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In this Supplementary Material, we provide the following additional results:
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SB: Technical details for the main proofs
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Appendix SA: Parametrization of the semiparametric SVAR model

Under the main assumptions of the paper (i.e., Assumptions 1 and 2), the parameters
of the SVAR are generally not locally identified. Even under the additional assumption
that the errors εk,t follow non-Gaussian distributions, we have that A(α, σ ) can only be
identified up to permutation and sign changes of its rows (e.g., Comon (1994)).

Therefore, to ensure that we study economically interesting permutations we typi-
cally need to impose additional identifying restrictions, such as zero or sign restrictions.
The choice for such restrictions interacts with the chosen parametrization for A(α, σ )
for which we give a few examples.

Example S1 (Supply and demand). Following Baumeister and Hamilton (2015), when
the SVAR defines a demand and a supply equation, we can set

A−1(α, σ ) =
(

−αd 1
−αs 1

)−1(
σ1 0
0 σ2

)
, (S1)
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where α = (αd , αs )′ are the short run demand and supply elasticities, and σ = (σ1, σ2 )′

scales the structural shocks. With independent non-Gaussian errors, A is identified up

to permutation and sign changes of its rows. To pin down an economically interesting

rotation, we can impose the sign restrictions αd ≤ 0, αs ≥ 0, and σ1, σ2 > 0.

Example S2 (Rotation matrix). A canonical choice sets

A−1(α, σ ) = �1/2(σ )R(α), (S2)

where �1/2(σ ) is a lower triangular matrix (with positive diagonal elements) defined by

the vector σ and R(α) is a rotation matrix that is parametrized by the vector α. Different

parametrizations for the rotation matrix are possible; see Magnus, Pijls, and Sentana

(2021) for a detailed discussion. Similar to in Example S1, even with independent non-

Gaussian errors R(α) is not uniquely identified and additional zero-, sign-, or long-run-

restrictions are needed to pin down the desired rotation.

As the above examples make clear, several commonly used parametrizations can be

adopted. Three general comments apply.

First, pinning down a specific permutation, as in the first example, is necessary for

the economic interpretation of the results, but it is not necessary for the score testing

methodology of the paper, which fixes α under the null.

Second, the robust non-Gaussian approach of this paper can be combined with any

of the existing SVAR identification approaches to obtain an economically interesting

specification. Besides zero and sign restrictions, one can also think of combining with

external instruments or more general prior information as in Baumeister and Hamilton

(2015) or Braun (2021).

Third, often multiple parametrizations are possible. We recommend jointly testing

the possibly weakly identified parameters when they are of direct economic interest

(e.g., Example 1). In contrast, when the interest is in more general functions, such as

impulse responses or forecast error variances, we suggest to parameterize A such that

α is as low-dimensional as possible, for example, via the rotation matrix specification as

in Example 2. In this way, the Bonferroni procedure of Algorithm 2 can be executed over

the smallest possible grid for α, which reduces the computational burden.

Appendix SB: Technical details for the main proofs

Here, we establish some technical details utilized in the proofs in Section A of the main

text.
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SB.1 Markov structure

Define Zt := (Y ′
t , Y ′

t−1, � � � , Y ′
t−p+1 )′, Cθ := (c′

θ, 0′, � � � , 0′ )′,

Bθ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

Bθ,1 Bθ,2 · · · Bθ,p−1 Bθ,p

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, Dθ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

A−1
θ

0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

and note that we can write

Zt = Cθ + BθZt−1 + Dθεt . (S3)

This can be rewritten in demeaned form as

Z̃t = BθZ̃t−1 + Dθεt (S4)

with Z̃t :=Zt −mθ, for mθ := (
∑∞

i=0 Bθ )Cθ = (I − Bθ )−1Cθ.

Lemma S1. Suppose that Assumption 1 holds. Define Uθ,t as the (unique, strictly) station-
ary solution to (S3). Then Uθ,t has the representation

Uθ,t =mθ +
∞∑
j=0

B
j
θDθεt−j , mθ := (I − Bθ )−1Cθ,

∞∑
j=0

∥∥B
j
θ

∥∥<∞.

If ρθ is the largest absolute eigenvalue of the companion matrix Bθ and υ> 0 is such that
ρθ + υ< 1, then

E‖Uθ,t −mθ‖ρ ≤ E‖Dθεt‖ρ

1 − (ρθ + υ)ρ , ρ ∈ [1, 4 + δ].

Proof. Rewriting (S3) as (S4) and applying Theorem 11.3.1 in Brockwell and Davis
(1991) yields the first part. For the second part,

‖Uθ,t −mθ‖ ≤
∞∑
j=0

∥∥B
j
θ

∥∥‖Dθεt−j‖ ≤
∞∑
j=0

‖Bθ‖j‖Dθεt−j‖ ≤
∞∑
j=0

(ρθ + ν)j‖Dθεt−j‖.

Since E‖Dθεt−j‖ρ = E‖Dθεt‖ρ <∞ for all t ∈N, all j ≥ 0 and ρ ∈ [1, 4 + δ], it follows that

E‖Uθ,t −mθ‖ρ ≤
∞∑
j=0

(ρθ + ν)jρ E‖Dθεt−j‖ρ = E‖Dθεt‖ρ

1 − (ρθ + ν)ρ .

Lemma S2. Let Qn,θ be the probability measure corresponding to q̄n,θ := 1
n

∑n
t=1 qθ,t ,

where qθ,t is the density of Xt under Pn
θ (1 ≤ t ≤ n).S1 Then Qn,θ

TV−→ Qθ, where Qθ is the
distribution of the (unique, strictly) stationary solution to (1).

S1Here, and throughout the Supplementary Material, any reference to the density of Xt is to be under-
stood as to the density of the nondeterministic parts of Xt .
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Proof. By Lemma S1, (S4) has a (unique, strictly) stationary solution with finite second
moments. Applying Theorem 2 in Saikkonen (2007) gives that the Markov chain (Z̃t ) is V-
geometrically ergodic with V(x) = 1 +‖x‖2. That is, for an invariant probability measure
π̃θ, some r ∈ (1, ∞) and some R<∞,

∞∑
n=1

rn
∥∥P̃n

θ (·, z̃) − π̃θ

∥∥
TV ≤

∞∑
n=1

rn
∥∥P̃n

θ (·, z̃) − π̃θ

∥∥
V

≤RV(z̃) =R
(‖z̃‖2 + 1

)
<∞, (S5)

where P̃n
θ (·, z̃) is the n-step transition probability and z̃ is the initial condition.S2 π̃θ is the

distribution of Uθ,t −mθ as defined in Lemma S1 (Kallenberg (2021, Theorem 11.11)).
Let fθ : RKp →R

K be defined as

fθ(x) :=
[
IK 0K×K(p−1)

]
(x+mθ ),

that is, the function which adds mθ to its argument and then returns the first K ele-
ments. The distribution of Xt under Pn

θ (given the initial condition z̃) is then Qt−1
θ (·, z̃) =

P̃t−1
θ (·, z̃) ◦ f−1

θ , that is, the pushforward of P̃t−1
θ (·, z̃) under fθ. Henceforth, we shall omit

the z̃ in the notation. Similarly, let Qθ = π̃θ ◦ f−1
θ , that is, the pushforward of π̃θ under

f . That Qθ is the distribution of the (unique, strictly) stationary solution to (1) can be
seen by noting that the first K elements of Uθ,t form a (strictly) stationary time series
and satisfy the defining equation (1); by Theorem 11.3.1 in Brockwell and Davis (1991) it
is therefore the unique solution. Then by (S5),

∥∥∥∥∥1
n

n∑
t=1

Qt
θ −Qθ

∥∥∥∥∥
TV

≤ 1
n

n∑
t=1

∥∥Qt
θ −Qθ

∥∥
TV

≤ 1
n

n∑
t=1

∥∥P̃t−1
θ − π̃θ

∥∥
TV

≤ 1
n

n∑
t=1

∥∥P̃t
θ − π̃θ

∥∥
TV + o(1)

→ 0.

SB.2 Moment bounds

Lemma S3. Suppose that Assumption 1 holds. Then for any sequence θn = (γ+gn/
√
n, η)

with gn → g ∈R
L, for some ρ > 0, under Pn

θn
:

(i) supn∈NE[‖�̇θn‖2+ρ] <∞;

(ii) supn∈NE[‖�̃θn‖2+ρ] <∞.

S2The norm ‖ν‖V is defined by ‖ν‖V := supf≤V | ∫ f dν| where the supremum is taken over all measurable
functions dominated by V for any probability measure ν.
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Proof. Since the deterministic terms in �̇θn and �̃θn are either constants or continuous
functions of γ (by Assumption 1(iii)), they are uniformly bounded, since {γ+gn/

√
n : n ∈

N} ∪ {γ} is compact. It is therefore sufficient to show that under Pn
θn

, each of

sup
n∈N,1≤t≤n

E
[∣∣A(θn )k•Vθn,t

∣∣4+δ]
, sup

n∈N,1≤t≤n
E
[∣∣φk

(
A(θn )k•Vθn,t

)∣∣4+δ]
,

sup
n∈N,1≤t≤n

E
[‖Xt‖4+δ

]
,

is finite. Since underPn
θn

, eachA(θn )k•Vθn,t ∼ ηk, finiteness of the first two follow directly
from Assumption 1(ii) For the third, recurse equation (S3) backwards under θ = θn, to
obtain

Zt =
t−1∑
j=0

B
j
θn

Cθn +
t−1∑
j=0

B
j
θn

Dθnεt−j + Bt
θn
Z0.

Each of Bθ, Cθ, Dθ (depend on θ only through γ and) are continuous functions of γ,
hence

� := sup
n∈N

‖Bθn‖2 < 1, sup
n∈N

‖Cθn‖2 <C1, sup
n∈N

‖Dθn‖2 <C2,

where the first is due to Assumption 1(i). Since we condition on Z0, by Assumption 1(ii),

E‖Zt‖4+δ �
(

C1

1 −�

)4+δ

+
(

C2

1 −�

)4+δ

E |ε1|4+δ + ‖Z0‖4+δ <∞. (S6)

As the bound on the right-hand side is independent of t or n, the claim follows.

Lemma S4. Let Wn,t be as in the Proof of Proposition 3 and suppose the conditions of that
Proposition hold. Then Pn

θ [|
√
nWn,t|2+ρ] is uniformly bounded for some ρ > 0. In conse-

quence, under Pn
θ , Wn,t satisfies

lim
n→∞

n∑
t=1

E
[
W 2

n,t1
{|√nWn,t |> ε

√
n
}]= 0, for any ε > 0. (S7)

Proof. Uniform boundedness of Pn
θ [|

√
nWn,t|2+ρ] implies

lim
n→∞

n∑
t=1

W
2+ρ
n,t = 0,

which in turns implies (S7) (cf. Billingsley (1995, p. 362)). For the uniform boundedness,
as

2
√
nWn,t = g′�̇θ(Yt , Xt ) +

K∑
k=1

hk
(
Ak•(α, σ )Vθ,t

)
,

and the hk are bounded, it suffices to note that by Lemma S3 E[(g′�̇θ(Xt , Yt ))2+ρ] ≤ C

under Pn
θ for some ρ > 0.
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SB.3 Log-likelihood ratios

Lemma S5 (DQM). Suppose that Assumption 1 holds. Then with Wn,t and Un,t defined as
in the proof of Proposition 3,

lim
n→∞E

n∑
t=1

(Wn,t −Un,t )2 = 0,

where the expectation is taken under Pn
θ .

Proof. We argue similar to Lemma 7.6 in van der Vaart (1998). Let Vθ,t := Yt −BXt and
ϕ(v) = (g, η1h1, � � � , ηKhK ) for v = (g, h) with g ∈R

L, h ∈ Ḣ . Let

pθ(Yt , Xt ) := ∣∣A(θ)
∣∣ K∏
k=1

ηk

(
Ak•(θ)Vθ,t

)
,

sθ,u(Yt , Xt ) := g′�̇θ+uϕ(v)(Yt , Xt ) +
K∑

k=1

hk
(
Ak•

(
θ+ uϕ(v)

)
Vθ+uϕ(v),t

)
1 + uhk

(
Ak•

(
θ+ uϕ(v)

)
Vθ+uϕ(v),t

)

+
K∑

k=1

uh′
k

(
Ak•

(
θ+ uϕ(v)

)
Vθ+uϕ(v),t

)
[D1,k,uVθ+uϕ(v),t + D2,k,uXt ]

1 + uhk
(
Ak•

(
θ+ uϕ(v)

)
Vθ+uϕ(v),t

) ,

with

D1,k,u := e′
k

Lα∑
l=1

gα,lDα,l
(
θ+ uϕ(v)

)+ e′
k

Lσ∑
l=1

gσ ,lDσ ,l
(
θ+ uϕ(v)

)
,

D2,k,u := −Ak•
(
θ+ uϕ(v)

) Lb∑
l=1

Db,l
(
θ+ uϕ(v)

)
.

By Assumption 1 and standard computations, the derivative of u 
→ √
pθ+uϕ(v) at u = u

is 1
2 sθ,u

√
pθ+uϕ(v) (everywhere). Inspection reveals that this is continuous in u.

For qθ,t , the density of Xt under Pn
θ and sθ := sθ,0,

E

n∑
t=1

(Wn,t −Un,t )2 = 1
n

n∑
t=1

∫ (√
n

[√
pθn

pθ
− 1

]
− 1

2
sθ

)2

pθqθ,t dλ

=
∫ (√

n[
√
pθn − √

pθ] − 1
2
sθ

√
pθ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t . The integrand converges to zero as n→ ∞ by the differentiabil-

ity of u 
→ √
pθ+uϕ(v) at u= 0.S3 Let

Iθ,u,n :=
∫

s2
θ,upθ+uϕ(v)q̄n,θ dλ=

∫
s2
θ,u dGθ,u,n,

S3Note that pθn = pθn(g,h) = pθ+ϕ(v)/
√
n.
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where Gθ,u,n is the distribution of (Yt , Xt ) corresponding to the density pθ+uϕ(v)q̄n,θ. By

Lemma S22, Gθ,u/
√
n,n

TV−→Gθ, defined by

Gθ(A) :=
∫
A
pθ d

(
λ(y ) ⊗Qθ(x)

)
.

For any (un ) ⊂ [0, 1], we have that s2
θ,un/

√
n

→ s2
θ (pointwise). By Lemma S6 and Corollary

2.9 in Feinberg, Kasyanov, and Zgurovsky (2016), limn→∞ Iθ,un/
√
n,n = ∫

s2
θ dGθ < ∞, and

hence ∣∣∣∣
∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2
θ dGθ du

∣∣∣∣≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/
√
n,n −

∫
s2
θ dGθ

∣∣∣∣→ 0.

By absolute continuity, Jensen’s inequality and the Fubini–Tonelli theorem,

∫ (√
n[

√
pθn − √

pθ]
)2
q̄n,θ dλ≤ 1

4

∫ ∫ 1

0
(sθ,u/

√
n
√
pθ+uϕ(v)/

√
n )2q̄n,θ dudλ

≤
∫ 1

0
Iθ,u/

√
n,n du.

Combine these observations with Proposition 2.29 in van der Vaart (1998).

Lemma S6. Suppose that Assumption 1 holds. Let sθ,u and Gθ,u,n be as in the proof of
Lemma S5. Then for any (un )n∈N ⊂ [0, 1], s2

θ,un/
√
n

is asymptotically uniformly Gθ,un/
√
n,n–

integrable and sθ ∈L2(Gθ ).

Proof. That sθ ∈ L2(Gθ ) follows from the moment bounds in Assumption 1.2, the
boundedness of the hk, the form of �̇θ given in equations (7)–(9) and Lemma S1 given
that Qθ is the law of the stationary solution to (1).

For the uniform integrability, let ϑn := θ+ unϕ(v)/
√
n→ θ and

sϑn,1(Yt , Xt ) := g′�̇ϑn(Yt , Xt ),

sϑn,2(Yt , Xt ) :=
K∑

k=1

hk
(
Ak•(ϑn )Vϑn,t

)
1 + unhk

(
Ak•(ϑn )Vϑn,t

)
/
√
n

,

sϑn,3(Yt , Xt ) :=
K∑

k=1

unh
′
k

(
Ak•(ϑn )Vϑn,t

)
[D1,k,un/

√
nVϑn,t + D2,k,un/

√
nXt ]/

√
n

1 + unhk
(
Ak•(ϑn )Vϑn,t

)
/
√
n

.

It suffices to show that under Gθ,un/
√
n,n each sϑn,i (i = 1, 2, 3) has uniformly bounded

2 + ρ moments for some ρ > 0 for all sufficiently large n.
We start with sϑn,2: since each hk is bounded, for all large enough n, each numerator

is uniformly bounded above and each denominator is uniformly bounded below, away
from zero. Thus, there is a M such that |sϑn,2(Yt , Xt )| ≤M for all such n.

For sϑn,3, by Assumption 1 part 3, each D1,k,un/
√
n and D2,k,un/

√
n are uniformly

bounded for all large enough n; the same is true of ‖A(ϑn )−1‖2. Using this, the fact that
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Vϑn,t =A(ϑn )−1εt and arguing similar to as in the preceding paragraph we have that for
some M and all large enough n, |sϑn,3(Yt , Xt )| ≤ M[‖εt‖ + ‖Xt‖]. Thus, it is enough to
verify that

sup
n≥N ,1≤t≤n

Gθ,un/
√
n,n‖εt‖4+δ <∞, sup

n≥N ,1≤t≤n
Gθ,un/

√
n,n‖Xt‖4+δ <∞. (S8)

Under Gθ,un/
√
n,n, the elements εt,k are (independently across k) distributed according

to ηk(1 + unhk/
√
n), so there are c, C <∞ such that

Gθ,un/
√
n,n‖εt‖4+δ ≤Gθ,un/

√
n,n

[
K∑

k=1

ε2
t,k

] 4+δ
2

≤ c

K∑
k=1

[(
1 + h̄k√

n

)∫
|xk|4+δηk(xk ) dxk

]
≤C,

where |hk(x)| ≤ h̄k. By arguing analogously to as in in Lemma S3, one has (cf. (S6))

Gθ,un/
√
n,n‖Zt‖4+δ �

(
C1

1 −�

)4+δ

+
(

C2

1 −�

)4+δ

Gθ,un/
√
n,n|ε1|4+δ + ‖Z0‖4+δ,

which is uniformly bounded given the penultimate display.
Finally, consider sϑn,1. It suffices to show that each component of �̇ϑn has 4 + δ mo-

ment bounded uniformly for all n ≥ N .S4 By Assumption 1.3, by increasing N if nec-
essary, supϑ∈T |ζxl,k,j(ϑ)| ≤ M for all l, k, j and x ∈ α, σ and likewise supϑ∈T ‖Ak•(ϑ) ×
Dbl (ϑ)‖ ≤M . Recall that Vϑn,t =A(ϑn )−1εt . Given (S8) and the observations in footnote

S4 to complete the proof, it suffices to note that (for φk = d logηk(x)
dx ) and some C <∞,

Gθ,un/
√
n,n|φk|4+δ ≤

(
1 + h̄k√

n

)∫ ∣∣φ(x)
∣∣4+δ

ηk(x) dx≤ C.

Lemma S7. Let Wn,t be as in the proof of Proposition 3 and suppose the conditions of that
Proposition hold. Let Gθ be defined as in the proof of Lemma S5. Then, under Pn

θ ,

lim
n→∞E

∣∣∣∣∣
n∑

t=1

W 2
n,t − τ2

4

∣∣∣∣∣= 0, with τ2 :=Gθ

(
g′�̇θ(Y , X ) +

K∑
k=1

hk
(
Ak•(θ)Vθ

))2

.

S4The form each such component is that given in equations (7)–(9). Note here that each φk is (implicitly)
a function of ηk, and thus when evaluating equations (7)–(9) at ϑn, the φk that appear are φk,un ,n, defined
as

φk,u,n := d
(
logηk(x) + log

(
1 + uhk(x)/

√
n
))

dx
=φk + uh′

k/
√
n

1 + uhk/
√
n

.

Since each hk, and h′
k are bounded, increasing N if necessary, one has for n≥N ,

|φk,un ,n| ≤ |φk| +M .
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Proof. Define

rθ(Xt ) := E
[
sθ(Yt , Xt )2|Xt

]
, sθ(Y , X ) := g′�̇θ(Y , X ) +

K∑
k=1

hk
(
Ak•(θ)Vθ

)
,

where the conditional expectation is taken under Pn
θ . Since conditional expectations

are L1 contractions, by Lemma S4, we have that Pn
θ [|rθ(Xt )|1+ρ/2] � C < ∞, and hence

(|rθ(Xt )|1+ρ/2 )t∈N is uniformly Pn
θ–integrable. Moreover, we have for Ft := σ(ε1, � � � , εt ),

rθ(Xt ) = E
[
sθ(Yt , Xt )2|Xt

]= E
[
sθ(Yt , Xt )2|Ft−1

]
,

as is clear from the definition of sθ.S5 Hence, (sθ(Yt , Xt )2 − rθ(Xt ), Ft ) is a martingale
difference squence and by Theorem 19.7 in Davidson (1994),

lim
n→∞E

∣∣∣∣∣1
n

n∑
t=1

[
sθ(Yt , Xt )2 − rθ(Xt )

]∣∣∣∣∣
1+ρ/2

= 0.

Now define uθ(Xt ) := rθ(Xt ) − E[rθ(Xt )], which satisfies Pn
θ [|uθ(Xt )|1+ρ/2] � C < ∞

and is evidently mean zero. By Theorem 3 in Saikkonen (2007), Zt , and hence uθ(Xt )
(e.g., Davidson (1994, Theorem 14.1)) has geometrically decaying β-mixing coefficients.
Therefore, by Theorem 14.2 in Davidson (1994), (uθ(Xt )/n)n∈N,1≤t≤n is an L1-mixingale
array with respect to the filtration formed by Fn,t := σ(X1, � � � , Xt ) relative to the se-
quence of positive constants

n−1 ≤ cn,t = max
{

1/n,
(
Pn
θ

[∣∣uθ(Xt )/n
∣∣1+ρ/2])1/(1+ρ/2)}≤ n−1 max{C, 1}.

By Theorem 19.11 in Davidson (1994),

lim
n→∞E

∣∣∣∣∣1
n

n∑
t=1

uθ(Yt , Xt )

∣∣∣∣∣= 0.

It remains to show that 1
n

∑n
i=1 E[rθ(Xt )] → τ2. Since E[rθ(Xt )] = E[sθ(Yt , Xt )],

τ2
n :=Gθ,0,n

[
sθ(Y , X )2]= 1

n

n∑
t=1

E sθ(Yt , Xt )2 = 1
n

n∑
t=1

E
[
rθ(Xt )

]
,

where Gθ,0,n is as defined in the proof of Lemma S5. That E 1
n

∑n
t=1 sθ(Yt , Xt )2 � C fol-

lows from Lemma S4. Therefore, by Lemma S6, sθ(Y , X )2 is uniformly Gθ,0,n–integrable
and also τ2 <∞. Then, by Corollary 2.9 in Feinberg, Kasyanov, and Zgurovsky (2016) and
Lemma S22, τ2

n → τ.

Lemma S8. In the setting of Proposition 4,

log
pn
θn(gn,h)

pn
θn(g,h)

= oPn
θn(g,h)

(1).

S5See, for example, Theorem 7.3.1 in Chow and Teicher (1997) for the (almost sure) equality of the con-
ditional expectations.
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Proof. Since by Proposition 3 and Example 6.5 in van der Vaart (1998) Pn
θn(g,h) � � Pn

θ it
suffices to show that the left-hand side is oPn

θ
(1). We first show that

log
pn
θn(gn,0)

pn
θ

= 1√
n

n∑
t=1

g′�̇θ(Yt , Xt ) −E

(
1√
n

n∑
t=1

g′�̇θ(Yt , Xt )

)2

+ oPn
θ

(1),

log
pn
θn(g,0)

pn
θ

= 1√
n

n∑
t=1

g′�̇θ(Yt , Xt ) −E

(
1√
n

n∑
t=1

g′�̇θ(Yt , Xt )

)2

+ oPn
θ

(1).

For these log-likelihood expansions, we may appeal to Lemma 1 in Swensen (1985).
The required Conditions (1.3)–(1.7) and (iii) of his Theorem 1 are all established in the
proof of Proposition 3 (take each hk = 0). It remains to show condition (1.2) for each of
the cases in the above display. In particular, set

Wn,t := 1

2
√
n
g′�̇θ(Yt , Xt )

and (cf. equations (37), (38))

Un,t :=
[(∣∣A(θn(gn, h)

)∣∣∣∣A(θ)
∣∣

)
×

K∏
k=1

ηk

(
Ak•

(
θn(gn, h)

)
Vθn(gn,h),t

)
ηk

(
Ak•(θ)Vθ,t

)
]1/2

− 1,

where we note that A(θ) =A(θn(0, h)) and Vθ = Vθn(0,h). We verify (1.2), that is, that

lim
n→∞E

[
n∑

t=1

(Wn,t −Un,t )2

]
= 0,

under Pn
θ .S6 The argument now follows similar to that in Lemma S5. To simplify the no-

tation, let pγ := p(γ,η) and �̇γ := �̇(γ,η) where η = (η1, � � � , ηK ) will remain fixed. By As-
sumption 1 and standard computations, the derivative of γ 
→ √

pγ is 1
2 �̇γ

√
pγ (every-

where). Inspection reveals that this is continuous in γ.
Let γn := γ + gn/

√
n. For qθ,t , the density of Xt under Pn

θ ,

E

n∑
t=1

(Wn,t −Un,t )2 = 1
n

n∑
t=1

∫ (√
n

[√
pγn

pγ
− 1

]
− 1

2
g′�̇γ

)2

pγqθ,t dλ

=
∫ (√

n[
√
pγn − √

pγ] − 1
2
g′�̇γ

√
pγ

)2

q̄n,θ dλ,

with q̄n,θ := 1
n

∑n
t=1 qθ,t . The term inside the parentheses converges to zero as n→ ∞ by

the differentiability of γ 
→ √
pγ and that (gn − g)′�̇γ

√
pγ → 0 pointwise. Let

Iθ,u,n :=
∫ (

g′�̇γ+ugn

)2
pγ+ugn q̄n,θ dλ=

∫ (
g′�̇γ+ugn

)2
dGθ,u,n,

S6This suffices as the second expansion is just the special case gn = g for each n ∈N.
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where Gθ,u,n is the distribution of (Yt , Xt ) corresponding to the density pγ+ugnq̄n,θ.

By Lemma S22, Gθ,un/
√
n,n

TV−→ Gθ, defined as in the proof of Lemma S5. For any
(un ) ⊂ [0, 1], we have that (g′�̇γ+ungn/

√
n )2 → (g′�̇γ )2 (pointwise). Each component of

�̇γ ∈ L2(Gθ ) by Lemma S6 and, moreover, supn≥N Gθ,un/
√
n,n‖�̇γ+ungn/

√
n‖2+ρ ≤ C for

some ρ > 0.S7 Therefore, by Corollary 2.9 in Feinberg, Kasyanov, and Zgurovsky (2016),
limn→∞ Iθ,un/

√
n,n = ∫

(g′�̇γ )2 dGθ <∞, and hence

∣∣∣∣
∫ 1

0
Iθ,u/

√
n,n du−

∫ 1

0

∫
s2
θ dGθ du

∣∣∣∣≤ sup
u∈[0,1]

∣∣∣∣Iθ,u/
√
n,n −

∫ (
g′�̇γ

)2
dGθ

∣∣∣∣→ 0.

By the continuous differentiability of
√
pγ , Jensen’s inequality and the Fubini–Tonelli

theorem,

∫ (√
n[

√
pγn − √

pγ]
)2
q̄n,θ dλ≤ 1

4

∫ ∫ 1

0

((
g′�̇γ+ugn/

√
n

)√
pγ+ugn/

√
n

)2
q̄n,θ dudλ

≤
∫ 1

0
Iθ,u/

√
n,n du.

Combining these observations with Proposition 2.29 in van der Vaart (1998) verifies
(1.2), and hence the claimed log-likelihood expansions follow from Lemma 1 in Swensen
(1985).

To complete the proof, set

ũk,n,t :=Ak•
(
θn(gn, h)

)
Vθn(gn,h),t , uk,n,t :=Ak•

(
θn(g, h)

)
Vθn(g,h),t ,

and observe that

log
pn
θn(gn,h)

pn
θn(g,h)

−
[

log
pn
θn(gn,0)

pn
θ

− log
pn
θn(g,0)

pn
θ

]

=
K∑

k=1

n∑
i=1

log
(

1 + hk(ũk,n,t )√
n

)
− log

(
1 + hk(uk,n,t )√

n

)
,

where the bracketed term is oPn
θ

(1) by the preceding argument. Hence, it suffices to show
that an arbitrary kth element of the outer sum on the right-hand side is also oPn

θ
(1). Let

ε ∈ (0, 1) be fixed and define

En :=
{

max
1≤i≤n

∣∣hk(ũk,n,t )
∣∣/√n≤ ε

}
,

Fn :=
{

max
1≤i≤n

∣∣hk(uk,n,t )
∣∣/√n≤ ε

}
.

S7This follows from (a) the continuity requirements in Assumption 1.3, (b) under Gθ,un/
√
n,n we have that

e′
kA(θn(ungn, 0))−1Vθn(ungn ,0) = εk ∼ ηk and (c) supn≥N ,1≤t≤n Gθ,un/

√
n,n‖Xt‖4+δ < ∞, which can be shown

by an argument analogous to that which is established in the proof of Lemma S6.
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Since hk is bounded, Pn
θ (En ∩ Fn ) → 1. On this set, we may perform a two-term Taylor

expansion of log(1 + x) to obtain

log
(

1 + hk(ũk,n,t )√
n

)
− log

(
1 + hk(uk,n,t )√

n

)

= hk(ũk,n,t ) − hk(uk,n,t )√
n

− 1
2
hk(ũk,n,t )2 − hk(uk,n,t )2

n

+R

(
hk(ũk,n,t )√

n

)
−R

(
hk(uk,n,t )√

n

)
,

where |R(x)| ≤ |x|3. For the remainder terms, one has for any ui,

n∑
i=1

∣∣∣∣R
(
hk(ui )√

n

)∣∣∣∣≤ max
1≤i≤n

hk(ui )√
n

1
n

n∑
i=1

hk(ui )
2 � 1√

n
,

since hk is bounded. For the first term in Taylor expansion, note that the derivative (in θ,
σ) of A(θ, σ ) is bounded on a neighborhood of (θ, σ ) (by Assumption 1). Combine this
with the boundedness of h′

k and the mean value theorem to conclude that∣∣hk(ũk,n,t ) − hk(uk,n,t )
∣∣� n−1/2‖gn − g‖[‖εt‖ + ‖Xt‖

]
.

Using this, since hk is bounded,∣∣hk(ũk,n,t )2 − hk(uk,n,t )2
∣∣� n−1/2‖gn − g‖[‖εt‖ + ‖Xt‖

]
.

Therefore, using (S6) and Assumption 1.2,

n∑
i=1

∣∣∣∣hk(ũk,n,t ) − hk(uk,n,t )√
n

− 1
2
hk(ũk,n,t )2 − hk(uk,n,t )2

n

∣∣∣∣
� ‖gn − g‖

(
1 + 1√

n

)
1
n

n∑
i=1

[‖εt‖ + ‖Xt‖
]= oPn

γ
(1).

Lemma S9. In the setting of Proposition 4,

log
pn
θn(gn,hn )

pn
θn(gn,h)

= oPn
θn(gn ,h)

(1).

Proof. For notational ease, set

uk,n,t := e′
kA

(
θn(gn, h)

)
Vθn(gn,h),t = e′

kA
(
θn(gn, hn )

)
Vθn(gn,hn ),t .

One has that

log
pn
θn(gn,hn )

pn
θn(gn,h)

=
K∑

k=1

n∑
t=1

log
(
1 + hk,n(uk,n,t )/

√
n
)− log

(
1 + hk(uk,n,t )/

√
n
)
,
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hence it suffices to show that each

ln,k :=
n∑

t=1

log
(
1 + hk,n(uk,n,t )/

√
n
)− log

(
1 + hk(uk,n,t )/

√
n
) Pn

θn(gn ,h)−−−−−→ 0.

Let ε ∈ (0, 1) be fixed and define

En :=
{

max
1≤t≤n

∣∣hk,n(uk,n,t )
∣∣/√n≤ ε

}
;

Fn :=
{

max
1≤t≤n

∣∣hk(uk,n,t )
∣∣/√n≤ ε

}
.

Since hk is bounded, Pn
θn(gn,h)Fn → 1; Pn

θn(gn,h)En → 1 follows from Lemma S11. Hence,
Pn
θn(gn,h)Fn ∩En → 1. On En ∩Fn, we can perform a two-term Taylor expansion of log(1 +

x) to obtain

log
(
1 + hk,n(uk,n,t )/

√
n
)− log

(
1 + hk(uk,n,t )/

√
n
)

= hk,n(uk,n,t )√
n

− 1
2
hk,n(uk,n,t )2

n
− hk(uk,n,t )√

n
+ 1

2
hk(uk,n,t )2

n

+R

(
hk,n(uk,n,t )√

n

)
−R

(
hk(uk,n,t )√

n

)
,

where |R(x)| ≤ |x|3. It follows that

ln,k = 1√
n

n∑
t=1

hk,n(uk,n,t ) − hk(uk,n,t ) − 1
2

1
n

n∑
t=1

[
hk,n(uk,n,t )2 − hk(uk,n,t )2]

+
n∑

t=1

R

(
hk,n(uk,n,t )√

n

)
−R

(
hk(uk,n,t )√

n

)
.

We will show that the remainder terms vanish. In particular, one has

n∑
t=1

∣∣∣∣R
(
hk,n(uk,n,t )√

n

)∣∣∣∣≤
n∑

t=1

∣∣∣∣hk,n(uk,n,t )√
n

∣∣∣∣
∣∣∣∣hk,n(uk,n,t )2

n

∣∣∣∣
≤ max

1≤t≤n

∣∣hk,n(uk,t,n )
∣∣

√
n

1
n

n∑
t=1

hk,n(uk,n,t )2.

By Markov’s inequality with Lemmas S10 and S11, this converges to zero in Pn
θn(gn,h)

probability. The same evidently holds for the case where hk,n = hk for each n ∈N. Thus,

ln,k = 1√
n

n∑
t=1

hk,n(uk,n,t ) −hk(uk,n,t ) − 1
2

1
n

n∑
t=1

[
hk,n(uk,n,t )2 −hk(uk,n,t )2]+oPn

θn(gn ,h)
(1),

and it remains to show that 1√
n

∑n
t=1 hk,n(uk,n,t ) − hk(uk,n,t ) and 1

n

∑n
t=1[hk,n(uk,n,t )2 −

hk(uk,n,t )2] also converge to zero in probability. The second of these follows directly
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from Lemma S10, Markov’s inequality, and the reverse triangle inequality since

Pn
θn(gn,h)

(∣∣∣∣∣1
n

n∑
t=1

[
hk,n(uk,n,t )2 − hk(uk,n,t )2]∣∣∣∣∣> ε

)

≤ ε−1 1
n

n∑
t=1

E
[
hk,n(uk,n,t )2 − hk(uk,n,t )2]

= ε−1
E
[
hk,n(uk,n,t )2 − hk(uk,n,t )2]

→ 0.

For the remaining term, we start by noting that

E
[
hk,n(uk,n,t ) − hk(uk,n,t )

]= E
[(
hk,n(εk ) − hk(εk )

)
hk(εk )

]
√
n

so ∣∣∣∣∣ 1√
n

n∑
t=1

E
[
hk,n(uk,n,t )

]−E
[
hk(uk,n,t )

]∣∣∣∣∣≤ 1
n

n∑
t=1

‖hk,n − hk‖L2(Pn
θ )‖hk‖L2(Pn

θ ) → 0.

Then, if we define h̃k,n(uk,n,t ) := hk,n(uk,n,t ) − E[hk,n(uk,n,t )] and similarly
h̃k(uk,n,t ) := hk(uk,n,t ) −E[hk(uk,n,t )], it will suffice to show that

1√
n

n∑
t=1

h̃k,n(uk,n,t ) − h̃k(uk,n,t )
Pn
θn(gn ,h)−−−−−→ 0.

By the reverse triangle inequality and Lemma S10,

E
[(
h̃k,n(uk,n,t ) − h̃k(uk,n,t )

)2]→ 0, uniformly in t.

Using this, the independence of the uk,t,n and Markov’s inequality,

Pn
θn(gn,h)

(∣∣∣∣∣ 1√
n

n∑
t=1

h̃k,n(uk,n,t ) − h̃k(uk,n,t )

∣∣∣∣∣> ε

)

≤ 1

ε2

1
n

n∑
t=1

E
[(
h̃k,n(uk,n,t ) − h̃k(uk,n,t )

)2]→ 0.

This establishes that
∑K

k=1 ln,k

Pn
θn(gn ,h)−−−−−→ 0, as required.

Lemma S10. In the setting of Proposition 4, let uk,n,t := e′
kAθn(gn,h)Vθn(gn,h),t . Under

Pn
θn(gn,h),

E
[
hk,n(uk,n,t ) − hk(uk,n,t )

]2 ≤ ‖hn,k − hk‖L2(Pn
θ )

(
1 + ‖hk‖L∞(Pn

θ )√
n

)
.
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Proof. Under Pn
θn(gn,h), uk,n,t ∼ ηk(1 + hk/

√
n), so for εk ∼ ηk, since hk is bounded,

E
[
hk,n(uk,n,t ) − hk(uk,n,t )

]2

=
∫ [

hn,k(x) − hk(x)
]2
ηk(x)

(
1 + hk(x)/

√
n
)

dx

≤ E
[
hk,n(εk ) − hk(εk )

]2 + 1√
n
E
[
hk,n(εk ) − hk(εk )

]2‖hk‖L∞(Pn
θ )

≤ ‖hn,k − hk‖L2(Pn
θ ) + ‖hn,k − hk‖L2(Pn

θ )‖hk‖L∞(Pn
θ )/

√
n.

Lemma S11. In the setting of Proposition 4, let uk,n,t := e′
kAθn(gn,h)Vθn(gn,h),t . Then

max
1≤t≤n

∣∣hk,n(uk,n,t )
∣∣

√
n

Pn
θn(gn ,h)−−−−−→ 0.

Proof. Under Pn
θn(gn,h), uk,n,t ∼ ηk(1+hk/

√
n). By Lemma S10, hk,n(uk,n,t ) is uniformly

square Pn
θn(gn,h)–integrable, and hence the Lindeberg condition holds for hk,n(uk,n,t )/√

n:

lim
n→∞

n∑
t=1

E

[
hk,n(uk,n,t )2

n
1
{∣∣hn,k(uk,n,t )

∣∣> δ
√
n
}]

= lim
n→∞

1
n

n∑
t=1

E
[
hk,n(uk,n,t )21

{∣∣hn,k(uk,n,t )
∣∣> δ

√
n
}]

= lim
n→∞E

[
hk,n(uk,n,t )21

{∣∣hn,k(uk,n,t )
∣∣> δ

√
n
}]

= 0,

for any δ > 0. This implies the claimed uniform asymptotic negligability condition (e.g.,
Gut (2005, Remark 7.2.4)):

max
1≤t≤n

∣∣hk,n(uk,n,t )
∣∣

√
n

Pn
θn(gn ,h)−−−−−→ 0.

SB.4 Scores

Lemma S12. Suppose Assumption 1 holds. Let pθ and q̄n,θ be as in the proof of Proposi-
tion S5 and suppose that θn = (γn, η) → (γ, η) = θ. Then

lim
n→∞

∫ ∥∥�̃θnp1/2
θn

q̄
1/2
n,θ − �̃θp

1/2
θ q̄

1/2
n,θ

∥∥2
dλ= 0. (S9)

Proof. The integral in (S9) can be rewritten as

L∑
l=1

∫ (
�̃θn,l(y, x)pθn(y, x)1/2 − �̃θ,l(y, x)pθ(y, x)1/2)2

d
(
λ(y ) ⊗Qn,θ(x)

)
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Inspection of the forms of �̃ϑ and pϑ reveals that each integrand in the preceding display
converges to zero as n→ ∞. If we show that

lim sup
n→∞

∫
�̃2
θn,lpθn d(λ⊗Qn,θ ) ≤

∫
�̃2
θ,lpθ d(λ⊗Qθ ) <∞, (S10)

the proof will be complete in view of Lemma S2, Proposition S1, and Remark 1.S8 The
preceding display is equivalent to

lim sup
n→∞

∫
�̃2
θn,l dGθn,θ,n ≤

∫
�̃2
θ,l dGθ <∞,

for Gϑ,θ,n the distribution of (Y , X ) corresponding to the density pϑq̄n,θ and Gθ as de-
fined in the proof of Lemma S5. That �̃2

θn,l → �̃2
θ,l pointwise is clear from its form, as given

in Lemma 1. The finiteness of each of the integrals in the above display along with the
fact that for some N ∈N and some ρ > 0,

sup
n≥N

∫
�̃

2+ρ
θn,l dGθn,θ,n <∞

follows from the form of �̃2
ϑ,l (as given in Lemma 1) along with Assumption 1.S9

Lemma S13 (Smoothness). Suppose that Assumption 1 holds. Then for any sequence θn =
(γ + gn/

√
n, η) with gn → g ∈R

L,

Rn := 1√
n

n∑
t=1

[
�̃θn(Yt , Xt ) − �̃θ(Yt , Xt )

]+ Ĩθ,ngn
Pn
θ−→ 0.

Proof. From (the proof of) Lemma S8, we have

lim
n→∞

∫ [√
n
(
p

1/2
θn

−p
1/2
θ

)
q̄

1/2
n,θ − 1

2
g′�̇θp1/2

θ q̄
1/2
n,θ

]2

dλ= 0, (S11)

while by Lemma S12 we have

lim
n→∞

∫ ∥∥�̃θnp1/2
θn

q̄
1/2
n,θ − �̃θp

1/2
θ q̄

1/2
n,θ

∥∥2
dλ= 0. (S12)

Define

c−1
n :=

∫
p

1/2
θn

p
1/2
θ q̄n,θ dλ= 1 − 1

2

∫ (
p

1/2
θ −p

1/2
θn

)2
q̄n,θ dλ.

S8Note that the product structure of λ⊗Qn,θ and Lemma S2 ensure that λ⊗Qn,θ → λ⊗Qθ setwise.
S9Compare the proof of Lemma S3: arguing in essentially the same manner as there allows one to obtain

uniform boundedness of the 4 + δ moments of εk, φk(εk ), Xt (uniformly in t) and all the nonstochastic
terms in �̃2

θn ,l .
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We have

−n
(
p

1/2
θ −p

1/2
θn

)2 = −
(√

n
[
p

1/2
θn

−p
1/2
θ

]− 1
2
g′�̇θp1/2

θ

)2

+
(

1
2
g′�̇θp1/2

θ

)2

− g′�̇θp1/2
θ

√
n
(
p

1/2
θn

−p
1/2
θ

)
,

and so by (S11) and the continuity of the inner product∫ (
p

1/2
θ −p

1/2
θn

)2
q̄n,θ dλ= 1

n

∫
g′�̇θp1/2

θ q̄
1/2
n,θ

√
n
(
p

1/2
θn

−p
1/2
θ

)
q̄

1/2
n,θ dλ

− 1
n

∫ (
1
2
g′�̇θp1/2

θ

)2

q̄n,θ dλ+ o
(
n−1)

= 1
4

(
n−1/2g

)′
İn,θ

(
n−1/2g

)+ o
(
n−1),

where İn,θ := ∫
�̇θ�̇

′
θpθq̄n,θ dλ = O(1).S10 It follows that c−1

n = 1 − an with an → 0 and
nan = 1

4g
′İθg + o(1).

Rn is equal to the sum of

R′
1,n := 1√

n

n∑
t=1

[
�̃θn(Yt , Xt )

(
1 − pθn(Yt , Xt )1/2

pθ(Yt , Xt )1/2

)]
+ 1

2
Ĩn,θgn ;

R′
2,n := 1√

n

n∑
t=1

[
�̃θn(Yt , Xt )

pθn(Yt , Xt )1/2

pθ(Yt , Xt )1/2 − �̃θ(Yt , Xt )

]
+ 1

2
Ĩn,θgn.

Since Ĩn,θ is O(1) by Lemma S3, it suffices to prove that these converge in probability to
zero with gn replaced by g; let the corresponding expressions be called Ri,n for i = 1, 2.

For R1,n, we note that (omitting the arguments of the functions)

1√
n

n∑
t=1

�̃θn

(
1 − p

1/2
θn

p
1/2
θ

)
+ 1

2
1
n

n∑
t=1

�̃θn �̇
′
θg

= 1
n

n∑
t=1

�̃θn
√
n

(
1 − p

1/2
θn

p
1/2
θ

+ 1

2
√
n
�̇′
θg

)

≤ 1
n

n∑
t=1

‖�̃θn‖2 × 1
n

n∑
t=1

[√
n

(
1 − p

1/2
θn

p
1/2
θ

+ 1

2
√
n
�̇′
θg

)]2

.

The first term on the second line is OPn
θn

(1), hence OPn
θ

(1) (by contiguity). The second
has L1(Pn

θ ) norm

E

∣∣∣∣∣1
n

n∑
t=1

[√
n

(
1−p

1/2
θn

p
1/2
θ

+ 1

2
√
n
�̇′
θg

)]2
∣∣∣∣∣≤

∫ [√
n

(
p

1/2
θ −p

1/2
θn

+ 1

2
√
n
�̇′
θgp

1/2
θ

)]2

q̄n,θ dλ→ 0,

S10This follows by noting that ‖�̇θ‖2 is uniformly integrable under pθq̄n,θ, which is a consequence of
Lemma S3.
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where the convergence is by (S11). Therefore, it suffices to show that

1
n

n∑
t=1

�̃θn �̇
′
θ − Ĩn,θ

Pn
θ−→ 0. (S13)

We may replace Ĩn,θ in (S13) with Ĩθ := ∫
�̃θ�̇

′
θ dGθ with Gθ as defined in the proof of

Lemma S5. In particular, let Gθ,n := Gθ,0,n as defined in the proof of Lemma S5. Then,
since ‖�̃θ(Yt , Xt )�̇θ(Yt , Xt )′‖1+ρ/2 is uniformly L1(Pn

θ ) bounded (Lemma S3), one has

sup
n∈N

∫ ∥∥�̃θ�̇′
θ

∥∥1+ρ/2
dGn,θ <∞,

and so ‖�̃θ�̇′
θ‖ is uniformly Gθ,n–integrable. By Lemma S22 and Theorem 2.8 of Serfozo

(1982),

Ĩn,θ = 1
n

n∑
t=1

E
[
�̃θ(Yt , Xt )�̇θ(Yt , Xt )′

]=
∫

�̃θ�̇
′
θ dGn,θ →

∫
�̃θ�̇

′
θ dGθ = Ĩθ. (S14)

For any M > 0, one has the decompositions

EM
n,1 := 1

n

n∑
t=1

�̃θn �̇
′
θ − 1

n

n∑
t=1

�̃θn1
{‖�̃θn‖ ≤M

}
�̇′
θ1
{‖�̇θ‖ ≤M

}

= 1
n

n∑
t=1

�̃θn1
{‖�̃θn‖>M

}
�̇′
θ + 1

n

n∑
t=1

�̃θn1
{‖�̃θn‖ ≤M

}
�̇′
θ1
{‖�̇θ‖>M

}

and

EM
2 := Ĩθ −

∫
�̃θ�̇

′
θ1
{‖�̃θ‖ ≤M

}
1
{‖�̇θ‖ ≤M

}
dGθ

=
∫

�̃θ�̇
′
θ1
{‖�̃θ‖>M

}
dG+

∫
�̃θ�̇

′
θ1
{‖�̃θ‖>M

}
1
{‖�̇θ‖>M

}
dGθ.

Additionally, for E taken under Pn
θ , define

EM
n,3 := 1

n

n∑
t=1

�̃θn1
{‖�̃θn‖ ≤M

}
�̇′
θ1
{‖�̇θ‖ ≤M

}−E
[
�̃θn1

{‖�̃θn‖ ≤M
}
�̇′
θ1
{‖�̇θ‖ ≤M

}]
;

EM
n,4 := E

1
n

n∑
t=1

�̃θn1
{‖�̃θn‖ ≤M

}
�̇′
θ1
{‖�̇θ‖ ≤M

}−
∫

�̃θ�̇
′
θ1
{‖�̃θ‖ ≤M

}
1
{‖�̇θ‖ ≤M

}
dGθ.

Since ‖�̃θ�̇′
θ1{‖�̃θ‖ >M }‖ ≤ ‖�̃θ�̇′

θ‖, ‖�̃θ�̇′
θ1{‖�̃θ‖ >M }1{‖�̇θ‖ >M }‖ ≤ ‖�̃θ�̇′

θ‖, and ‖�̃θ�̇′
θ‖

is Gθ-integrable by Lemma S3, by the dominated convergence theorem, for any δ > 0
there is an M such that EM ′

2 < δ for M ′ ≥ M . For any M > 0, by Theorem 3 in Saikkonen
(2007), Theorem 14.1 in Davidson (1994) and Theorem 2 in Kanaya (2017) one has (cf.
Lemma S14 below)

EM
n,3 =OPn

θ

(
M2/

√
n
)
.
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For EM
n,4, we introduce a new measure: define μn as

μn(A) :=
∫
A
cnpθn(x, y )1/2pθ(x, y )1/2 d

(
λ(y ) ⊗Qn(x)

)
.

By Lemma S22, one has that μn → G, as well as Gn,θ → G, in TV. Then, by Cauchy–
Schwarz and Lemma S3,

c−1
n

∫
�̃θn1

{‖�̃θn‖ ≤M
}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dμn −

∫
�̃θ1

{‖�̃θ‖ ≤M
}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dGn,θ

=
∫ (

�̃θn1
{‖�̃θn‖ ≤M

}
p

1/2
θn

− �̃θ1
{‖�̃θ‖ ≤M

}
p

1/2
θ

)
�̇′
θ1
{‖�̇θ‖ ≤M

}
p

1/2
θ d(λ⊗Qθ,n )

=
∫ (

�̃θn1
{‖�̃θn‖>M

}
p

1/2
θn

− �̃θ1
{‖�̃θ‖>M

}
p

1/2
θ

)
�̇′
θ1
{‖�̇θ‖ ≤M

}
p

1/2
θ d(λ⊗Qθ,n )

+
∫ (

�̃θnp
1/2
θn

− �̃θp
1/2
θ

)
�̇′
θ1
{‖�̇θ‖ ≤M

}
p

1/2
θ d(λ⊗Qθ,n )

� o(1) + sup
n∈N

Eθn

[‖�̃θn‖21
{‖�̃θn‖>M

}]+ sup
n∈N

Eθ
[‖�̃θ‖21

{‖�̃θ‖>M
}]

.

The last two right-hand side terms can be made arbitrarily small, uniformly in n, by
taking M large enough; the o(1) term follows from (S12) and is uniform in M . Now, by

Gn,θ
TV−→Gθ,∣∣∣∣
∫

�̃θ1
{‖�̃θ‖ ≤M

}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dGθ,n −

∫
�̃θ1

{‖�̃θ‖ ≤M
}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dGθ

∣∣∣∣
≤M2‖Gn,θ −Gθ‖TV.

Since μn → Gθ and Gn,θ → Gθ in total variation, one has that ‖μn −Gn,θ‖TV → 0. Since
�̃θn1{‖�̃θn‖ ≤M }�̇′

θ1{‖�̇θ‖ ≤M } is uniformly bounded, one has that∣∣∣∣
∫

�̃θn1
{‖�̃θn‖ ≤M

}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dμn −

∫
�̃θn1

{‖�̃θn‖ ≤M
}
�̇′
θ1
{‖�̇θ‖ ≤M

}
dGn,θ

∣∣∣∣
≤M2‖μn −Gn,θ‖TV.

As c−1
n − 1 = −an → 0, it follows that

EM
n,4 ≤M2[‖μn −Gn,θ‖TV + ‖Gn,θ −Gθ‖TV

]+ en +M2|an| + r(M ),

where 0 ≤ r(M ) := supn∈NEPn
θn

[‖�̃θn‖21{‖�̃θn‖>M }] + supn∈NEPn
θ

[‖�̃θ‖21{‖�̃θ‖>M }] → 0

as M → ∞ and r does not depend on n and en = o(1). For EM
n,1, note that since ‖�̇θ‖2 is

uniformly Pn
θ -integrable (Lemma S3), 1

n

∑n
t=1 ‖�̇θ‖2 =OPn

θ
(1). By Markov’s inequality, for

any δ > 0,

Pn
θn

(∣∣∣∣∣1
n

n∑
t=1

‖�̃θn‖21
{‖�̃θn‖>M

}∣∣∣∣∣> δ

)
≤ δ−1

E

[∣∣∣∣∣1
n

n∑
t=1

‖�̃θn‖21
{‖�̃θn‖>M

}∣∣∣∣∣
]

≤ δ−1 sup
n∈N

E‖�̃θn‖21
{‖�̃θn‖>M

}
≤ δ−1r(M ).
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Thus by taking M → ∞, the probability on the left-hand side of the preceding display
vanishes. Therefore, the same is true of

Pn
θ

(∣∣∣∣∣1
n

n∑
t=1

‖�̃θn‖21
{‖�̃θn‖>M

}∣∣∣∣∣> δ

)
,

by contiguity. That is, we can take a large enough M such that the probability in the
display above is arbitrarily small (for all large enough n ∈N).

Now, fix ε > 0, δ > 0. By Lemma S3, 1
n

∑n
t=1 ‖�̃θ‖2 = OPn

θ
(1) and also 1

n

∑n
t=1 ‖�̃θn‖2 =

OPn
θn

(1). By this and contiguity, we can choose R> 0 be such that for all n≥N1,

Pn
θ

(
1
n

n∑
t=1

‖�̃θ‖2 >R

)
< ε/4, Pn

θ

(
1
n

n∑
t=1

‖�̃θn‖2 >R

)
< ε/4.

Take M large enough that ‖EM
2 ‖< δ, r(M ) < δ, and for all n≥N2

Pn
θ

(∣∣∣∣∣1
n

n∑
t=1

‖�̃θn‖21
{‖�̃θn‖>Mn

}∣∣∣∣∣> δ/R

)
< ε/4,

Pn
θ

(∣∣∣∣∣1
n

n∑
t=1

‖�̇θ‖21
{‖�̇θ‖>Mn

}∣∣∣∣∣> δ/R

)
< ε/4,

where Mn ≥ M and Mn → ∞ slowly. This ensures that ‖EMn
2 ‖ < δ, Pn

θ (‖EMn
n,1‖ > 2δ) < ε

for all n ≥ max{N1, N2}. Then let N be large enough such that N ≥ max{N1, N2}, and for
all n ≥ N , Pn

θ (‖EMn
n,3‖ > δ) < ε and ‖EMn

n,4‖ ≤ 3δ.S11 Combining these ensures that for all
such n,

Pn
θ

(∥∥∥∥∥1
n

n∑
t=1

�̃θn �̇
′
θ − Ĩθ

∥∥∥∥∥> 7δ

)
< 2ε.

In conjunction with (S14), this establishes (S13).
We next show that R2,n converges to zero in Pn

θ -probability. Define

Zn,t := �̃θn(Yt , Xt )
pθn(Yt , Xt )1/2

pθ(Yt , Xt )1/2 ,

mn(Xt ) :=
∫

�̃θn(y, Xt )pθn(y, Xt )1/2pθ(y, Xt )1/2 dy,

and note that mn(Xt ) = E[Zn,t|Xt ] (Pn
θ -a.s.). Since E[�̃θn(Yt , Xt )|Xt ] = 0 under Pn

θn
(which is clear from its form),

mn(Xt ) =
∫

�̃θn(y, Xt )pθn(y, Xt )1/2pθ(y, Xt )1/2 dy

=
∫

�̃θn(y, Xt )pθn(y, Xt )1/2[pθ(y, Xt )1/2 −pθn(y, Xt )1/2]dy. (S15)

S11That is, n such that M2
n |an| < δ, |en| < δ, M2

n[‖μn − Gn,θ‖TV + ‖Gn,θ −Gθ‖TV] < δ. Here, one needs to
take Mn → ∞ slowly enough that these sequences still converge to zero and M2

n/
√
n→ 0.
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Using (S11), (S12), and Cauchy–Schwarz yield

lim
n→∞

∣∣∣∣〈�̃θnp1/2
θn

q̄
1/2
θ,n ,

√
n
(
p

1/2
θ −p

1/2
θn

)
q̄

1/2
n,θ

〉
λ

−
〈
�̃θp

1/2
θ q̄

1/2
n,θ , −1

2
g′�̇θp1/2

θ q̄
1/2
n,θ

〉
λ

∣∣∣∣= 0,

which implies that

1√
n

n∑
t=1

mn(Xt ) + 1
2
Ĩn,θg

Pn
θ−→ 0,

given the representation of mn in (S15). In consequence, it remains to show that

R∗
2,n := 1√

n

n∑
t=1

Zt,n −mn(Xt ) − �̃θ(Yt , Xt )
Pn
θ−→ 0.

Put Fn,t = σ(Yt , Xt ). Then, as is straightforward to verify, (Zt,n − mn(Xt ) − �̃θ(Yt , Xt ),
Fn,t )n∈N,1≤t≤n forms a martingale difference array. Hence, it suffices to show that

1
n

n∑
i=1

E
∥∥Zt,n −mn(Xt ) − �̃θ(Yt , Xt )

∥∥2 Pn
θ−→ 0.

The left-hand side of this display can be written as

∫ ∥∥∥∥�̃θn p
1/2
θn

p
1/2
θ

−mn − �̃θ

∥∥∥∥
2

pθq̄n,θ dλ≤ 2
∫ ∥∥�̃θnp1/2

θn
q̄

1/2
n,θ − �̃θp

1/2
θ q̄

1/2
n,θ

∥∥2
dλ

+ 2
∫

‖mn‖2 dQn,θ,

and so, given (S12) it suffices to show that the second term on the right-hand side con-
verges to zero. For this, note that by Fubini’s theorem and the Cauchy–Schwarz inequal-
ity ∫

‖mn‖2 dQn,θ ≤
∫ ∥∥�̃θnp1/2

θn

[
p

1/2
θ −p

1/2
θn

]∥∥2
q̄n,θ dλ

≤
∫ ∥∥�̃θnp1/2

θn
q̄

1/2
n,θ

∥∥2
dλ

∫ [(
p

1/2
θn

−p
1/2
θ

)
q̄

1/2
n,θ

]2
dλ.

The first term on the right-hand side is O(1) by equation (S10), while the second con-
verges to zero by (S11) and the uniform Gθ,0,n—integrability of g′�̇θ as established in
Lemma S6.

SB.4.1 Estimation

Lemma S14. Suppose that Assumption 1 holds and gn are �—integrable functions for
some �> 2 such that maxt=1, ���,n ‖gn(Yt , Xt )‖L� ≤Mn (all under Pn

θ ). Then

1
n

n∑
t=1

gn(Yt , Xt ) −E
[
gn(Yt , Xt )

]=OPθ(Mn/
√
n).
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Proof. Let αn(m) be the α-mixing coefficients of the array {gn(Yt , Xt ) − E[gn(Yt , Xt )] :
n ∈ N, 1 ≤ t ≤ n}. By (the proof of) Theorem 14.1 in Davidson (1994), αn(m) ≤ α̃(m −
p) (for m ≥ p) where α̃(m) are the mixing coefficients of {Yt : t ∈ N}. By Theorem 3 in
Saikkonen (2007) and Proposition 1.1.1 in Doukhan (1994) α̃(m) = O(am ) for some a ∈
(0, 1). Condition A1 in Kanaya (2017) then holds (with � = 1) with β> �/(�− 2). To see
this, note that for all m≥M1 we have α̃(m−p) ≤ Cam while Cam ≤Am−β whenever

β≤ log(A) − log(C ) +m
∣∣log(a)

∣∣
log(m)

.

As the right-hand side diverges as m → ∞, for all m larger than some M ≥ M1, the in-
equality will hold for some β > �/(� − 2). Noting that the inequality above continues
to hold if we increase A, we may then choose A such that each α̃(m) ≤ Am−β for all
1 ≤m≤M . The result then follows by Theorem 2 in Kanaya (2017).

Lemma S15. Suppose that Assumptions 1 and 2 hold. Then:

(i) If Zn,1 := 1√
n

∑n
t=1 �̃θ(Yt , Xt ) and Zn,2 :=�n

θn(g,h)(Y
n ), then under Pn

θ ,

Zn �Z ∼ N

⎛
⎝
⎛
⎝ 0

−1
2
σ2
g,h

⎞
⎠ ,

(
Ĩθ Ĩθg

g′Ĩθ σ2
g,h

)⎞⎠ .

Additionally, let θn := θn(gn, 0) = (γ + gn/
√
n, η) for gn → g ∈ R

L. Then:

(ii) We have that

1
n

n∑
t=1

(
�̂θn(Yt , Xt ) − �̃θn(Yt , Xt )

)= oPn
θn

(
n−1/2).

(iii) ‖În,θn − Ĩθ‖ = oPn
θn

(ν1/2
n ) where νn is defined in Assumption 2, and Ĩθ :=Gθ�̃θ�̃

′
θ

with Gθ as in the proof of Lemma S5.

Proof. For part (i), let zt be

zt :=
(
�̃θ(Yt , Xt )′, g′�̇θ(Yt , Xt ) +

K∑
k=1

hk(Ak•Vθ,t )

)′
,

and Ft := σ(ε1, � � � , εt ). UnderPn
θ , {zt , Ft : t ∈N} is a martingale difference sequence such

that

1
n

n∑
t=1

E
[
ztz

′
t

]=
[

Ĩn,θ Ĩθ,θg

g′Ĩn,θ σ2
g,h,n

]
→

[
Ĩθ Ĩθg

g′Ĩθ σ2
g,h

]
,

noting Lemma 1 and Theorem 12.14 of Rudin (1991). That σ2
g,h,n converges to a σ2

g,h is

part of the conclusion of Proposition 3. That Ĩθ,n → Ĩθ follows by combining Lemma S3,
the fact that Gθ,0,n as defined in the proof of Lemma S5 converges in total variation to
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Gθ (cf. Lemma S22), and Corollary 2.9 in Feinberg, Kasyanov, and Zgurovsky (2016). Lin-
deberg’s condition is satisfied since {‖zt‖2 : t ∈N} is uniformly Pn

θ -integrable (by Lemma
S3 and the fact that each hk is bounded) and the variance convergence in the preced-
ing display. Part (i) then follows from Proposition 3 and the central limit theorem for
martingale differences.

Define An := A(θn ), Bn := B(θn ), and ζxn,l,k,j := ζxl,k,j(θn ) for each triple (l, j, k) of
indicies and x ∈ {α, σ }. Note that each An,k(Yt −BnXt ) � εk,t ∼ ηk under Pn

θn
. Hence,

�̃θn,αl (Yt , Xt ) �
K∑

k=1

K∑
j=1,j �=k

ζαl,k,jφk(εk,t )εj,t +
K∑

k=1

ζαn,l,k,k

[
τk,1εk,t + τk,2κ(εk,t )

]
, (S16)

�̃θn,σl (Yt , Xt ) �
K∑

k=1

K∑
j=1,j �=k

ζσn,l,k,jφk(εk,t )εj,t +
K∑

k=1

ζσl,k,k

[
τk,1εk,t + τk,2κ(εk,t )

]
, (S17)

�̃θn,bl (Yt , Xt ) �
K∑

k=1

−An,k•Db,l
[
φk(εk,t )(Xt −EXt ) −EXt

(
ςk,1εk,t + ςk,2κ(εk,t )

)]
. (S18)

By Assumption 1.3, ζxn,l,k,j → ζα∞,l,k,j := [Dxl (α, σ )]k•A(α, σ )−1
•j for x ∈ {α, σ }. Note that

the entries of Db,l are all zero except for entry l (corresponding to bl), which is equal to
one.

We verify (ii) for each component of the efficient score (S16)–(S18). For components
(S16) and (S17), we define for x either of α, σ ,

ϕ1,n,t :=
K∑

k=1

K∑
j=1,j �=k

ζxl,k,j,nφk(An,k•Vn,t )An,j•Vn,t ,

and

ϕ̂1,n,t :=
K∑

k=1

K∑
j=1,j �=k

ζxl,k,j,nφ̂k,n(An,k•Vn,t )An,j•Vn,t ,

with Vn,t = Yt − BnXt , and let ζn := maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,n|, which converges to ζ :=
maxl∈[L],j∈[K],k∈[K] |ζxl,j,k,∞| <∞. We have that

1√
n

n∑
t=1

(ϕ̂1,n,t −ϕ1,n,t )

≤ √
n

K∑
k=1

K∑
j=1,j �=k

ζn

∣∣∣∣∣1
n

n∑
t=1

φ̂k,n(An,k•Vn,t )An,j•Vn,t −φk(An,k•Vn,t )An,j•Vn,t

∣∣∣∣∣,

Each | 1
n

∑n
t=1 φ̂k,n(An,k•Vn,t )An,j•Vn,t − φk(An,k•Vn,t )An,j•Vn,t | = oPθn (n−1/2 ) by apply-

ing Lemma 2 with Wn,t = An,j•Vn,t (noting that An,k•Vn,s � εk,s and An,j•Vn,t � εj,t with
are independent for any s, t with Eθn(An,j•Vn,t )2 = 1 by Assumption 1.2), and the outside
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summations are finite, it follows that

1√
n

n∑
t=1

(ϕ̂1,n,t −ϕ1,n,t ) = oPn
θ̃n

(1). (S19)

That τ̂k,n
Pn
θn−−→ τk follows from Lemma S16. Now, consider ϕ2,τ,n,t defined by

ϕ2,τ,n,t :=
K∑

k=1

ζzn,l,k,k

[
τk,1An,k•Vn,t + τk,2κ(An,k•Vn,t )

]
,

for x equal to either α or σ . Since sum is finite and each |ζxn,l,k,k| → |ζx∞,l,k,k| < ∞ it is
sufficient to consider the convergence of the summands. In particular, we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vn,t = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vn,t → 0,

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vn,t ) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vn,t ) → 0,

in probability, since An,k•Vn,t � εk,t ∼ ηk and (εk,t )t≥1 and (κ(εk,t ))t≥1 are i.i.d. mean-
zero sequences with finite second moments such that the central limit theorem holds.

Together, these yield that

1√
n

n∑
t=1

(ϕ2, τ̂n,n,t −ϕ2,τ,n,t )
Pn
θn−−→ 0. (S20)

Combination of (S19) and (S20) yields (ii) for components of the type (S16), (S17).
For components (S18), let an,k,l := −An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt , and

c̄n := 1
n

∑n
t=1 cn,t .

Since an,k,l → a∞,k,l :=A(α, σ )k•Dbl (α, σ ), it suffices to show that:

1. 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )](Xt − cn,t ) = oPn

θn
(n−1/2 );

2. 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )](X̄n − c̄n ) = oPn

θn
(n−1/2 );

3. 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )](c̄n − cn,t ) = oPn

θn
(n−1/2 );

4. 1
n

∑n
t=1 φk(An,k•Vn,t )(X̄n − c̄n ) = oPn

θn
(n−1/2 );

5. 1
n

∑n
t=1 φk(An,k•Vn,t )(c̄n − cn,t ) = oPn

θn
(n−1/2 );

6. 1
n

∑n
t=1 X̄n[ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t )] = oPn

θn
(n−1/2 );

7. 1
n

∑n
t=1(X̄n − c̄n )[ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t )] = oPn

θn
(n−1/2 );

8. 1
n

∑n
t=1(c̄n − cn,t )[ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t )] = oPn

θn
(n−1/2 )
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1. follows by (the first part of) Lemma 2 applied with Wn,t = Xt − cn,t . This is mean-
zero, independent of all An,k•Vn,s with s ≥ t and has uniformly bounded second mo-
ments (cf. (S6)).

2. follows by Jensen’s inequality, (the second part of) Lemma 2 applied with Wn,t = 1,
(S6), Lemma S14 and Corollary 1.

3. follows by Cauchy–Schwarz, (the second part of) Lemma 2 applied with Wn,t = 1
and Lemma S17.

For 4., 1√
n

∑n
t=1 φk(An,k•Vn,t ) = OPn

θn
(1) by the central limit theorem and X̄n − c̄n =

1
n

∑n
t=1[Xt − cn,t ]

Pθn−−→ 0, which follows by (S6), Lemma S14 and Corollary 1.
5. follows by Cauchy–Schwarz, the fact that Eφk(An,k•Vn,t )2 = Eφk(εk,t )2 is uni-

formly bounded, hence 1
n

∑n
t=1 φk(An,k•Vn,t )2 = OPn

θn
(1) by Markov’s inequality and

Lemma S17.
For 6., X̄n = OPθn (1) by, for example, Markov’s inequality and (S6). By the central

limit theorem, also 1√
n

∑n
t=1 Ut = OPn

θn
(1) for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t ).

The result therefore follows from Lemma S16.
For 7., 1√

n

∑n
t=1 Ut = OPn

θn
(1) for Ut equal to either An,k•Vn,t or κ(An,k•Vn,t )

(as in 6.). Therefore, it suffices to note that X̄n − c̄n
Pθn−−→ 0, as noted for 4. .

For 8., for Ut equal to either ςk,1An,k•Vn,t or ςk,2κ(An,k•Vn,t ), by Markov’s inequality

Pn
θn

(∥∥∥∥∥ 1√
n

n∑
t=1

(c̄n − cn,t )Ut

∥∥∥∥∥> ε

)
≤ ε−2

EU2
t

1
n

n∑
t=1

‖c̄n − cn,t‖2 � 1
n

n∑
t=1

‖c̄n − cn,t‖2 → 0,

by Lemma S17.
To verify (iii), we note that

‖În,θn − Ĩθ‖2 ≤ ‖În,θn − Ĭn,θn‖2 + ‖Ĭn,θn − Ĩn,θn‖2 + ‖Ĩn,θn − Ĩθ‖2, (S21)

where Ĩθ := E[�̃θ(Yt , Xt )�̃θ(Yt , Xt )′] = 1
n

∑n
t=1 E[�̃θ(Yt , Xt )�̃θ(Yt , Xt )′] with the expecta-

tion taken under Gθ, În,θ := 1
n

∑n
t=1 �̂θ(Yt , Xt )�̂θ(Yt , Xt )′ and Ĭn,θ := 1

n

∑n
t=1 �̃θ(Yt , Xt ) ×

�̃θ(Yt , Xt )′. We will show each right-hand side term is oPn
θn

(ν1/2
n ).

For the first right-hand side term in (S21), let r ∈ {α, σ , b} and let l denote an in-
dex, we write Ûn,t,rl := �̂θn,rl (Yt , Xt ), Ũt,rl := �̃θn,rl (Yt , Xt ), and Dn,t,rl := �̂θn,rl (Yt , Xt ) −
�̃θn,rl (Yt , Xt ).

Since it is the absolute value of the (r, l) − (s, m) component of În,θn − Ĭn,θn , it is
sufficient to show that | 1

n

∑n
t=1 Ûn,t,rlDn,t,sm + 1

n

∑n
t=1 Dn,t,rl Ũt,sm | = oPn

θn
(ν1/2

n ) as n → ∞
for any r, s ∈ {α, σ , b} and l, m. By Cauchy–Schwarz and Lemma S19,

∣∣∣∣∣1
n

n∑
t=1

Dn,t,rl Ũt,sm

∣∣∣∣∣≤
(

1
n

n∑
t=1

Ũ2
t,sm

)1/2(
1
n

n∑
t=1

D2
n,t,rl

)1/2

= oPn
θn

(
ν

1/2
n

)
,

∣∣∣∣∣1
n

n∑
t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣≤
(

1
n

n∑
t=1

Û2
n,t,rl

)1/2(
1
n

n∑
t=1

D2
n,t,sm

)1/2

= oPn
θn

(
ν

1/2
n

)
,
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for any (r, l) − (s, m). It follows that

[
1
n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rl Ũt,sm

]2

≤ 2

[
1
n

n∑
t=1

Ûn,t,rlDn,t,sm

]2

+ 2

[
1
n

n∑
t=1

Dn,t,rl Ũt,sm

]2

= oPn
θn

(νn ),

and hence ‖În,θn − Ĭn,θn‖2 ≤ ‖În,θn − Ĭn,θn‖F = oPn
θn

(ν1/2
n )

For the second right-hand side term in (S21), letQr,ls
l,m,t,n = �̃θn,rl (Yt , Xt )�̃θn,sm(Yt , Xt ),

where r, s ∈ {α, σ , b} and l, m denote the indices of the components of the efficient
scores. Fix any r, s and l, m and note that by the fact that �̃θn has uniformly bounded
2 + δ/2 moments under Pn

θn
, Theorem 3 of Saikkonen (2007) and Theorem 1 of Kanaya

(2017) together imply that (cf. Lemma S14)

1
n

n∑
t=1

Qr,s
l,m,t,n −Eθn Q

r,s
l,m,t,n =OPn

θn

(
n(1/p−1)/2)= oPn

θn

(
ν

1/2
n

)
, p ∈ (1, 1 + δ/4],

hence ‖Ĭn,θn − Ĩn,θn‖2 = oPn
θn

(ν1/2
n ).

That the last right-hand side term in (S21) is o(ν1/2
n ) follows from the assumed local

Lipschitz continuity of the map defining the ζ’s, that of each β 
→ A(α, σ )k•, Theorem
11.11 of Kallenberg (2021) and Lemma S18.

Lemma S16. If Assumption 1 holds, then ‖�̂k,n −�k,n‖2 = oPn
θ̃n

(νn,p ) = oPn
θn

(ν1/2
n ), where

θ̃n is as in Lemma S15 and � ∈ {τ, ς}.

Proof. Under Pn
θn

, An,k•Vn,t � εk,t ∼ ηk, for Vn,t := Yt −BnXt and An :=A(θn ). Let w ∈
{(0, −2)′, (1, 0)′}. Since the map M 
→ M−1 is Lipschitz at a positive definite matrix M0,
then for large enough n, with probability approaching one

‖�̂k,n −�k,n‖2 = ∥∥(M̂−1
k,n −M−1

k

)
w
∥∥

2 ≤ 2
∥∥M̂−1

k,n −M−1
k

∥∥
2 ≤ 2C‖M̂k,n −Mk‖2, (S22)

for some positive constant C. By Theorem 2.5.11 in Durrett (2019),

1
n

n∑
t=1

[
(An,k•Vn,t )3 −E(An,k•Vn,t )3]= oPn

θn

(
n

1−p
p
)
,

1
n

n∑
t=1

[
(An,k•Vn,t )4 −E(An,k•Vn,t )4]= oPn

θn

(
n

1−p
p
)
.

These together imply that

‖M̂k,n −Mk‖2 ≤ ‖M̂k,n −Mk‖F = oPn
θn

(
n

1−p
p
)= oPn

θn
(νn,p ).

Combining these convergence rates with equation (S22) yields the result.
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Lemma S17. In the setting of Lemma S15, let cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t . Then

1
n

n∑
t=1

‖c̄n − cn,t‖2 =O
(
n−1).

Proof. Since Xt = (1, Z′
t−1 )′, it suffices to show that 1

n

∑n
t=1 ‖c̃n,t − 1

n

∑n
t=1 c̃n,t‖2 =

O(n−1 ) for c̃n,t := Eθn Zt−1. Let c̃n,∞ :=∑∞
j=0 B

j
θn

Cθn . This converges uniformly in n since
under Assumption 1 parts (i) and (iii), the sets {‖Bθn‖2 : n ∈ N} ∪ {‖Bθ‖2} and {‖Cθn‖2 : n ∈
N} ∪ {‖Cθ‖2} are bounded above by ρ� < 1 and C� <∞, respectively. By Jensen’s inequal-
ity,

1
n

n∑
t=1

∥∥∥∥∥c̃n,t − 1
n

n∑
t=1

c̃n,t

∥∥∥∥∥
2

� 1
n

n∑
t=1

‖c̃n,t − c̃n,∞‖2 + 1
n

n∑
t=1

∥∥∥∥∥1
n

n∑
t=1

[c̃n,∞ − c̃n,t ]

∥∥∥∥∥
2

≤ 2
n

n∑
t=1

‖c̃n,t − c̃n,∞‖2

so it suffices to show that n/2 times the last term is uniformly bounded above. One has

n∑
t=1

‖c̃n,t − c̃n,∞‖2 =
n∑

t=1

∥∥∥∥∥
∞∑

j=t−1

B
j
θn

Cθn − Bt−1
θn

Z0

∥∥∥∥∥
2

�
n∑

t=1

∥∥∥∥∥
∞∑

j=t−1

B
j
θn

Cθn

∥∥∥∥∥
2

+
n∑

t=1

∥∥Bt−1
θn

Z0
∥∥2

≤
n∑

t=1

[ ∞∑
j=t−1

‖Bθn‖j2‖Cθn‖2

]2

+
n∑

t=1

‖Bθn‖2(t−1)
2 ‖Z0‖2

≤ C2
�

n∑
t=1

[
ρt−1
�

1 − ρ�

]2

+ ‖Z0‖2
n∑

t=1

ρ2(t−1)
�

≤
[

C2
�

(1 − ρ� )2 + ‖Z0‖2
]

1

1 − ρ2
�

.

Lemma S18. In the setting of Lemma S15, let X̃t = (1, Ỹ ′
t−1, � � � , Ỹ ′

t−p )′ where Ỹt is a sta-
tionary solution to (1). Then:

(i) 1
n

∑n
t=1 Eθn Xt −Eθ X̃t = o(ν1/2

n ),

(ii) 1
n

∑n
t=1[Eθn Xt ][Eθn Xt ]′ − [Eθ X̃t ][Eθ X̃t ]′ = o(ν1/2

n ).

(iii) 1
n

∑n
t=1 Eθn[Xt −Eθn Xt ][Xt −Eθn Xt ]′ −Eθ[Xt −Eθ Xt ][Xt −Eθ Xt ]′ = o(ν1/2

n ).

Proof. Note that ‖Eθn Xt − Eθn X̃t‖2 ≤ ‖c̃n,t − c̃n,∞‖2 in the notation of (the proof of)
Lemma S17, which shows that 1

n

∑n
t=1 ‖c̃n,t − c̃n,∞‖2 = O(n−1 ). Hence, by Jensen’s in-
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equality,

1
n

n∑
t=1

‖Eθn Xt −Eθn X̃t‖ =O
(
n−1/2)= o

(
ν

1/2
n

)
,

Since β 
→ Eθ X̃t = vec(ιK , (ιp ⊗ (IK −B1 − · · · −Bp )−1c)) is locally Lipschitz,

1
n

n∑
t=1

‖Eθn X̃t −Eθ X̃t‖ = ‖Eθn X̃t −Eθ X̃t‖ =O
(
n−1/2)= o

(
ν

1/2
n

)
.

Combination of the above two displays yields that 1
n

∑n
t=1 ‖Eθn Xt −Eθ X̃t‖ =O(n−1/2 ) =

o(ν1/2
n ) which implies (i). Moreover, combined with the uniform moment bounds given

in (S6) and Lemma S1 this yields

1
n

n∑
t=1

∥∥[Eθn Xt ][Eθn Xt ]′ − [Eθ X̃t ][Eθ X̃t ]′
∥∥� 1

n

n∑
t=1

‖Eθn Xt −Eθ X̃t‖ =O
(
n−1/2)= o

(
ν

1/2
n

)
,

which implies (ii).

For (iii), let Uϑ,t := Xt − EϑXt and Ũϑ,t := X̃t − Eϑ X̃t . Note that as Uϑ,t =∑t−2
j=0 B

j
ϑDϑεt−j and Ũϑ,t =∑∞

j=0 B
j
ϑDϑεt−j , Uθn,t − Ũθn,t , and Uθn,t are independent. Ad-

ditionally by Assumption 1 parts 1 and 3, the sets {‖Bθn‖2 : n ∈N} and {‖Dθn‖2 : n ∈N} are

bounded above by ρ� < 1 and D� <∞, respectively. Hence,

1
n

n∑
t=1

∥∥Eθn

[
Uθn,tU

′
θn,t − Ũθn,t Ũ

′
θn,t

]∥∥

≤ 1
n

n∑
t=1

∥∥Eθn

[
(Uθn,t − Ũθn,t )U ′

θn,t

]∥∥+ 1
n

n∑
t=1

∥∥Eθn

[
(Uθn,t − Ũθn,t )Ũ ′

θn,t

]∥∥

≤ 1
n

n∑
t=1

∥∥∥∥∥Eθn

∞∑
k=0

∞∑
j=t−1

B
j
θn

Dθnεt−jε
′
t−kD′

θn

(
B
j
θn

)′∥∥∥∥∥
≤ 1

n

n∑
t=1

∞∑
j=t−1

‖Bθn‖2j
2 ‖Dθn‖2

2

≤D2
� × 1

n

n∑
t=1

∞∑
j=t−1

ρ
2j
�

≤ D2
�

1 − ρ2
�

× 1 − ρ2n
�

1 − ρ2
�

× 1
n

=O
(
n−1).
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Additionally, we can write vec(Eϑ Ũϑ,t Ũ
′
ϑ,t ) = (I−Bϑ⊗Bϑ )−1 vec(DϑD′

ϑ ), which is locally

Lipschitz in β at θ. This implies that

1
n

n∑
t=1

Eθn Ũθn,t Ũ
′
θn,t −Eθ Ũθ,t Ũ

′
θ,t =O

(
n−1/2)= o

(
ν

1/2
n

)
.

The previous two displays suffice for (iii).

Lemma S19. In the setting of Lemma S15, for each r ∈ {α, σ , b} and l,

1
n

n∑
t=1

(
�̂θ̃n,rl

(Yt , Xt ) − �̃θ̃n,rl
(Yt , Xt )

)2 = oPn
θ̃n

(νn ).

Proof. We start by considering elements in 1
n

∑n
t=1(�̂θ̃n,αl

(Yt , Xt )− �̃θ̃n,αl
(Yt , Xt ))2. De-

fine τ̃k,n,q := τ̂k,n,q − τk,q and Vn,t = Yt − BnXt . Since each |ζαn,l,k,j| < ∞ and the sums

over k, j are finite, it is sufficient to demonstrate that for every k, j, m, s ∈ [K], with k �= j

and s �=m,

1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

][
φ̂s,n(An,s•Vn,t ) −φs(An,s•Vn,t )

]
×An,j•Vt,nAn,m•Vn,t , (S23)

1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

]
×An,j•Vn,t

[
τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t )

]
, (S24)

1
n

n∑
t=1

[
τ̃s,n,1An,s•Vn,t + τ̃s,n,2κ(An,s•Vn,t )

][
τ̃k,n,1An,k•Vn,t + τ̃k,n,2κ(An,k•Vn,t )

]
(S25)

are each oPn
θ̃n

(νn ).

For (S25), let ξ1(x) = x and ξ2(x) = κ(x). Then we can split the sum into 4 parts, each

of which has the following form for some q, w ∈ {1, 2}:

1
n

n∑
t=1

τ̃s,n,qτ̃k,n,wξq(An,s•Vn,t )ξw(An,k•Vn,t )

= τ̃s,n,qτ̃k,n,w
1
n

n∑
t=1

ξq(An,s•Vn,t )ξw(An,k•Vn,t )

= oPn
θ̃n

(νn ),
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since we have that each τ̃s,n,qτ̃k,n,w = oPn
θ̃n

(νn ) by Lemma S16.S12 For (S24), we can argue

similarly. Again, let ξ1(x) = x and ξ2(x) = κ(x). Then we can split the sum into 2 parts,
each of which has the following form for some q ∈ {1, 2}:

1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

]
An,j•Vn,t τ̃s,n,qξq(An,s•Vn,t )

≤ τ̃s,n,q

(
1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

]2
(An,j•Vn,t )2

)1/2

×
(

1
n

n∑
t=1

ξq(An,s•Vn,t )2

)1/2

= oPn
θ̃n

(νn ).

by Lemma 2 applied with Wn,t = An,j•Vn,t and τ̃s,n,q = oPn
θ̃n

(ν1/2
n ).S13 For (S23), use

Cauchy–Schwarz with Lemma 2,

1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

][
φ̂s,n(An,s•Vn,t ) −φs(An,s•Vn,t )

]

×An,j•Vn,tAn,m•Vn,t

≤
(

1
n

n∑
t=1

[
φ̂k,n(An,k•Vn,t ) −φk(An,k•Vn,t )

]2
(An,j•Vn,t )2

)1/2

×
(

1
n

n∑
t=1

[
φ̂s,n(An,s•Vn,t ) −φs(An,s•Vn,t )

]2
(An,m•Vn,t )2

)1/2

= oPn
θ̃n

(νn ).

This completes the proof for the components corresponding toαl. We note that the com-
ponents corresponding to σl follow analogously.

Finally, we consider the elements in 1
n

∑n
t=1(�̂θn,bl (Yt , Xt ) − �̃θn,bl (Yt , Xt ))2. Let

an,k,l := −An,k•Dbl , ς̃k,n := ς̂k,n − ςk, cn,t := Eθn Xt and c̄n := 1
n

∑n
t=1 cn,t . Since an,k,l →

a∞,k,l :=A(α, σ )k•Dbl (α, σ ), it suffices to show that:

(i) 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )]2‖Xt − cn,t‖2 = oPn

θn
(νn );

(ii) 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )]2‖X̄n − c̄n‖2 = oPn

θn
(νn );

S12The fact that 1
n

∑n
t=1 ξq(An,s•Vn,t )ξw(An,k•Vn,t ) =OPn

θ̃n
(1) can be seem to hold using the moment and

i.i.d. assumptions from Assumption 1 and Markov’s inequality, noting once more that An,k•Vn,t � εk,t under
Pn
θ̃n

.
S13See footnote S12.



Supplementary Material Robust inference non-Gaussian SVAR 31

(iii) 1
n

∑n
t=1[φk(An,k•Vn,t ) − φ̂k,n(An,k•Vn,t )]2‖c̄n − cn,t‖2 = oPn

θn
(νn );

(iv) 1
n

∑n
t=1 φk(An,k•Vn,t )2‖X̄n − c̄n‖2 = oPn

θn
(νn );

(v) 1
n

∑n
t=1 φk(An,k•Vn,t )2‖c̄n − cn,t‖2 = oPn

θn
(νn );

(vi) 1
n

∑n
t=1 ‖X̄n‖2[ς̃k,n,1An,k•Vn,t + ς̃k,n,2κ(An,k•Vn,t )]2 = oPn

θn
(νn );

(vii) 1
n

∑n
t=1 ‖X̄n − c̄n‖2[ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t )]2 = oPn

θn
(νn );

(viii) 1
n

∑n
t=1 ‖c̄n − cn,t‖2[ςk,1An,k•Vn,t + ςk,2κ(An,k•Vn,t )]2 = oPn

θn
(νn ).

(i) follows from repeated application of Lemma 2 with Wn,t = e′
j(Xt − cn,t ).

(ii) follows from application of Lemma 2 with Wn,t = 1 and X̄n − c̄n = 1
n

∑n
t=1[Xt −

cn,t ]
Pθn−−→ 0, which follows by (S6), Lemma S14, and Corollary 1.

(iii) follows by Lemma 2 applied repeatedly with Wn,t = e′
j(c̄n − cn,t ).S14

For (iv), 1
n

∑n
t=1 φk(An,k•Vn,t )2 = OPn

θn
(1) since φk(An,k•Vn,t )2 has uniformly

bounded second moments and X̄n − c̄n = OPn
θn

(n−1/2 ), by (S6), Lemma S14 and Corol-

lary 1.

For (v), use Markov’s inequality and Lemma S17 to conclude

Pn
θn

(
1
n

n∑
t=1

φk(An,k•Vn,t )2‖c̄n − cn,t‖2 > νnε

)
≤ ν−1

n ε−1
E
[
φk(εk )2]1

n

n∑
t=1

‖c̄n − cn,t‖2 → 0.

For (vi), X̄n = OPθn (1) by, for example, Markov’s inequality and (S6). Similarly,
1
n

∑n
t=1 Ut,iUt,j =OPn

θn
(1) for i, j ∈ {1, 2} with Ut,1 =An,k•Vn,t and Ut,2 = κ(An,k•Vn,t ). The

result then follows from Lemma S16.

For (vii), 1
n

∑n
t=1 Ut,iUt,j =OPn

θn
(1) for i, j ∈ {1, 2} with Ut,1 and Ut,2 as in the preceding

paragraph. Therefore, it suffices to note that X̄n − c̄n =OPθn (n−1/2 ), as noted for (iv).

For (viii), for Ut,1 and Ut,2 as in the preceding paragraph and i, j ∈ {1, 2},

Pn
θn

(∣∣∣∣∣1
n

n∑
t=1

‖c̄n − cn,t‖2ςk,iUt,iςk,jUt,j

∣∣∣∣∣> νnε

)

≤ ν−1
n ε−1|ςk,iςk,j|

[
EU2

t,i

]1/2[
EU2

t,j

]1/2 1
n

n∑
t=1

‖c̄n − cn,t‖2

� ν−1
n

1
n

n∑
t=1

‖c̄n − cn,t‖2 → 0,

by Markov’s inequality and Lemma S17.

S14That this is uniformly bounded follows from (S6).
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SB.5 Assumption 2.1(ii)(b)

We provide a sufficient condition under which Assumption 1 part (ii)(b) holds, given
part (ii)(a). For convenience, recall that part (ii) reads as:

(ii) Conditional on the initial values (Y ′−p+1, � � � , Y ′
0 )′, εt = (ε1,t , � � � , εK,t )′ is indepen-

dently and identically distributed across t, with independent components εk,t .
Each η = (η1, � � � , ηK ) ∈ H is such that each ηk is nowhere vanishing, dominated
by Lebesgue measure on R, continuously differentiable with log density scores de-
noted by φk(z) := ∂ logηk(z)/∂z, and for all k= 1, � � � , K,

(a) Eεk,t = 0, Eε2
k,t = 1, Eε4+δ

k,t <∞, E(ε4
k,t )−1 > E(ε3

k,t )2, and Eφ4+δ
k (εk,t ) <∞ (for

some δ > 0);

(b) Eφk(εk,t ) = 0, Eφ2
k(εk,t ) > 0, Eφk(εk,t )εk,t = −1, Eφk(εk,t )ε2

k,t = 0, and

Eφk(εk,t )ε3
k,t = −3;

In this assumption part (a) is standard—only imposes that the shocks are mean zero
with unit variance, and that certain 4 + δ moments are finite. In contrast, part (b) may
seem strong at first sight.

An important observation is that (b) should not be understood independently from
(a). Indeed, the following lemma shows that given (a), condition (b) follows if the struc-
tural shocks have densities that decays to zero at a polynomial rate.

Lemma S20. Let ak = inf{x ∈ R ∪ {−∞} : ηk(x) > 0} and bk = sup{x ∈ R ∪ {∞} : ηk(x) >
0}. Suppose that, for r = 0, 1, 2, 3: (i) if ak = −∞, then ηk(x) = o(x−3 ) as x → −∞,
else ark limx↓ak ηk(x) = 0, and (ii) if bk = ∞ then ηk(x) = o(x−3 ) as x → ∞, else
brk limx↑bk ηk(x) = 0. Then, if part (a) of Assumption 1(ii) holds, part (b) is also satisfied.

Proof. Let r ∈ {0, 1, 2, 3}, bk = sup{x ∈R : ηk(x) > 0} and ak = inf{x ∈R : ηk(x) > 0}. We
have, by integration by parts, with Gk denoting the measure on R corresponding to ηk,

∫
φk(z)zr dGk =

∫
η′
k(z)

ηk(z)
ηk(z)zr dz =

∫
η′
k(z)zr dz = ηk(z)zr|bkak −

∫
ηk(z)

dzr

dz
dz.

Our hypothesis ensures that zrηk(z)|bkak = 0. Therefore, we have Gkφk(z)zr = −Gk
d

dz z
r .

For r = 0, this equals zero as d
dz z

0 = d
dz1 = 0. For r ∈ {1, 2, 3}, we have dzr

dz = rzr−1, and
hence Gkφk(z)zr = −rGkz

r−1. Since Gk1 = 1, Gkz = 0, and Gkz
2 = 1, the result follows.

We now provide two examples. The first is a mixture of normals. We directly verify
the moment conditions in (a) and (b) are satisfied.

The second example is a normalized χ2
2 distribution. We show that this does satisfy

the moment conditions in (a) but not those in (b) (nor the conditions of Lemma S20).S15

S15Additionally, the (normalized) χ2
2 distribution does not have a nowhere vanishing Lebesgue density.
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Example S3 (Normal mixtures). Suppose that εk has the density function

ηk(z) =
M∑

m=1

pmfm
(
z, μm, σ2

m

)
,

pm ≥ 0,
M∑

m=1

pm = 1,
M∑

m=1

pmμm = 0,
M∑

m=1

pm
(
σ2
m +μ2

m

)= 1,

where fm(z, μm, σ2
m ) is the density function of a em ∼ N (μm, σ2

m ).
εk has mean zero and unit variance. We first establish that each of the conditions in

(a) are satisfied. In particular, we first note that E[|εk|r ] is finite for any positive integer r
as

E
[|εk|r]=

M∑
m=1

pmE
[|em|r]<∞, (S26)

since the Normal distribution has finite moments of all orders. To establish that E[ε3
k]2 <

E[ε4
k] − 1, note that this is equivalent to the linear independence in L2 of 1, εk, ε2

k (e.g.,
Horn and Johnson (2013, Theorem 7.2.10)). This is equivalent to the condition that

a2
1 + 2a1a3 + a2

2 + a2
3 E

[
ε4
k

]= 0 =⇒ a1 = a2 = a3 = 0.

This holds since E[ε4
k] ≥ 1 = E[ε2

k] by the fact that Lp norms are increasing and so

a2
1 + 2a1a3 + a2

2 + a2
3 E

[
ε4
k

]≥ a2
1 + 2a1a3 + a2

3 = (a1 + a3 )2 ≥ 0,

where equality is possible only if a1 = a2 = a3 = 0. Next, note that

φk(z) = −

M∑
m=1

pmσ
−2
m (z −μm )fm

(
z, μm, σ2

m

)
ηk(z)

, (S27)

and for any integer r and some μ ∈R,

∣∣φk(z)
∣∣r � ∣∣φk(z)

∣∣r−1

∣∣∣∣∣ηk(z)−1(|z| + |μ|) M∑
m=1

pmfm
(
z, μm, σ2

m

)∣∣∣∣∣
= ∣∣φk(z)

∣∣r−1(|z| + |μ|).
Recursively using this inequality from r = 0, yields (for some constant Cr ∈ (0, ∞))

∣∣φk(z)
∣∣r ≤ Cr

(|z|r + |μ|r).
That E |φ(εk )|r <∞ for any integer r then follows from (S26).
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For the conditions in (b), note that by (S27),

E
[
φk(εk )εrk

]= −
M∑

m=1

pm

∫
zr
σ−2
m (z −μm )fm

(
εk, μm, σ2

m

)
ηk(z)

ηk(z) dz

= −
M∑

m=1

pmσ
−2
m

∫
zr(z −μm )fm

(
εk, μm, σ2

m

)
dz

= −
M∑

m=1

pmσ
−2
m

(
E
[
er+1
m

]−E
[
erm
]
μm

)
.

Taking r = 0, 1, 2, 3 in the right-hand expression respectively gives:

E
[
φk(εk )

]= −
M∑

m=1

pmσ
−2
m (μm −μm ) = 0,

E
[
φk(εk )εk

]= −
M∑

m=1

pmσ
−2
m

(
σ2
m +μ2

m −μ2
m

)= −1,

E
[
φk(εk )ε2

k

]= −
M∑

m=1

pmσ
−2
m

(
μ3
m + 3μmσ

2
m − (

σ2
m +μ2

m

)
μm

)= 0,

E
[
φk(εk )ε3

k

]= −
M∑

m=1

pmσ
−2
m

(
μ4
m + 6μ2

mσ
2
m + 3σ4

m −μ4
m − 3μ2

mσ
2
m

)= −3.

Example S4 (The normalized χ2
2 distribution). Suppose that ε̃k ∼ χ2

2 and let εk = (ε̃k −
2)/2. Then εk has mean zero, variance one, and density function ηk(z) = exp(−z − 1)
on its support [−1, ∞) on which we also have that φk(z) = −1. The χ2

2 distribution has
finite moments of all orders and has moment generating function (e.g., Johnson, Kotz,
and Balakrishnan (1995, p. 420))

Mε̃(t ) = (1 − 2t )−1, t < 1/2.

Hence, εk has finite moments of all orders. The same is evidently true of φk(εk ) = −1.
Using the above display, we have

Mε(t ) = e−t(1 − t )−1, t < 1

and, therefore, may directly calculate E[ε3
k] = 2 and E[ε4

k] = 9, hence E[ε3
k]2 < E[ε4

k] − 1
holds. The moment conditions in part (a) are therefore all satisfied.

However, Eφk(z) = −1 �= 0, hence part (b) does not hold. Note also that this example
does not satisfy the requirements of Lemma S20: we have ak = −1, bk = ∞, and

lim
z↓ak

ηk(x) = lim
z↓−1

exp(−z − 1) = 1 �= 0,

and hence the required condition is violated for r = 0.
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Appendix SC: Technical tools

This section records some technical tools used in the proofs for ease of reference.

Lemma S21 (Discretization). Suppose that Pn is a sequence of probability measures and
fn : "→ R, "⊂ R

L is a sequence of functions, which satisfy

fn(γn )
Pn−→ 0 (S28)

for any γn := γ + gn/
√
n, gn → g ∈ R

L. Suppose that the estimator sequence γ̄n satisfies√
n‖γ̄n − γ‖ = OPn(1) and γ̄n takes values in Sn := {CZ/

√
n : Z ∈ R

L} for some L × L

matrix C. Then

fn(γ̄n )
Pn−→ 0.

Proof. Since γ̄n is
√
n-consistent, there is an M > 0 such that Pn(

√
n‖γ̄n − γ‖ >M ) <

ε. If
√
n‖γ̄n − γ‖ ≤ M , then γ̄ is equal to one of the values in the finite set S c

n = {γ∗ ∈
Sn : ‖γ∗ − γ‖ ≤ n−1/2M }. For each M , this set has finite number of elements bounded
independently of n, call this upper bound B. For any υ> 0,

Pn
(∣∣fn(γ̄n )

∣∣>υ
)≤ ε+

∑
γn∈S c

n

Pn
({∣∣fn(γn )

∣∣>υ
}∩ {γ̄n = γn}

)

≤ ε+
∑

γn∈S c
n

Pn
(∣∣fn(γn )

∣∣>υ
)

≤ ε+BPn
(∣∣fn(γ�n)∣∣>υ

)
,

where γ�n ∈ S c
n maximizes γ 
→ Pn(|fn(γ)| > υ). As γ�n ∈ S c

n , ‖γ� − γ‖ ≤ n−1/2M . Hence,
letting gn := √

n(γ�n − γ), ‖gn‖ ≤ M . Arguing along subsequences if necessary, we may

therefore assume that gn → g ∈ R
L, and hence fn(γ�n )

Pn−→ 0 by (S28). The proof is com-
plete on combining this with the previously established bound on Pn(|fn(γ̄n )| >υ).

Lemma S22. Let (X , B(X )) be a measurable space, and Qn a sequence of probability mea-
sures on (X , B(X )), which converges to a probability measure Q in total variation. Let
(Y , B(Y ), λ) be a measure space and suppose that pn : X × Y → [0, ∞) is a sequence
of functions and p : X × Y → [0, ∞) a function such that (i)

∫
pn(x, y ) dλ(y ) = 1 =∫

p(x, y ) dλ(y ) for each n ∈ N and each x ∈ X and (ii) pn → p pointwise. Then, if Gn

and Gn are defined according to

Gn(A) :=
∫
A
pn(x, y ) d

(
λ(y ) ⊗Qn(x)

)
;

G(A) :=
∫
A
p(x, y ) d

(
λ(y ) ⊗Q(x)

)
,

it follows that Gn
TV−→G.
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Proof. For any x, pn(x, ·) → p(x, ·) pointwise and since each pn(·, x), p(·, x) has inte-
gral one under λ, by Proposition 2.29 in van der Vaart (1998),

Qn(x) :=
∫ ∣∣pn(x, y ) −p(x, y )

∣∣dλ(y ) → 0,

pointwise. Let (ψn )n∈N be a sequence of measurable functions on X ×Y with ψn ∈ [0, 1].
Then ∣∣∣∣

∫ ∫
ψn(x, y )

(
pn(x, y ) −p(x, y )

)
dλ(y ) dQn(x)

∣∣∣∣≤
∫

Qn(x) dQn(x).

The inequality Qn(x) ≤ ∫
pn(x, y ) dλ(y ) + ∫

p(x, y ) dλ(y ) = 2 ensures that the Qn(x) are
uniformly Qn-integrable and uniformly Q-integrable. By Theorem 2.8 of Serfozo (1982),∫

Qn(x) dQn(x) → 0.

Lemma S23. Suppose that Pn and Qn are probability measures (each pair (Pn, Qn ) is de-
fined on a common measurable space) with corresponding densities pn and qn (with re-
spect to some σ-finite measure νn). Let ln = logqn/pn be the log-likelihood ratio.S16 If

ln = oPn(1),

then dTV(Pn, Qn ) → 0.

Proof. By the continuous mapping theorem,

qn

pn
= exp(ln )

Pn−→ 1.

Le Cam’s first lemma (e.g., van der Vaart (1998, Lemma 6.4)) then implies that Qn � Pn.
Let φn be arbitrary measurable functions valued in [0, 1]. Since the φn are uniformly
tight, Prohorov’s theorem ensures that for any arbitrary subsequence (nj )j∈N there exists
a further subsequence (nm )m∈N such that φnm �φ ∈ [0, 1] under Pnm . Therefore,(

φnm , exp(lnm )
)
� (φ, 1) under Pnm .

By Le Cam’s third lemma (e.g., van der Vaart (1998, Theorem 6.6)), under Qmn the law of
φnm converges weakly to the law of φ. Since each φn ∈ [0, 1],

lim
m→∞[Qnmφnm − Pnmφnm ] = 0.

As (nj )j∈N was arbitrary, the preceding display holds also along the original sequence.

Proposition S1 (Cf. Proposition 2.29 in van der Vaart, 1998). Suppose that on a mea-
sureable space (S, S ), (μn )n∈N is a sequence of measures and μ a measure such that
μ(A) ≤ lim infn→∞μn(A) for each A ∈ S . If (fn )n∈N and f are (real-valued) measurable
functions such that fn → f in μ-measure and lim supn→∞

∫
|fn|p dμn ≤ ∫

|f |p dμ< ∞ for
some p≥ 1, then

∫
|fn − f |p dμn → 0.

S16ln may be defined arbitrarily when pn = 0.
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Proof. (a+ b)p ≤ 2p(ap + bp ) for any a, b≥ 0, and hence, under our hypotheses,

0 ≤ 2p|fn|p + 2p|f |p − |fn − f |p → 2p+1|f |p in μ-measure.

By Lemma 2.2 of Serfozo (1982) and lim supn→∞
∫

|fn|p dμn ≤ ∫
|f |p dμ<∞,∫

2p+1|f |p dμ≤ lim inf
n→∞

∫
2p|fn|p + 2p|f |p − |fn − f |p dμn

≤ 2p+1
∫

|f |p dμ− lim sup
n→∞

∫
|fn − f |p dμn.

Remark 1. The condition that μ(A) ≤ lim infn→∞μn(A) for each A ∈ S in Propositions
S1 is clearly satisfied if μn → μ setwise or in total variation.
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