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Changes in the span of systematic risk exposures

Yuan Liao
Department of Economics, Rutgers University

VikTOR TODOROV
Kellogg School of Management, Northwestern University

We develop a test for deciding whether the linear spaces spanned by the factor
exposures of a large cross-section of assets toward latent systematic risk factors at
two distinct points in time are the same. The test uses a panel of asset returns
in local windows around the two time points. The asymptotic setup is of joint
type: the number of assets and the number of return observations per asset in-
crease asymptotically while the length of both time windows shrinks. We estimate
the factor exposures, up to rotation, over the two periods using classical principal
component analysis and evaluate their projection discrepancy, which is rotation
invariant. This projection discrepancy is then centered with one between factor
exposures computed over a partition of the pooled return data into odd and even
increments. We derive the limit distribution of the statistic under the null hypoth-
esis and develop an easy-to-implement bootstrap for constructing the critical re-
gion of the test. The test is applied to intraday financial data to determine whether
the linear span of assets’ systematic risk exposures differ during a trading day or
after a release of important economic information.

KeEywoRrDs. Asset pricing, high-frequency data, latent factor model, nonparamet-
ric test, PCA, systematic risk.

JEL crassiricaTioN. C51, C52, G12.

1. INTRODUCTION

Measuring assets’ sensitivity toward systematic risk, or betas, plays a central role in as-
set pricing; see, for example, part II of the book of Cochrane (2009). Early asset pricing
models, such as the classical CAPM of Sharpe (1964) and Lintner (1965a,b), are static
and imply constant assets’ exposure to systematic risk. However, asset pricing models
can hold only conditionally (see, e.g., Hansen and Richard (1987)), and a changing in-
vestment opportunity set (see, e.g., Merton (1973)) can induce time-varying systematic
risk exposures of assets. Incorporating this time variation is important for evaluation
and testing of asset pricing models; see, for example, Shanken (1990), Jagannathan and
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Wang (1996), and Ferson and Harvey (1999). Existing work has either modeled time-
varying betas explicitly using macro variables or firm specific quantities (see, e.g., Con-
nor, Hagmann, and Linton (2012), Fan, Liao, and Wang (2016), Gagliardini, Ossola, and
Scaillet (2016), and Kelly, Pruitt, and Su (2019), among many others) or has used a long
window of low frequency returns to estimate assets’ exposure to observable systematic
risk factors following Fama and MacBeth (1973).

Sampling at high frequency allows to improve the measurement of betas. Indeed,
quadratic covariation between two processes can be inferred from high-frequency ob-
servations of these processes via the so-called realized quadratic covariation; see, for
example, Barndorff-Nielsen and Shephard (2004a) and also Mykland and Zhang (2006,
2009). If betas remain constant over short time intervals, then they are simple and known
transforms of the quadratic covariation between the assets and the observable factors as
well as the quadratic covariation between the factors. Therefore, high-frequency data al-
lows implementing the approach of Fama and MacBeth (1973) but using much shorter
time windows while at the same time maintaining high level of precision in the beta esti-
mation. The improved precision in measuring betas can lead to nontrivial gains in asset
pricing applications; see, for example, Bollersley, Li, and Todorov (2016) and Ait-Sahalia,
Jacod, and Xiu (2023), among others.

The key underlying assumption for utilizing the high-frequency data in the nonpara-
metric estimation of betas discussed above is that the latter remain constant over the
estimation window. The goal of this paper is to design a nonparametric test that allows
us to decide if this is the case without taking a stand on what the systematic risk factors
are. More specifically, we design a test for difference in the linear span of assets’ expo-
sure to latent systematic risk factors at two distinct points in time. If the assumption
for constant assets’ exposures to systematic risk factors (our null hypothesis) is violated,
then one needs to take into account this time-variation via parametric or nonparametric
methods.

Given the fact that variables that have been used to model variation in betas in prior
work typically do not change over very short time intervals, one would expect that be-
tas remain constant over days. However, Andersen, Thyrsgaard, and Todorov (2021) find
that market betas exhibit pronounced intraday pattern, with monotonically declining
cross-sectional beta dispersion during the trading day.! The result in Andersen, Thyrs-
gaard, and Todorov (2021) is for the case when the only observable systematic risk factor
is the market portfolio.?

I This pattern is distinct from the well-known U-shape intraday pattern of assets’ volatility; see, for ex-
ample, Andersen, Su, Todorov, and Zhang (2023b) and references therein.

2Andersen, Riva, Thyrsgaard, and Todorov (2023a) extend this analysis by including the Fama-French
factors and show that the intraday market beta pattern gets attenuated somewhat when accounting for
these additional risk factors in the beta estimation. On a theoretical level, Andersen, Thyrsgaard, and
Todorov (2021) and Andersen et al. (2023a) focus only on changes in the cross-sectional distribution of
betas while here we are interested in changing factor exposures for each of the assets in the sample. As a
result, the rate of convergence of our statistics is faster and depends on the cross-sectional dimension of
the return panel, which is not the case for the test statistics of Andersen, Thyrsgaard, and Todorov (2021)
and Andersen et al. (2023a).
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There are two major drawbacks, however, of using observable factors that our anal-
ysis can overcome. First, omitted factors that are correlated with observable ones can
yield time variation in estimated assets’ factor exposures to the observable factors even
when the true exposures (the object of economic interest) remain unchanged.? The rea-
son for this is time variation in the standard omitted variable bias in the beta estimation
over different parts of the trading day. This is a serious limitation of using only observ-
able factors in the analysis given the many candidate asset pricing factors proposed in
the finance literature (also referred to as factor zoo); see, for example, Cochrane (2011),
Harvey, Liu, and Zhu (2016), and Feng, Giglio, and Xiu (2020). Second, if the observable
factors are merely noisy proxies of the true ones, this can also generate time variation
in the exposure to observable factors when there is none toward the true latent factors.
This can happen because the errors-in-variables bias induced by the measurement er-
ror in the observable factors can change over time due to time varying volatility in the
latter.*

For these reasons, in this paper, we develop a general nonparametric test for decid-
ing whether the linear span of assets’ exposures to systematic risk at two distinct points
in time remains unchanged without assuming knowledge of the systematic risk factors.
Our test can discriminate against two types of scenarios. One is a situation in which the
number of factors at the two points in time are the same but nevertheless the linear
spaces spanned by the factor loadings at the two time points differ. Another scenario
that our test can discriminate against is one in which the number of “active” systematic
factors at the two points in time differ, even though the factor loadings for the common
factors present in the two periods are the same. This can be the case, for example, if
some of the systematic risk factors are present only at one of the two time points but
remain dormant at the other one.’

In our asymptotic setup, the number of assets increases and so does the sampling
frequency while the length of the two time periods shrinks to zero. Assets are exposed
to a fixed number of latent factors and even though exposures can change, they remain
constant in arbitrarily small local neighborhoods of the two time points. We follow Con-
nor and Korajczyk (1986), Bai and Ng (2002), Stock and Watson (2002), and Bai (2003),
and use standard principal component analysis (PCA) to recover the factor exposures,
up to a rotation, toward the active factors.® Our test statistic is then formed on the basis
of the Frobenius norm of the projection discrepancy between the estimated latent factor
exposures over the two time periods. This statistic is invariant to rotation of the factor
loadings and its limit should be zero under the null hypothesis that the linear span of

3Such omitted factors can also isignificantly impact inference about risk premia of observable factors as
shown recently by Giglio and Xiu (2021).

4For example, the feasible decomposition of market returns into cash flow shocks and discount-rate
shocks (both of which are latent), proposed by Campbell and Vuolteenaho (2004), involves estimation of
a model of expected returns. Similarly, issues with the correct measurement of the value factor have been
recently discussed by Eisfeldt, Kim, and Papanikolaou (2022).

5For example, a release of important economic information, during an FOMC announcement, might
lead to certain systematic shocks being active only during that period.

6Earlier work that applies PCA analysis to high-frequency data with large high cross-sectional dimension
include Ait-Sahalia and Xiu (2017) and Pelger (2019, 2020).
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the assets’ systematic risk exposures does not differ across the two points in time that
are being compared.

A methodological innovation of the current paper is the development of a new debi-
asing method. To remove higher-order biases, we introduce a bias-mimicking statistic,
which is defined as the projection discrepancy between factor loadings estimated from
the odd and even increments, respectively, of the pooled over the two periods return
data. Our test statistic is then centered by the bias-mimicking one. The latter mimics
the higher-order biases of the original test statistic, and is asymptotically zero both un-
der the null and the alternative hypotheses. Unlike the usual analytical debiasing or the
Jackknife, our new bias-mimicking statistic does not require us to know a priori either
the convergence rate or the explicit form of the higher-order biases.

We derive a Central Limit Theorem (CLT) for our bias-corrected test statistic un-
der the null hypothesis. The rate of convergence depends on both dimensions of the
panel of the return observations. It is a product of the number of returns per asset and
the square root of the number of assets used in the analysis. The limiting distribution
is mixed Gaussian and is determined by the idiosyncratic risk in the asset prices. The
limiting variance of the test statistic is random and adapted to the so-called common
information set, using the terminology of Andrews (2005), that includes information
about economywide variables such as the systematic risk factors, their volatility, etc. For
feasible implementation of a test of fixed asymptotic size, we propose a simple cross-
sectional bootstrap consisting of resampling with replacement of the available stocks.

The test developed in the current paper is related to two testing problems considered
in earlier work. First, Ang and Kristensen (2012), Reil3, Todorov, and Tauchen (2015), and
Kalnina (2023) develop tests for the constancy of factor loadings of assets over fixed-
time interval using high-frequency data. On a theoretical level, the asymptotic setup of
these tests is for a fixed cross-section. It is not clear whether and how these tests can
be extended to a high-dimensional setting, which is the focus of this paper. In addition,
the methods of the above cited work are designed only for observable factors. As we dis-
cussed earlier, the observable factor setup has drawbacks related to possible spurious
time variation in betas induced by omitted factors or measurement error in the factors.
Second, our paper relates to existing work on testing for structural breaks in factor load-
ings in classical linear factor models; see, for example, Breitung and Eickmeier (2011),
Chen, Dolado, and Gonzalo (2014), Corradi and Swanson (2014), Yamamoto and Tanaka
(2015), Cheng, Liao, and Schorfheide (2016), Baltagi, Kao, and Wang (2017), Su and Wang
(2020), and Bai, Duan, and Han (2022). The goals of the current paper and this strand of
work are different: in our case, we are interested in factor exposures at two fixed distinct
points in time while in the above cited papers the interest is in long-span properties of
linear factor models. The implication of this difference in goals is that in our setup the
rotation matrices of the factor loadings over the two time periods, up to which the factor
loadings can be identified, are random and can differ even under the null hypothesis.
This is not the case in the long-span tests for structural stability of linear factor models.
As aresult, one cannot adapt the test statistics of the structural break cited above to our
problem. Instead, our statistic is based on the projection discrepancy in the estimated
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factor loadings over the two periods, which is rotation invariant. Another difference be-
tween the above strand of work and our paper is that the limit distribution here is mixed
Gaussian and common shocks can impact the limiting variance of our test statistic.

The rest of the paper is organized as follows. We introduce the continuous-time
factor model and state the assumptions in Section 2. Section 3 presents the sampling
scheme and the discrete-time factor model of asset returns. The test and its asymp-
totic properties are given in Section 4. Section 5 contains a simulation study and sec-
tion an empirical application. Proofs are given in the Supplementary Appendix (Liao
and Todorov (2024)).

Throughout the paper, we will use ||A||r and || 4| to denote the Frobenius norm
and operator norm of a matrix A4, respectively. In addition, for a random sequence X,
depending on n and p, and a nonrandom nonzero sequence a,,, we write X, = op(aup)
if X,y /a,p converges to zero in probability, and X, = Op(ayp) if X,p/any = Op(1), when
n, p— oo.

2. THE CONTINUOUS-TIME FACTOR MODEL AND ASSUMPTIONS

Our interest in this paper is in the behavior of a p x 1 vector of log asset prices, denoted
by Y, at two fixed points in time. The vector of prices is defined on the filtered probability
space (Q, F, P, (F;)s>0) and is assumed to obey the following time-varying factor model
dynamics:

dY[Z(X[df+Btdft+dJ[+d6t, (1)

where «;, J; and €; are p x 1 vectors, f; is K x 1 vector of diffusive systematic risk factors,
for some positive integer K, and B, is a p x K matrix of factor loadings. The diffusive
factors evolve according to

dfy =N dW;, (2)

where A; is K x K matrix-valued stochastic process, and W¥; is K x 1 standard Brownian
motion. The systematic risk factors f; are latent and our interest in this paper is to design
a test for the hypothesis that the linear span of the factor loadings at two distinct points
in time, 0 < b < a, is the same.

The diffusive idiosyncratic risk is given by

dEt’jZO'tyde/Vtyj, jZl,...,p, (3)

where ¢, ; is the jth element of €;, and where {W ;};_1,.., » is a sequence of independent
univariate Brownian motions, which are also independent from W; that drives the sys-
tematic risk factors.

Finally, the process J is a pure-jump process, that is, it is of the form J, =) " _, AY,
where as usual AY; = Yy — Y,_ and Y,_ = lim,, Y,,. We are not interested in the }umps
of the asset prices in this paper and, therefore, we will make no assumptions regarding
whether they arrive together in the asset prices or not. We note that the analysis of the
cross-sectional dependence in J requires different techniques than the ones used here;
see, for example, Jacod, Lin, and Todorov (2024).
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We need several assumptions for deriving our results. For stating these assumptions,
we introduce the “common shocks” o-algebra C, using the terminology of Andrews
(2005), which contains the information about the systematic risk and more generally
about any economywide random variable. The processes A, W, and f are all adapted to
C.

Our interest in this paper is in the factor loadings 8 and B8,, where 0 < b < a are two
specific points in time of interest. For stating the assumptions about them, we partition
them in the following way:

By = (B, BZ, B, 0,xk,),

1) g2 (4) @
B ( B ) 0p><K37 Ba ))

where Béj) are of dimensions p x K, with K1 + K> + K3 + K4 = K. In addition, we have
gl) = Bg)H for some invertible K1 x K7 matrix H.
With this decomposition of the two factor loadings, we allow for: (1) a common
component in them up to a rotation, ,821) and YV, (2) different nontrivial components,
B,(Jz) and B, and (3) components of the factor loadings (or equivalently of the factors),

which are present in one of the two periods only, 31(33) and B{Y. We combine the unique
components of the factor loadings over the two periods into

BZ — (B(l)! B;)Z), BE)S))’ B'{; _( 1) ( 3(4)) and
Bmix = (By, B, By, B, BY),

which are of size p x (K71 + K2+ K3), p x (K1 + K2+ Ka), and p x (K + K3), respectively.

We next denote by A/ the submatrix of A, corresponding to columns of 8/ and by
Anix the submatrix of (A4, Ap) corresponding to columns of Bp,ix. Formally, consider
partitioning of the identity matrix Ix . into Ix.x = (¢}, t5, t5, t;), with ¢; being of size
Kj x K for j=1, ..., 4. With this notation, we set

A} = ((11Ap), (t2Ap)'s (13Ap)'), AL = (1A, (t2A) (1Ag)'), (6)
Amix = ((t1Ap), (©2Ap)', (13Ap)', (12A4), (1als)'). @)

®)

Finally, we set
e =N L(AL) 3 mix = AmixApip € €1{a, b}. @)
Our assumptions are as follows.

Al. There exists a sequence T1, T, ... of stopping times increasing to infinity, such that
fors, t < T, we have

supE|x;, ;|9 +supE|J; j|? <oo, foranyq=>0, 9)
j>1 ]>

SupE'th Xs;| +sup}E(Xt; Xs;)|+SUpP(Jt] Js,j?éo)fcm”_ﬂ» (10)

jzl1 jz1 jz1

EllA; — AslF + |E(A — A 7 < Cnlt — 51, (11)
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Jfor some sequence of positive constants C,,, and where x;,; is one of a, j, B;,j, and oy ;.
Furthermore, B, remains constant in local neighborhoods of t = a, b, that is, we have 3; =
Bc fort € (c — g, c + €) with € > 0 being an arbitrary small number and c = a, b.

A2.

(i) Conditionally on C, the processes W, j, B, j, 0,j, and J, ; are independent across j.
Furthermore, B.,j and o, ; are identically distributed across j and P(o¢1 # 0|C) >
O0a.s., forc=a,b.

(i) Denote 3f . =plim,, ., 4 B¢ Br and Sg,mix = plim,,_, o, & By Bmix for ¢ € {a, b
Then the eigenvalues of the matrices Eg’ o E} o 28, mix> and 2 ¢ mix are all bounded
away from zero and infinity, almost surely. In addition, the matrix H that satisfies
B = ,B(bl)H has eigenvalues that are bounded away from both zero and infinity.

(iii) In the case when B, = B,H, for an invertible matrix H, let M. = (E’B,C)l/2 X
;YC(E’,C)l/Z,forc € {a, b}, and also let M, := (3, Ya)l/z(E"a+HE;,bH/)(Er’a)l/z.
Then M, My, and M, are of full rank and have distinct nonzero eigenvalues. That
is, if the eigenvalues of any of these matrices are denoted with vy, ..., vi, then there
is co > 0 so that |v; — vj| > co > 0 foralli # j.

A3. We have

i_r{laxp aii =0p({p), c=a,b,as p— oo, (12)

for some deterministic sequence {,, with lim,_, , {, being either finite or infinite.

We make several comments regarding the above assumptions. First, Assumption Al
is a standard integrability and smoothness condition for the various processes entering
the dynamics of Y. In particular, the second and third conditions in Al are satisfied when
the processes involved in them are Itd semimartingales. We note also that the moment
conditions in Al are for the stopped processes, so the values of the processes in Al at a
point in time might not have finite moments.

Assumption A2(i) is about cross-sectional dependence. We note that we are in-
terested in such dependence only after conditioning on the common information set
C. Without conditioning on C, the processes in A2(i) will typically have strong cross-
sectional dependence due to their systematic risk exposure. The requirement for identi-
cal distribution across j of 8. j and o j, conditional on C, is for ease of exposition. It can
be replaced with a weaker one requiring convergence in probability of cross-sectional
averages involving S, j and o, . The bound from below for the eigenvalues of 2 and

}’ . In A2(ii) guarantees that the factors corresponding to g are active, that is, have
nontrivial variance, and none of the factor loadings are redundant, that is, are not in the
linear span of the other factors.

Finally, Assumption A3 is a bound on the cross-sectional maxima of the idiosyn-
cratic variance. This assumption will hold with finite lim,_. », {}, if, for example, the id-
iosyncratic variances are adapted to the common shock information set C. This will be
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also the case if, after conditioning on C, o,; are all bounded for ¢ = a, b. If neither of
the above two conditions hold, then the rate of growth of {, as the cross-sectional di-
mension increases can be determined by use of extreme value theory; see, for exam-
ple, Chapter 3 of Embrechts, Kliippelberg, and Mikosch (2013). For example, if the C-
conditional law of 062’ ; is exponential-like, then {, = log(p) while if the C-conditional
law of ‘Tc%,i is Gaussian-like, then ¢, = \/log(p).

Overall, Assumptions A1-A3 are relatively weak and allow for many relevant features
of assets’ dynamics that have been documented empirically in earlier work. In particu-
lar, we allow for stochastic volatility in asset prices of general form. Idiosyncratic volatil-
ity of individual assets can have a common component (adapted to C). Shocks to asset
prices and to stochastic volatility can be correlated, that is, the so-called leverage effect is
allowed for. Both idiosyncratic jumps that arrive at distinct times in asset prices and sys-
tematic jumps that arrive together in asset prices can be present. Systematic jumps do
not need to obey a factor model. The factor exposures toward diffusive risk can change
over time.

3. SAMPLING SCHEME AND THE DISCRETE FACTOR MODEL

Prices are observed at times 0, %, %, ..., T, for some fixed T and n asymptotically in-

creasing. We have 0 < b < a < T. The gap between observations is denoted with A, = %
and the increment of a generic process X with

A"X = Xia — Xy_1)a, . (13)

Since the factor loadings are allowed to vary over time, when forming the test, we
will use local blocks of k, increments around the times b and a, where &, is a sequence
of integers increasing to infinity and satisfying k,A,, — 0, so that the local windows used
in the estimation around ¢ = a and ¢ = b are both asymptotically shrinking. The indices
of the price increments used in the construction of the test are given by

if =|c/Apn] —kn+t, forc=a,bandt=1,...,k,. (14)

The price increments will be trimmed, following Mancini (2001), in order to elimi-
nate the price jumps. More specifically, let i(x, a) = (x vV —a) A a, for some x € R and
a € R;. We will then denote the trimmed price increments as
h(A% Y, viAT)

VA,

and for some vy; > 0 that is uniformly bounded in j and @ € (0, 1/2). We will introduce
similar notation for the increments of the latent factors and of the idiosyncratic risk:

Y= Ye=Y¢s:t=1,....kn j=1,...,p), forc=a,b, (15

_ AZ A% €1j

= -, 6"2—,

forc=a,b,t=1,...,ky,j=1,..., p, (16)
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and
Fe=(fe,:t=1,...,kp),
— (17)
Uc=(€cj:t=1,...,ky,j=1,..., p), forc=a,b.
Finally, we denote the residual component of asset returns as follows:
1 ifA,
Fetj = —F— / a,~ds+A’.’cJ~>1 ALYi|<y;AT
o \/A7< G-Da, ) I Yils AT
-1/2 - _
+ (v A7 - ViBef e — EC,tj)l{A;l?Yj>'yjAnw}
— (VAT VP 4 U BeS ey +Ee )] (18)
VjBn ViBef e, +€c.j) (ALY <—y;ATY

where ¢j is a p x 1 vector with jth element of 1 and rest of the elements being zero. The
corresponding matrix of residualsis R = (r¢,;j: t=1,..., ky, j=1,..., p),forc=a, b.

With the above notation, we have the following discrete factor model for the trun-
cated price increments over the two time windows:

Ye=BF.+Uc+Re, c=a,b, (19)

where Y, U, and R, are p x k, matrices, F. is a k, x K matrix, and B. is a p x K
matrix, and provided k,A, < ¢ with ¢ being the constant in Assumption Al. One can
show also that in a certain asymptotic sense (see the proofs for formal results) the matrix
of residual terms R, is small. This is the reason why we refer to the above representation
for the truncated increments of the asset prices as an discrete factor model.

4. FORMULATION AND ASYMPTOTIC PROPERTIES OF THE TEST

Our goal is to test whether the number of systematic factors and the factor loadings, up
to a rotation, are the same at two distinct points in time. That is, we are interested in
testing the hypothesis:

Ho : span(Bp) = span(Ba), (20)

where, for an arbitrary matrix 8, span() denotes the linear space spanned by the
columns of B. The null hypothesis is equivalent to 8, = 8,H for some invertible matrix
H.Using the notation in (4), under the null, K = K;,and K» = K3 = K4 =0,s0 B, = ﬂl).
First, we start with estimating the dimensions of 8, and B,, K, and K}, respectively. Fol-
lowing that, we introduce our test statistic based on projection discrepancy of estimated
factor loadings over the two periods and derive its limit distribution.

4.1 Formulation of the test

4.1.1 Step 0: Estimating the number of factors We estimate separately the number of
factors for the two time windows, by applying an information criterion as in Bai and Ng
(2002). We extend their analysis here to our high-frequency setting. Alternative meth-
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ods for estimating the number of factors include Ahn and Horenstein (2013), Hallin and
Liska (2007), Onatski (2010), Kapetanios (2010), among many others.
Let v, 1 > v2 > --- be the sorted eigenvalues of

1

S =
c knp

Y.Y,, céela,b} (21)

The number of factors K, is estimated by

~

K, = argmin log Z Ve,m + K————
0<K <Kmax

kn+p

, 22
knp 8np (22)

m>K

for some deterministic sequence g, > 0 and a predetermined upper bound K.y, both
of Which g0 asyrnptotically to infinity. In our implementation of the test, we use g, , =
log( k
for KC

In addition to the dimensions of 8, and B,, we also need the dimension of the
non-redundant factor loadings across the two periods. We denote Kp,ix = dim(8p, B4),
with dim(B) being the dimension of the linear space spanned by the columns of an
arbltrary matrix 8. Our estimator of Kpix is KmIX = mm{Kle o) Kmlx ¢}, where Kmlx 0
and KImX . are estimates of the number of factors of two return panels that partition
the pooled data kl (Yp, Ya)(Yp, Y,) into one from odd and even increments, respec-

tively. Note that Kmlx o and Kmlx . are both valid estimators of K. For this reason and
in order to keep the factor specification more parsimonious in finite samples, we set
Kpmix = min{f{\mixyo, I'{\mix,e}. The consistency of (K., Kp, Kmiy) is established in the proofs
of our theoretical results.

ReEMARK 4.1. We assume that the risk factors that assets are exposed to are strong, in the
sense that they satisfy the well-known pervasive condition. In this setting, the number
of latent factors, while unknown, are consistently estimable. It is not difficult to extend
the study to allow a mix of strong and so-called “semistrong” factors, where the strength
of the factors might also affect the rate of convergence of the test statistics. On the other
hand, our assumption rules out the case of weak factors in the sense of Onatski (2012).
Studying the span of betas corresponding to these types of weak factors is an open ques-
tion.

4.1.2 Step 1: The projection discrepancy statistic 'We proceed with formulating our test.
Let B, denote the P X K, estimate of B~ constructed as follows. Each column of Be/ JPis
a p x 1 eigenvector of the sample covariance matrix S. defined in (21). Our test statistic
is then based on the projection discrepancy | P53, — P, ||%, where for arbitrary matrix A4,
Py=A(A'A)"1 A is p x pmatrixand || A||% = trace( A’ A).

Using standard PCA analysis, it can be shown that, under the null hypothesis and
for some normalization matrices Za, A », and G of dimension K x K , each with norm of
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asymptotic order Op(1),” we have with probability approaching one:

1Pg, —Pgbu% = Ba + b — Rap + A5,

(23)

n

Bap = 2 — r ;4\/ f U Ubfb;l\b@
kﬂ
where As collects all higher-order terms. The leading term in the above expansion is
Ra + Xp — Hap- Its components, &, iy, and f,p, are jointly asymptotically normal but
only .5 has zero mean. The other terms i, and i, are chi-square statistics with growing
degrees of freedom p and whose means are nonzero. Therefore, we need to center them.
It can be shown that the asymptotic mean of 1z, is

B, = kz tr A,F,F. AE(02,[C),

n

where E(c? 1IC) denotes the expected idiosyncratic volatlhty conditional on the com-
mon 1nformat10n set C (recall from Assumption A2(i) that o ; are identically distributed
acrossi=1,2, ..., for c =a, b conditional on C). B, is of order Op(k; 1). After centering
using B, for c € {a, b}, we have

IPg, — Pg. 17 — (Ba + Bc) = (Ba — Ba) + (fip — Bp) — fiap + As. (24)

All three leading terms (1, — B,), (7 — By) and fi,p are of order Op(k;! p~1/2), which is
the rate of convergence of our (unscaled) test statistic, and as we show in the Appendix,
the higher-order term As converges at a faster rate.

It remains to replace B by a consistent estimator B.. Toward this end, deﬁne the
factor estimator FC Y BC/ p, and the estimated idiosyncratic terms UC = BC
whose elements are denoted by €, ;;. Our estimate for the asymptotic bias of e, C € {a, b}
is then given by

~ 2 ~ —
Be=— tr(Q;')E(0?,[C), ce{a, b}, (25)
n

where @c isa I/fc X I?c diagonal matrix of the top eigenvalues of S.. To understand the
intuition behind this expression, note that B, depends on the rescaled factors FCZC.

Although the scaling matrix A. is not estimable, the rescaled factor can be directly es-

tlmated by FCQC , where the scaling matrix QC is feasible. As such, the following term
= A/F F. A, in B. can be estimated by

=

~ ~ 1 &~ ~
F.Q; =0Q.", giventhe 1dent1tyk— 'Fe=Qc.

“Note that under the null hypothesis K, = K;, = K and ]P’(I?a =K, I?b = K}p) — 1 from Theorem B.1 in
the Appendix.



828 Liao and Todorov Quantitative Economics 15 (2024)

The problem of estimating the conditional mean of 1dlosyncrat1c volatility E(o? 41C) is
much more dedicate. A natural candidate is k I U I o Unfortunately, this estimator (al-
though consistent) underestimates its populatlon counterpart k IUlI% due to higher-
order bias terms. This would lead to underestimation of E(o-C,1|C) in finite samples.
Therefore, we employ a bias-adjusted estimator defined as

—

E(c?,[C) = T 7 +9, (26)
where the extra term 6 is given by
8= k NUeNFK e/ kn+ — p tr(B.DcBc),  D.=diag Z & pi=1,...,pt. 7

Obviously, 6 > 0, and as we show in the proof, this term corrects for the downward bias
in the naive estimator.
Altogether, the projection discrepancy statistic is then

A:=|Pg, — Pg, |7 — (Ba+ By). (28)

4.1.3 Step 2: The bias-mimicking statistic Although the expression in (28) is an asymp-
totically unbiased statistic under the null, higher-order biases might nevertheless lead
to finite sample distortions of a test based on it. One approach to correct for those is to
use a Jackknife method. Such a method, however, can eliminate only a bias of specific
asymptotic order in terms of k,, and p. In our situation, the higher-order bias terms can
be multiple and with different asymptotic orders that depend on (%, p) in a rather com-
plicated way. For this reason, we propose an alternative bias-reduction method that is
more robust to the form of higher-order biases than the Jackknife.

The idea of our method is to center the statistic in (28) by a projection discrepancy
of factor loadings estimated from two return panels of the same dimension as Y, and
Y , and which have the same number factors both under the null and the alternative hy-
potheses. These two return panels are formed from pooling the return data from the two
periods and splitting the combined data set into two: one formed from the odd incre-
ments and one from the even ones. Note that the number of factors of each of the two
return panels is Kpix, and under the null hypothesis, K, = K;, = Kpix.

We now provide the details. Let Y, . and Y}, . denote the submatrices of Y, and Y
corresponding to even columns. We define in a similar way Y, , and Y, , from the odd
columns. We then form the pooled data sets corresponding to odd and even increments:

Ymisk= Yok Yoi) kefo el

Let B\mix, « bethe p x Kmix matrix of PCA estimates for beta from the data matrix Y mix k-
Now, consider the projection discrepancy:

A\mix = ”P.Emix,o - PEmix,e ||%‘ - (Emix,o + Emix,e)» (29)
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which is a centered statistic similar to the one in (28) and the bias-correction terms are
given by

- 2 o im a2
Bunix = 17 1Oy 'F)  Fo O "E(0? |C) + 70y 'Fy o Fo,kOf 'E(02 11C),
n

n

PO - . . . - = -
where Qy is a Ky X Kmix diagonal matrix of top eigenvalues of ﬁ Y mix k Y mix, k5 Fe,x =
—_—

7/& kﬁmix, x/ p for c € {a, b}, and where we continue using E(o-i 1/C) as our estimate of the
idiosyncratic variance.
The new projection discrepancy in (29) is negligible in the sense that Amix = op(1)
under the null and alternative hypotheses. Its exact order of magnitude is Op (k; ' p~1/2).
Altogether, our final test statistic is given by

S = kuy/P(A = Amiy)- (30)

In Section 4.3, we will show formally that the centering by Anix can indeed lead to
bias reduction and in turn allow for weaker conditions on the relative size of the two
dimensions of the return panel used in the estimation.

4.1.4 Step 3: The cross-sectional bootstrap For feasible inference, we propose a simple
to implement bootstrap. Under the null hypothesis, the test statistic has the asymptotic
expansion

P
1
S=—=) zin+top(l),
where z; , is a zero-mean triangular array, whose variance depends on the asymptotic

i _ 12 . _ 2 . . .
variances of ”PBa — PBb % and ||PBmix’0 — Pﬁmix,e | as well as their asymptotic covariance.
To avoid computing estimates for these sophisticated expressions, we rely on a cross-
sectional bootstrap by resampling the rows of the p x (2k,) matrix (Y, Y,).

More specifically, let {(7;3, i 7% )*:i=1,..., p} be a simple random sample with
replacement from {(Y;, Y,,;):i=1,..., p}, where ?/c,i denotes the 1 x k,, vector of the
ith row of Y. Let (Y, Y}) denote the resulting bootstrap matrix. We compute the test
statistic on the new data as

8% = kuy/BL| P5, = P5, [ = (Bl + B})] = kn/ Pl

where (P% ,Eﬁ, A .) denotes the bootstrap counterpart of (Pﬁc’ §C, Xmix). We repeat
this procedure many times and compute g*{S* — S}, the rth upper quantile of the boot-
strap distribution of $* — S, that is, P(S* — S > ¢#{S* — S}) = 7. The critical region for a

test of size 7 is then given by

S>qi{s* -5}
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4.2 Limit behavior of the test

Our goal in this section is to derive the behavior of the test statistic S, defined in (30),
under the null hypothesis and a set of alternative hypotheses. We start with a CLT re-
sult under the null. Henceforth, £|C and £|F denote C-conditional and F-conditional,
respectively, convergence in law; see Section VIII.5(b) in Jacod and Shiryaev (2003).

THEOREM 4.1 (Size). Suppose Assumptions A1-A3 hold as well as Hy given in (20). Fur-
ther, let

Kinax — 00, Kiax/vVkn— 0, 8np —> 00,

1 1 {p (31)
—+ — — 0, — —0,
<kn p)gnp 8np
p k2 2%
(? + _§>gg —0 and pk,A;” — 0, (32)
n D

asn, p — oo, and for some @ € (0, w) that is arbitrary close to w € (0, 1/2). Then we have

s 2. (33)

where Z; is defined on an extension of the original probability space and, conditional on
C, it is a mean-zero normal random variable with some C-adapted variance. In addition,
the bootstrap statistic satisfies

L|F
s —s 4 7 (34)
where Z}; has the same F-conditional law as that of the C-conditional law of Z.
Hence, for any 7 € (0, 1), we have

P(S > gi{S* - S}) > . (35)

The conditions in (31)-(32) put restrictions on the asymptotic size of the two di-
mensions of the return panel and on the tuning parameters for choosing the number of
factors. The rate requirements for g,, are relatively weak. We make several comments
about the conditions in (32). First, it is optimal to pick the jump truncation parameter @
arbitrary close to, but below 1/2. This is similar to other applications of jump truncation
procedures; see, for example, Jacod and Protter (2011). The second condition in (32) is
due to the effect of the discretization error on the estimation, that is, due to the residual
term R, in the discrete factor model in (19). The second condition in (32) is also needed
in order to guarantee that the error due to the time variation in volatility over the local
windows has only asymptotically negligible effect on the estimation. This condition puts
an upper bound on the size of the cross-sectional dimension p relative to the length of
the two local windows used in the estimation.

Second, the conditions for p and k, in (32) allow for the standard case in which p
and k, grow at the same rate, provided of course ¢, increases at a slower rate than p!/3
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(see the discussion after Assumption A3 regarding the size of {,). We note that the first
of the two conditions in (32) allows for either of the two dimensions of the return panel
to grow at a faster rate than the other one.

The rate of convergence of our statistic is determined by both dimensions of the re-
turn panel. This is unlike the rate of convergence of the estimators of the factor loadings
of individual assets, that is, of the rows of B., which depends only on k ,; see, for example,
Bai (2003). The bias-correction term §a + Eb is of asymptotic order Op(1/ k). This term
becomes nonnegligible when multiplied by k,./p and, therefore, such a bias correction
of the projection discrepancy statistic is necessary for the CLT result.

We finish this section with characterizing the behavior of our statistic under a set of
alternatives. This is formally done in the next theorem.

THEOREM 4.2 (Power). Suppose Assumptions A1-A3 hold and the conditions in (31)—(32)
are satisfied. In addition, let either of the following two alternatives hold:
Alternative (i): B, = (Bél)H, 0,.k3), and B, = (Bé”, Bf}s)), so Ky, + K4 =0.
Alternative (ii): B, = 52), and By = Bf), so K1 + K3 + K4 =0. Also, there is ¢ > 0 so
that with probability approaching one,

1
min —— H — > C.
min = 1BaH ~ Bollr

Then, under either alternative, for any v € (0, 1),
P(S > gi{S* - S}) - 1.

The result of Theorem 4.2 shows that a one-sided test based on the statistic S will
have power against two types of alternatives.

The first alternative covers a situation in which the cross-section of assets at one of
the two time points that are compared contains more systematic risk factors than the
other. We can think of this scenario as a situation in which some systematic risk factors
become dormant over certain periods of time or alternatively as a situation in which
some risk factors appear only at some unique points of time (e.g., following the release of
amacroeconomic announcement). We note that because of the invertibility of %7 _ from

Assumption A2(ii), the probability limit of the Schur complement % Bf’)/ - PBE; 1) ,823) is
also invertible. This intuitively means that asymptotically B(bg) is not in the linear space
of ,821).

The second alternative that we consider in Theorem 4.2 is one in which the num-
ber of systematic risk factors at the two time points is the same but the linear spaces
spanned by the factor loadings differ. Our test does not have power against situations in
which the factor loadings of only a finite number of assets change. For the test to have
power, the change in the factor loadings should be pervasive, that is, it should affect an
increasing number of assets. Note that in many applications in finance, one is interested
in large portfolios of assets constructed on the basis of their factor loadings. For these
types of applications, it is the pervasive changes in factor loadings that matter and our
test is designed to detect those.
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4.3 Higher-order bias correction using Amiy

Recall that our test statistic is defined as S = kn\/ﬁ(yzl\ — Vzl\mix), where
A=|Ps —Pg |4 — (Ba+By),

and A,y is the bias-mimicking statistic that is defined similar to A but by return ma-
trices whose columns are mixtures of odd and even observations within the two time
periods. As we mentioned earlier, this term can provide higher-order bias corrections.
In this section, we formalize this statement by showing that including Amix in S can
allow for weaker condition for the asymptotic size of &k, relative to p. This result is rather
complicated to establish in general. We will illustrate it here under the following stronger
condition, which essentially requires volatilities to stay constant in the two periods.
A4. Suppose that under the null B, = B4, Ap = Ay, and a'g,i = (rgvi,for i=1,...Inaddi-
tion, suppose that A, and {0'22,1‘}1'21 remain constant for t € (¢ — ¢, ¢ + €) with € > 0 being
an arbitrary small number and ¢ = a, b.

From our discussion in Sections 4.1.2, A can be expressed as
kn \/ﬁ;l\: 21 + @)
where Z) is the leading term that admits a CLT and the residual term

RA:= /pknbs — /Pkn Y (Bc—Be),
ce{a,b}

contains higher-order terms. In the proof of Theorem 4.1, we show that Zl admits a
CLT, provided only k,, p — oo, {,/p — 0, and pk,A, = O,(1) hold. These conditions
are much weaker than those in (32). The latter are needed to show that RA is negligible
under the null hypothesis. In particular, one of the conditions in (32) is k—ngﬁ — 0. This
condition limits how fast p can grow relative to k,, and is due to higher-o;der biases in
RA. In fact, we have the following higher-order expansion:

e 1/2

TA=YPRA+ op1)+0p( L) (36)
ky ky

where R.A is a random variable (depending on the factor loadings and the volatilities)

given in the Appendix.

Using Assumption A4, we can make a similar expansion for Apiy:
kn\/ﬁAmix = Zl,mix + RAmix

where Z 1,mix is the leading term that admits a CLT and the residual term @mix yields a
same higher-order bias term:

. 1/2
RAmingRA—l— Op(l)-i-OP(\]fﬁ) . (37)
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We note that (Z;, Z 1,mix) admit a joint CLT and the limit of Z 1,mix is nontrivial in general.
This means that the centering with .Zl\mix affects the limit distribution of our statistic.
Comparing (36) and (37), we get RA — R Amix = op(1) + OP(}{—nﬁ)l/z, that is, we have
bias cancellation and this difference is negligible under a weaker condition for k, and
p- In particular, this argument will allow us to weaken the condition from égﬁ — 0to

allowing k%{?, — k for some « > 0. Formally, we have the following result.

THEOREM 4.3. Suppose Assumptions A1-A4 hold as well as Hy given in (20). Then
1 & S
5= ;zw +RA = RAmix,

L|C . —
where ﬁ > zZin £L Zy, for Z; being the limit variable in (33), and RA and R Anix
satisfy (36) and (37), with the expression for R.A given in equation (E.1) in the Appendix.

Hence, RA— 7/274mix =op(1) if the requirement k—”z gg — 0in (32) is replaced with the
weaker one k%gg — K, for some finite k > 0, and all other conditions in (31)-(32) remain
true. !

As is clear from the discussion above, the improvement in the above theorem is due
to cancellation of biases in A and ,zl\mix. Naturally, such improvement will not be avail-
able if one was to use kn\/ﬁ]l\ instead. We note that the improvements offered by cen-
tering with A, are likely much larger than what is implied by Theorem 4.3 because
here we only made an expansion of RA and R Anix with the leading term being of order
P/ kn. A full asymptotic expansion of these higher-order terms that can show further
bias cancellations is much harder to prove and we do not do this here. In our Monte
Carlo simulations, we will show the practical gains in realistic situations from using

-~
-Amix .

4.4 Time aggregation

In order to reduce the uncertainty from estimating the unknown number of factors, we
can consider pooling data in the estimation of the factor loadings over several local win-
dows. This can be done, of course, under the assumption that the factor loadings remain
constant (up to rotation) over these periods. The results of Theorems 4.1-4.2 are easily
extended to cover this situation and in this section we only sketch such an extension.
We denote two finite sets of points in time with A and B. All of the elements of A
and B are in the interior of [0, T]. The number of factors and factor loadings at each
point in each of these two sets are the same (up to a multiplication by a rotation matrix)
under the null hypothesis. The counterpart of Y. is denoted with Y, for ¢ = a, b and
C=A, B. Then we set S¢ = ﬁ?c?/c, for C=A, B and where T denotes the number of
elements in C (thus, this number is the same for A and B). The counterpart of Ec, when
S, is replaced with S, is denoted with EC and that of Qc with QC. With this notation, the
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bias-correction term is now given by

- 2 A s AT
Bc = e Z{tr(leFchgcl)E(ogl|c)}. (38)

n ceC

Similarly, let Qmix_k denote the diagonal matrix of the top Kp;x x eigenvalues from
the aggregated matrix (VA' k> 71;, x) and let F}, « denote the counterpart of E for k €
{0, e}. The bias-correction term for Apiy is

-~

B mix, k

2 51 7 7 A1 mi2 T S5-1 7 7 OA-1 mi2 T
= T2 )2 tr(Z Qmix,kFt/l,kFa:kaix,kE(Ua,l|C) + Z Qmix,kFé,kavk Qmix,kE(Ub,1|C) :
n acA beB

We can then show, under the same conditions as those of Theorem 4.1, the following
convergence result under Hy:

-~ ES ~ L|C
Tho/BlIPg, — Pay I — (Ba+ Be) — Amix] 2 Z,. (39)

We can similarly establish the counterparts of the bootstrap result in Theorem 4.1 as well
as the power result of Theorem 4.2 adapted to the current situation.

5. SIMULATION STUDY
5.1 Setting

The model used in the Monte Carlo is given by
A, j=o (B2 dW,+T;dW,)), j=1,...,p, (40)

where the univariate stochastic volatility process o; has the following square-root diffu-
sion dynamics:

do? =8.3(1 - o?)dt + o, dB,, 41)

with B; being a standard Brownian motion that is independent from W; and {W, ;};>1.
The process o; drives variation both in diffusive and idiosyncratic variances. The pa-
rameter specification of the dynamics of ¢, implies that the half-life of a shock to it is
one month.

The specification of the factors and the factor loadings is calibrated to match esti-
mates from 5-minute frequency S&P500 returns over January 2021. We run PCA on the
high-frequency returns for K = 3 factors, and calculate the covariance of the estimated
factors 3, > as well as the mean ug and covariance > p of the estimated loadings. We then
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generate factor and betas from B; ~ N(ug, %), i=1, ..., p. The calibrated parameters
are as follows:

3¢ =diag(1.198, 0.377, 0.264) x 1076, (42)
0.8763 0.2326 —0.2474 0.2603

mg=| 0.2818 |, Spg=|-0.2474 0.9224 0.0837]|. (43)
—0.2965 0.2603  0.0837 0.9139

The scale of the idiosyncratic variance @ is cross-sectionally i.i.d. and is drawn ac-
cording to

o~ Uniform([0.5,1.5]) x g, j=1,...,p, (44)

where g = 1.1 x 1073 is chosen such that the share of idiosyncratic risk in total asset
variance is around 40% for the median stock in the cross-section.

The unit of time in the above specification of the model is one year. We adopt a busi-
ness day time convention, which means that a period from market close on one day to
market close on the next trading day has a length of 1/252.

The specification for the process under the alternative hypothesis is the same as that
under the null described above with one exception regarding the specification of the
factor loadings. Mainly, under alternative A1, the factor loadings at the two time points
are given by

T j j .
AL: 51”=B§,”+N(0,;||Bb||%xl), =g forj#1, (45)

where Bﬁj ) denotes the jth column of the N x 3 matrix B, for c € {a, b}. The variance

%H,B;,H% of the perturbation is chosen such that |8, — B51%/18s1% 5 ras p — 00, SO
7 represents the amount of percentage change of the accumulated signals in betas. We
experiment with 7 € {0.01, 0.05} in the simulation.

Under alternative A2, we set one of the columns of 3, to be zero, and the other two
columns to be the same as those of 8. Formally,

A2: W =o, P=pY forj#k. (46)

In the simulation, we experiment with & € {2, 3}.

We turn next to the observation scheme. We consider a setup that is similar to the
one in our empirical application. In particular, we use a cross-section of p = 500 assets
and assume that we sample asset prices either 80 or 40 times during a trading day. This
corresponds approximately to sampling every 5 or 10 minutes in a 6.5 hour trading day.
On each day, we consider a time window of 2 hours at the beginning and the end of the
trading day. Under the 5-minute frequency, there are k,, = 24 observations in each of the
two time windows while under the 10-minute frequency, there are k, = 12 observations
per window.

In addition, in order to increase precision of estimating the number of factors, we
consider pooling data from several consecutive trading days in the estimation. This is
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possible if the factor loadings across the pooled periods remain the same. More specif-
ically, we pool data over a period of D consecutive days, which results in time-series
dimension of our return panels of D x k,, for D € {1, 2, ..., 30}. This ranges from 12 to
30 x 12 = 360 observations under the 10-minute frequency, and from 24 to 30 x 24 = 720
observations under the 5-minute frequency.

Finally, the tuning parameters of the test are set as follows. First, the truncation pa-
rameter is set in the following data-driven way:

@w=049 and y;j=4x,/RVy;iABVy; j=1,...,p, 47)

where RV, ; and BV, ; are realized variance and bipower variation of asset j on the
(trading) day d the increment belongs to, given by

Ld/(252A,)] , - Ld/(252A,)]
RV ;= > (A7X)%  BVaj=35 > A7 XGAL X | (48)
i=[(d—1)/(252A,)]+1 i=|(d—1)/(252A,)]+2

The bipower variation is a jump-robust and tuning-free measure of volatility proposed
by Barndorff-Nielsen and Shephard (2004b). This choice of truncation is commonly
adopted in applied work using truncated variation. Next, as in Bai and Ng (2002), we
set g, p = log( k’;’fp) in the penalty term for determining the number of factors. For de-
termining the number of factors, we standardize the asset returns by estimates of their
volatility in order to minimize the impact of idiosyncratic volatility.

5.2 Estimating the number of factors

We first analyze the accuracy of estimating the number of factors under the null and
alternative hypotheses. Figure 1 plots the average of the estimated number of factors

10 null Ka =3 10 null Kb=3 10 10 null Kmix =3

10 10

alternative A, Ka =3 alternative A, Kb=3

Il kn=12 Il kn=12
I kn=24

alternative A; Kmix =4

I kn=12
[ kn=24

4 4

399 ggad  3.984

alternative A, Ka =2 alternative A, Kb=3

alternative A, Kmix =3

Il k=12 Il kn=12 I kn=12
I kn=24 I kn=24

1 5 10 15 20 30 1 5 10 15 20 30 1 5 10 15 20 30
Days Days Days

FiGuRE 1. Estimated number of factors in the Monte Carlo averaged over 100 replications.
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over 100 Monte Carlo replications. Recall that K, Kj, and K,jx, respectively, denote the
true number of factors for Y, Y}, and Y ;, return matrices. The top three panels of the
figure plot results under the null hypothesis, where the true number of factors is 3. The
middle three panels plot results under alternative A; where only the first columns of 3,
and B, are different, and || 8, — Bpll%/|IBs 1% ~ 0.05. Therefore, Kpix = 4 in this case. The
bottom three panels plot results under alternative A, where the third column of B, is
zero, which leads to K, = 2.

From Figure 1, we see that regardless of the scenario, when we use data for just one
day (D = 1) and k, = 12, the estimated number of factors is always equal to 10, the de-
fault upper bound on the estimate. That is, in this case the number of factors is severely
overestimated. Meanwhile, in all other configurations of k,, and D, the number of esti-
mated factors is very close to its true value.

5.3 Results: Size and power of the proposed test

We proceed with examining the rejection probabilities of the proposed test under the
various scenarios. In each Monte Carlo simulation, like in the empirical application, the
number of factors is estimated. The Monte Carlo results are reported in Table 1.

The finite sample size properties of the test appear good across most of the con-
sidered configurations in terms of sampling frequencies and levels of time aggregation,
except for D = 1. In the case of D = 1, noticeable overrejection occurs (0.141 for k, = 12
and 0.083 for k,, = 24). This is mainly due to the fact that the estimated number of factors
is severely overestimated in this case, recall Figure 1. Nevertheless, the size distortions
caused by overestimating K are not very big. In addition, the results reported in Table 1
show robustness of the test in this regard with the test performing similarly under Hy for
low and high levels of time aggregation.

TaBLE 1. Rejection probabilities of the test S in Monte Carlo.

Number of Pooled Days D
Hypothesis 1 5 10 15 20 30
k, = 12: 10-minute frequency
Ho 0.140 0.038 0.038 0.043 0.041 0.035
Al, 7=0.01 0.148 0.340 0.828 0.982 1 1
Al, 7=0.05 0.220 0.992 1 1 1 1
A2, 8P =0 0.872 1 1 1 1 1
A2, 83 =0 0.652 0.982 1 1 1 1
k, = 24: 5-minute frequency
Ho 0.077 0.035 0.033 0.042 0.044 0.037
Al, 7=0.01 0.154 0.808 0.996 1 1 1
Al, 7=0.05 0.658 1 1 1 1 1
A2, 82 =0 0.854 1 1 1 1 1
A2, 83 =0 0.594 1 1 1 1 1

Note: The results are based on 2000 Monte Carlo replications under the null, and on 1000 replications under the alternative.
We set the number of bootstrap replications to 8 = 1000. The nominal size of the test is 5%.
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TABLE 2. Rejection probabilities of the test k,, \/ﬁlf in Monte Carlo.

Number of Pooled Days D
Hypothesis 1 5 10 15 20 30
k, = 12: 10-minute frequency
Ho 1 0.004 0.009 0.009 0.009 0.012
Al, 7=0.01 1 0.244 0.932 0.998 1 1
Al,7=0.05 1 1 1 1 1 1
A2, 8% =0 1 1 1 1 1 1
A2, 8% =0 1 0.980 1 1 1 1
k, = 24: 5-minute frequency
Ho 0.044 0.005 0.007 0.012 0.02 0.016
Al,7=0.01 0.068 0.946 1 1 1 1
Al, 7=0.05 0.646 1 1 1 1 1
A2, 8% =0 0.922 1 1 1 1 1
A2, 8% =0 0.616 1 1 1 1 1

Note: The results are based on 2000 Monte Carlo replications under the null, and on 500 replications under the alternative.
We set the number of bootstrap replications to B = 1000. The nominal size of the test is 5%.

Turning next to the behavior of the test under the two considered alternatives, we
can note from the reported results that the test has overall good power. Not surprisingly,
the power increases as we increase the sampling frequency and when we consider higher
levels of time aggregation.

5.4 Therole ofﬁmix

To study the role of including the bias-mimicking statistic in our test, Table 2 summa-
rizes the rejection probabilities when the test statistic does not contain Ay, but is just
ky \/ﬁﬁ. Like the test based on S, we perform cross-sectional bootstrap, and the rejec-
tion is based on the bootstrap critical value. The asymptotic null distribution is still nor-
mal. However, from the results in Table 2, we can now notice nontrivial size distortions.

The size distortions are most extreme in the case D =1 and k, = 12. Recall from
Figure 1 that for this configuration the number of factors is severely overestimated. The
test, with and without using Ay, will overreject the null hypothesis. However, this effect
is much more dramatic without using ;fmix. As D increases, the number of factors are
estimated relatively well throughout the simulation replications. In these scenarios, the
test without meix now becomes severely undersized, with type I errors below 0.011. This
is mainly because of the presence of higher-order biases in kn\/ﬁ,zl\.

To illustrate this, we conduct another Monte Carlo experiment under the null, fixing
k, =12 and D = 5 days and using the true number of factors in the construction of the
test. Figure 2 plots the histograms of the standardized test statistics with (left panel) or
without (right panel) the centering by the bias-mimicking statistic. The test statistics are
standardized by the bootstrap interquartile range, defined as

* *
o* = 2025 = do.75
20.25 = 20.75
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F1GURE 2. Histogram of t-statistics from 2000 replications under the null, with (left panel) and
without (right panel) the bias-mimicking statistics, superposed by the standard normal density.
The ¢-statistics are standardized by the bootstrap interquartile range. The true number of factors
are used in the construction of the test statistics, and we fix k, = 12 and D = 5 days.

where ¢} is the th upper quantile of the bootstrap statistic and z; is the rth upper quan-
tile of the standard normal distribution. We see from Figure 2 that, without centering
using the bias-mimicking statistic, k,, ﬁ]f is downward biased. This leads to the under-
rejections documented in Table 2.

Finally, the test without Amnix has somewhat higher power than the one with Amix in
the various configurations of D and &, and for the various alternative scenarios. Never-
theless, given the reported nontrivial size distortions of a test without using A,ix above,
it is important for applications to use Apiy in the test.

5.5 Robustness to weak cross-sectional dependence in idiosyncratic risk

Our test is based on cross-sectional bootstrap, which relies on independence of the
Brownian motions driving the idiosyncratic risk in asset prices. In this section, we study
how sensitive is the performance of the test to presence of mild cross-sectional depen-
dence in the idiosyncratic risk. We use the following modified model for this:

AY, = oy (B3 aW; + 3% aWy), (49)

where W, is a p x 1 standard Brownian motion independent from W;, 8 = (B, : j =
1,..., p) and 3 are exactly as in our original Monte Carlo setup, and 2 is a p x p matrix
with (i, j) entry equal to 0-52;)"'*1'I for some parameters p € (0, 1) and 052- The parameter
a2 is chosen such that the contribution of idiosyncratic noise to total asset variance is
around 40%. The parameter p governs the strength of the cross-sectional dependence
in the idiosyncratic risk in asset prices. We experiment with two values for it: p = 0.3 and
p=0.1.

For brevity, we consider only the configuration k, = 12 and D = 5. When p = 0.1, the
results are quantitatively similar to those reported in Tables 1 and 2. When p = 0.3, the
size is slightly distorted: the rejection probability is 0.063 if the test uses Amix, and it is
0.015 if it does not. The power is about 0.5 for both tests under A1 and about 1 under
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all other alternatives. Overall, these results show that our test procedure, with centering
using Aniyx, is robust to weak form of cross-sectional dependence in the idiosyncratic
risk.

6. EMPIRICAL APPLICATION

We use the developed test to study intraday variation in the linear span of systematic
risk exposures of assets. The sample in our study covers the period from January 1, 2015,
until December 31, 2021. On each day, we sample the asset prices every 5 minutes and
we exclude the first 5 minutes of each trading day. The cross-section of assets changes
over the calendar years in the sample and at each point in time it consists of the 500
largest stocks by market capitalization as of the end of the previous calendar year. The
data is extracted from the TAQ database.

Is the span of systematic risk exposures at market open different from that at market
close? To answer this question, we implement our test using return data over two local
windows. One window is the first 2 hours after market open and the other one is the
last two trading hours prior to market close. To gain power, as in the Monte Carlo, we
aggregate data over 20 consecutive trading days when implementing the test. The jump
truncation parameters and the determination of the number of factors for each return
panel is done exactly as in the Monte Carlo.

We report the p-values of the test in Figure 3. As seen from the figure, there is a non-
trivial number of periods with very low p-values. More specifically, in 30 out of a total
of 84 periods in our sample, our test rejects the null hypothesis at the conventional 5%
level. That said, there is a nontrivial number of periods for which there is no evidence

| P-values of Test for Factor Loading Span Equality, Market Open vs Market Close
* I I PR I I
* *

* % *

—r ¥ * *a o  *x | * L hd | i
10 20 30 40 50 60 70 80
Period

FiGURE 3. P-values of test for equal linear spans of factor exposures at market open and market
close. Each period consists of 20 consecutive trading days. The solid horizontal line is at 0.05.
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FIGURE 4. P-values of test for equal linear spans of factor exposures at market open and market
close on days around FOMC announcement. In the horizontal axis, “¢+ days” means the test is
conducted for data on the FOMC + ¢ day. The means and standard deviations are calculated
over 7 years from 2015 through 2021. The dashed horizontal line is at 0.05.

for the linear span of the systematic risk exposures of assets changing from market open
to market close. We note also that, even though there is some evidence for clustering in
time of the low p-values, we can observe low p-values throughout the sample.

We next study the difference in the linear spans of factor exposures at market open
and market close on the days of Federal Open Market Committee (FOMC) announce-
ment. We consider only the days for which the announcement happens at 2 p.m. Eastern
Time.? We drop the first 10 minutes for the market close window and we do the same for
the time window at market open. In order to gain power, we group the announcement
days by year and we conduct the test on the aggregated by year data. Our test rejects
strongly the null hypothesis. In particular, at 5% significance level we reject in 3 out of
the 7 years in our sample and this rejection increases to 6 out of 7 years for 10% signifi-
cance level.

We can contrast the above test results for FOMC days with ones when the test is per-
formed on neighboring days. Figure 4 plots the means and standard deviations of the
p-values of the test across the 7 years in our sample, on the days of FOMC announce-
ment +¢ days, for ¢ € {0, 1, 2}. The figure reveals markedly different behavior of the test
on and around FOMC days, with p-values of the test on FOMC days significantly lower
than the ones for days around the FOMC days. In fact, the mean p-values of the test
for the neighboring days of the FOMC announcement are very close to 0.5, which is the
expected value of the test p-value under the null hypothesis.

An interesting question is if the above-documented rejections of the test are due to
different factors being present in the different periods compared in the analysis or if
they are due to changing exposures to common factors over the two periods. Both sce-
narios seem economically plausible. Indeed, FOMC announcements trigger a monetary
policy shock while at the same time abrupt changes in aggregate macro variables can

8This includes the majority of the announcements in our sample with the exception of the unscheduled
ones in 2020.
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FiGUREe 5. P-values of test for equal linear spans of factor exposures at market close on days
around FOMC announcement. In the horizontal axis, “[# vs. f2]” means the test compares factor
exposures at market close on the FOMC + #; day and the FOMC + %, day. The means and stan-
dard deviations are calculated over 7 years from 2015 through 2021. The dashed horizontal line
isat 0.05.

lead to shifts in betas.? If there is a new factor present only in the hours after the policy
announcement, then one would expect a one day change of factor exposures. That is,
if we test equality of factor exposures in the afternoons of t =0 againstt =—-1or¢=1,
then our test should reject in both cases. On the other hand, if only exposures to fac-
tors present throughout the period around the FOMC announcement change and this
change persists at least locally, then we would expect that a test for equal factor expo-
sures at ¢t = 0 vs. t = 1 will not reject while that for equal factor exposures at ¢ = 0 vs.
t = —1 will do.

Figure 5 plots the mean p-values over the sample of tests for equal span of factor
exposures in the afternoons of days around FOMC announcements. The mean p-value
of a test for equal linear span of factor exposures in the afternoons of t =0 and rt = —1 is
0.04 while the corresponding number for t =0 vs. = 1 is 0.43. Based on the reasoning
above, these empirical results are more aligned with a shift in the span of factor expo-
sures that persists (at least over one day) than with the appearance of a new factor on
the day of the FOMC announcement.

7. CONCLUSION

We propose a nonparametric test for deciding whether the linear spans of factor ex-
posures of a large cross-section of assets toward latent systematic risk factors at two
distinct points in time differ. The test is derived under a joint in-fill and large cross-
sectional asymptotic setting, implying that both dimensions of the return panels of
high-frequency return observations within local windows of the two points in time are
growing. We allow for the two dimensions of the return panels to grow at different rates
and impose weak conditions for the dynamics of asset prices. The test is based on the
projection discrepancy between the factor loadings estimated separately from the two

9As mentioned in the Introduction, prior work has used macro variables to model dynamics of assets’
exposures to systematic risk.
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return panels, which converges asymptotically to zero under the null hypothesis and
diverges otherwise. Suitable centering of the statistic is performed to eliminate higher-
order asymptotic biases and cross-sectional bootstrap method is developed for feasible
implementation. An empirical application of the test reveals that the linear spans of fac-
tor exposures at market open and market close can differ, and the evidence for this is
particularly strong on days with FOMC announcements.
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is restricted or the authors do not have the right to republish them. However, the authors in-
cluded in the package a simulated or synthetic dataset that allows running their codes. The Jour-
nal checked the synthetic/simulated data and the codes for their ability to generate all tables and
figures in the paper and approved online appendices. However, the synthetic/simulated data are
not designed to reproduce the same results. Given the highly demanding nature of the algo-
rithms, the reproducibility checks were run on a simplified version of the code, which is also
available in the replication package.
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