. O

D.2 The behavior of the bootstrap quantile under the alternative

Recall that g* is the bootstrap quantile so that P(A4* — A > g*) = 7 for some significance
level 7 > 0. All results in this subsection hold under either alternative (i) or alternative
(ii) of Theorem 4.2.

Lemma D.2. Suppose Conditions (31)-(32) hold. We have A* — A= op(1).

ProoOEF. In the proof of Proposition D.1, we have shown that ”Pﬁmixo — Pgmier% -

(Emix,o + Emix,e) = op(1) under the two alternatives. Similarly, their bootstrap coun-
terpart is op(1). The proof of this can be established in the same way as showing
||P§mix'0 - Pﬁmix,e ||12¢ — (Emix,o + B\mix,e) = op(1), and we omit this for brevity. In addition,
Be =op(1) and E;‘ = op(1). It remains to show the following under the two alternatives:

|P5. = P37 = 1Pg, = Pg, I} = 0p(1),

Let B; and B; denote the bootstrap counterparts of 8, and B, respectively, ob-
tained by randomly drawing from the rows of (B,, 85) with replacement. We have
||P/§ — Pz;r |2 =o0p(1) and I1Pg, — Pg; |2 = op(1). Thus, it suffices to show

1Py, = Py | = 1Pg; = Pey 17 = 0p(1).

This will be the case if we can show that both | P%, — PEr II% and ||Pg; — Pgr ||12W converge
a b
in probability to the same limiting constant under either alternative.
For the convergence of || Pg, — PBZ ||12p, under alternative (i), the proof of Lemma D.1
shows that || Pgr — Pg ||% = K}, — K,. Under alternative (ii), we have B8, = 8, and B8), = B
and

P _ _
|Pg; — Py 17 = Ko+ Kp — 2tr(P, Pp,) > Ko + Kp —2tr(35, 35 353,30 1p)-

The proof of the bootstrap counterpart is very similar, noting that %Bz/ﬁz = %B; By +
op(1) =2p 4+ op(1). O
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LeMmma D.3. Suppose Conditions (31)-(32) in Theorem 4.1 hold. We have P(g* > ¢y) — 0,
for the constant cy > 0 in Proposition D.1.

Proofr. From Lemma D.2, we have A* — A = op(1). Thisimplies P(A* — A > ¢p) = op(1).
LetJ :=P(A* — A > g*). Because 7 > 0 is the significance level,

PJ>7)<P(J>7,8" >co) +P(g* <o) <P(P(A* — A> o) > 7) +P(g* < co)
=o(1) +P(g* < co).

Meanwhile, P(J > 7) — 1 because of the definition of g*. Thus, P(g* > ¢p) — 0. O

APPENDIX E: PROOF OF THEOREM 4.3

In addition to Assumptions SAl, A2, and A3, we will assume throughout this section,
without further mention, that Assumption A4 holds as well. Denote

Zn = /Pkn[fa + b — Bab — (mix,o — Bmix o) — (mix,e — Bmix,e) — Kmix, oc |-
Then the decomposition of S in Section C.2 shows
§= 7+ RA— R,
where

RA:= /Pknls — /Pkn . (Bc—Be),
cela,b}

7/z-v\élmix = \/ﬁknAS,mix - \/ﬁkn Z (Emix,k - Bmix,k)-

ke{o, e}

In Section C.4, we have shown that Z, converges in distribution, provided &, p — oo,
{p/p — 0,and pk,A, = O,(1). Previously, we have also shown that both RA and RApmix
are op(1) under the conditions in (31)-(32) in the statement of Theorem 4.1, and in par-
ticular under the assumption k—p% gf, — 0.

In this section, by assuming A4, we aim to show that both RA and @mix have the
same higher-order expansion (proved in Lemmas E.7 and E.8):

172
}fﬁ[tr(Bg)—ZM]—i—O})(l){-O})(@) ,

RA=
A s

(E.1)

_— 1/2
R Amix = g[tr(ﬁs) —2M] +op(1) + 0P<g> :

n n
where Bz = [8BAQ ' A'+4C*—6C2H'SgH], B := A A E(02|C)%, C= A'AA,E(c? |C) A
and

M= E(0?,|C) tr O (tr25,; AQA — 2K,) + 41rS; A0 A/ (E(02[))%
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with A4, O, H defined in Lemma E.2. Then, given these results, it will follow that

1/2
7/374_ 7/€~/\4mix =op(l)+ 0P<\]Z_f> / ,
under the rate conditions of the current theorem (and in particular when é 14 18, — k for
some finite « > 0). So, this weakens the condition from requiring « = 0 to allowing « > 0.
The analysis of ,/pk,As and ./pk,As mix is done in Section E.1 and of ,/pk, x
(D ceia by (B. — B.) — 2 keforel (Bmix k — Bmix x)) in Section E.2. Prior to that, we establish
the following preliminary result.

LeEmMA E.1. Let p — oo, k,, — oo, and k,, = o(p3/?). We then have for c, d € {a, b}:

D - zk B.UU.UqUyBa=o0p(1),

(i) W —E(V|C) = 0p(1), where W = 75— LF,U,U0.U.UF..

(i) Wo —E(W3|C) =o0p(1), where Ws := ;/— tr F

Proor. The case ¢ # d is easier than the case ¢ = d, so we focus on the latter case. The
proofis straightforward calculation.
We focus on an arbitrary element, say M := f e w8 U CU U CU h, where g and / are

two arbitrary columns of 3. Then it is stralghtforward to check that

K2 ok, 1 1
E(M?C)=0 ( +—+—+—)=0P(1),
PP kaop

aslongas k, = o(p%/?).

As for W and W5, it is also straightforward to check that the C-conditional variance
of an arbitrary element of W is of the order Op( % + %) = op(1). Similarly, the variance
of Wa = Op(35) = 0p(1). m

E.1 Asymptotic expansion of As and As mix

We introduce the following notation related with the higher-order terms of ﬁmixz
1
Aomix, k = Hmix, kJmix, & Azmix, k = i (dmix,1 + dmix,2),

1
Agmix = m(gmix,l + &mix,2 + &mix,3)» (E.2)
n

1
A5,mix = m (Cmix,l + Cmix,z) — 2(Asmix + A3mix, even T A3mix,0dd)’
n
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where, for k, k1, k2 = 0, e, we denote

-1
Jmix,ki=p[ Hiie ,kBapBabHmix, k — Bmlxk,Bmlxk](HI/niX,k.B;bBameix,k) ,

/ 1 /
dmix,1 = kn«/ﬁtr[PAzmix,k(PAzmix,k) ;Babﬁab}

+2ky/ptr E/mjx,k(ﬁmix,k — BabHmix, k) mix, k
— kn/ P (Bmixk — Bameix,k)/(Emix,k — BabHmix, k) mix, k»
diix,2 = 2Kk /P tr(Bmix, k — Bab Himix, k) BabAamix k

1 -1
+ an\/ﬁtr ;(Bmix,k - Bameix,k)/Ba(B;Ba)
X L;{_l(ﬁmix,k — Bab Hmix, k) Bmix, k»
gle 1= kﬂ\/ﬁtrA/Zmix oﬁ;bBQbAzmiX,EﬁmixveﬁmiX,O’

8mix,2 = n«/_ Z tI' le k2 Bmlx,kl (Bmlx,kl Bameix,kl )/BubAZmix,kg

k1#k2
1 -~ ~1
+knypP Z tr —(Bmix, k1 — BabHmix k) Ba(B,Ba)
p (E.3)
k1#ka
x Li ! (Bmix,ky — BabHimix, ky) Bmix &y
+ kn«/ﬁtrAlmix oL;dld(:B;zﬂa) L:evelnA/lmlx e
g _thr N(BLBa) LG, Umix, k) Fmi
mix, 3 n IIllX,k1 kl a 1mix, ko~ mix, k14" mix, k;
k1#k2
kP Y Ay BlyBa(ByBa) Ly (Bmixks — BabHmix, k) Pmix.k»
k1#k2

-~ -/ — 1
Cmix,1 = — \/ﬁ tr Amlx oFmix,oUmix,oAlmix,e ;Bmix,eﬁmix,o

/ —/ — 1 = ~
- \/ﬁtrAInIXe mlx,eUmix,eAlmiX,O;Bmix,oBmiX,e

4 tr A/ -/ -/

4 ~, — —
+—= «/ﬁ tr Ale oFmix,oUmix,oAlmiX,O +— «/ﬁ mix, eFmix,eUmix,eAlmiX,e*

2 1~ ~ 4k
miz == tr A iy, oAlmix,e;ﬁ;ﬁX,kZBm,kl — 7; 1A 1mix, oI — 7; 1A 1mix,e 17

We start with showing that some probability limits associated with estimation based
on the different sets of data considered in the construction of the test are the same.

o~

B.By —

LEMMA E.2. There are some matrices H, A, Q such that ZC, Zmix k E A, G:=
2I, Gpix = %E mix, oﬁmlx,e — 21, Qc» lex k _> Q» and also H¢, 2H ¢ mix, k _> H.

"G|N



40 Liao and Todorov Supplementary Material

Proor. (i) Convergence of ;4\6, }l\mix k- From Lemma C.2, and expression (C.38), ﬁ X

IBe — BeHell = op(1), and H, = Ef «Aq + op(1), where A, = 2 1/ZMCQ* 172, columns
1/2
fe’
Under Assumptlon A4, 2 ¢, % . do not vary over time,

of M. are the eigenvectors of 2 23 >
1/2

and Q% isa K x K d1agona1 matrix of top
K eigenvalues of 3 2 2By
and hence we can conclude that H, E H and A, = A, for H and A4 that do not depend
on c € {a, b}. Therefore, ﬁ“ﬁc — BcH| = op(1). For B = B.H, and with the identity

%Eﬁlﬁa =1, we can write

B;E =—B Bbe+0p(1)——B BaHH 'HH +o0p(1)=H 'HH + op(1).

If H = I (assumed in A4), the probability limit of the above is the identity matrix. Also,
(C.37) implies A, L a
In addition, by (C.40), AmIX k E Amix 1= E 1/2 MpixO- 172 where Omix is K x K di-

le mix
agonal matrix of top K eigenvalues of EB aEf mleﬁ a, 2 mix i=0.527 4 + 0.5HZ , H'
and the columns of My, are the eigenvectors of Ef leEB aE]lc/ Izmx When H =1, and
3,0 =2pb 2f,c = Xy (assumed in A4), we have Xy mix = 2, QF = Omix» Me = Mpix.
This implies Apix = 4.

(ii) Convergence of @, Gmix. From Lemma C.11, G=G+ op(l)= %E;Ea +op(1) 3
21.

(iii) Convergence of QC, lex x» and H¢, Hpix k. From the proof of Lemma C.11,
Qc Q*+0P(1) lex: lexk —Qm1x+0P(1) H g, mix, k —052fa mix + op(1), and
Hp mix,k = 0.5%7 p,H' Amix + op(1). Also, from (i) we showed H, Ea= EfA. Hence, we
can simply write the probability limit as Q := Omix, H = 3¢ A, and conclude 2H, mix k LN
H. O
LemMma E.3. Suppose gf,p =o(kd), g“;*,kn =o(p®), k, = o(p?), and {; = o(y/knp). Recall
the definitions of A1, and A  in (C.4) and (C.13). Then, for c, d € {a, b},

1 ——, 0p(1)+ﬁIB3[IZIQ_1+0P(1)], c=d,
_FdUdAl(): kn
VP

OP(I)) C#d,

where B := A:A,E(0%.|C)%. And for k1, ko € {0, e},

VP

1 — _ N+ YER[A401! D], k1 =k,
TF;uxklU;mklAlmlx,kz op(1) + r, [A0 ' +op(D)], ki=k
P op(1), ki + ko.

Proor. We have the following identity:

1 — — ~ ~
ﬁF;U;Alc = WM H.0;' + W A, 07! + Remy + Rem,
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1 1
1= f . —F,U,U.U.Be,
Wo = \/_ kz — F,U,U.U,UF,,
Rem = F U;UCU/CAMQZI,
n

1 1 ey — o~
Remy = — U,U.R —1
eny ﬁ(Pkn dYc chQc

Using Cauchy-Schwarz and Lemma C.4, Rem; = op(1) because gl%p = o(k3), {f)kn =
o(p?),and {f) = o(\/m% and @84(% + @) =op(1).In addition, Lemma A.2 implies
that Wi = op(1) under the condition k, = o(p?), which is needed for the convergence of
its variance.
Using the C-conditional independence of U, from U, for ¢ # d, we have E(W,) =

On the other hand, if d = ¢, then E(W,|C) = pIB%C + Op(p~1/?). Also, Lemma E.1 shows
that the C-conditional variance of each element of W5 is op(1). Then by Lemma E.2 and
Assumption A4, Wﬁl}@;l = ‘/f]B[/_lQ_l +op(1)] +O0p(p~172).

U/

mix,k1

FURYB0:)
n

We can bound A1mix, k, in a similar way:

f m1x k1

1 -/ —/ —~ ~_
ﬁFmix,kl Umix,klAlmix,kz =op(1) + EW2,mix|C) Amix, k, m%xykz,

-/

1 -/ - -/ - =t
2 Fmix ky Umix, ky Umix o U mix, ke, Ui e Fmi - Ifky=kx=e,

Z Z Z (f c,t?/c,tgg,tigg,tjlc)‘

kn tis evence{a,b}i,j<p

where W, mix = #

E(% lelC)

If k, is also an even number, then } ;s even X_ceia,p) | = kny 80 E(W2 mix|C) = ‘,{—fIB% +
Op(—Jik ). If k,, is an odd number, then Ztiseven Y ccian 1 = kn—2, 50 that E(Wa, mix|C) =

k —2 ‘F]B% + Op (fk ) = fIB% + 0( P4 fk ). The same proof also carries over to the

case k1 = kp = “0.” Altogether, we have proved E(W, nix|C) = *FIBE + Op(
k1 = k2. Therefore, by Lemma E.2,

+fk)’

7 VP -1
n\/_|: mix, k1 Umlx klAImIX,kg] = OP(l) + k BAmix,kl mix, ko

n

=op(1)+i—EB(AQ—1+OP(1)). (E.4)

n

Finally, if k1 # k2, we trivially have E(W> mix) = 0. O

LemMA E.4. Recall A = UCU ,BCQC 1 + o6 1 U R/ BcQ 1+ R Y Bchl Assume
{y=0knyD), Epp = o(ki),andk = 0(p3/2)- Then B Al —op(l).
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PrOOF. We write Aj, = plan U.B.0-" + Rem, where Rem denotes a term that depends
on R.. Then
2kn| 1 — — ~ ~4|?
—Z A U “H+R
\/—” IC” \/— pkn cﬁCQc + em
<B+2trO;'H'v.H.0.' + Rem,
2knl 1 — — ~ ~ 17 1 — 207 2
B:ﬁ o, Uele —BcH)O || <Op m NUANNBe — BeHI%,
1 1 S ——
Ve = ﬁ%ﬁéUcUCUCUCBC'

LemmaA 3 showed IIQEI | = Op(1). Using Lemma C.2, we have that ||[/3\c — BcHe| <
Op( / + —|— 84). Lemma A.2 also bounds || U, | . The assumption that §p O(kn/D),

g“p = 0(k,31), and k,¢3 = o(p®?) then imply that B = op(1). In addition, Lemma E.1
showed v, = op(1). Combining these two results, we have the result of the lemma.
Finally, the term Rem depends on the remainder term R, whose effect is also neg-
ligible. In fact, the effect of R, is given in 84, defined in (C.23). By Lemma C.5, Rem is
negligible under the conditions of the current lemma. O

LEMMA E.5. Suppose {5 = o(p3/*ky), (5 = o(p*/?), p{) = o(kS), p = o(ky), and k, =
o(p¥?).

(i) Recall Ay = Hc%[Héﬁéﬁch - IB/LBC](HélB/LBCHc)_I Then
1

k—[<c+0p(1)],

1 _ —~
;(Bc - ﬁch)/(Bc - Bch) = Cn +
[<c +op(l)] ifc=d

1~ ~
_BQJ(BC_BCHC) —A + k
p ifc#d,

O

1
PAZC =B, - —

—[HC+op(1)],

where A,, B,, and C, are such that [||A,1||12D + ||B,1||12P + ||C,,||12p]k,z\/ﬁ =op(1), and C =
A'AALE(0? ||C)A.
(i) Recall Aomix k = Hmix, kI mix, k in (E.2). Then

1 ~ L1
;(.Bmix,kl — BavHmix, k1) (Bmix, ky — BabHmix,k;) = Cpy + . [C+op(1)],
n

1

1~ ~ C+op(1)| ifki =k,
;B;nix,kz(ﬁmix,kl — BavHmix k) = A, + k,,[ ]
0

ifk1+# ko,
1

PImixk = B, — k_[(c +0P(1)];
n

where A}, By, and C}; are such that [| A5||% + |B; 1% + | CE 1121 kn/P = 0p(1).
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Proor. (i) By (C.3),

1 ~ ~ 1 ~
;(Bd_Bde)/(Bc_Bch):WA/d( (FdUdU Fclc))A Ac+ Crea + Co,ca,

n

1. 1 -
;Bd(BC_BCHC):?AZZ( (FdUd chlc)) c+C1cd+C2cd+C3cd;

n

1 ~ — — 1 ~
Cioca= pk VU A + —A’ld(Bc — BcH,),

n

Cz’cd = pk A/ (FdUdUCFC EFQU;UCFC)ZC’

n

1 ~
C3,cd = ;Hziﬁ;f(ﬁc - Bch)-

From Lemmas C.2, C.3, and C.4, we have [IICLCdII% + ||C2,cd||12g + ||C3'Cd||12p]kn D=
op(1), provided {5 = o(p**ky), {5 = o(p*?), p¢, = o(k§), p = olky), kn = o(p*?).
Hence, Ay = C1,cq + Co,ca + C3,ca a0d Cp = C1,cq + Co,cq SatSEY [|CallF + | Al FVen /P =
op(1).

The first term in the above expansion of % (Ed — Bde)’(ﬁc — B:H,) is zero, if d # c.
If d = ¢, then by making use of Assumption A4,

1 ) — —
2A ( (F/CU/CUCFC|C)) _—A/ ZZE fC, thlEC[llc)

pk z<p =1
1. - _
= k_[A/ACA;E(a§i|c)A +op(1)].
n
This implies the expansion result for %(Ec — BCHC)’(EC — B¢H,.) in the lemma. We can
show the one for %B\ZJ(EC — BcH,) in a similar way.

Next, by Lemma C.3, for G| = %HL,B’C(BCHC — B¢), we have 1G1112kny/P = op(1).
Then

1 , PN 1 s 1
M. = ;(Hé:Bc,Bch - B/cﬁc) =G+ ;(Héﬁ/c - B/C)Bc =G1—An— k—[c+ OP(I)]»
n

1 -1 1 1 -1
pAZc = HcMc(;HéB/chHc) = HC[GI - An - k_[C + 0P(U]i| <;Hé,3/c.3ch> .

n

Also, J51Be — BeHll = op(1) implies (3 H.BLBcH ) ™! X I, andby LemmaE.2, H. > H.
Hence, for B, := H.(G1 — Ay,), we have ||B,||%k,./p = op(1), and

1. -
phzc =By~ —[AC+op(1)].
n
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(i) By (C.13),

1 ~ ~
;(Bmix,kg — BabHmix ko) (Bmix, k, — BabHmix k)

1 - —/ — — — o~
= W ;nix,kz (E(Fmix,kg UIIliX,kg UmiX,lemiX,h|C))Amixyk1 + Cik + C;,
n
1~

;B;niX’kZ (Bmix,kl - Bameix,kl )

—/ —/

A;mx,kz (E(lex,kg Umlx kzﬁmm lemIX k1 |C)) mix, k; T Cl + C2 + CB’

Pk (E.5)
1 ~ — — 1
Cik - pTA;an,kszlX ko Umlx szlmlx ko T pAlmlX ka2 ('Bmlx k1 — BabHmix k),
7 _, _ _
C; pkz A;mx,kz ( mix, ko Umix,kg UmiX,lemikal

/

- ]E(lex ngmlx kZUmlx,thlx k1 |C))Zmix,k1»
1 ~
G = pHI/mX,kzﬁab(Bmix,kl — BabHmix, k)
Exactly as the proof of Lemmas C.2, C.3, and C.4, we can show that [||C{||% + || C5[|% +

IC31E)keny/P = 0p(1).
Next, if k1 # k2, using successive conditioning and Assumption A4, we have

— — — — .
E(Fmix,kgUmix,ngIniX,lemiX.kl) = 0, lfk1 ;ﬁ kz.

We turn to the case k1 = k». If k] = ¢, then

1 — — — =
?E(Fmix,kgUmix,szmix,lemix,klC k k Yo > E(f, S iE € ,lC).
PKy p i<p cela,b} tis even

If k, is also even, then the above equals LA ALE(o? 1|C) due to Assumption A4. If

k;’(gz ACA/E(O' 1|C), again by Assumption A4. Also,

k, is odd, then the above equals
Lemma E.2 shows mek = A+ op(1). Thus,

1 ~ — — — - -~ 1
pkz A;nix,kz (E(Fmix,kg Umix,kz UIIliX,k1FmiX,k1 |C))AmiX,k1 = k—n[(c + OP(l)]'
n

The case k1 = ky = o follows by the same argument. This yields the expression for
%.B;nixykz(ﬁmix,kl BabHmix, k) and 1 (Ble,kl BabHmix, k)" (Bmix, k; — BabHmix, k,) in the
lemma.

Finally, the expansion for pJp;x x follows by similar arguments. More specifically, an
expansion for %Hﬁmix, & — BabHmix k | would imply

1 LS U
(;Hﬁlix,kﬁ;bﬁameix,k) = ;Bﬁnix,kﬁmix,k +op(1)=1+o0p(1).
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Let A, = Cf +C5 + Cj and G} = T H i Bl (Bab Hinix,k — Bumix.x)- Then

1

1 nY o * %
Mmix = ;[H;nix,kﬁ;bﬁameix,k - B;nix,kﬁmix,k] = G1 - An - k [(C + 0P(1)]»
n
]' 4 / - * * ]'
pJInix,k = Mnix ;Hmixykﬁabﬁameix,k = Gl - An - k_[C‘i‘oP(l)] [1+ OP(l)]-
n

We can write B} := (G} — A%)[I + op(1)] satisfying || B};||%k,/P = op(1), and from here
the result in the lemma for pJyiy  follows:

1
kn

1
kn

LeEmmaA E.6. Recall the definitions of Az ., Ay in (C.16), and of Asmix k> Aamix in (E.2).
Then

Plmisk =By — —[C+op(D)][I +0p(1)] = B;, [C+op(D)]. O

1/2 B _
kn\/ﬁAg,CZOP(l)+0p<ﬁ> +ftrCZ(H’25H—I),
n

kn/PAs =o0p(1) +op

kn«/ﬁA4mix =op(l)+op

kn«/ﬁASmix,k =op(1)+ 0P<

where C = A'AAE(a? ||C) A.
Proor. (i) Bound for Az . and Azpix «. Recall
kn/PAs,c = d1 + d2,
dy = knﬁtr[pAZC( pAZC)’%B;BC} +2kny/PUr B (Be — BeHOH, Ao c
— kn/Ptr(Be — BeHe) (Be — BeH)H; Mg e
dp = 2kn/Pr(Be — BeHe) Belda,c
+ 2P0 (B — B BelBie) H (B~ Beto) B
Lemma C.3 gives bounds for %B’C([’S‘\C — BcH.) and %EZ(EC — B.H.). Hence, using
Cauchy-Schwarz, we have d, = op(1) + 0 p(}f—f)l/ 2. The term d, is the leading one. From

LemmaRE.5, pAy. = B, — 2-[HC+o0p(1)] and %E/C(EC—BCHC) = An+2-[C+op(1)], with
(I Anl% + I1Bull3)kn/P = 0op(1). Also, by Lemma E.2, H_! L A1, Altogether,

1/2 _
dy =oP(1)+o,><‘]{ﬁ) + f[trCZ(H’zﬁH—I)JroP(l)].
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The bound for Aspix  can be shown in a similar way. Recall the definitions of dpyix 1
and dpiy 2 in (E.3). The term d, mix = op(1) + op( }é—f)l/z, and the term dyix 1 is the lead-
ing one. By Lemma E.5, pAomix x = Hmix kB — kin((C + op(1))], where ||B}|2kn/P =
op(1). Also, by Lemma E.2, B, Hmix x = B«[H + op(1)]. Hence,

1
dmix,1 = kn\/ﬁtr[pAZmix,k(pAZmix,k)/;B;bBab}

+ an\/ﬁtr E;nix'k(ﬁmix,k - IBameix,k)Jmix,k
— kn/P(Bumix, k — BabHmix k) (Bmix,k — BabHmix, k) mix, k

1/2 )
—on(1) +0P(f) + P[0 (156~ 1) 4 0p(1)]

This implies the bound for k. ./pAsmix, k = dmix, 1 + dmix,2-
(ii) Bound for A4 and A4pyix. We have

kn/PAs=g1+ 82+ 83,
g1 =kny/Ptr A, ,BLBbA2 5B} Bas

1~ ~ ~
ga=knyp Y tr ;B;BC(BC — BeHe) Babo,a

c#d
1~ IRTINIPEN -
+kny/P Y tr—(Be — BeHe) Ba(ByBa)  H ' (Ba — BaHa) Be
czd P (E.6)

+ kny/DtrALcH,  (B,Ba) BB (ByBy)  Hjy A,

1 ~ -1 1, = =
g3 =knyp Y tr 7 AeHe Y(B.Be)” B.Ba(ByBa)” Hy 'Ay,UF,
c#d
1,1, ~ _~
+kny/P Y trA BeBa(ByBa) Hy '(Ba— BaHa) Be-
c#d
Lemma C.3 provides a bound for %,B’d(ﬁc — BeH.) and %Eﬁi(ﬁc — BeH,). Also,
Lemma C.2 derived bound for A;,. We can then apply the Cauchy-Schwarz inequality
and Lemma C.3 to verify that g, = op(1) + 0p(‘,f—f)1/2. As for g3, it follows from Lemmas
E.3 and E.5 that, when ¢ # d, ﬁfﬁ’dmc — op(1) and %E&(Ec — BeHe) = Ap + op(1),
where || A,[|%1kn/P = 0op(1). Thus, g3 = op(1).
We are left with the term g1, which is the leading one in the expansion of k,,,/pA4. It
follows from Lemma E.5 that since 8, = ,,

1/2 B )
g1=op(1)+op VP +@tr(CzH’23H.
ky, kn
This leads to the bound for A4.
We can proceed in an analogous way for Asnix. Recall the definitions of gnyix 1 - ..

gmix,3 in (E.3). As above, we have gnix2 + gmix3 = op(1) + OP(}f—f)l/Z and gmiy 1 is
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the leading term in the expansion. From Lemma E.2, g ,8 ,Bmix, o =1+ op(1), and

H mixk = 0.5H + op(1). From Lemma E.5, since B8, = Ba (from Assumption A4),

mix, e

- 1
plBabAZmix,k = Ba(Ha,mix,k +HHb,miX,k)PJmiX,k = Ba (H + OP(l)) (B: - k_((c + 0P(U)>~
n

Thus,
gn’llX 1= Yl\/_trAZmlx oﬁ bBabAZmix,eﬁmix,gB\mix,o
1/2 B B
=0p(1)+0p<ﬁ) vp SgHH.
kn kn
This leads to the expansion result for Aypix in the lemma. O

LemMA E.7. Recall As mix defined in (E.2). Suppose g?,p = o(kd), §;§kn =o(p3), k, =
o(p3?), and {f, =o(Vknp). Then
)1/2

1/2
)

S

=13

knﬁA5= tr(B3)+0p(l)+0P<

n

ST

kn\/ﬁAS,mix = kp tr(B3) +op(1) + 0P<
n

172
/B85 — As ) = 0p(1) + op(f) ,

n

where B = [8BAQ1 A’ +4C? — 6C2H'SgH|.

Proor. We use the expression for A5 in (C.15) and write

kn/DAs = c1 + 2 — 2k /p(As + As atA435p),
c 2 trZ’FUA [3,8 2 tr A,F, U, A 1,@3
1=—— b— - — lLa— b»
ﬁ a 1, bPa «/ﬁ b b¥ b dp a
4 -~ =/ =/ 4 ~, = —
—+ ﬁ trA;FaUaAl’g + ﬁ trAngUbAlyb,

2 4k
¢ = —;trA WAL p— BbBa - —Z || Ay p %

«/— JP
By Lemmas E.2 and E.3, ¢ = %[tr]B/_IQ_I/_I’ + op(1)] + op(1). By Lemma C.2, c; =
op(1). Also, Lemma E.6 bounds A3 . and A4. Together, we obtain the desired expansion
for k,,/pAs:

—= 1A, all7 —

1/2
an5—f[8trBAQ 1A/+4mc2—6tr<CZH/EBH]+0P(”+0P<f) '

n

The expansion of As ik follows analogously from Lemmas C.2, E.2, E.3, E.5,and E.6. O
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E.2 Asymptotic expansion of B, and §mix, k

Recall

2 ZtrAch tfc t CE( o, llc)
n

t=1

~ 2 ~ PPN .

B. = ——tr(Q;.'FLF.O.)IUII%,
kup

~ 2 o

Be = (0. FeFe0:)E(0? 1[C),

n

2
Brix k = P trAle | F. wiFakE(og 2c)+H Fy  Fy, kHIE(ab 1|c)] mix, k»
n

—

2 S0 w75 Al 2 2 S0 w75 Al w2
k_z tr Qmix,kFa,kFaermix,kE(Ua,1|C) + ? tr Qmix,ka,ka)kaix,kE(o-b,1|C)’
n n

o~

mix,k —

3 2 - 2 50 B A1 2
Bmix,k = 3 » ——Ir lex k kFa kalX k”Ua”F k3p tr Qmix,kFI;,kakamix,k”Ub”F'

n n

LEmMA E.8. We have

JP

n

n\/—(B —B.) = M+0P(1)+0P<g>;

()

kn«/ﬁ(/gmix,k - Bmix,k) =
where
M =E(02,|C) tr O~ (tr25 AQ A" — 2K,) + 4tr3; AQ; ' A/ (E(0?]C))°.

Proor. We will analyze separately k,./p (§C - Ec) and k, ﬁ(Ec — B.). We will denote
with Rem terms that depend on R..
(i) Bound for knﬁ(gc — Ec) and «/ﬁkn(’B\miX,k - Emix,k). We have

T 1 -~ K. 1 | PN
E(a§,1|0);=%|wcn%—ac, 80 i=— k:p 1012 - p = tr(B.DcBe).

From LemmaE.2, kl F = QC x 0, pin ||l/J\C||12p LN IE(o-Czy1|C). Therefore,

—~ ~ PN ~ 1 —~
kni/P(Be = Be) = —/pr tr(Q; 'F.F.0;1)8. = *f 2K tr(Q; ) o 1%+ 0p(p~1?)
n n n

= VP ok (0 )E(02,1C) + Op(p72) + P(g)
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o~

As for /pky (Bm,X k — Bmix, k), we use the identity T Fix k = /Q\miX, « and note

IIllX k

that from Lemma E.2, Qmix, k E 0. As aresult,

- ~ 2/ pkn
\/?kn(Bmix,k - Bmix,k) = - Z \2_ terlx k kFc kQIIllX k

c=a,b n

2
tr lex k' mix, kalekalx k (UC |C)

5

_ 2K /P
K2

+op(1)+ 0P< k,

- ZKIE—ﬁtrQ’lE(UﬂC) +op(1) + op(*f).

n n

(ii) Bound for knﬁ(gc —B¢) and knﬁ(gmix,k — Bnmix k). Using the identity %féfc =
Qc, we have

~ 2 2
km/ﬁ(Bc—BC)=f<_tch1F/FCQC ||Uc||F k—trA;FCFCAcE(a§1|c))
n

=ay+az+as,

a1 =2/ptrQ; ( U3 — (3,1|C)) Op(k''?),

4y = thrQC (||U I — 1UCIIZ),

2 aimmag 2 e
as = Jp| —tr O\ FLF.O; ' — = tr A,F,F A |E(d2,]C).
ky ky
We start with a, and as3. Recall (C.24) for the expansion of U, — U, = Z?:l gj- We can
write

_Uc||%+4\/?trégl _Uc)/Uc

~ 1
az =2«/ﬁtrQ;1pk
n

~ 1 ~
=2/pu Qe o= gl + 4V O § trgjgr —4y/ptr O
n N
J

"<k

In Lemma C.9, we showed ‘/_ B’ UCU Bc < op(1), under the conditions of the cur-
rent lemma. Then, using Lemmas A. 1, A.2, and A.3, we have

2Jp

~ o~

tr(0; Vg3 =2/ptr 0, ' — trF.U,UF A0 A

pkn pkn
2 oo~
= flE(o-iﬂC)trEfAQA’trQ_l+0p<f)+0p(1),
n n

2VP 51 2 VP 2 7 A
—— =0p(1 = op(1),
ok tr(Q;1)llgall = Op(1) Tk U:U,Be| =op(1)
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2Jp =1 2
t =
Pk r(Qc )||g3||F

Supplementary Material

2

N A1 e o A 2 _
3k’; (0 ) r O BLUULUT Bc_0p< ;g)uUcll“
i p

n

p
NI 1 2
<Op k—n+m {p=op(1),

2\/— — P 5+ 5 2
ok, Tl = 0p(p7') S, BUBe| =or),
2JP A NI EN IR B )
s (0 ) llgslf = ok (0, ") i, BeHeHBU T e AH, 'F, .

ﬁ)

+0P(1)+0P<
ks/z
=op(l),

2Jp

e tr(0; 1) llgsll2 = op(1).

As for terms that involve ) j<k T g;. gk, we apply the Cauchy-Schwarz inequality:

4@&@1 KZktrg,wZop(,/—ng,nF) (‘/£ k2>
5[op(/?f)+0P(1>][0P(/k75)+w}=0Pm,

under the condition p = O(k2),

B.U.U.BH.| + | B.UU, Bl <
op(1), under the condltlons of the current lemma In addition, Lemma A.2(ii) (iv)
bounded |U.|| and ||U.F.|. Lemma E.1 showed the variance of each element of
p—@F;U/CUCFC is 0(1). Then the identity H =3, f/_l yields, when {, = o(p*/3) and 5?, p=
o(ky),

_4p
Pkn

~ — 4 e —
ttrU,.g = —pT*/—tchltrF U.U-F.AH; +oP(1)+oP<f)
n

n

—LL]C@E(UCZ,HC) trQ 'K, +op(1) + OP(\]Z?);

n
4P
pkn

_AVp
Pkn

4 —~ —~—
w0 U.g» pf trQ; e B,UU,BcHe = op(1),
n

~ 4 ~
trQ; ' tr U, gs = _4p tr O,
Pkn

1 — 321 p'?
<0P< )||U||35§ ( + 5 ) = op(1),
pk3/2 ¢ p p k3/2

i
c QC FC



Supplementary Material Changes in the span of systematic risk exposures
4 ~ 1 = 4 ~ o= 1 NN~ 1=
_APy, 0:-'trU.gy = VP 0;'ttU,——BcHB.UU.BO; 'H,'F,
pkn pkn P kn

Vk \y a7 = 2
< OP<W> |B.UU Be| + 0p(1) = 0p(1),

WP 5w T ge = WP gl
——t trU = t t
Dk rQ. trU.gs ok rQ. tr

§0P< ul

kz)nﬁcunﬁcm =op(1),

n

1 o~
o HB.UF AH;'F.U.B.
n

4/p

- trQ-'trU.gs = op(1).
pkn ch rv. g6 op(1)

Here, term gg depends on Rem, which is negligible.
Together, ay = }{—fE(O’iﬂC) tr Q‘l(tIZEf/_lQ/_l’ —4K.) +op(1) + 0p(‘,{—nﬁ).

51

Next, we have F.Q;! —F. A, =U.B.0-'/p+Remand B, — B.H = kinUchZc +Aqe.
Also, Lemma E.3 showed %F;U;AM = Op(‘,{—nﬁ) +op(1). By Lemma C.9, p‘/ﬁ ,/B\’CUCU/C x

2k,
B.<op(1). And by LemmaA.2, F.U,B. = Op(y/kn p). Hence,

2
knp

/

tr A,F,U,B.0; 'E(0?,|C) + Rem

2
a?’:ﬁk ptchlﬁ/cUchQc 1E(‘7§,1|C)+«/ﬁ
n

4 ~ =~ ~ 4 P _
= \/ﬁk p trACFCUC(BC - BCHC)QC 1]}3(0'3’1'6) =+ \/ﬁk » trACFCUcﬂcHCQC IE(O'C%I'C)
" n
2 A1 77T 77 A N —
+ ﬁk pz tr Qc IB/CUCU/CBCQC 1E(0'62,1|C) + Rem
n

4
- @E tr A,F,.U,UF:A:0; "E(0?,[C) + 0p<@) +op(1)
n

kn
4p
k

n

03, A0 A (E(024]0)) + oP(f’

n

>+0P(1)-

Together,

kn/P(Be — Be) = fM+ op(1) + 0P<~f),

n n

where M =E(0?,[C) tr Q7! (tr22; AQ A" — 4K,) + 4tr 3 AQ ' A'(E(0? | |C))2.

We are left with \/ﬁkn(lé\mixyk — Bnix k). Its proof is analogous to the one for

JVPkn (§C — B.), so we only sketch the leading terms to avoid repetition:

2 o ,
Bmix k= 15 tr > A iFerFerAmixE(o?,11C),
n  c=a,b

~ 2 1 s s Ay us
Bmix,k = thr Z Qmix,kFc,kFc,kaika||Uc||Fr

nP c=a,b
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kn/P(Bmix,k — Bmix,k) = @1mix + d2mix + @3mix,

_ -~ _ 1
Aimix = /P —tr > OnbiFix ckalxk(ancn%—E(UEIC))

c=a,b

=op(1),

= 1~ 1
Armix = /P _tr Z lexk ckFc kale(m”Uc”%_ m”Uc”%)r

c=a,b

~ — — o~
a3mix = T tr Z mix, k kFc kalX k Amix,kFc,kFCvamiX)

c=a,b
X E(UC’1|C).

Recall (C.24) for the expansion of U, — U = Z?:l gj- Also, recall the identity,
- A_l —_ 1 A A_l 1—/ -~ A_l 1 / -~ A_l
Fc,kamk - Fc,k;BcBmix,kaix,k = ;Uc,kﬁmix,kaixyk + ;Rc,kﬁmix,kaixykr

PSR ~ LA oA ~
where Fy i+ B Bmix, k Qmix, k = Fa,k Amix k and Fp, k= B} Bmix k Qryix ¢ = Fb,k-Amix,x When
Bp = B4. Hence,

domix = v/P —tr Y OnbiFe, kFCkalxkk (lg1lF —2Ucg1) +op(1)
c=a,b
2 - R 4 -
= k—ﬁtrQ—ltrzfAQA’E(aiw) — ];/ﬁﬂ«:(a,ﬂc) trQ 'K +op(1) + oP(g)
n n n

4 -~ — — ~ ~_ D
A3mix = ﬁk P tr A;nix,kaix,kUmix,kBmix,ka%x,kE(o'czlc) +op(1)+ 0P([>

n n

2
- “/_ Ian,kFl’nIX kUmLX kUmlx,kam,kAmm,kalX & (O’c |C)

HP(M@_?)

n

_ @% 3,407 AE(021C) + op(1) + w(%).

n

Putting together all of these results, we get the expansion for kn\/ﬁ(’B\mixy k — Bmix k) in
the lemma. U

REFERENCES

Bai, Jushan (2003), “Inferential theory for factor models of large dimensions.” Economet-
rica, 71, 135-171. [24]

Bai, Jushan and Serena Ng (2002), “Determining the number of factors in approximate
factor models.” Econometrica, 70 (1), 191-221. [6]


https://www.e-publications.org/srv/qe/linkserver/setprefs?rfe_id=urn:sici%2F1759-7323%282024%2915%3A3%2B%3C1%3ASTCITS%3E2.0.CO%3B2-3
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/bai03&rfe_id=urn:sici%2F1759-7323%282024%2915%3A3%2B%3C1%3ASTCITS%3E2.0.CO%3B2-3
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/bai2002determining&rfe_id=urn:sici%2F1759-7323%282024%2915%3A3%2B%3C1%3ASTCITS%3E2.0.CO%3B2-3
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:1/bai03&rfe_id=urn:sici%2F1759-7323%282024%2915%3A3%2B%3C1%3ASTCITS%3E2.0.CO%3B2-3
https://www.e-publications.org/srv/qe/linkserver/openurl?rft_dat=bib:2/bai2002determining&rfe_id=urn:sici%2F1759-7323%282024%2915%3A3%2B%3C1%3ASTCITS%3E2.0.CO%3B2-3

Supplementary Material Changes in the span of systematic risk exposures 53
Jacod, Jean and Philip E. Protter (2011), Discretization of Processes, Vol. 67. Springer Sci-
ence & Business Media. [1]

Jacod, Jean and Albert N. Shiryaev (2003), Limit Theorems for Stochastic Processes, sec-
ond edition. Springer-Verlag, Berlin. [27, 29]

Van der Vaart, Aad W. (2000), Asymptotic Statistics, Vol. 3. Cambridge university press.
(32]

Vershynin, Roman (2018), High-Dimensional Probability: An Introduction With Applica-
tions in Data Science, Vol. 47. Cambridge university press. [3]

Co-editor James Hamilton handled this manuscript.

Manuscript received 10 February, 2023; final version accepted 24 February, 2024; available on-
line 27 February, 2024.



	Appendix A: Preliminary bounds
	Appendix B: Estimating the number of factors
	Appendix C: Proof of Theorem 4.1
	Outline of the proof
	PCA expansion
	Higher-order terms
	Higher-order terms I: Delta5 and Delta5,mix
	Higher-order terms II: Bias estimation

	Asymptotic null distribution
	An auxiliary probability bound
	An auxiliary CLT result

	Bootstrap limit result
	Asymptotic test size

	Appendix D: Proof of Theorem 4.2
	The behavior of S under the alternative
	The behavior of the bootstrap quantile under the alternative

	Appendix E: Proof of Theorem 4.3
	Asymptotic expansion of Delta5 and Delta5,mix
	Asymptotic expansion of Bc and Bmix,k

	References

