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This paper studies inference in randomized controlled trials with multiple treat-
ments, where treatment status is determined according to a “matched tuples” de-
sign. If there are |D| possible treatments, then by a matched tuples design, we
mean an experimental design where units are sampled i.i.d. from the population
of interest, grouped into “homogeneous” blocks of size |D|, and finally, within
each block, exactly one individual is randomly assigned to each of the |D| treat-
ments. We first study estimation and inference for matched tuples designs in the
general setting where the parameter of interest is a vector of linear contrasts over
the collection of average potential outcomes for each treatment. Parameters of
this form include standard average treatment effects used to compare one treat-
ment relative to another, but also include parameters that may be of interest in
the analysis of factorial designs. We first establish conditions under which a sam-
ple analog estimator is asymptotically normal and construct a consistent estima-
tor of its corresponding asymptotic variance. Combining these results establish
the asymptotic exactness of tests based on these estimators. In contrast, we show
that, for two common testing procedures based on t-tests constructed from linear
regressions, one test is generally conservative while the other is generally invalid.
We go on to apply our results to study the asymptotic properties of what we call
“fully-blocked” 2K factorial designs, which are simply matched tuples designs ap-
plied to a full factorial experiment. Leveraging our previous results, we establish
that our estimator achieves a lower asymptotic variance under the fully-blocked
design than that under any stratified factorial design, which stratifies the experi-
mental sample into a finite number of “large” strata. A simulation study and em-
pirical application illustrate the practical relevance of our results.
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1. Introduction

This paper studies inference in randomized controlled trials with multiple treatments,
where treatment status is determined according to a “matched tuples” design. If there
are |D| possible treatments, then by a matched tuples design, we mean an experimental
design where units are sampled i.i.d. from the population of interest, grouped into “ho-
mogeneous” blocks of size |D|, and finally, within each block, exactly one individual is
randomly assigned to each of the |D| treatments. As such, matched tuples designs gen-
eralize the concept of matched pairs designs to settings with more than two treatments.
Matched tuples designs are commonly used in the social sciences; see Bold, Kimenyi,
Mwabu, Ng’ang’a, and Sandefur (2018), Brown and Andrabi (2020), de Mel et al. (2013),
and Fafchamps, McKenzie, Quinn, and Woodruff (2014) for examples in economics, and
are often motivated using the simulation evidence presented in Bruhn and McKenzie
(2009). However, we are not aware of any formal results that establish valid asymptoti-
cally exact methods of inference for matched tuples designs. Accordingly, in this paper
we establish general results about estimation and inference for matched tuples designs,
and then apply these results to study the asymptotic properties of what we call “fully-
blocked” 2K factorial designs.

We first study estimation and inference for matched tuples designs in the general
setting where the parameter of interest is a vector of linear contrasts over the collection
of average outcomes for each treatment. Parameters of this form include standard av-
erage treatment effects (ATEs) used to compare one treatment relative to another, but
as we explain below also include more complicated parameters that may be of inter-
est, for instance, in the analysis of factorial designs. We first establish conditions under
which a sample analog estimator is asymptotically normal and construct a consistent es-
timator of its corresponding asymptotic variance. Combining these results establish the
asymptotic validity of tests based on these estimators. We then consider the asymptotic
properties of two commonly recommended inference procedures. The first is based on
a linear regression with block fixed effects. Importantly, we find the t-test based on such
a regression is in general not valid for testing the null hypothesis that a pairwise ATE is
equal to a prespecified value. The second is based on a linear regression with cluster-
robust standard errors, where clusters are defined at the block level. Here, we find that
the corresponding t-test is generally valid but conservative, and that this conservative-
ness increases in the number of treatments.

Next, we apply our results to study the asymptotic properties of “fully-blocked”
2K factorial designs. Factorial designs are classical experimental designs (see Wu and
Hamada (2011) for a textbook treatment), which are increasingly being used in the social
sciences (see, for instance, Alatas, Banerjee, Hanna, Olken, and Tobias (2012), Besedeš,
Deck, Sarangi, and Shor (2012), DellaVigna, List, Malmendier, and Rao (2016), Kaur, Kre-
mer, and Mullainathan (2015), Karlan, Osei, Osei-Akoto, and Udry (2014)). In a 2K fac-
torial design, each treatment is a combination of multiple “factors,” where each factor
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can take two distinct values, or “levels.” As a consequence, a full 2K factorial design can
be thought of as a randomized experiment with 2K distinct treatments (importantly,
however, the analysis of factorial designs typically considers factorial effects as the pa-
rameters of interest; see Section 3.3 for a definition). A fully-blocked factorial design is
then simply a matched tuples design with blocks of size 2K . Leveraging our previous
results, we establish that our estimator achieves a lower asymptotic variance under the
fully-blocked design than under any stratified factorial design, which stratifies the ex-
perimental sample into a finite number of “large” strata (such designs include complete
randomization as a special case). We also consider settings where only one factor may be
of primary interest, and establish that even in such cases it is more efficient to perform
a fully-blocked design than to perform a matched pairs design that exclusively focuses
on the primary factor of interest.

In a simulation study, we find that although our inference results are asymptotically
exact, our proposed tests may be conservative in finite samples when the experiment
features many treatments or many blocking variables. Accordingly, we also study the
behavior of a matched tuples design with “replicates,” where we form blocks of size two
times the number of treatments, and each treatment is assigned exactly twice at ran-
dom within each block. Although we find that such a design results in an estimator with
slightly larger mean squared error, the rejection probabilities of our proposed tests be-
come much closer to the nominal level, which may result in improved power. Further
discussion is provided in Section 3.2 below.

Although the analysis of matched tuples designs has to our knowledge not received
much attention, there are large literatures on both the analysis of matched pairs designs
and the analysis of factorial designs. Recent papers, which have analyzed the properties
of matched pairs designs, include Athey and Imbens (2017), Bai, Romano, and Shaikh
(2021), Bai (2022), de Chaisemartin and Ramirez-Cuellar (2022), Cytrynbaum (2021),
Imai, King, and Nall (2009), Jiang, Liu, Phillips, and Zhang (2020), Fogarty (2018), and
van der Laan, Balzer, and Petersen (2012). Our analysis builds directly on the framework
developed in Bai, Romano, and Shaikh (2021), and our Theorems 3.1 and 3.2 nest some
of their results when specialized to the setting of a binary treatment. Cytrynbaum (2021)
considers a generalization of matched pairs designs, a special case of which he refers to
as a matched tuples design. However, his design groups units into homogeneous blocks
in order to assign a binary treatment with unequal treatment fractions. In contrast, we
consider a setting where units are grouped into homogeneous blocks in order to assign
multiple treatments.

Recent papers which have analyzed factorial designs include Branson, Dasgupta,
and Rubin (2016), Dasgupta, Pillai, and Rubin (2015), Li, Ding, and Rubin (2020), Mu-
ralidharan, Romero, and Wüthrich (2019), Pashley and Bind (2019), and Liu, Ren, and
Yang (2022). Our setup and notation for 2K factorial designs mirrors the framework in-
troduced in Dasgupta, Pillai, and Rubin (2015), although our setup differs in that we
consider a “super-population” framework where potential outcomes are modeled as
random, whereas they maintain a finite population framework where potential out-
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comes are modeled as fixed.1 Borrowing the framework from Dasgupta, Pillai, and Ru-
bin (2015), Branson, Dasgupta, and Rubin (2016) and Li, Ding, and Rubin (2020) propose
rerandomization designs for factorial experiments, which are shown to have favorable
efficiency properties relative to a completely randomized design. Although we do not
provide formal results comparing our fully-blocked design to these rerandomization de-
signs, our simulation evidence suggests that, at least in the inferential framework con-
sidered in our paper, the fully-blocked design can improve efficiency relative to these
rerandomization designs. Also, closely related to our paper is Liu, Ren, and Yang (2022),
who extend the results in Dasgupta, Pillai, and Rubin (2015) to general stratified ran-
domized designs. Their results on variance estimation specifically exclude the setting
where each treatment is assigned exactly once per block, which is the primary setting
that we consider in this paper.

The rest of the paper is organized as follows. In Section 2, we describe our setup and
notation. Section 3 presents the main results. In Section 4, we examine the finite sample
behavior of various experimental designs via simulation in the context of 2K factorial
experiments. Finally, in Section 5 we illustrate our proposed inference methods in an
empirical application based on the experiment conducted in Fafchamps et al. (2014).
We conclude with recommendations for empirical practice in Section 6.

2. Setup and notation

Let Yi ∈ R denote the observed outcome of interest for the ith unit. Let Di ∈ D denote
treatment status for the ith unit, where D denotes a finite set of values of the treatment.
We assume D = {1, � � � , |D|}. Generally, we use Di = 1 to indicate the ith unit is untreated,
but such a restriction is not necessary for our results. Let Xi denote the observed base-
line covariates for the ith unit, and denote its dimension by dim(Xi ). For d ∈ D, let Yi(d)
denote the potential outcome for the ith unit if its treatment status were d. The observed
outcome and potential outcomes are related to treatment status by the expression

Yi =
∑
d∈D

Yi(d)I{Di = d}. (1)

We suppose our sample consists of Jn := (|D|)n i.i.d. units. For any random variable in-
dexed by i, for example Di, we denote by D(n) the random vector (D1, D2, � � � , DJn ). Let
Pn denote the distribution of the observed data Z(n) where Zi = (Yi, Di, Xi ), and Qn de-
note the distribution of W (n), where Wi = (Yi(1), Yi(2), � � � , Yi(|D|), Xi ). We assume that
W (n) consists of Jn i.i.d observations, so that Qn =QJn , where Q is the marginal distribu-
tion of Wi. Given Qn, Pn is then determined by (1) and the mechanism for determining
treatment assignment. We thus state our assumptions in terms of assumptions on Q and
the treatment assignment mechanism.

1The finite population “design-based” perspective may be particularly attractive in settings where the
experimental sample is not explicitly drawn from a larger population. In Appendix D.2 in the Supplemental
Appendix (Bai, Liu, and Tabord-Meehan (2024)), we provide some preliminary simulation evidence that our
proposed estimators may be relevant in such a setting as well; however, given the simulation evidence in
de Chaisemartin and Ramirez-Cuellar (2022) and our currently incomplete understanding of the design-
based properties of our estimators, we do not make any general claims in this paper.
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Our object of interest will generically be defined as a vector of linear contrasts over
the collection of expected potential outcomes across treatments. Formally, let

�(Q) := (�1(Q), � � � , �|D|(Q)
)′

,

where �d(Q) := EQ[Yi(d)] for d ∈ D. Let ν be a real-valued m× |D| matrix. We define

�ν(Q) := ν�(Q) ∈ Rm,

as our generic parameter of interest. For example, in the special case where D = {1, 2}
and ν = (−1, 1), �ν(Q) = EQ[Yi(2) − Yi(1)] corresponds to the familiar average treat-
ment effect for a binary treatment. Further examples of �ν(Q) are provided in Examples
3.1 and 3.2 below.

We now describe our assumptions on Q. Our first assumption imposes restrictions
on the (conditional) moments of the potential outcomes.

Assumption 2.1. The distribution Q is such that

(a) 0 <E[Var[Yi(d)|Xi]] for d ∈ D.

(b) E[Y 2
i (d)] <∞ for d ∈ D.

(c) E[Yi(d)|Xi = x], E[Y 2
i (d)|Xi = x], and Var[Yi(d)|Xi] are Lipschitz for d ∈ D.

Assumption 2.1(a) is a mild restriction imposed to rule out degenerate situations
and Assumption 2.1(b) is another mild restriction that permits the application of suit-
able laws of large numbers and central limit theorems. Assumption 2.1(c), on the other
hand, is a smoothness requirement that ensures that units that are “close” in terms of
their baseline covariates are also “close” in terms of their potential outcomes. Assump-
tion 2.1(c) is a key assumption for establishing the asymptotic exactness of our pro-
posed tests, since it allows us to argue that certain intermediate quantities in the deriva-
tions of our variance estimators vanish asymptotically (see, for instance, the proof of
Lemma C.2). Similar smoothness requirements are also imposed in Bai, Romano, and
Shaikh (2021).

Next, we specify our assumptions on the mechanism determining treatment status.
In words, we consider treatment assignments, which first stratify the experimental sam-
ple into n blocks of size |D| using the observed baseline covariates X(n), and then assign
one unit to each treatment uniformly at random within each block. We call such a design
a matched tuples design. Formally, let

λj = λj
(
X(n))⊆ {1, � � � , Jn}, 1 ≤ j ≤ n

denote n sets each consisting of |D| elements that form a partition of {1, � � � , Jn}.
We assume treatment is assigned as follows.

Assumption 2.2. Treatments are assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n) and,
conditional on X(n), {

(Di : i ∈ λj ) : 1 ≤ j ≤ n
}

are i.i.d. and each uniformly distributed over all permutations of (1, 2, � � � , |D|).
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We further require that the units in each block be “close” in terms of their baseline
covariates in the following sense.

Assumption 2.3. The blocks satisfy

1
n

∑
1≤j≤n

max
i,k∈λj

‖Xi −Xk‖2 P→ 0.

We will also sometimes require that the distances between units in adjacent blocks
be “close” in terms of their baseline covariates.

Assumption 2.4. The blocks satisfy

1
n

∑
1≤j≤
n/2�

max
i∈λ2j−1,k∈λ2j

‖Xi −Xk‖2 P→ 0.

We provide three examples of blocking algorithms, which satisfy Assumptions 2.3–
2.4:

1. Univariate covariate: When dim(Xi ) = 1, we can order units from smallest to largest
according to Xi and then block adjacent units into blocks of size |D|. It then follows
from Theorem 4.1 of Bai, Romano, and Shaikh (2021) that Assumptions 2.3–2.4 are
satisfied as long as E[X2

i ] < ∞.

2. Pre-stratification: Suppose we have a covariate vector X̃i = (X̃1i, X̃2i ), where
dim(X̃2i ) = 1. Let S be a function that maps from the support of X̃1i to a discrete set
S = {1, � � � , |S|}. Define S1i = S(X̃1i ). For all units with the same value of Si, order
the units from smallest to largest according to X̃2i and then block adjacent units
into blocks of size |D|.2 It follows from Theorem 4.1 of Bai, Romano, and Shaikh
(2021) that the resulting blocks satisfy Assumptions 2.3–2.4 with Xi = (S1i, X̃2i ) as
long as E[X̃2

2i] < ∞. As an example, suppose X̃1 = (gender, education level) and
X̃2 = income. In this case, the blocks could be formed by first stratifying accord-
ing to gender and education level and then blocking on income. A similar blocking
procedure is used in the experiment conducted by Fafchamps et al. (2014), which
we revisit in our empirical application in Section 5.

3. Recursive pairing: When dim(Xi ) > 1 and |D| = 2K for some K, we could form
blocks by repeatedly implementing the “pairs-of-pairs” algorithm in Section 4 of
Bai, Romano, and Shaikh (2021) to successively larger groups of size 2k for k =
0, 1, � � � , K. To do this, units would first be matched into pairs (using for instance
the nonbipartite matching algorithm from the R package nbpMatching). Next,
these matched pairs would themselves be matched into “pairs-of-pairs” using the
average value of the covariates in each pair, in order to generate groups of size four.
Continuing in this fashion, we would match pairs of groups until obtaining groups

2If the number of units in a stratum is not divisible by |D|, we could simply assign the remaining units at
random or drop them from the experiment.
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of size 2K . This is the algorithm we employ in our simulation designs. Such an al-
gorithm could again be shown to satisfy Assumptions 2.3–2.4.

3. Main results

3.1 Inference for matched tuples designs

In this section, we study estimation and inference for a general m-dimensional param-
eter �ν(Q) under a matched tuples design. For a pre-specified � × 1 column vector �0

and �×m matrix � of rank �, the testing problem of interest is

H0 : ��ν(Q) = �0 versus H1 : ��ν(Q) �= �0 (2)

at level α ∈ (0, 1). First, we describe our estimator of �ν(Q). For d ∈ D, define

�̂n(d) := 1
n

∑
1≤i≤Jn

I{Di = d}Yi,

and let �̂n = (�̂n(1), � � � , �̂n(|D|))′. In words, �̂n(d) is simply the sample mean of the ob-
servations with treatment status Di = d, and �̂n is the vector of sample means across all
treatments d ∈ D. With �̂n in hand, our estimator of �ν(Q) is then given by

�̂ν,n := ν�̂n.

In what follows, it will be useful to define �d(Xi ) := E[Yi(d)|Xi]. Our first result derives
the limiting distribution of �̂ν,n under our maintained assumptions.

Theorem 3.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumptions 2.2–2.3. Then

√
n
(
�̂ν,n −�ν(Q)

) d→N(0, Vν ),

where Vν := νVν′, with

V := V1 +V2,

V1 := diag
(
E
[
Var

[
Yi(d)|Xi

]]
: d ∈ D

)
,

V2 :=
[

1
|D|Cov

[
�d(Xi ), �d′(Xi )

]]
d,d′∈D

.

(3)

To construct our test, we next define a consistent estimator for the asymptotic vari-
ance matrix Vν . To begin, note by the law of total variance that

E
[
Var

[
Yi(d)|Xi

]]= Var
[
Yi(d)

]−E
[
E
[
Yi(d)|Xi

]2]+E
[
Yi(d)

]2
.

Therefore, in order to estimate V1 consistently, it suffices to provide consistent estima-
tors for E[E[Yi(d)|Xi]2], E[Yi(d)], and Var[Yi(d)]. A similar remark applies to V2. In light
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of this, define

ρ̂n(d, d) := 2
n

∑
1≤j≤
n/2�

( ∑
i∈λ2j−1

YiI{Di = d}

)(∑
i∈λ2j

YiI{Di = d}

)
,

ρ̂n
(
d, d′) := 1

n

∑
1≤j≤n

(∑
i∈λj

YiI{Di = d}

)(∑
i∈λj

YiI
{
Di = d′}) if d �= d′,

σ̂2
n (d) := 1

n

∑
1≤i≤Jn

(
Yi − �̂n(d)

)2
I{Di = d}.

To understand the construction, note that in order to estimate E[E[Yi(d)|Xi]2] consis-
tently, we would ideally average over the products of the outcomes of two units with
similar values of Xi and both with treatment status d. By construction, however, only
one unit in each block has treatment status d. To overcome this problem, note that As-
sumption 2.4 ensures that in the limit units in adjacent blocks also have similar val-
ues of Xi. Therefore, to construct our estimator of E[E[Yi(d)|Xi]2], denoted by ρ̂n(d, d),
we average over the product of the outcomes of the units with treatment status d in
two adjacent blocks. ρ̂n(d, d) is analogous to the “pairs-of-pairs” variance estimator in
Bai, Romano, and Shaikh (2021). A similar construction has also been used in Abadie
and Imbens (2008) in a related setting. On the other hand, for d �= d′, we have distinct
units with treatment status d and d′ within each block and, therefore, our estimator of
E[E[Yi(d)|Xi]E[Yi(d′ )|Xi]], denoted ρ̂n(d, d′ ), can be estimated using units within the
same block.

Our estimator for Vν is then given by V̂ν,n := νV̂nν
′, where

V̂n := V̂1,n + V̂2,n,

V̂1,n := diag
(
V̂1,n(d) : d ∈ D

)
,

V̂2,n := [V̂2,n
(
d, d′)]

d,d′∈D ,

with

V̂1,n(d) := σ̂2
n (d) − (ρ̂n(d, d) − �̂2

n(d)
)
,

V̂2,n
(
d, d′) := 1

|D|
(
ρ̂n
(
d, d′)− �̂n(d)�̂n

(
d′)).

Given this estimator, our test is given by

φν
n

(
Z(n))= I

{
Tν
n

(
Z(n))> c1−α

}
,

where

Tν
n

(
Z(n))= n(��̂ν,n −��0 )′

(
�V̂ν,n�

′)−1
(��̂ν,n −��0 ),

and c1−α is the 1 − α quantile of the χ2
� distribution. Our next result establishes the con-

sistency of V̂n for V and the asymptotic validity of the above test.
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Theorem 3.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumptions 2.2–2.4. Then

V̂n
P→V.

Therefore, for the problem of testing (2) at level α ∈ (0, 1), φν
n(Z(n) ) satisfies

lim
n→∞E

[
φν
n

(
Z(n))]= α,

under the null hypothesis.

Example 3.1 (Inference for Matched Triples). Consider the setting where D = {1, 2, 3},
where we consider d = 1 as a control arm and d = 2, 3 as treatment subarms. See, for
example, Bold et al. (2018) and Brown and Andrabi (2020). Suppose our parameter of in-
terest is the vector of average treatment effects for the treatments d = 2, 3 versus control
d = 1. In this case, the parameter of interest is given by �ν(Q), where

ν =
(

−1 1 0
−1 0 1

)
.

It follows from Theorem 3.1 that

√
n
(
�̂ν,n −�ν(Q)

) d→N(0, Vν ),

where

Vν =
(
σ2
ν,1,1 σ2

ν,1,2
σ2
ν,1,2 σ2

ν,2,2

)
,

and

σ2
ν,1,1 = E

[
Var

[
Yi(1)|Xi

]]+E
[
Var

[
Yi(2)|Xi

]]+ 1
3
E
[((

�1(Xi ) − �1
)− (�2(Xi ) − �2

))2]
,

σ2
ν,2,2 = E

[
Var

[
Yi(1)|Xi

]]+E
[
Var

[
Yi(3)|Xi

]]+ 1
3
E
[((

�1(Xi ) − �1
)− (�3(Xi ) − �3

))2]
,

σ2
ν,1,2 = E

[
Var

[
Yi(1)|Xi

]]+ 1
3
E
[((

�1(Xi ) − �1
)− (�2(Xi ) − �2

))
× ((�1(Xi ) − �1

)− (�3(Xi ) − �3
))]

,

where we recall �d(Xi ) = E[Yi(d)|Xi]. These variance formulas imply the following two
observations: first, by decomposing σ2

ν,1,1 using the law of total variance, we can show
that the commonly used two-sample t-test is conservative when testing the null hypoth-
esis on the contrast of any two treatment levels in a matched tuples design. A similar
observation was made in the special case of a matched-pair design in Bai, Romano, and
Shaikh (2021). Second, the adjusted t-test developed in Bai, Romano, and Shaikh (2021)
is also conservative for testing such hypotheses. Specifically, Bai, Romano, and Shaikh
(2021) study inference for E[Y (2) − Y (1)] in a matched-pair design when |D| = 2 and
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the sample size is 2n. In a matched triples experiment with |D| = 3 and sample size 3n,
researchers may be tempted to apply the variance estimator from Theorem 3.3 in Bai,
Romano, and Shaikh (2021) to the subsample with Di ∈ {1, 2}. However, it can be shown
in our framework that the limit of the variance estimator from Bai, Romano, and Shaikh
(2021) is given by replacing 1

3 in the last term of σ2
ν,1,1 with 1

2 . Therefore, the test that
studentizes using the variance estimator from Bai, Romano, and Shaikh (2021) would be
asymptotically conservative in our setting.

Next, we study the properties of two commonly recommended inference procedures
in the analysis of matched tuple designs. The first procedure is a t-test obtained from a
linear regression of outcomes on treatment indicators and block fixed effects. Specifi-
cally, we consider a t-test obtained from the following regression:

Yi =
∑

d∈D\{1}

β(d)I{Di = d} +
∑

1≤j≤n

δjI{i ∈ λj } + εi, (4)

which we interpret as the projection of Y on the indicators for treatment status and
block fixed effects. Let β̂n(d), d ∈ D\{1} and δ̂j,n, 1 ≤ j ≤ n denote the OLS estimators of
β(d), d ∈ D\{1} and δj , 1 ≤ j ≤ n. It is common in practice to use β̂n(d) as an estimator
for the pairwise average treatment effect between treatment d and treatment 1. See, for
instance, de Mel et al. (2013) and Fafchamps et al. (2014). Furthermore, researchers often
conduct inference on the pairwise ATEs using the heteroskedasticity-robust variance
estimator obtained from (4). Formally, for d ∈D\{1} and �0 ∈ R, consider the problem of
testing

EQ

[
Yi(d)

]−EQ

[
Yi(1)

]= �0 versus H1 : EQ

[
Yi(d)

]−EQ

[
Yi(1)

] �= �0 (5)

at level α ∈ (0, 1). Let κj · V̂sfe
n (d, 1) denote the “HCj” heteroskedasticity-robust variance

estimator of β̂n(d) from the linear regression in (4), where κj for j ∈ {0, 1} corresponds to
one of two common degrees of freedom corrections (see MacKinnon and White (1985)):

κj =

⎧⎪⎨
⎪⎩

1 if j = 0,
|D|n

|D|n− (|D| − 1 + n
) if j = 1.

The test is then defined as

φsfe
n

(
Z(n))= I

{∣∣T sfe
n

(
Z(n))∣∣> z1− α

2

}
, (6)

where z1− α
2

is the (1 − α
2 )-th quantile of the standard normal distribution and

T sfe
n

(
Z(n))= β̂n(d) −�0√

κj · V̂sfe
n (d, 1)

. (7)

The following theorem shows that the OLS estimator β̂n(d) is numerically equivalent to
the standard difference-in-means estimator. However, it shows that the t-test defined in
(6) is not generally valid for testing the null hypothesis defined in (5).
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Theorem 3.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumptions 2.2–2.4. Then

β̂n(d) = �̂n(d) − �̂n(1) for d ∈ D\{1}.

Moreover,

• Using estimator HC0, the limiting rejection probability of the test defined in (6) could
be strictly larger than α.

• Using estimator HC1, the limiting rejection probability of the test defined in (6) could
be strictly larger than α for |D| > 2.

Bai, Romano, and Shaikh (2021) remark that the test defined in (6) is conservative in
the context of a matched-pair design when using HC1. Theorem 3.3 shows that, when
considering a matched tuples design with more than two treatments, this is no longer
necessarily the case.

Remark 3.1. An inspection of the proof of Theorem 3.3 reveals that the probability limit
of n · κ1V̂

sfe
n (d, 1) is given by

|D|
|D| − 1

(
Var

[
�1(Xi ) − 1

|D|
∑
d′∈D

�d′(Xi )

]
+
(

1 − 1
|D|

)2

E
[
Var

[
Yi(1)|Xi

]]

+ 1

|D|2
∑

d′∈D\{1}

E
[
Var

[
Yi

(
d′)|Xi

]]

+ Var
[
�d(Xi ) − 1

|D|
∑
d′∈D

�d′(Xi )

]

+
(

1 − 1
|D|

)2

E
[
Var

[
Yi(d)|Xi

]]+ 1

|D|2
∑

d′∈D\{d}

E
[
Var

[
Yi

(
d′)|Xi

]])
,

whereas the true asymptotic variance of β̂n(d) is given by

E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]]+ 1
|D|E

[((
�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]

.

From these expressions, we can conclude that when |D| is large it is likely that κ1V̂
sfe
n (d,

1) is conservative. However, as shown in the proof of Theorem 3.3, this cannot be guar-
anteed for finite |D| > 2 in general.

The second procedure is a block-cluster robust t-test, which modifies a recent pro-
posal in de Chaisemartin and Ramirez-Cuellar (2022) to the setting with multiple treat-
ments. Specifically, we consider a cluster-robust t-test constructed from a regression of
outcomes on a constant and treatment indicators:

Yi = γ(1) +
∑

d∈D\{1}

γ(d)I{Di = d} + εi,
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where clusters are defined at the level of blocks of units {λj }1≤j≤D . Let γ̂n(d), d ∈ D\{1}
denote the OLS estimator of γ(d); it then follows immediately that γ̂n(d) = �̂n(d)−�̂n(1).
We then consider the problem of testing (5) at level α ∈ (0, 1) using a test defined by

φbcve
n

(
Z(n))= I

{∣∣T bcve
n

(
Z(n))∣∣> z1− α

2

}
,

where z1− α
2

is the (1 − α
2 )-th quantile of the standard normal distribution and

Tbcve
n

(
Z(n))= γ̂n(d) −�0√

V̂bcve
n (d)

, (8)

with V̂
bcve
n (d) denoting the dth diagonal element of the block-cluster variance estimator

defined as

V̂
bcve
n =

( ∑
1≤j≤n

∑
i∈λj

CiC
′
i

)−1( ∑
1≤j≤n

(∑
i∈λj

ε̂iCi

)(∑
i∈λj

ε̂iCi

)′)( ∑
1≤j≤n

∑
i∈λj

CiC
′
i

)−1

, (9)

where Ci = (1, I{Di = 2}, � � � , I{Di = |D|})′ and ε̂i = ∑
d∈D\{1}(Yi − γ̂n(d))I{Di = d} +

YiI{Di = 1} − γ̂n(1).
The following theorem shows that the t-test defined in (8) is generally conservative

for testing the null hypothesis defined in (5).

Theorem 3.4. Consider the block-cluster variance estimator V̂bcve
n as defined in (9). Then

the dth diagonal element of this estimator is equal to

n · V̂bcve
n (d) = 1

n

∑
1≤j≤n

(∑
i∈λj

YiI{Di = d} −
∑
i∈λj

YiI{Di = 1}

)2

− (�̂n(d) − �̂n(1)
)2

.

Moreover, under Assumptions 2.1–2.3,

n ·V̂bcve
n (d)

p−→E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]]+E
[((

�d(Xi )−�d

)−(�1(Xi )−�1
))2]

.

It thus follows that the test defined in (8) is conservative for testing the null hypothesis
defined in (5) unless

E
[((

�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]= 0. (10)

Remark 3.2. An inspection of the proof of Theorem 3.4 reveals that unless (10) holds
the difference between the probability limit of n · V̂bcve

n (d) and the asymptotic variance
of �̂n(d) − �̂n(1) is equal to(

1 − 1
|D|

)
E
[((

�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]

.

It thus follows that the test defined in (8) in fact becomes more conservative for testing
(5) as the number of treatments |D| increases.
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3.2 Inference for “replicate” designs

Our analysis so far has focused on the setting where Jn = |D|n units are blocked into
n blocks of size |D|, and each treatment d ∈ D is assigned exactly once in each block.
In this section, we consider a modification of this design where units are grouped into
blocks of size 2|D| and each treatment status d ∈ D is assigned exactly twice in each
block. Formally, for the remainder of this section, suppose n is even, and let

λ̃j = λ̃j
(
X(n))⊆ {1, � � � , Jn}, 1 ≤ j ≤ n/2

denote n/2 sets each consisting of 2|D| elements that form a partition of {1, � � � , Jn}.
We assume treatment is assigned as follows.

Assumption 3.1. Treatments are assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n) and,
conditional on X(n), {

(Di : i ∈ λ̃j ) : 1 ≤ j ≤ n/2
}

are i.i.d. and each uniformly distributed over all permutations of (1, 1, 2, 2, � � � , |D|, |D|).

We further require that the units in each block be “close” in terms of their baseline
covariates in the following sense.

Assumption 3.2. The blocks satisfy

1
n

∑
1≤j≤n/2

max
i,k∈λ̃j

‖Xi −Xk‖2 P→ 0.

We first establish that the limiting distribution of �̂ν,n for such a “replicate” design is
the same as that for the matched tuples design considered in Theorem 3.1.

Theorem 3.5. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumptions 3.1–3.2. Then

√
n
(
�̂ν,n −�ν(Q)

) d→N(0, Vν ),

with Vν as defined in Theorem 3.1.

Although the limiting distribution of �̂ν,n for the standard matched tuples and repli-
cate designs are identical, variance estimation in the replicate design is often under-
stood to be conceptually simpler, because each treatment status is assigned twice in
each block (see, for instance, the discussion of variance estimation in Athey and Im-
bens (2017) in the context of matched pair designs). Indeed, in this case an alternative
variance estimator can be constructed, which is identical to the estimator proposed in
Section 3.1 except that we replace ρ̂n(d, d) by

ρ̃n(d, d) = 2
n

∑
1≤j≤
n/2�

(∏
i∈λj

YiI{Di = d}

)
,
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which no longer requires averaging over the product of outcomes of units in adjacent
blocks. The following theorem establishes the consistency of ρ̃n(d, d), where impor-
tantly we note that Assumption 2.4, which maintains that adjacent blocks be “close,” is
no longer required. It is then straightforward to show the consistency of the correspond-
ing variance estimator for �̂ν,n constructed by replacing ρ̂n(d, d) in V̂n with ρ̃n(d, d).

Theorem 3.6. Suppose Q satisfies Assumption 2.1 and the treatment assignment mech-
anism satisfies Assumptions 3.1–3.2. Then

ρ̃n(d, d)
P→E

[
E
[
Yi(d)|Xi

]2]
. (11)

We remark that Theorems 3.1–3.2 and Theorems 3.5–3.6, yielding identical conclu-
sions, do not allow us to effectively compare the properties of the standard matched
tuples design and matched tuples with replicates. In order to compare these designs,
we evaluate their finite sample properties via simulation in Section 4. There, we find
that the mean squared error of �̂ν,n under the replicate design is typically larger than
under the standard nonreplicate design. However, we also find that the rejection proba-
bilities of our proposed tests under the replicate design are much closer to the nominal
level relative to the nonreplicate design, which can sometimes exhibit rejection proba-
bilities strictly smaller than the nominal level when matching on multiple covariates. As
a result, the replicate design is sometimes able to achieve better power relative to the
nonreplicate design. We emphasize, however, that our current asymptotic framework
is not precise enough to capture these differences. One possible conjecture is that since
replicate designs could be thought of as convex combinations of matched tuples designs
(see Lemma 2 in Bai (2022)), it is as if we are averaging over multiple matched tuples de-
signs when we estimate the limiting variance. However, we leave a detailed theoretical
comparison of these two designs to future work.

3.3 Asymptotic properties of fully-blocked 2K factorial designs

In this section, we apply the results derived in Sections 3.1–3.2 to study the asymptotic
properties of what we call “fully-blocked” 2K factorial designs. Section 3.3.1 introduces
2K factorial experiments. Section 3.3.2 introduces the fully-blocked factorial design and
compares the efficiency properties of fully-blocked factorial designs to some alternative
designs.

3.3.1 Setup and notation for 2K factorial designs In this section, we describe the setup
of a 2K factorial experiment, the resulting parameters of interest, and their correspond-
ing estimators (see Wu and Hamada (2011) for a textbook treatment). A 2K factorial de-
sign assigns treatments, which are combinations of multiple “factors,” where each factor
can take two distinct values, or “levels.” For instance, Karlan et al. (2014) study the ef-
fect of capital constraints and uninsured risk on the investment decisions of farmers in
Ghana. In their setting, each treatment consists of two factors: whether or not a house-
hold receives a cash grant, and whether or not a household receives an insurance grant.
Our setup and notation mirror the framework introduced in Dasgupta, Pillai, and Rubin
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(2015) and Li, Ding, and Rubin (2020). Given K factors each with two treatment levels
{−1, +1}, our set of treatments D now consists of all possible 2K factor combinations.
For a factor combination d ∈ D, define ιk(d) ∈ {−1, +1} to be the level of factor k under
treatment d. The vector ι(d) := (ι1(d), ι2(d), � � � , ιK(d)) then describes the levels of all K
factors associated with factor combination d. This notation allows us to define factorial
effects as parameters of the form �ν(Q) for appropriately constructed contrast vectors ν.
For instance, consider the contrast vector defined as

νk := (ιk(1), ιk(2), � � � , ιk
(|D|)).

Then the parameter �νk(Q) obtained from this contrast can be written as

�νk(Q) =
∑
d∈D

I
{
ιk(d) = +1

}
�d(Q) −

∑
d∈D

I
{
ιk(d) = −1

}
�d(Q).

We define the main effect of factor k as 2−(K−1)�νk(Q). In words, the main effect of factor
k measures the average difference between the outcomes of factor combinations under
which the kth factorial effect is 1 versus the outcomes of factor combinations under
which the kth factorial effect is −1. The rescaling 2−(K−1) is introduced because there
are 2K−1 possible values for all the factor combinations when fixing the kth factor. We
call νk the generating vector for the main effect of factor k.

We can subsequently build on the generating vectors of the main effects in or-
der to define the interaction effects between various factors. The interaction effect be-
tween a given set of factors is defined using the contrast obtained from taking the el-
ementwise product of the generating vectors for the relevant factors. For instance, the
two-factor interaction between factors k and k′ is defined as 2−(K−1)�νk,k′ (Q), where
νk,k′ := νk�νk′ and � denotes elementwise multiplication. Similarly, the three-factor in-
teraction 2−(K−1)�νk,k′ ,k′′ (Q) is defined using the contrast vector νk,k′,k′′ := νk � νk′ � νk′′ .
We illustrate these definitions in the special case of a 22 factorial design in Example 3.2
below. For simplicity, in what follows, we omit the rescaling by 2−(K−1) in our discussions
and results.

Example 3.2. Here, we illustrate the concept of main and interaction effects in the case
of a 22 factorial design. Table 1 depicts the 4 factor combinations and their correspond-
ing factor levels.

Table 1. Example of a 22 factorial design.

Factor Combination Factor 1 Factor 2 Factor 1/2 Interaction

1 −1 −1 +1
2 −1 +1 −1
3 +1 −1 −1
4 +1 +1 +1
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From the column labeled Factor 1, we observe that the generating vector for the
main effect of factor one, ν1, is given by

ν1 = (−1, −1, +1, +1),

so that the main effect of factor one is given by (up to rescaling)

�ν1 (Q) =EQ

[
Yi(+1, +1) +Yi(+1, −1)

]−EQ

[
Yi(−1, +1) +Yi(−1, −1)

]
,

where here we have indexed potential outcomes explicitly by their factor levels. Sim-
ilarly, the column labeled Factor 2 corresponds to the generating vector for the main
effect of factor two, ν2. To define the interaction effect between factors one and two, we
construct the relevant contrast by taking the elementwise product of ν1 and ν2:

ν1,2 = ν1 � ν2 = (+1, −1, −1, +1);

this produces the column labeled factor 1/2 interaction. Accordingly, the interaction ef-
fect between factors one and two is given by (up to rescaling)

�ν1,2 (Q) =EQ

[
Yi(+1, +1) −Yi(−1, +1)

]−EQ

[
Yi(+1, −1) −Yi(−1, −1)

]
.

In words, �ν1,2 (Q) measures the difference in the the average difference in potential out-
comes over factor one when factor two is set to 1 versus the average difference in poten-
tial outcomes over factor one when factor two is set to −1.

Given the above setup, we estimate the factorial effect given by �ν(Q) using the es-
timator �̂ν,n defined in Section 3.1. Wu and Hamada (2011) and Dasgupta, Pillai, and
Rubin (2015) explain that �̂ν,n is a standard estimator in this context. For instance, the
estimator of the main effect of factor k, 2−(K−1)�̂νk,n, is in fact the difference-in-means
estimator over the kth factor:

2−(K−1)�̂νk,n

= 1

2K−1

∑
d∈D

I
{
ιk(d) = +1

}
�̂n(d) − 1

2K−1

∑
d∈D

I
{
ιk(d) = −1

}
�̂n(d)

= 1

n2K−1

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(d) = +1

}
I{Di = d}

×Yi − 1

n2K−1

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(d) = −1

}
I{Di = d}Yi

= 1

n2K−1

∑
1≤i≤Jn

I
{
ιk(Di ) = +1

}
Yi − 1

n2K−1

∑
1≤i≤Jn

I
{
ιk(Di ) = −1

}
Yi.

3.3.2 Efficiency properties of fully-blocked factorial designs In this section, we compare
the asymptotic variance of the estimator �̂ν,n under what we call a “fully-blocked” fac-
torial design relative to some alternative designs. A fully-blocked factorial design first
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blocks the experimental sample into n blocks of size 2K based on the observable char-
acteristics X(n), and then assigns each of the 2K factor combinations exactly once in
each block. Formally, a fully-blocked factorial design is simply a matched tuples design
as defined in Section 2, where D consists of the set of all possible factor combinations.

Our first result compares the fully-blocked factorial design to completely random-
ized and stratified factorial designs. Given a 2K factorial experiment and a sample of
size Jn = n2K , a completely randomized factorial design simply assigns n individu-
als to each of the 2K factor combinations at random. A stratified factorial design first
partitions the covariate space into a finite number of groups, or “strata,” and then
performs a completely randomized factorial design within each stratum. Formally, let
h : supp(X ) → {1, � � � , S} be a function, which maps covariate values into a set of dis-
crete strata labels. Then a stratified factorial design performs a completely randomized
factorial design within each stratum produced by h(·). Note that a completely random-
ized design is a special case of the stratified factorial design where the codomain of
h(·) is a singleton. See Branson, Dasgupta, and Rubin (2016) and Li, Ding, and Rubin
(2020) for further discussion of these designs. Theorem 3.7 shows that the asymptotic
variance of �̂ν,n is weakly smaller under a fully-blocked factorial design than that under
any stratified factorial design as defined above, as long as the potential outcomes satisfy
the smoothness assumptions described in Assumption 2.1(c).

Theorem 3.7. Suppose Assumptions 2.1(a)–(b) hold and let h : supp(X ) → {1, � � � , S} be
any measurable function, which maps covariate values into a set of discrete strata labels.
Let �ν(Q) be a factorial effect for some 1 × 2K contrast vector ν. Then under a stratified
factorial design with strata defined by h(·),

√
n
(
�̂ν,n −�ν(Q)

) d→N
(
0, σ2

h,ν

)
,

where σ2
h,ν = νVhν

′, with

Vh :=Vh,1 +Vh,2,

Vh,1 := diag
(
E
[
Var

[
Yi(d)|h(Xi )

]]
: d ∈ D

)
,

Vh,2 :=
[

1
|D| Cov

[
E
[
Yi(d)|h(Xi )

]
, E
[
Yi

(
d′)|h(Xi )

]]]
d,d′∈D

.

Moreover,

σ2
ν ≤ σ2

h,ν ,

where σ2
ν = Vν (as defined in Theorem 3.1) is the asymptotic variance of �̂ν,n (under As-

sumptions 2.1–2.3) for a fully-blocked factorial design.

Remark 3.3. Branson, Dasgupta, and Rubin (2016) and Li, Ding, and Rubin (2020) pro-
pose rerandomization designs in the context of factorial experiments, which are also
shown to have favorable properties relative to complete and stratified factorial designs.
In Section 4.1, we compare the mean squared error of the fully-blocked design to a re-
randomized design via Monte Carlo simulation.
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Our next result considers settings where only a subset of the factors are of primary
interest to the researcher. For instance, Besedeš et al. (2012) use a factorial design to
study how the number of options in an agent’s choice set affects their ability to make
optimal decisions. Here, the primary factor of interest is the number of options (four or
thirteen), but the design also features other secondary factors. In such a case, we might
imagine that a matched pairs design, which focuses on the factor of primary interest
and assigns the other factors by i.i.d. coin flips may be more efficient for estimating the
primary factorial effect than the fully-blocked design that treats all the factors symmetri-
cally. In particular, we consider a setting where we are interested in the average main ef-
fect on the kth factor, �νk(Q), and compare the performance of the fully-blocked design
to a design, which performs matched pairs over the kth factor while assigning the other
factors to individuals at random using i.i.d. Bernoulli(1/2) assignment. We call such a
design the “factor k specific” matched pairs design. Formally, let

ζj = ζj
(
X(n))⊂ {1, � � � , 2Kn

}
, 1 ≤ j ≤ 2K−1n

denote a partition of the set of indices such that each ζj contains two units. The “factor
k specific” matched pairs design satisfies the following assumption.

Assumption 3.3. Treatment status is assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n) and,
conditional on X(n), {(

ιk(Di ) : i ∈ ζj
)

: 1 ≤ j ≤ 2K−1n
}

are i.i.d. and each uniformly distributed over {(−1, +1), (+1, −1)}. Furthermore, inde-
pendently of X(n) and independently across 1 ≤ j ≤ K, j �= k, ιj(Di ) is i.i.d. across 1 ≤ i ≤
2Kn and P{ιj(Di ) = −1} = P{ιj(Di ) = +1} = 1

2 .

Theorem 3.8 shows that the asymptotic variance of �̂ν1,n is weakly smaller under a
fully-blocked design than that under the factor specific matched pairs design.

Theorem 3.8. Suppose Assumptions 2.1–2.3 hold and the treatment assignment mecha-
nism satisfies Assumption 3.3. Then

√
n
(
�̂νk,n −�νk(Q)

) d→ N(0, Vνk + ξ1 + ξ0 ),

where Vνk is defined in Theorem 3.1, and

ξ1 =
∑

d∈D:ιk(d)=+1

E

[(
�d(Xi ) − 1

2K−1

∑
d′∈D:ιk(d′ )=+1

�d′(Xi )

)2]
,

ξ0 =
∑

d∈D:ιk(d)=−1

E

[(
�d(Xi ) − 1

2K−1

∑
d′∈D:ιk(d′ )=−1

�d′(Xi )

)2]
.

Remark 3.4. In this section, we have presented results for “full” factorial designs, which
assign individuals to every possible combination of factors. This is in contrast to “frac-
tional” factorial designs, which assign only a subset of the possible factor combinations
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(see, e.g., Wu and Hamada (2011), Pashley and Bind (2019)). We leave possible exten-
sions of our procedure to the fractional case for future work.

4. Simulations

In this section, we examine the finite sample performance of the estimator �̂ν,n and the
test φν

n(Z(n) ) in the context of a 2K factorial experiment, under various alternative exper-
imental designs. In Sections 4.1 and 4.2, the data generating processes are as specified
below (in Section 4.3 we study an alternative design with multiple covariates and fac-
tors). For d = (d(1), d(2) ) ∈ {−1, 1}2 and 1 ≤ i ≤ 4n, the potential outcomes are generated
according to the equation:

Yi(d) = μd +μd(Xi ) + σd(Xi )εi.

In each of the specifications, ((Xi, εi ) : 1 ≤ i ≤ 4n) are i.i.d.; for 1 ≤ i ≤ 4n, Xi and εi are
independent.

Model 1: μ1,a(Xi ) = μ−1,a(Xi ) = γXi for a ∈ {−1, 1}, where γ = 1. μ1,1 = 2μ1,−1 =
4μ−1,1 = 2τ for a parameter τ ∈ {0, 0.2}, μ−1,−1 = 0, εi ∼ N(0, 1) and Xi ∼
N(0, 1) for all d ∈ {−1, 1}2 and σd(Xi ) = 1.

Model 2: As in Model 1, but μd(Xi ) =Xi + (X2
i − 1)/3.

Model 3: As in Model 1, but μd(Xi ) = γdXi + (X2
i − 1)/3. γ1,1 = 2, γ−1,1 = 1, γ1,−1 =

1/2 and γ−1,−1 = −1.

Model 4: As in Model 3, but μd(Xi ) = sin(γdXi ).

Model 5: As in Model 3, μd(Xi ) = sin(γdXi ) + γdXi/10 + (X2
i − 1)/3.

Model 6: As in Model 3, but σd(Xi ) = (1 + d(1) + d(2) )X2
i .

We consider five parameters of interest as listed in Table 2. �ν1 (Q) and �ν2 (Q) corre-
spond to the main factorial effects for the two factors. �ν1,2 (Q) corresponds to the inter-
action effect between the two factors, as discussed in Example 3.2. �ν1

1
(Q) and �ν1−1

(Q)

denote the average effect of one factor, keeping the value of the other factor fixed at 1 or
−1. All simulations are performed with a sample of size 4n= 1000.

Table 2. Parameters of interest.

Parameter of Interest Formula

1
2�ν1 (Q) 1

2E[Yi(1, 1) −Yi(−1, 1)] + 1
2E[Yi(1, −1) −Yi(−1, −1)]

1
2�ν2 (Q) 1

2E[Yi(1, 1) −Yi(1, −1)] + 1
2E[Yi(−1, 1) −Yi(−1, −1)]

1
2�ν1,2 (Q) 1

2E[Yi(1, 1) −Yi(−1, 1)] − 1
2E[Yi(1, −1) −Yi(−1, −1)]

�ν1
1

(Q) E[Yi(1, 1) −Yi(−1, 1)]

�ν1−1
(Q) E[Yi(1, −1) −Yi(−1, −1)]
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4.1 MSE properties of the matched tuples design

In this section, we study the mean-squared-error performance of �̂ν,n across several ex-
perimental designs. We analyze and compare the MSE for all five parameters of interest
for the following seven experimental designs:

1. (B-B) (D(1)
i , D(2)

i ) are i.i.d. across 1 ≤ i ≤ 4n and the two entries are independently
distributed as 2A− 1, where A follows Bernoulli(1/2).

2. (C) (D(1)
i , D(2)

i ) are jointly drawn from a completely randomized design. We uni-
formly at random divide the experimental sample of size 4n into four groups of
size n and assign a different d ∈ {−1, 1}2 for each group.

3. (MP-B) A matched-pair design for D(1), where units are ordered and paired accord-
ing to Xi. For each pair, uniformly at random assign D(1)

i = 1 to one of the units.

Independently, (D(2)
i : 1 ≤ i ≤ 4n) are i.i.d. with the distribution of 2A − 1, where

A∼ Bernoulli(1/2).

4. (MT) Matched tuples design where units are ordered according to Xi.

5. (Large-2) A stratified design, where the experimental sample is divided into two
strata using the median of Xi as the cutoff. In each stratum, treatment is assigned
as in C.

6. (Large-4) As in (Large-2), but with four strata.

7. (RE) A rerandomization design using a Mahalanobis balance function. As outlined
in Branson, Dasgupta, and Rubin (2016), we select the main-effect threshold crite-
rion to be the 100(0.011/K ) percentile of a χ2

p distribution with p = dim(Xi ), and
select the interaction-effect threshold criterion to be 100(0.011/L ), where L is the
number of interaction effects.

Table 3 displays the ratio of the MSE of each design relative to the MSE of MT, com-
puted across 4000 Monte Carlo replications. In each of the designs, we set treatment
effects to zero by setting τ = 0. As expected from Theorems 3.7 and 3.8, MT outperforms
B-B, C, MP-B, Large-2, and Large-4 in every model specification. We also find that MT
compares favorably to RE, with RE slightly outperforming MT in some cases, but with
MT outperforming in general. Although we do not have formal results comparing the
matched tuples design to rerandomization, we note that rerandomization redraws treat-
ments until the distances between certain features of the covariate distribution across
treatment statuses are below certain pre-specified thresholds. In contrast, the matched
tuples design attempts to minimize these distances by blocking units finely based on
the covariates. See also Remark 3 of Bai (2022) for a related observation in the binary
treatment setting.

4.2 Inference

In this section, we study the finite sample properties of several different tests of the null
hypothesis H0 : �ν = 0 for various choices of ν, against the alternative hypotheses im-
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Table 3. Ratio of MSEs relative to MT.

Model Parameter B-B C MP-B MT Large-2 Large-4 RE

1 �ν1 2.099 1.948 1.045 1.000 1.335 1.138 1.031
�ν2 2.036 2.015 2.113 1.000 1.407 1.179 0.988
�ν1,2 2.008 2.044 2.016 1.000 1.423 1.091 1.014
�ν1

1
2.051 2.014 1.563 1.000 1.402 1.134 1.029

�ν1−1
2.057 1.978 1.498 1.000 1.357 1.095 1.017

2 �ν1 2.327 2.168 1.044 1.000 1.546 1.249 1.232
�ν2 2.254 2.259 2.355 1.000 1.619 1.312 1.209
�ν1,2 2.249 2.287 2.173 1.000 1.646 1.225 1.250
�ν1

1
2.285 2.265 1.634 1.000 1.599 1.260 1.227

�ν1−1
2.291 2.190 1.585 1.000 1.593 1.215 1.255

3 �ν1 2.042 1.996 1.792 1.000 1.422 1.206 1.124
�ν2 1.576 1.527 1.480 1.000 1.221 1.140 1.109
�ν1,2 3.113 2.982 1.943 1.000 1.900 1.337 1.187
�ν1

1
3.401 3.351 2.237 1.000 1.979 1.410 1.225

�ν1−1
1.899 1.802 1.619 1.000 1.388 1.166 1.103

4 �ν1 1.311 1.305 1.252 1.000 1.100 1.070 1.194
�ν2 1.218 1.210 1.167 1.000 1.063 1.064 1.057
�ν1,2 1.296 1.289 1.152 1.000 1.184 1.084 1.191
�ν1

1
1.416 1.401 1.259 1.000 1.158 1.080 1.249

�ν1−1
1.201 1.202 1.150 1.000 1.128 1.075 1.140

5 �ν1 1.603 1.606 1.315 1.000 1.280 1.169 1.375
�ν2 1.444 1.458 1.378 1.000 1.225 1.173 1.235
�ν1,2 1.607 1.598 1.351 1.000 1.370 1.184 1.390
�ν1

1
1.802 1.797 1.415 1.000 1.353 1.192 1.441

�ν1−1
1.434 1.434 1.262 1.000 1.301 1.164 1.332

6 �ν1 1.119 1.122 1.116 1.000 1.055 1.021 1.065
�ν2 1.051 1.042 1.056 1.000 1.026 0.991 0.989
�ν1,2 1.107 1.104 1.077 1.000 1.074 0.994 1.018
�ν1

1
1.096 1.100 1.088 1.000 1.058 1.005 1.051

�ν1−1
1.197 1.177 1.137 1.000 1.092 1.017 0.996

plied by setting τ = 0.2. In this section, we restrict our attention to five assignment mech-
anisms: B-B, C, MT, Large-2, and Large-4. We exclude MP-B because it is a nonstandard
experimental design for which we have not developed an inference procedure. We also
exclude the rerandomization design (RE) because, although it is a widely studied design,
the inferential results in Li, Ding, and Rubin (2020) are derived in a finite population
framework, which is distinct from our superpopulation framework, and their resulting
limiting distribution is nonnormal.

In each case, we perform our hypothesis tests at a significance level of 0.05. For de-
sign B-B, tests are performed using a standard t-test. For designs C, Large-2, and Large-
4, the tests are constructed using the asymptotic normality result from Theorem 3.7
combined with variance estimators constructed using the same plug-in method as in
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Table 4. Rejection probabilities under the null and alternative hypothesis.

Model Parameter

Under H0 Under H1

B-B C MT Large-2 Large-4 B-B C MT Large-2 Large-4

1 �ν1 0.057 0.049 0.051 0.050 0.046 0.790 0.803 0.977 0.915 0.963
�ν2 0.052 0.059 0.046 0.060 0.058 0.371 0.403 0.675 0.534 0.593
�ν1,2 0.049 0.059 0.049 0.059 0.043 0.081 0.093 0.126 0.100 0.106
�ν1

1
0.052 0.043 0.048 0.064 0.040 0.646 0.656 0.921 0.816 0.884

�ν1−1
0.056 0.051 0.044 0.057 0.048 0.361 0.333 0.594 0.499 0.545

2 �ν1 0.053 0.043 0.049 0.048 0.045 0.738 0.737 0.976 0.875 0.951
�ν2 0.056 0.061 0.046 0.059 0.056 0.341 0.377 0.670 0.483 0.551
�ν1,2 0.052 0.065 0.050 0.060 0.044 0.082 0.091 0.126 0.101 0.095
�ν1

1
0.049 0.051 0.046 0.057 0.036 0.597 0.610 0.919 0.758 0.840

�ν1−1
0.056 0.051 0.046 0.054 0.048 0.340 0.310 0.598 0.436 0.500

3 �ν1 0.054 0.056 0.050 0.053 0.052 0.571 0.570 0.837 0.705 0.787
�ν2 0.056 0.057 0.056 0.057 0.059 0.235 0.259 0.361 0.286 0.323
�ν1,2 0.051 0.051 0.052 0.062 0.047 0.060 0.064 0.116 0.091 0.082
�ν1

1
0.048 0.051 0.046 0.061 0.035 0.402 0.421 0.885 0.624 0.762

�ν1−1
0.061 0.047 0.060 0.056 0.057 0.255 0.234 0.374 0.310 0.340

4 �ν1 0.049 0.051 0.045 0.045 0.050 0.908 0.905 0.968 0.956 0.957
�ν2 0.051 0.052 0.051 0.051 0.058 0.488 0.520 0.604 0.569 0.559
�ν1,2 0.056 0.052 0.049 0.065 0.045 0.092 0.102 0.126 0.117 0.111
�ν1

1
0.050 0.048 0.051 0.054 0.045 0.762 0.785 0.908 0.865 0.886

�ν1−1
0.044 0.055 0.048 0.052 0.046 0.498 0.472 0.544 0.528 0.523

5 �ν1 0.054 0.054 0.045 0.045 0.043 0.844 0.847 0.964 0.912 0.937
�ν2 0.053 0.056 0.051 0.048 0.053 0.416 0.445 0.589 0.491 0.505
�ν1,2 0.052 0.054 0.049 0.059 0.049 0.092 0.099 0.124 0.110 0.099
�ν1

1
0.051 0.052 0.049 0.058 0.043 0.674 0.688 0.911 0.810 0.847

�ν1−1
0.050 0.062 0.049 0.056 0.049 0.416 0.403 0.523 0.461 0.474

6 �ν1 0.050 0.050 0.043 0.058 0.043 0.129 0.128 0.122 0.115 0.130
�ν2 0.053 0.059 0.057 0.057 0.051 0.074 0.086 0.088 0.079 0.080
�ν1,2 0.047 0.046 0.052 0.053 0.044 0.052 0.046 0.052 0.057 0.050
�ν1

1
0.049 0.046 0.049 0.051 0.043 0.082 0.083 0.077 0.082 0.081

�ν1−1
0.059 0.056 0.058 0.059 0.056 0.140 0.113 0.125 0.131 0.135

Bugni, Canay, and Shaikh (2018) and Bugni, Canay, and Shaikh (2019). For design MT,
the test is constructed as described in Theorem 3.2. Table 4 displays the rejection prob-
abilities under the null and alternative hypotheses, computed from 2000 Monte Carlo
replications. The results show that the rejection probabilities are universally around
0.05 under the null hypothesis, which verifies the validity of our tests across all the de-

signs. Under the alternative hypotheses implied by τ = 0.2, the rejection probabilities
vary substantially across the different designs, outcome models, and parameters. How-
ever, our matched tuples design displays the highest power for almost all parameters
and model specifications.
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4.3 Experiments with more factors and covariates

In this section, we repeat the previous simulation exercises while varying the number of
factors K and the number of observed covariates dim(Xi ). The data generating process
is constructed as follows:

Yi(d) =

⎧⎪⎪⎨
⎪⎪⎩
τd(1) + X̃ ′

iβ+ εi if K = 1,

τ ·
⎛
⎝d(1) + 1

K − 1

∑
2≤k≤K

d(k)

⎞
⎠+ γdX̃

′
iβ+ εi if K ≥ 2,

where τ ∈ {0, 0.1}, d = (d(1), � � � , d(K) ), and d(k) ∈ {−1, 1} represents the treatment status
of the kth factor. We set γd = 1 if d(2) = 1, γd = −1 otherwise, in order to ensure the con-
ditional means are heterogeneous in the second factor. X̃i contains 9 covariates, out of
which the first dim(Xi ) covariates are observed and used for the experimental designs.
The distributions of X̃i, εi and the values of β are calibrated using data obtained from
Branson, Dasgupta, and Rubin (2016), who study the covariate balancing properties of
2K factorial rerandomization designs using data from the New York Department of Edu-
cation (NYDE). Details on the empirical context and construction of the data generating
process are provided in Appendix D.3 in the Supplemental Appendix.

To construct our matched tuples of size 2K when dim(Xi ) > 1, we employ the re-
cursive pairing algorithm described in Section 2 using the Mahalanobis distance. We
emphasize, however, that this approach is not guaranteed to be optimal, and we leave
the study of potentially more effective matching algorithms to future work.

In addition to the standard matched tuples design (MT), we also include a matched
tuples design with a replicate for each treatment as described in Section 3.2, denoted by
MT2. For example, in the MT2 design with two factors, units are matched into groups of
eight, and two units receive each factor combination. We also continue to consider the
alternative designs (C, Large-4, MP-B, and RE) from Section 4.1. When constructing the
strata for Large-4, we stratify on one covariate drawn at random from the set of available
covariates.

In Table 5, we report the ratio of the MSE of each design relative to the MSE of MT
when dim(Xi ) = 1 and K = 1 (computed from 4000 Monte Carlo replications). For all
experiments in this section, the number of observations is fixed to be 1280 so that we
have 20 matched tuples of size 64 when K = 6. Our simulation results are consistent
with those in Section 4.1: MT displays the lowest MSE across almost all model specifica-
tions. Although MT2 generally produces larger MSEs than MT, it still performs favorably
relative to the other designs. For methods that use an increasing number of covariates
when dim(Xi ) increases (MT, MT2, MP-B, and RE), we observe that the MSE in fact in-
creases with the number of available covariates. We expect this is because (as shown in
Appendix D.3 in the Supplemental Appendix) the first covariate is a much stronger pre-
dictor of the control outcome than the other available covariates, which are relatively
uninformative.

In Table 6, we compute the rejection probabilities when testing the null hypothesis
H0 : �ν1 = 0 against the alternative implied by setting τ = 0.1, for various choices of K
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Table 5. Ratio of MSEs relative to MT using a single factor and covariate.

dim(Xi ) Method K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 Method K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

1 MT 1.000 1.003 1.006 1.113 1.297 1.945 C 9.151 8.554 8.642 8.939 9.015 9.181
2 1.027 1.052 1.107 1.180 1.463 2.293 9.120 8.528 8.568 8.867 9.053 9.114
4 1.043 1.130 1.420 1.687 2.170 3.338 8.968 8.364 8.569 8.868 8.949 8.765
6 1.192 1.495 1.763 2.241 3.097 4.304 8.945 8.327 8.588 8.994 9.081 8.853
9 1.284 1.702 2.047 2.781 3.337 4.081 8.934 8.309 8.600 8.788 8.915 8.526

1 MT2 1.017 1.049 1.074 1.297 1.916 2.903 Large-4 4.393 4.605 4.674 4.634 4.393 4.381
2 1.044 1.086 1.212 1.547 2.200 3.585 6.523 6.926 6.745 6.704 6.521 6.367
4 1.224 1.332 1.620 2.231 3.379 4.799 7.321 8.100 7.407 7.559 7.542 7.399
6 1.451 1.901 2.339 3.061 4.020 5.721 8.143 8.137 7.644 7.801 8.288 7.906
9 1.609 2.140 2.693 3.231 4.387 6.903 8.093 8.075 8.170 7.799 8.129 8.402

1 MP-B 0.991 8.693 8.807 8.964 8.991 8.829 RE 1.073 1.091 1.296 2.032 3.040 3.640
2 0.978 8.854 8.897 8.863 8.811 9.072 1.090 1.069 1.955 3.284 4.282 5.094
4 0.967 8.970 8.711 9.020 8.855 8.749 1.320 1.410 3.278 4.640 5.504 6.270
6 1.175 9.148 8.753 8.941 8.774 8.596 1.961 1.886 3.976 5.648 6.223 6.759
9 1.227 8.793 8.989 9.444 9.227 8.273 2.515 2.566 4.957 6.265 6.676 7.455

and dim(Xi ) (computed from 1000 Monte Carlo replications). Under the null hypothe-

sis, we observe that our tests under design MT become conservative as dim(Xi ) and K

increase. In particular, we notice a large difference between K = 4 and K = 5. However,

despite being conservative, MT still displays favorable power properties relative to C and

Large-4 for all but the largest choices of K.

Our next observation is that our tests under design MT2 remain exact even as

dim(Xi ) and K both increase. As we explain in Section 3.2, we suspect that our chal-

lenges for inference using MT come from poor estimation of the variance, which seems

to be alleviated in MT2, where the number of observations receiving each treatment

within a tuple are doubled. As a result of this exactness, MT2 achieves higher power

than MT when dim(Xi ) and K are large. To further explore these power improvements,

Figure 1 presents power plots for three specific choices of K and dim(Xi ) with τ rang-

ing from 0 to 0.1 (Figure D.1 in the Supplemental Appendix presents power plots for

alternatives implied by larger values than τ = 0.1). First, when dim(Xi ) and K are small,

for instance, dim(Xi ) = K = 1, we observe no significant difference between the power

plots generated by MT and MT2. However, when the dimension of the covariates and

factors are both large, for instance, dim(Xi ) = 6, K = 4, MT2 dominates MT for all al-

ternative hypotheses. Therefore, our recommendation to practitioners is to consider a

matched tuples design when working with few treatments and covariates, but to con-

sider the replicated design when dealing with a large number of treatments and/or co-

variates.
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Table 6. Rejection probabilities when testing H0 : �ν1 = 0 under the null and alternative hy-
pothesis.

Method dim(Xi )

Under H0 Under H1

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

MT 1 0.049 0.045 0.033 0.023 0.009 0.008 0.998 1.000 1.000 0.997 0.980 0.837
2 0.047 0.043 0.041 0.018 0.008 0.002 0.999 0.998 0.997 0.997 0.935 0.732
4 0.040 0.029 0.031 0.011 0.009 0.008 1.000 1.000 0.979 0.946 0.794 0.583
6 0.037 0.018 0.010 0.022 0.010 0.007 0.999 0.989 0.936 0.870 0.668 0.479
9 0.041 0.026 0.016 0.019 0.014 0.003 0.988 0.961 0.895 0.810 0.674 0.319

MT2 1 0.054 0.054 0.044 0.059 0.047 0.052 1.000 0.999 1.000 0.996 0.973 0.858
2 0.048 0.053 0.041 0.058 0.039 0.055 1.000 0.999 1.000 0.985 0.943 0.784
4 0.075 0.048 0.054 0.056 0.060 0.046 0.996 0.993 0.981 0.951 0.843 0.673
6 0.053 0.067 0.046 0.054 0.045 0.046 0.988 0.967 0.926 0.857 0.744 0.579
9 0.065 0.050 0.053 0.059 0.060 0.047 0.983 0.944 0.872 0.840 0.704 0.494

C 1 0.062 0.054 0.041 0.056 0.059 0.069 0.437 0.449 0.410 0.445 0.463 0.459
2 0.063 0.049 0.038 0.051 0.065 0.068 0.434 0.450 0.410 0.442 0.459 0.459
4 0.064 0.050 0.038 0.048 0.055 0.057 0.425 0.448 0.400 0.443 0.457 0.468
6 0.066 0.052 0.045 0.048 0.054 0.055 0.430 0.437 0.409 0.436 0.437 0.463
9 0.063 0.042 0.050 0.033 0.054 0.048 0.417 0.439 0.420 0.433 0.433 0.448

Large-4 1 0.050 0.044 0.059 0.061 0.053 0.057 0.685 0.699 0.701 0.683 0.730 0.770
2 0.046 0.050 0.043 0.052 0.044 0.065 0.560 0.564 0.575 0.585 0.582 0.634
4 0.053 0.064 0.039 0.059 0.056 0.062 0.497 0.490 0.486 0.527 0.521 0.577
6 0.055 0.053 0.049 0.057 0.059 0.071 0.462 0.444 0.495 0.519 0.520 0.553
9 0.044 0.041 0.056 0.051 0.049 0.076 0.457 0.451 0.493 0.490 0.511 0.571

Figure 1. Rejection probability under various choices of τ.
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5. Empirical application

In this section, we illustrate the inference procedures introduced in Section 3 using the
data collected in Fafchamps et al. (2014). 

3 Fafchamps et al. (2014) conduct a random-
ized experiment in order to investigate the effects of several capital aid programs on
the profits of small businesses in Ghana. In their experiment, there are three treatment
arms, where (in our notation) Di = 1 indicates that the ith firm is untreated, Di = 2 in-
dicates being offered cash, and Di = 3 indicates being offered in-kind grants. The null
hypotheses of interest are

Hd
0 : E

[
Yi(1)

]=E
[
Yi(d)

]
versus H1 : E

[
Yi(1)

] �= E
[
Yi(d)

]
(12)

for d ∈ {2, 3}, as well as

H2,3
0 : E

[
Yi(2)

]= E
[
Yi(3)

]
versus H1 : E

[
Yi(2)

] �= E
[
Yi(3)

]
. (13)

In their experimental design, blocks are defined by quadruplets, where each quadru-
plet contains two untreated units with Di = 1, one treated unit with Di = 2, and one
treated unit with Di = 3. Despite the slight departure from the framework presented
in Sections 2–3, in that there are two untreated units in each quadruplet, we show in
Appendix A.1 that a slight modification of the variance estimator in Theorem 3.2 pro-
duces a valid test for (12)–(13). Specifically, we pretend that there are four treatment
levels in each quadruplet, while the first two are in fact controls. Then, by setting gener-
ating vectors ν2 = (−1/2, −1/2, 1, 0), ν3 = (−1/2, −1/2, 0, 1), and ν2,3 = (0, 0, −1, 1) and
proceeding with the testing procedure in Theorem 3.2, we obtain valid tests for Hd

0 and
H2,3

0 . For each of the hypotheses in (12)–(13), we implement the following tests:

– A t-test based on the OLS estimator in a linear regression of Y on 1, I{Di = 2}, and
I{Di = 3}, together with the usual heteroskedasticity-robust variance estimator.

– The test introduced in Proposition A.1, which implements the test from Theo-
rem 3.2 as described above to accommodate for the fact that there are two untreated
units in each block.

We note that Fafchamps et al. (2014) test (12) and (13) using a t-test obtained from a lin-
ear regression of outcomes on treatment indicators and block fixed effects. However, as
was shown in Theorem 3.3, such a procedure is not guaranteed to be valid. On the other
hand, we expect that the t-test obtained from a linear regression without block fixed ef-
fects should be conservative for testing (12)–(13) in light of the observations made in
Example 3.1 and the fact that this test coincides with a standard two-sample t-test.

Our results are presented in Table 7. The point estimates of the two methods are
identical because the OLS estimator coincides with the difference-in-means estimator.

3The original paper features six rounds of surveys, which were pooled in the final analysis. We perform
our analysis exclusively on the data obtained in the sixth round in order to avoid complications related
to time-series dependence across rounds. For simplicity, we additionally drop quadruplets with missing
values, and 4 “leftover” groups whose sizes range from 5 to 8 firms. This results in a final sample of 120
quadruplets, or 4n = 480. Further results on the long-run effects (collected in a seventh survey wave) are
contained in Table D.4 in Section D of the Supplemental Appendix.
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Table 7. Point estimates and standard errors for testing the treatment effects of cash and in-
kind grants using different methods (wave 6).

All Firms
(1)

Males
(2)

Females
(3)

High Initial
Profit Women

(4)

Low Initial
Profit Women

(5)

OLS (standard t-test) Cash treatment 19.64 24.84 16.30 33.09 7.01
(15.42) (27.29) (18.13) (42.56) (11.58)

In-kind treatment 20.26 4.48 30.42 65.36 11.10
(15.67) (18.42) (22.83) (53.28) (15.31)

Cash = in-kind (p-val) 0.975 0.493 0.600 0.610 0.817

Difference-in-means
(adjusted t-test)

Cash treatment 19.64 24.84 16.30 33.09 7.01
(14.24) (26.05) (15.21) (39.27) (11.15)

In-kind treatment 20.26 4.48 30.42 65.36 11.10
(15.24) (17.79) (21.97) (48.27) (14.99)

Cash = in-kind (p-val) 0.974 0.468 0.567 0.576 0.815

Note: The results in this table are based on the data from the sixth wave of data collection. For each treatment and each
subsample, the number in the first row is the point estimate and that in the second row is the standard error. For testing the
equality of the average potential outcomes under the two values of treatment, we report the p-values as in Fafchamps et al.
(2014).

However, the standard errors obtained from our variance estimator are always smaller
than the heteroskedasticy-robust standard errors. For example, when testing (12) for
d = 3 among the female subsample, the standard error produced from our variance es-
timator is 15.21 whereas the heteroskedasticy robust standard error is 18.13. We note
that overall the improvements are modest; this suggests that the conditional expecta-
tion of the outcomes does not vary substantially with the observable characteristics in
this survey wave. This is further corroborated by the calibrated simulations presented in
Table D.2 in Appendix D in the Supplemental Appendix.

6. Recommendations for empirical practice

We conclude with some recommendations for empirical practice based on our theoret-
ical results as well as the simulation study above. For inference about the linear contrast
of expected outcomes given by �ν in a matched tuples design, we recommend the test
φν
n defined in Section 3.1: Our simulations results show that this test does a good job

of controlling size in large samples (approximately 80 blocks). We have shown that tests
based on the heteroskedasticity-robust variance estimator from a linear regression of
outcomes on treatment and block fixed effects may be invalid, in the sense of having
rejection probability strictly greater than the nominal level under the null hypothesis.
Tests based on the heteroskedasticity-robust variance or block-cluster variance estima-
tors from a linear regression of outcomes on treatment are valid but potentially conser-
vative, which would result in a loss of power relative to our proposed test.

We also find that matched tuples designs have favorable efficiency properties rel-
ative to other popular designs (with a specific illustration in the setting of 2K factorial
designs). However, this comes with the caveat that when dealing with a large number of
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treatments (in our simulations, this translated to having fewer than 80 blocks) and/or
large number of covariates, practitioners may want to consider the replicated matched
tuples design introduced in Section 3.2, as our simulations suggest that this design may
have more robust size control, which translates to better power in such cases.

Appendix A: Additional details

A.1 Details for Section 5

Proposition A.1. Consider the setting with three treatment statuses {1, 2, 3}, where 1
corresponds to being untreated and 2 and 3 correspond to two treatments. In a matched
quadruplets design where each quadruplet has two untreated units and one unit for each
treatment, the test introduced in Section 3.1 with D′ = {1, 2, 3, 4} and

ν =
⎛
⎜⎝−1/2 −1/2 1 0

−1/2 −1/2 0 1
0 0 −1 1

⎞
⎟⎠

is valid for testing (12)–(13) at level α ∈ (0, 1).

Proof of Proposition A.1. Consider a design of matched quadruplets with two treat-
ments d = 2, 3 and two controls d = 1, that is, a quadruplet consisting of (1, 1, 2, 3). The
difference-in-mean estimator for the effect of the first treatment d = 2 is

�̂2 = 1
n

4n∑
i=1

I{Di = 2}Yi − 1
2n

4n∑
i=1

I{Di = 1}Yi.

Note that
√
n
(
�̂2 −�2(Q)

)=An,2 +Cn,2 − (An,1 +Cn,1 ),

where

An,2 = 1√
n

∑
1≤i≤4n

I{Di = 2}
(
Yi(2) −E

[
Yi(2)|X(n), D(n)]),

Cn,2 = 1√
n

∑
1≤i≤4n

I{Di = 2}
(
E
[
Yi(2)|X(n), Dn

]−E
[
Yi(2)

])

and

An,1 = 1

2
√
n

∑
1≤i≤4n

I{Di = 1}
(
Yi(1) −E

[
Yi(1)|X(n), D(n)]),

Cn,1 = 1

2
√
n

∑
1≤i≤4n

I{Di = 1}
(
E
[
Yi(1)|X(n), Dn

]−E
[
Yi(1)

])
.
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Let Ij denote the set of indices for the two untreated units in the jth tuple. Note

Var
[
An,1|X(n), D(n)]

= 1
2 · 2n

∑
1≤i≤4n

I{Di = 1} Var
[
Yi(1)|Xi

]

= 1
2 · 4n

∑
1≤i≤4n

Var
[
Yi(1)|Xi

]− 1
8n

∑
1≤j≤n

1
2

∑
ij∈Ij

∑
k∈λj :k/∈Ij

(
Var

[
Yk(1)|Xk

]− Var[Yij |Xij ]
)
.

It follows from similar arguments as in the proof of Theorem 3.1 that the second term
goes to zero. Therefore,

Var
[
An,1|X(n), D(n)] P→ 1

2
E
[
Var

[
Yi(1)|Xi

]]
.

It therefore follows from Lemma S.1.2 of Bai, Romano, and Shaikh (2021) that

γ

⎛
⎝((An,2, An,1 )′

∣∣X(n), D(n)), N
⎛
⎝0,

⎡
⎣E

[
Var

[
Yi(2)|Xi

]]
0

0
1
2
E
[
Var

[
Yi(1)|Xi

]]
⎤
⎦
⎞
⎠
⎞
⎠ P→ 0,

where γ is any metric that metrizes weak convergence.
Next, note

E
[
Cn,2|X(n)]= 1√

n

∑
1≤i≤4n

1
4

(
E
[
Yi(2)|X(n)]−E

[
Yi(2)

])= 1

4
√
n

∑
1≤i≤4n

(
�2(Xi ) − �2

)
,

E
[
Cn,1|X(n)]= 1

2
√
n

∑
1≤i≤4n

1
2

(
E
[
Yi(1)|X(n)]−E

[
Yi(1)

])= 1

4
√
n

∑
1≤i≤4n

(
�1(Xi ) − �1

)
.

Therefore,

(Cn,2, Cn,1 )′ d→N

(
0,

1
4

[
Var

(
�2(Xi )

)
Cov

(
�2(Xi ), �1(Xi )

)
Cov

(
�2(Xi ), �1(Xi )

)
Var

(
�1(Xi )

)
]

])
.

It then follows from Lemma S.1.2 of Bai, Romano, and Shaikh (2021) that

√
n
(
�̂2 −�2(Q)

) d→N(0, V2 ),

where

V2 =E
[
Var

[
Yi(2)|Xi

]]+ 1
2
E
[
Var

[
Yi(1)|Xi

]]
+ 1

4

(
Var

(
�2(Xi )

)+ Var
(
�1(Xi )

)− 2 Cov
(
�2(Xi ), �1(Xi )

))
.

Now, suppose we pretend the two untreated units are assigned to two distinct treat-
ment levels and denote the two untreated levels and two treated levels by d ∈ {1, 2, 3, 4},
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where d = 1, 2 actually corresponds to the untreated units. Our estimand can then be
defined as

�̃2(Q) = �3(Q) − 1
2

(
�1(Q) + �2(Q)

)
.

Applying the existing results in Theorem 3.1 with ν = (−1/2, −1/2, 1, 0). It follows that

√
n
(
�̂2 − �̃2(Q)

) d→N(0, Ṽ2 ),

where

Ṽ2 =E
[
Var

[
Yi(3)|Xi

]]+ 1
4

(
E
[
Var

[
Yi(1)|Xi

]]+E
[
Var

[
Yi(2)|Xi

]])
+ 1

4

(
Var

(
�3(Xi )

)+ 1
4

Var
(
�1(Xi )

)+ 1
4

Var
(
�2(Xi )

)+ 1
2

Cov
(
�2(Xi ), �1(Xi )

)

− Cov
(
�3(Xi ), �1(Xi )

)− Cov
(
�3(Xi ), �2(Xi )

))

=V2,

where the last equality follows by setting d = 1, 2, 3 to d = 1, 1, 2. The same argument
holds for v = (−1/2, −1/2, 0, 1). As for ν = (0, 0, −1, 1), the estimation and inference of
the third and fourth arms is not affected by treatment status in the first two arms. There-
fore, pretending two controls are two different treatment levels yields the true asymp-
totic variance, meaning that the inference is still valid.

Appendix B: Proofs of main results

B.1 Proof of Theorem 3.1

We derive the limiting distribution of
√
n(�̂n(d) − �d(Q) : d ∈ D), from which the con-

clusion of the theorem follows by an application of the continuous mapping theorem.
Note that

√
n
(
�̂n(d) − �d(Q) : d ∈ D

)′ =An +Cn,

where An = (An,d : d ∈ D)′, Cn = (Cn,d : d ∈ D)′, and

An,d = 1√
n

∑
1≤i≤|D|n

I{Di = d}
(
Yi(d) −E

[
Yi(d)|X(n), D(n)]),

Cn,d = 1√
n

∑
1≤i≤|D|n

I{Di = d}
(
E
[
Yi(d)|X(n), Dn

]−E
[
Yi(d)

])
.

Note that conditional on X(n), D(n), Cn,d ’s are constants, and An,d ’s are independent.
By Assumption 2.2, for d ∈ D, E[Yi(d)|X(n), D(n)] = E[Yi(d)|Xi]. Fix d ∈ D. Let ij ∈ λj be
such that Dij = d. Note

Var
[
An,d|X(n), D(n)]
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= 1
n

∑
1≤i≤|D|n

I{Di = d} Var
[
Yi(d)|Xi

]

= 1
|D|n

∑
1≤i≤|D|n

Var
[
Yi(d)|Xi

]− 1
|D|n

∑
1≤j≤n

∑
k∈λj :k�=ij

(
Var

[
Yk(d)|Xk

]− Var
[
Yij (d)|Xij

])
,

where the first equality follows from Assumption 2.2. By Assumption 2.1(b) and the weak
law of large numbers,

1
|D|n

∑
1≤i≤|D|n

Var
[
Yi(d)|Xi

] P→ E
[
Var

[
Yi(d)|Xi

]]
.

By Assumptions 2.1(c) and 2.3, we have

∣∣∣∣ 1
|D|n

∑
1≤j≤n

∑
k∈λj :k�=ij

(
Var

[
Yk(d)|Xk

]− Var
[
Yij (d)|Xij

])∣∣∣∣
≤ 1

|D|n
∑

1≤j≤n

∑
k∈λj :k�=ij

∣∣Var
[
Yk(d)|Xk

]− Var
[
Yij (d)|Xij

]∣∣

� 1
n

∑
1≤j≤n

∑
k∈λj :k�=ij

‖Xk −Xij‖

≤ |D| − 1
n

∑
1≤j≤n

max
i,k∈λj

‖Xi −Xk‖ P→ 0.

Therefore, Var[An,d|X(n), D(n)]
P→ E[Var[Yi(d)|Xi]]. We can then verify Lindeberg’s con-

dition as in the proof of Lemma S.1.4 of Bai, Romano, and Shaikh (2021). It follows that

γ
((

(An,d : d ∈ D)′
∣∣X(n), D(n))), N(0, V1 ))

P→ 0,

where V1 = diag(E[Var[Yi(d)|Xi]] : d ∈ D) and γ is any metric that metrizes weak con-
vergence.

Next,

E
[
Cn,d|X(n)]= 1

|D|√n

∑
1≤i≤|D|n

(
�d(Xi ) − �d

)

and

Var
[
Cn,d|X(n)]= 1

n

∑
1≤j≤n

∑
i∈λj

1
|D|

(
�d(Xi ) − 1

|D|
∑
k∈λj

�d(Xk )

)2

� 1
n

∑
1≤j≤n

max
i,k∈λj

‖Xi −Xk‖2 P→ 0
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by Assumption 2.1(c) and 2.3. Therefore, by repeating the argument, which establishes
(S.24) in the proof of Lemma S.1.4 of Bai, Romano, and Shaikh (2021), it follows that

Cn,d = 1

|D|√n

∑
1≤i≤|D|n

(
�d(Xi ) − �d

)+ oP (1).

Therefore,

(Cn,d : d ∈ D)
d→N(0, V2 ),

where (V2 )d,d′ = 1
|D| Cov(�d(Xi ), �d′(Xi )). It then follows from Lemma S.1.2 of Bai, Ro-

mano, and Shaikh (2021) that

√
n
(
�̂n(d) − �d : d ∈ D

)′ d→ N(0, V1 +V2 ).

The conclusion now follows.

B.2 Proof of Theorem 3.2

The conclusion follows from Lemmas C.1–C.3 together with the continuous mapping
theorem.

B.3 Proof of Theorem 3.3

Define

Ci =
(
I{Di = 2}, � � � , I

{
Di = |D|})′.

To begin, note it follows from the Frisch–Waugh–Lovell theorem and Assumption 2.2
that ⎛

⎜⎜⎝
β̂n(2)

...
β̂n
(|D|)

⎞
⎟⎟⎠=

( ∑
1≤i≤|D|n

C̃iC̃
′
i

)−1 ∑
1≤i≤|D|n

C̃iYi,

where

C̃i =
(
I{Di = 2} − 1

|D| , � � � , I
{
Di = |D|}− 1

|D|
)′

.

Next, note for ∑
1≤i≤|D|n

C̃iC̃
′
i ,

the diagonal entries are |D|−1
|D| n and the off-diagonal entries are − 1

|D|n. It follows from

element calculation that the diagonal entries of (
∑

1≤i≤|D|n C̃iC̃
′
i )−1 are 2

n and the off-
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diagonal entries are 1
n . Furthermore,

∑
1≤i≤|D|n

C̃iYi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n�̂n(2) − 1
|D|

∑
1≤i≤|D|n

Yi

...

n�̂n
(|D|)− 1

|D|
∑

1≤i≤|D|n
Yi

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, for d ∈ D\{1},

β̂n(d) = 2
n

(
n�̂n(d) − 1

|D|
∑

1≤i≤|D|n
Yi

)
+ 1

|D|
∑

d′∈D\{1,d}

�̂n
(
d′)− |D| − 2

|D|n
∑

1≤i≤|D|n
Yi

= �̂n(d) − �̂n(1).

The first conclusion of the theorem then follows.
Next, note by the properties of the OLS estimator that

δ̂j,n =
( ∑

1≤i≤|D|n
I{i ∈ λj }

)−1 ∑
1≤i≤|D|n

I{i ∈ λj }

(
Yi −

∑
d∈D\{1}

β̂n(d)I{Di = d}

)

= 1
|D|

∑
i∈λj

Yi − 1
|D|

∑
d∈D\{1}

β̂n(d).

Therefore,

ε̂i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Yi −
∑

1≤j≤n

I{i ∈ λj }
1

|D|
∑
k∈λj

Yk + 1
|D|

∑
d′∈D\{1}

β̂n
(
d′) if Di = 1,

Yi − β̂n(d) −
∑

1≤j≤n

I{i ∈ λj }
1

|D|
∑
k∈λj

Yk + 1
|D|

∑
d′∈D\{1}

β̂n
(
d′) if Di = d �= 1.

Note it follows from Lemma C.4 that the heteroskedasticity-robust variance estimator of
(β̂n(2), � � � , β̂n(|D|))′ equals( ∑

1≤i≤|D|n

C̃iC̃
′
i

)−1( ∑
1≤i≤|D|n

ε̂2
i C̃iC̃

′
i

)( ∑
1≤i≤|D|n

C̃iC̃
′
i

)−1

.

For d ∈ D\{1}, the corresponding (d−1)-th diagonal term of A=∑1≤i≤|D|n ε̂
2
i C̃iC̃

′
i equals

Ad =
∑

1≤i≤|D|n
I{Di = 1}

1

|D|2 ε̂
2
i +

∑
1≤i≤|D|n

I{Di = d}

(|D| − 1
)2

|D|2 ε̂2
i

+
∑

d̃∈D\{1,d}

∑
1≤i≤|D|n

I{Di = d̃}
1

|D|2 ε̂
2
i .
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For d̃ �= ď ∈ D\{1}, the correponding (d̃ − 1, ď − 1)-th term of
∑

1≤i≤|D|n ε̂
2
i C̃iC̃

′
i equals

A
d̃, ď =

∑
1≤i≤|D|n

I{Di = 1}
1

|D|2 ε̂
2
i +

∑
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)
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∑
1≤i≤|D|n

I
{
Di = d′} 1
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Therefore,
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(|D| − 1
)+ 4

(|D| − 3
)− 2

(|D| − 1
)(|D| − 3

)
+ 2

(|D| − 3
)(|D| − 4

)
/2
)
/|D|2)ε̂2

i

= 1

n2

∑
1≤i≤|D|n

I{Di = 1}ε̂2
i + 1

n2

∑
1≤i≤|D|n

I{Di = d}ε̂2
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+ 1
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where in the last equality we used the fact that for d ∈ D,

∑
1≤i≤|D|n

I{Di = d}

(
Yi −

∑
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d′∈D

�̂n
(
d′))

= n

(
�̂n(d) − 1

|D|
∑
d′∈D

�̂n
(
d′))2

.

It follows from Assumptions 2.1 and 2.3 as well as Lemmas C.1–C.3 that as n → ∞,

�̂n(d)
P→E

[
Yi(d)

]
for all d ∈ D,

1
n

∑
1≤j≤n

∑
i∈λj

I{Di = d}Y 2
i

P→E
[
Y 2
i (d)

]
,

1
n

∑
1≤j≤n

(∑
i∈λj

I{Di = d}Yi

)(∑
i∈λj

I
{
Di = d′}Yi

)
P→E

[
�d(Xi )�d′(Xi )

]
for all d �= d′ ∈ D.

Therefore,

nV̂sfe
n (d, 1)

P→ Var
[
�1(Xi ) − 1

|D|
∑
d′∈D

�d′(Xi )

]

+
(

1 − 1
|D|

)2

E
[
Var

[
Yi(1)|Xi

]]+ 1

|D|2
∑

d′∈D\{1}

E
[
Var

[
Yi

(
d′)|Xi

]]

+ Var
[
�d(Xi ) − 1

|D|
∑
d′∈D

�d′(Xi )

]

+
(

1 − 1
|D|

)2

E
[
Var

[
Yi(d)|Xi

]]+ 1

|D|2
∑

d′∈D\{d}

E
[
Var

[
Yi

(
d′)|Xi

]]
.
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Finally, note by Theorem 3.1 that the actual limiting variance for �̂n(d) − �̂n(1) is

E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]]+ 1
|D|E

[((
�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]

.

Consider the special case where E[Var[Yi(d′ )|Xi]] are identical across d′ ∈ D and

�1(Xi ) = �d(Xi ) = 1
|D|

∑
d′∈D

�d′(Xi ) with probability one.

Then the probability limit of nV̂sfe
n (d, 1) is clearly strictly smaller than the actual limiting

variance for �̂n(d) − �̂n(1).

For variance estimator HC 1, consider the special case where �d(Xi ) are identical

across d ∈ D, E[Var[Yi(d)|Xi]] > 0, E[Var[Yi(1)|Xi]] > 0, and E[Var[Yi(d′ )|Xi]] is zero

for all d′ ∈ D\{1, d}. Then

nV̂sfe
n (d, 1) × |D|n

|D|n− (|D| − 1 + n
)

P→ |D|
|D| − 1

((
1 − 1

|D|
)2

+ 1

|D|2
)(

E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]])

= |D|2 − 2|D| + 2

|D|2 − |D|
(
E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]])
.

Note that

|D|2 − 2|D| + 2

|D|2 − |D| < 1

if and only if |D| > 2. By a continuity argument, the result then follows for the case where

E[Var[Yi(d′ )|Xi]] is sufficiently close to zero for all d′ ∈ D\{1, d}.

B.4 Proof of Theorem 3.4

First, note that

(
1
n

∑
1≤j≤n

∑
i∈λj

CiC
′
i

)−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

|D| 1 1 � � � 1
1 1 0 � � � 0
1 0 1 � � � 0
...

...
...

. . .
...

1 0 0 � � � 1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 � � � −1
−1 2 1 � � � 1
−1 1 2 � � � 1

...
...

...
. . .

...
−1 1 1 � � � 2

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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and note that

∑
i∈λj

ε̂iCi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
i∈λj

∑
d∈D\{1}

(
Yi − γ̂n(d)

)
I{Di = d} +YiI{Di = 1} − γ̂n(1)

∑
i∈λj

(
Yi − γ̂n(2) − γ̂n(1)

)
I{Di = 2}

∑
i∈λj

(
Yi − γ̂n(3) − γ̂n(1)

)
I{Di = 3}

...∑
i∈λj

(
Yi − γ̂n

(|D|)− γ̂n(1)
)
I
{
Di = |D|}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Combining these expressions, it follows that the dth diagonal element of n ·V̂bcve
n is equal

to

n · V̂bcve
n (d) = 1

n

∑
1≤j≤n

(∑
i∈λj

(
Yi − γ̂n(d) − γ̂n(1)

)
I{Di = d} −

∑
i∈λj

(
Yi − γ̂n(1)

)
I{Di = 1}

)2

= 1
n

∑
1≤j≤n

(∑
i∈λj

YiI{Di = d} −
∑
i∈λj

YiI{Di = 1}

)2

− (�̂n(d) − �̂n(1)
)2

.

Where the second equality exploits the fact that γ̂n(d) = �̂n(d) − �̂n(1) for d ∈ D\{1} and
γ̂n(1) = �̂n(1). It thus follows from Lemmas C.1–C.2 and the continuous mapping theo-
rem that

n ·V̂bcve
n (d)

p−→ E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]]+E
[((

�d(Xi )−�d

)−(�1(Xi )−�1
))2]

.

Next, note that by Theorem 3.1, the actual limiting variance of �̂n(d) − �̂n(1) is given by

E
[
Var

[
Yi(d)|Xi

]]+E
[
Var

[
Yi(1)|Xi

]]+ 1
|D|E

[((
�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]

.

Therefore, the test defined in (8) is conservative unless

E
[((

�d(Xi ) − �d

)− (�1(Xi ) − �1
))2]= 0,

as desired.

B.5 Proof of Theorem 3.5

The proof is similar to the proof of Theorem 3.1, with the difference being that two units
are assigned to each treatment status in each block. The necessary modification follows
from arguing similarly as in Lemma B.3 of Bai (2022) and is omitted.
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B.6 Proof of Theorem 3.6

First, note

E
[
ρ̃n(d, d)|X(n)]
= 2

n

∑
1≤j≤
n/2�

1(
2|D|

2

) ∑
i<l,i,l∈λj

E
[
Yi(d)Yl(d)|X(n)]

= 2
n

∑
1≤j≤
n/2�

1(
2|D|

2

) ∑
i<l,i,l∈λj

E
[
Yi(d)|Xi

]
E
[
Yl(d)|Xl

]
,

where the first equality follows from the conditional independence assumption in As-
sumption 2.2 and the fact that in each block, there are

(2|D|
2

)
ways to choose 2 units out

of 2|D| units and assign them to treatment arm d, and the second equality follows from
the fact that conditional on X(n), Y (n)(d) are i.i.d. across units. Equation (11) then fol-
lows by arguing similarly as in the proof of Lemma C.3 below (see also Section 4.7 of Bai
(2022)).

B.7 Proof of Theorem 3.7

First, we show that
√
n
(
�̂ν,n −�ν(Q)

) d−→N
(
0, σ2

h,ν

)
,

under the stratified factorial design defined by h(·). To show this, we derive the limiting
distribution of

√
n(�̂n(d) − �d(Q) : d ∈ D). To that end, note that
√
n
(
�̂n(d) − �d(Q) : d ∈ D

)′ =An +Bn +Cn + oP (1),

where An = (An,d : d ∈ D)′, Bn = (Bn,d : d ∈ D)′, Cn = (Cn,d : d ∈ D)′, with

An,d =√|D| 1√
Jn

∑
1≤i≤Jn

(
Yi(d) −E

[
Yi(d)|h(Xi )

])
I{Di = d},

Bn,d =√|D| 1√
Jn

∑
1≤i≤Jn

(
I{Di = d} −π

)(
E
[
Yi(d)|h(Xi )

]−E
[
Yi(d)

])
,

Cn,d =√|D| 1√
Jn

∑
1≤i≤Jn

π
(
E
[
Yi(d)|h(Xi )

]−E
[
Yi(d)

])
,

where π := 1
|D| . Rewriting each of these terms using the fact that

E
[
Yi(d)|h(Xi )

]=
∑

1≤s≤S

E
[
Yi(d)|h(Xi )

]
I
{
h(Xi ) = s

}

=
∑

1≤s≤S

E
[
Yi(d)|h(Xi ) = s

]
I
{
h(Xi ) = s

}
,
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we obtain

An,d =√|D|
∑

1≤s≤S

1√
Jn

∑
1≤i≤Jn

(
E
[
Yi(d)|h(Xi )

]−E
[
Yi(d)

])
I
{
Di = d, h(Xi ) = s

}
,

Bn,d =√|D|
∑

1≤s≤S

(
E
[
Yi(d)|h(Xi ) = s

]−E
[
Yi(d)

])Jn(s)
Jn

√
Jn

(
Jn,d(s)
Jn(s)

−π

)
,

Cn,d =√|D|
∑

1≤s≤S

π
(
E
[
Yi(d)|h(Xi ) = s

]−E
[
Yi(d)

])√
Jn

(
Jn(s)
Jn

−p(s)

)
,

where Jn(s) = ∑
1≤i≤Jn

I{h(Xi ) = s}, Jn,d(s) = ∑
1≤i≤Jn

I{h(Xi ) = s, Di = d}, p(s) =
P(h(Xi ) = s), and importantly for Cn,d we have used the fact that∑

1≤s≤S

(
E
[
Yi(d)|h(Xi ) = s

]−E
[
Yi(d)

])
p(s) = 0,

which follows by the law of iterated expectations. By the law of large numbers, Jn(s)/

Jn
p−→ p(s), and by the properties of stratified block randomization (see Example 3.4 in

Bugni, Canay, and Shaikh (2018)),

√
Jn

(
Jn,d(s)
Jn(s)

−π

)
p−→ 0,

and hence we can conclude that Bn,d
p−→ 0 for every d ∈ D. Using Lemma C.1. in Bugni,

Canay, and Shaikh (2019), it can then be shown that(
An

Cn

)
d−→N

(
0,

[
Vh,1 0

0 Vh,2

])
,

and hence the first result follows. Next, let ν be a 1 × |D| vector of constants. Then it can
be shown that

νVν′ =
∑
d∈D

ν2
dVar

[
Yi(d)

]− ∑
d �=d′∈D

1
|D| Var

[
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]]
,

and

νVhν
′ =

∑
d∈D

ν2
dVar

[
Yi(d)

]− ∑
d �=d′∈D

1
|D| Var

[
νdE

[
Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

]]
.

It then follows from similar arguments to those used in the proof of Theorem C.2 of Bai
(2022) that νVν′ ≤ νVhν

′. In particular, note that

Var
[
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]]
= E

[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))2]

= E
[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]− (νdE[Yi(d)|h(Xi )
]− νd′E

[
Yi

(
d′)|h(Xi )

])
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+ (νdE[Yi(d)|h(Xi )
]− νd′E

[
Yi

(
d′)|h(Xi )

])− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))2]

= E
[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]− (νdE[Yi(d)|h(Xi )
]− νd′E

[
Yi

(
d′)|h(Xi )

]))2]
+E

[(
νdE

[
Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

])− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))2],

where the last equality follows because

E
[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]− (νdE[Yi(d)|h(Xi )
]− νd′E

[
Yi

(
d′)|h(Xi )

]))
× ((νdE[Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

])− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))]

=E
[
E
[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]− (νdE[Yi(d)|h(Xi )
]− νd′E

[
Yi

(
d′)|h(Xi )

]))
× ((νdE[Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

])− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))|h(Xi )

]]
=E

[
E
[(
νdE

[
Yi(d)|Xi

]− νd′E
[
Yi

(
d′)|Xi

]
− (νdE[Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

]))
|h(Xi )

]
× ((νdE[Yi(d)|h(Xi )

]− νd′E
[
Yi

(
d′)|h(Xi )

])− (νdE[Yi(d)
]− νd′E

[
Yi

(
d′)]))]

= 0,

where the last equality follows from the law of iterated expectations. We can thus con-
clude that the matched tuples design is asymptotically more efficient than the large stra-
tum design, in the sense that the difference in variances between the large stratum and
matched tuples designs, Vh −V, is positive semidefinite.

B.8 Proof of Theorem 3.8

To begin, note that

�̂νk,n = 1
n

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(d) = +1

}
I{Di = d}Yi(d)

− 1
n

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(d) = −1

}
I{Di = d}Yi(d).

Let Ai, 1 ≤ i ≤ Jn denote a sequence of i.i.d. random vectors, each of which is a K − 1
vector of i.i.d. Rademacher random variables. Further, assume they are independent of
Y (n)(d), d ∈ D, D(n), and X(n). Define ι−k(d) as the vector of all entries of ι(d) except
the kth entry. Then we consider the following “averaged” potential outcomes over these
K − 1 factors defined as follows:

Ỹi(+1) :=
∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) =Ai

}
Yi(d),

Ỹi(−1) :=
∑
d∈D

I
{
ιk(d) = −1

}
I
{
ι−k(d) =Ai

}
Yi(d).
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With this notation, define

�̃νk,n = 1
n

∑
1≤i≤Jn

I
{
ιk(Di ) = +1

}
Ỹi(+1) − 1

n

∑
1≤i≤Jn

I
{
ιk(Di ) = −1

}
Ỹi(−1).

It then follows from the definition of the factor k-specific design that �̃νk,n has the same
distribution as �̂νk,n. To see it, note

1
n

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(d) = +1

}
I{Di = d}Yi(d)

= 1
n

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(Di ) = +1

}
I
{
ιk(d) = +1

}
I
{
ι−k(Di ) = ι−k(d)

}
Yi(d)

and

1
n

∑
1≤i≤Jn

I
{
ιk(Di ) = +1

}
Ỹi(+1)

= 1
n

∑
1≤i≤Jn

∑
d∈D

I
{
ιk(Di ) = +1

}
I
{
ιk(d) = +1

}
I
{
ι−k(d) =Ai

}
Yi(d)

and ι−k(Di ) and Ai follow the same distribution independently of everything else.
Note �̃νk,n/2K−1 can be thought of as the difference-in-means estimator where the

treatment has two levels +1 and −1 and the potential outcomes are Ỹi(+1) and Ỹi(−1).
The conditions in Lemma S.1.4 in Bai, Romano, and Shaikh (2021) can be verified
straightforwardly and, therefore, we have

√
2K−1n

(
�̂νk,n

2K−1
− �νk(Q)

2K−1

)
d→ N(0, Vνk,mp ),

where

Vνk,mp :=E
[
Var

[
Ỹi(+1)|Xi

]]+E
[
Var

[
Ỹi(−1)|Xi

]]
+ 1

2
E
[(
E
[
Ỹi(+1)|Xi

]−E
[
Ỹi(+1)

]− (E[Ỹi(−1)|Xi

]−E
[
Ỹi(−1)

]))2]
.

Note that by Assumption 2.2,

E
[
Ỹi(+1)|Xi

]= E

[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) =Ai

}
Yi(d)

∣∣∣Xi

]

= 1

2K−1

∑
d∈D

I
{
ιk(d) = +1

}
�d(Xi ).

Therefore,

1
2
E
[(
E
[
Ỹi(+1)|Xi

]−E
[
Ỹi(+1)

]− (E[Ỹi(−1)|Xi

]−E
[
Ỹi(0)

]))2]
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= 1
2

· 1

22(K−1)

×E

[(∑
d∈D

I
{
ιk(d) = +1

}(
�d(Xi ) − �d

)− ∑
d∈D

I
{
ιk(d) = −1

}(
�d(Xi ) − �d

))2]

= 1
2

· 1

22(K−1)
E
[(
ν′
k

(
�d(Xi ) − �d : d ∈ D

))
)2]

= 2K−1

22(K−1)
ν′
kE

[
1

2K
Cov

[
�d(Xi ), �d′(Xi )

]]
d,d′∈D

νk

= 1

2(K−1)
ν′
kV2νk.

Moreover,

Var
[
Ỹi(+1)|Xi

]
= Var

[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) = Ai

}
Yi(d)

∣∣∣Xi

]

=E

[
Var

[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) =Ai

}
Yi(d)

∣∣∣Xi, Ai

]∣∣∣Xi

]

+ Var
[
E

[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) = Ai

}
Yi(d)

∣∣∣Xi, Ai

]∣∣∣Xi

]

=E

[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) = Ai

}
Var

[
Yi(d)|Xi

]∣∣∣Xi

]

+ Var
[∑
d∈D

I
{
ιk(d) = +1

}
I
{
ι−k(d) =Ai

}
�d(Xi )

∣∣∣Xi

]

= 1

2K−1

∑
d∈D:ιk(d)=+1

Var
[
Yi(d)|Xi

]

+ 1

2K−1

∑
d∈D:ιk(d)=+1

(
�d(Xi ) − 1

2K−1

∑
d′∈D:ιk(d′ )=+1

�d′(Xi )

)2

= 1

2K−1

∑
d∈D:ιk(d)=+1

(
Var

[
Yi(d)|Xi

]+(�d(Xi ) − 1

2K−1

∑
d′∈D:ιk(d′ )=+1

�d′(Xi )

)2)
.

A similar calculation applies to Var[Ỹi(−1)|Xi]. Finally,

Vνk,mp = 1

2K−1

∑
d∈D

E
[
Var

[
Yi(d)|Xi

]]+ 1

2K−1
ν′
kV2νk

+ 1

2K−1
E

[ ∑
d∈D:ιk(d)=+1

(
�d(Xi ) − 1

2K−1

∑
d∈D:ιk(d)=+1

�d(Xi )

)2]
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+ 1

2K−1
E

[ ∑
d∈D:ιk(d′ )=−1

(
�d′(Xi ) − 1

2K−1

∑
d∈D::ιk(d)=−1

�d(Xi )

)2]
.

The conclusion therefore follows.

Appendix C: Auxiliary lemmas

Lemma C.1. Suppose Assumptions 2.1–2.3 hold. Then, for r = 1, 2,

1
n

∑
1≤i≤|D|n

Y r
i (d)I{Di = d}

P→E
[
Yr
i (d)

]
.

Proof of Lemma C.1. We prove the conclusion for r = 1 only and the proof for r = 2
follows similarly. To this end, write

1
n

∑
1≤i≤|D|n

Yi(d)I{Di = d} = 1
n

∑
1≤i≤|D|n

(
Yi(d)I{Di = d} −E

[
Yi(d)I{Di = d}|X(n), D(n)])

+ 1
n

∑
1≤i≤|D|n

E
[
Yi(d)I{Di = d}|X(n), D(n)].

Note

1
n

∑
1≤i≤|D|n

E
[
Yi(d)I{Di = d}|X(n), D(n)]

= 1
n

∑
1≤i≤|D|n

I{Di = d}E
[
Yi(d)|Xi

] P→E
[
E
[
Yi(d)|Xi

]]= E
[
Yi(d)

]
,

where the equality follows from Assumption 2.2 and the convergence in probability fol-
lows from Assumption 2.3 and similar arguments to those used in the proof of Theo-
rem 3.1. To complete the proof, we argue

1
|D|n

∑
1≤i≤|D|n

(
Yi(d)I{Di = d} −E

[
Yi(d)I{Di = d}|X(n), D(n)]) P→ 0.

For this purpose, we proceed by verifying the uniform integrability condition in Lemma
S.1.3 of Bai, Romano, and Shaikh (2021) conditional on X(n) and D(n). Note for any m> 0
that

1
|D|n

∑
1≤i≤|D|n

E
[
|Yi(d)I{Di = d} −E

[
Yi(d)I{Di = d}|X(n), D(n)])

× I
{∣∣Yi(d)I{Di = d} −E

[
Yi(d)I{Di = d}|X(n), D(n)]∣∣>m

}
|X(n), D(n)]

= 1
|D|n

∑
1≤i≤|D|n

E
[∣∣Yi(d)I{Di = d} −E

[
Yi(d)|Xi

]
I{Di = d}

∣∣
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× I
{∣∣Yi(d)I{Di = d} −E

[
Yi(d)|Xi

]
I{Di = d}

∣∣>m
}

|X(n), D(n)]
≤ 1

|D|n
∑

1≤i≤|D|n
E
[∣∣Yi(d) −E

[
Yi(d)|Xi

]∣∣I{∣∣Yi(d) −E
[
Yi(d)|Xi

]∣∣>m
}

|X(n), D(n)]

= 1
|D|n

∑
1≤i≤|D|n

E
[∣∣Yi(d) −E

[
Yi(d)|Xi

]∣∣I{∣∣Yi(d) −E
[
Yi(d)|Xi

]∣∣>m
}

|Xi

]
P→E

[∣∣Yi(d) −E
[
Yi(d)|Xi

]∣∣I{∣∣Yi(d) −E
[
Yi(d)|Xi

]∣∣>m
}]

,

where the first equality holds because of Assumption 2.2, the inequality holds because
0 ≤ I{Di = d} ≤ 1, the second equality holds because of Assumption 2.2 again, and the
convergence in probability follows from the weak law of large numbers because

E
[∣∣Yi(d) −E

[
Yi(d)|Xi

]∣∣I{∣∣Yi(d) −E
[
Yi(d)|Xi

]∣∣>m
}]

≤E
[∣∣Yi(d) −E

[
Yi(d)|Xi

]∣∣]
≤E

[∣∣Yi(d)
∣∣]+E

[∣∣E[Yi(d)|Xi

]∣∣]≤E
[∣∣Yi(d)

∣∣]+E
[
E
[∣∣Yi(d)

∣∣|Xi

]]= 2E
[∣∣Yi(d)

∣∣].
The proof could then be completed using the subsequencing argument as in (S.29) of
the proof of Lemma S.1.5 of Bai, Romano, and Shaikh (2021).

Lemma C.2. Suppose Assumptions 2.1–2.3 hold. Then ρ̂n(d, d′ ) P→ E[�d(Xi )�d′(Xi )] as
n → ∞.

Proof of Lemma C.2. To begin with, note

E
[
ρ̂n
(
d, d′)∣∣X(n)]

= 1
n

∑
1≤j≤n

1

|D|(|D| − 1
) ∑

{i,k}⊂λj

(
�d(Xi )�d′(Xk ) + �d(Xk )�d′(Xi )

)

= 1
n

∑
1≤j≤n

1

|D|(|D| − 1
) ∑

{i,k}⊂λj

(
�d(Xi )�d′(Xi ) + �d(Xk )�d′(Xk )

− (�d(Xi ) − �d(Xk )
)(
�d′(Xi ) − �d′(Xk )

))
= 1

|D|n
∑

1≤i≤|D|n
�d(Xi )�d′(Xi )

− 1
n

∑
1≤j≤n

1

|D|(|D| − 1
) ∑

{i,k}⊂λj

(
�d(Xi ) − �d(Xk )

)(
�d′(Xi ) − �d′(Xk )

)

P→E
[
�d(Xi )�d′(Xi )

]
,

where the convergence in probability follows from Assumptions 2.1(c) and 2.3. To con-
clude the proof, we show

ρ̂n
(
d, d′)−E

[
ρ̂n
(
d, d′)∣∣X(n)] P→ 0. (14)
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In order for this, we proceed to verify the uniform integrability condition in Lemma S.1.3

of Bai, Romano, and Shaikh (2021) conditional on X(n). Define

ρ̂n,j
(
d, d′)=

(∑
i∈λj

YiI{Di = d}

)(∑
i∈λj

YiI
{
Di = d′}).

In what follows, we repeatedly use the following inequalities:

I

{∣∣∣∣ ∑
1≤j≤k

aj

∣∣∣∣> λ

}
≤
∑

1≤j≤k

I

{
|aj|> λ

k

}
,

∣∣∣∣ ∑
1≤j≤k

aj

∣∣∣∣I
{∣∣∣∣ ∑

1≤j≤k

aj

∣∣∣∣> λ

}
≤
∑

1≤j≤k

k|aj|I
{
|aj| > λ

k

}
,

|ab|I{|ab|> λ
}≤ a2I

{|a| >√
λ
}+ b2I

{|b|> √
λ
}

.

We will also repeatedly use the facts that 0 ≤ I{Di = d} ≤ 1 and I{Di = d}I{Dk = d} = 0

for i �= k in the same stratum. Note

E
[∣∣ρ̂n,j

(
d, d′)−E

[
ρ̂n,j

(
d, d′)∣∣X(n)]∣∣I{∣∣ρ̂n,j

(
d, d′)−E

[
ρ̂n,j

(
d, d′)∣∣X(n)]∣∣> λ

}∣∣X(n)]
≤E

[∣∣ρ̂n,j
(
d, d′)∣∣I{∣∣ρ̂n,j

(
d, d′)∣∣> λ

2

}∣∣∣X(n)
]

+E

[∣∣E[ρ̂n,j
(
d, d′)|X(n)]∣∣I{∣∣E[ρ̂n,j

(
d, d′)|X(n)]∣∣> λ

2

}∣∣∣X(n)
]

= E

[∣∣ρ̂n,j
(
d, d′)∣∣I{∣∣ρ̂n,j

(
d, d′)∣∣> λ

2

}∣∣∣X(n)
]

+ ∣∣E[ρ̂n,j
(
d, d′)∣∣X(n)]∣∣I{∣∣E[ρ̂n,j

(
d, d′)∣∣X(n)]∣∣> λ

2

}

≤E

[∣∣∣∣∑
i∈λj

Yi(d)I{Di = d}
∑
i∈λj

Yi

(
d′)I{Di = d′}∣∣∣∣

× I

{∣∣∣∣∑
i∈λj

Yi(d)I{Di = d}
∑
i∈λj

Yi

(
d′)I{Di = d′}∣∣∣∣> λ

2

}∣∣∣X(n)
]

+
∣∣∣∣ 1

|D|(|D| − 1
) ∑

{i,k}⊂λj

(
�d(Xi )�d′(Xk ) + �d(Xk )�d′(Xi )

)

×
∣∣∣∣I
{∣∣∣∣ 1

|D|(|D| − 1
) ∑

{i,k}⊂λj

(
�d(Xi )�d′(Xk ) + �d(Xk )�d′(Xi )

)∣∣∣∣> λ

2

}

� E

[∑
i∈λj

Y 2
i (d)I{Di = d}I

{∣∣∣∣∑
i∈λj

Yi(d)I{Di = d}

∣∣∣∣>
√
λ

2

}∣∣∣X(n)
]
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+E

[∑
i∈λj

Y 2
i

(
d′)I{Di = d′}I{∣∣∣∣∑

i∈λj
Yi

(
d′)I{Di = d′}∣∣∣∣>

√
λ

2

}∣∣∣X(n)
]

+
∑

{i,k}⊂λj

(∣∣�d(Xi )�d′(Xk )
∣∣I{∣∣�d(Xi )�d′(Xk )

∣∣> λ

2

}

+ ∣∣�d(Xk )�d′(Xi )
∣∣I{∣∣�d(Xk )�d′(Xi )

∣∣> λ

2

})

≤
∑
i∈λj

E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

4

}∣∣Xi

]
+
∑
i∈λj

E

[
Y 2
i

(
d′)I{∣∣Yi

(
d′)∣∣>

√
λ

4

}∣∣∣Xi

]

+
∑
i∈λj

�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}
+
∑
i∈λj

�2
d′(Xi )I

{∣∣�d′(Xi )
∣∣>

√
λ

4

}
.

Therefore,

1
|D|n

∑
1≤j≤n

E
[∣∣ρ̂n,j

(
d, d′)−E

[
ρ̂n,j

(
d, d′)∣∣X(n)]∣∣

× I
{∣∣ρ̂n,j

(
d, d′)−E

[
ρ̂n,j

(
d, d′)∣∣X(n)]∣∣> λ

}∣∣X(n)]
� 1

|D|n
∑

1≤i≤|D|n
E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

4

}∣∣Xi

]

+ 1
|D|n

∑
1≤i≤|D|n

E

[
Y 2
i

(
d′)I{∣∣Yi

(
d′)∣∣>

√
λ

4

}∣∣Xi

]

+ 1
|D|n

∑
1≤i≤|D|n

�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}
+ 1

|D|n
∑

1≤i≤|D|n
�2
d′(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}

P→E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

4

}]
+E

[
Y 2
i

(
d′)I{∣∣Yi

(
d′)∣∣>

√
λ

4

}]

+E

[
�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}]
+E

[
�2
d′(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}]
,

where the convergence in probability follows from the weak law or large numbers.

Because E[Y 2
i (d)] < ∞, E[Y 2

i (d′ )] < ∞, E[�2
d(Xi )] ≤ E[Y 2

i (d)] < ∞, and E[�2
d′(Xi )] ≤

E[Y 2
i (d′ )] <∞, we have

lim
λ→∞E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

4

}]
= 0,

lim
λ→∞E

[
Y 2
i

(
d′)I{∣∣Yi

(
d′)∣∣>

√
λ

4

}]
= 0,
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lim
λ→∞E

[
�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}]
= 0,

lim
λ→∞E

[
�2
d′(Xi )I

{∣∣�d′(Xi )
∣∣>

√
λ

4

}]
= 0.

It follows from a subsequencing argument as in (S.29) of the proof of Lemma S.1.5 of Bai,
Romano, and Shaikh (2021) that (14) holds. The conclusion therefore follows.

Lemma C.3. Suppose Assumptions 2.1–2.4 hold. Then ρ̂n(d, d)
P→E[�2

d(Xi )] as n → ∞.

Proof of Lemma C.3. For 1 ≤ j ≤ n
2 , define

ρ̂n,j(d, d) =
∑

i∈λ2j−1

YiI{Di = d}
∑
i∈λ2j

YiI{Di = d}.

By definition, ρ̂n(d, d) = 2
n

∑
1≤j≤ n

2
ρ̂n,j . Note by Assumption 2.2,

E
[
ρ̂n,j(d, d)|X(n)]= 1

|D|2
∑

i∈λ2j−1,k∈λ2j

�d(Xi )�d(Xk ).

Further, note

�d(Xi )�d(Xk ) = 1
2
�2
d(Xi ) + 1

2
�2
d(Xk ) − 1

2

(
�d(Xi ) − �d(Xk )

)2
.

Therefore,

E
[
ρ̂n(d, d)|X(n)]
= 2

n

∑
1≤j≤ n

2

E
[
ρ̂n,j(d, d)|X(n)]

= 2
n

∑
1≤j≤ n

2

1

|D|2
∑

i∈λ2j−1,k∈λ2j

(
1
2
�2
d(Xi ) + 1

2
�2
d(Xk ) − 1

2

(
�d(Xi ) − �d(Xk )

)2
)

= 1
|D|n

∑
1≤i≤|D|n

�2
d(Xi ) − 1

n|D|2
∑

1≤j≤ n
2

∑
i∈λ2j−1,k∈λ2j

(
�d(Xi ) − �d(Xk )

)2

P→ E
[
�2
d(Xi )

]
,

where the convergence in probability follows from Assumptions 2.1(c) and 2.4 as well as
the weak law of large numbers. To conclude the proof, we show

ρ̂n(d, d) −E
[
ρ̂n(d, d)|X(n)] P→ 0. (15)

In order for this, we proceed to verify the uniform integrability condition in Lemma S.1.3
of Bai, Romano, and Shaikh (2021) conditional on X(n). In what follows, we repeatedly
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use the following inequalities:

I

{∣∣∣∣ ∑
1≤j≤k

aj

∣∣∣∣> λ

}
≤
∑

1≤j≤k

I

{
|aj| > λ

k

}
,

∣∣∣∣ ∑
1≤j≤k

aj

∣∣∣∣I
{∣∣∣∣ ∑

1≤j≤k

aj

∣∣∣∣> λ

}
≤
∑

1≤j≤k

k|aj|I
{
|aj| > λ

k

}
,

|ab|I{|ab|> λ
}≤ a2I

{|a|> √
λ
}+ b2I

{|b|>√
λ
}

.

We will also repeatedly use the facts that 0 ≤ I{Di = d} ≤ 1 and I{Di = d}I{Dk = d} = 0

for i �= k in the same stratum. Note

E
[∣∣ρ̂n,j(d, d) −E

[
ρ̂n,j(d, d)|X(n)]∣∣I{∣∣ρ̂n,j(d, d) −E

[
ρ̂n,j(d, d)|X(n)]∣∣> λ

}∣∣X(n)]
≤E

[∣∣ρ̂n,j(d, d)
∣∣I{∣∣ρ̂n,j(d, d)

∣∣> λ

2

}∣∣∣X(n)
]

+E

[∣∣E[ρ̂n,j(d, d)|X(n)]∣∣I{∣∣E[ρ̂n,j(d, d)|X(n)]∣∣> λ

2

}∣∣∣X(n)
]

=E

[∣∣ρ̂n,j(d, d)
∣∣I{∣∣ρ̂n,j(d, d)

∣∣> λ

2

}∣∣∣X(n)
]

+ ∣∣E[ρ̂n,j(d, d)|X(n)]∣∣I{∣∣E[ρ̂n,j(d, d)|X(n)]∣∣> λ

2

}

≤E

[∣∣∣∣ ∑
i∈λ2j−1

Yi(d)I{Di = d}
∑
i∈λ2j

Yi(d)I{Di = d}

∣∣∣∣
× I

{∣∣∣∣ ∑
i∈λ2j−1

Yi(d)I{Di = d}
∑
i∈λ2j

Yi(d)I{Di = d}

∣∣∣∣> λ

2

}∣∣∣X(n)
]

+
∣∣∣∣ 1

|D|2
∑

i∈λ2j−1,k∈λ2j

�d(Xi )�d(Xk )

∣∣∣∣I
{∣∣∣∣ 1

|D|2
∑

i∈λ2j−1,k∈λ2j

�d(Xi )�d(Xk )

∣∣∣∣> λ

2

}

�E

[ ∑
i∈λ2j−1

Y 2
i (d)I{Di = d}I

{∣∣∣∣ ∑
i∈λ2j−1

Yi(d)I{Di = d}

∣∣∣∣>
√
λ

2

}∣∣∣X(n)
]

+E

[∑
i∈λ2j

Y 2
i (d)I{Di = d}I

{∣∣∣∣∑
i∈λ2j

Yi(d)I{Di = d}

∣∣∣∣>
√
λ

2

}∣∣∣X(n)
]

+
∑

i∈λ2j−1,k∈λ2j

∣∣�d(Xi )�d(Xk )
∣∣I{∣∣�d(Xi )�d(Xk )

∣∣> λ

2

}

≤
∑

i∈λ2j−1

E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

2

}∣∣Xi

]
+
∑
i∈λ2j

E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

2

}∣∣Xi

]
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+
∑

i∈λ2j−1

�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

2

}
+
∑
i∈λ2j

�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

2

}
.

Therefore,

1
|D|n

∑
1≤j≤ n

2

E
[∣∣ρ̂n,j(d, d) −E

[
ρ̂n,j(d, d)|X(n)]∣∣

× I
{∣∣ρ̂n,j(d, d) −E

[
ρ̂n,j(d, d)|X(n)]∣∣> λ

}∣∣X(n)]
� 1

|D|n
∑

1≤i≤|D|n
E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

2

}∣∣∣Xi

]

+ 1
|D|n

∑
1≤i≤|D|n

�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

2

}

P→ E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

2

}]
+E

[
�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

2

}]
,

where the convergence in probability follows from the weak law or large numbers. Be-
cause E[Y 2

i (d)] < ∞ and E[�2
d(Xi )] ≤E[Y 2

i (d)] <∞, we have

lim
λ→∞E

[
Y 2
i (d)I

{∣∣Yi(d)
∣∣>

√
λ

4

}]
= 0,

lim
λ→∞E

[
�2
d(Xi )I

{∣∣�d(Xi )
∣∣>

√
λ

4

}]
= 0.

It follows from a subsequencing argument as in the proof of Lemma S.1.5 of Bai, Ro-
mano, and Shaikh (2021) that (15) holds. The conclusion therefore follows.

Lemma C.4. Suppose (Yi, X ′
1,i, X

′
2,i )

′, 1 ≤ i ≤ n is an i.i.d. sequence of random vectors,

where Yi takes values in R, X1,i takes values in Rk1 , and X2,i takes values in Rk2 . Consider
the linear regression

Yi = X ′
1,iβ1 +X ′

2,iβ2 + εi.

Define X = (X1, � � � , Xn )′, X1 = (X1,1, � � � , X1,n )′, and X2 = (X2,1, � � � , X2,n )′. Define P2 =
X2(X′

2X2 )−1
X

′
2 and M2 = I−P2. Let β̂1,n and β̂2,n denote the OLS estimator of β1 and β2.

Define ε̂i = Yi −X ′
1,iβ̂1,n −X ′

2,iβ̂2,n. Define

X̃1 = M2X1.

Let

�̂n = (X′
X
)−1(

X
′diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X
)(
X

′
X
)−1

denote the heteroskedasticity-robust variance estimator of (β̂1,n, β̂2,n ). Then the upper-
left k1 × k1 block of �̂n equals(

X̃
′
1X̃1

)−1(
X̃

′
1diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X̃1
)(
X̃

′
1X̃1

)−1
.



328 Bai, Liu, and Tabord-Meehan Quantitative Economics 15 (2024)

Proof of Lemma C.4. By the formula for the inverse of a partitioned matrix, the first k1

rows of (X′
X)−1 equal((

X
′
1M2X1

)−1 −(X′
1M2X1

)−1
X

′
1X2

(
X

′
2X2

)−1
)

.

Furthermore,

X
′diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X=

(
X

′
1diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X1 X

′
1diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X2

X
′
2diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X1 X

′
2diag

(
ε̂2
i : 1 ≤ i ≤ n

)
X2

)
.

The conclusion then follows from elementary calculations.
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