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All parameters in structural vector autoregressive (SVAR) models are locally iden-
tified when the structural shocks are independent and follow non-Gaussian dis-
tributions. Unfortunately, standard inference methods that exploit such features
of the data for identification fail to yield correct coverage for structural functions
of the model parameters when deviations from Gaussianity are small. To this ex-
tent, we propose a locally robust semiparametric approach to conduct hypothesis
tests and construct confidence sets for structural functions in SVAR models. The
methodology fully exploits non-Gaussianity when it is present, but yields correct
size/coverage for local-to-Gaussian densities. Empirically, we revisit two macroe-
conomic SVAR studies where we document mixed results. For the oil price model
of Kilian and Murphy (2012), we find that non-Gaussianity can robustly iden-
tify reasonable confidence sets, whereas for the labor supply–demand model of
Baumeister and Hamilton (2015) this is not the case. Moreover, these exercises
highlight the importance of using weak identification robust methods to assess
estimation uncertainty when using non-Gaussianity for identification.

Keywords. Weak identification, semiparametric inference, hypothesis testing,
impulse responses, independent component analysis.

JEL classification. C32, C39, C51.

1. Introduction

In this paper, we develop locally robust inference methods for non-Gaussian structural
vector autoregressive (SVAR) models. To outline our contribution, consider the SVAR
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model

Yt = c+B1Yt−1 + · · · +BpYt−p +A−1εt , (1)

where Yt is aK×1 vector of variables, c is an intercept, B1, � � � , Bp are the autoregressive
matrices, A is the invertible contemporaneous effect matrix, and εt is the K × 1 vector
of structural shocks with mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of
{Yt } are insufficient to identify all parameters inA (e.g., Kilian and Lütkepohl (2017)). In-
stead, higher-order moments or non-Gaussian distributions can be exploited to (locally)
identify A. The most well-known result follows from the Darmois–Skitovich theorem
and is central to the literature on independent components analysis (ICA): if the com-
ponents of εt are independent and at leastK− 1 have a non-Gaussian distribution, then
A can be recovered up to sign and permutation of its rows; see Comon (1994). Based on
such results, several recent works have exploited non-Gaussianity to improve identifica-
tion and conduct inference in SVAR models (e.g., Lanne and Lütkepohl (2010), Moneta,
Entner, Hoyer, and Coad (2013), Lanne, Meitz, and Saikkonen (2017), Kilian and Lütke-
pohl (2017), Maxand (2020), Lanne and Luoto (2021), Gouriéroux, Monfort, and Renne
(2017, 2019), Tank, Fox, and Shojaie (2019), Herwartz (2019), Bekaert, Engstrom, and
Ermolov (2021, 2020), Fiorentini and Sentana (2022), Braun (2021), Sims (2021), Guay
(2021), Brunnermeier, Palia, Sastry, and Sims (2021), Drautzburg and Wright (2023),
Keweloh (2021), Davis and Ng (2022), Lanne, Liu, and Luoto (2022)).1, 2

Unfortunately, as we show in this paper, standard inference methods for non-
Gaussian SVARs are not robust in situations where the densities of the structural shocks
are too “close” to the Gaussian density. Intuitively, what matters for correctly sized in-
ference is not non-Gaussianity per se, but a sufficient distance from the Gaussian dis-
tribution. When the true distributions of the structural shocks are close to the Gaussian
distribution, local identification deteriorates and coverage distortions occur in confi-
dence sets for structural functions, for example, structural impulse response functions
or forecast error variance decompositions.3 The problem is somewhat analogous to the
weak instruments problem where it is well known that nonzero correlation between the
instruments and the endogenous variables is not sufficient for standard inference meth-
ods to be reliable; the correlation must be sufficiently large in order for conventional
IV asymptotic theory to provide an approximation, which accurately reflects the finite
sample situation.4 Similarly, in our setting, non-Gaussianity alone is not sufficient for

1See Olea, Luis, Plagborg-Møller, and Qian (2022) for a recent review of this approach and, for example,
Lewis (2021) for a related approach based on heteroskedasticity.

2ICA type identification results have been applied/extended for various related models such as linear
simultaneous equations models, graphical models, and factor models (e.g., Shimizu, Hoyer, Hyvärinen, and
Kerminen (2006), Bonhomme and Robin (2009), Wang and Drton (2019)).

3Simulation studies in, among others, Gouriéroux, Monfort, and Renne (2017, 2019) and Lanne and Lu-
oto (2021) have previously highlighted such coverage distortions for parameter estimates in the case of
“weakly” non-Gaussian distributions; see also Lee and Mesters (2024a) for more discussion of the same
issue in static ICA models.

4See, for example, the recent review by Andrews, Stock, and Sun (2019).



Quantitative Economics 15 (2024) Robust inference non-Gaussian SVAR 525

standard (pseudo)-maximum likelihood or generalized method of moments method-
ologies to yield correct coverage when the distance to the Gaussian distribution is not
sufficiently large. As such, we refer to this phenomenon as “weak non-Gaussianity.”

In this paper, we propose a solution to this problem by combining insights from the
econometric literature on weak identification robust hypothesis testing as well as the
statistical literature on semiparametric inference. Specifically, we treat the SVAR model
with independent structural shocks as a semiparametric model where the densities of
the structural shocks form the nonparametric part.

For this set-up, we provide three main results. First, we adopt a semiparametric gen-
eralization of Neyman–Rao score statistic in order to test the possibly weakly identi-
fied (or under/unidentified) parameters of the SVAR. More precisely, the semiparamet-
ric score statistic that we propose is based on a quadratic form of the efficient score
function, which projects out all scores for the nuisance parameters, including the scores
corresponding to the density functions of the structural shocks, from the conventional
score function for the parameter of interest. This projection, along with the fact that
the potentially weakly/nonidentified parameter is fixed under the null when conduct-
ing the test (as is standard in score-type testing procedures), enables us to circumvent
the (weak-)identification problem and we show that the semiparametric score test has a
χ2 limit under local parameter sequences consistent with the null hypothesis.

Second, we propose a method for constructing confidence sets for smooth struc-
tural functions. Prominent examples of interest include structural impulse responses
and forecast error variance decompositions. Specifically, we utilize our proposed score
test for the weakly identified parameters in a Bonferroni-based procedure (cf. Granziera,
Moon, and Schorfheide (2018), Drautzburg and Wright (2023)), which is guaranteed to
provide correct coverage asymptotically.

Third, under the additional assumption that the errors of the SVAR model follow
distributions that are different from the Gaussian distribution in the limit, we show that
point estimates, constructed as one-step updates based on the efficient score function,
are consistent and semiparametrically efficient for the finite-dimensional parameters in
the semiparametric SVAR model. This implies that under strong identification and some
regularity conditions such estimators are preferable to existing pseudo MLE and GMM
estimators.

Overall, our methods are computationally simple as the estimation of the efficient
scores typically only requires estimating regression coefficients, a covariance matrix,
and the log density scores of the structural shocks. To estimate the log density scores,
we use B-spline regressions as developed in Jin (1992) and also considered in Chen and
Bickel (2006) for semiparametric independent component analysis. This approach is
computationally convenient and allows our methodology to work under a wide variety
of possible distributions for the structural shocks.5

We assess the finite-sample performance of our method in a large simulation study
and find that the empirical rejection frequencies of the semiparametric score test are al-
ways close to the nominal size. This is in contrast to several existing methods that are not

5The general approach is applicable with other choices of log density score estimators, for example, the
local polynomial estimators proposed in Pinkse and Schurter (2021). The main requirement is that the
chosen estimator should satisfy the high-level conditions stated in Lemma 2.
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robust to weak non-Gaussianity and show substantial size distortions for non-Gaussian
distributions that are close to the Gaussian density. We also analyze the power of the
proposed procedure and find that the power of the semiparametric score test gener-
ally exceeds that of alternative robust methods such as weak identification robust GMM
methods. Finally, we show that while the Bonferroni approach for constructing confi-
dence sets for structural functions is (by construction) conservative, it does often sub-
stantially reduce the length of the confidence bands for structural impulse responses
when compared to alternative methods.

In our empirical study, we revisit two prominent macroeconomic SVAR applica-
tions and ask whether non-Gaussian distributions can help to robustly identify struc-
tural functions of interest. Specifically, we revisit (i) the labor supply–demand model
of Baumeister and Hamilton (2015) and (ii) the oil price model of Kilian and Murphy
(2012).6 Our findings are mixed.

In the labor supply–demand model of Baumeister and Hamilton (2015), we find that
allowing for non-Gaussian structural shocks does not lead to a tight confidence set for
the supply and demand elasticities. In contrast, when nonrobust methods are used,
as in Lanne and Luoto (2022) for instance, non-Gaussianity appears to pin down the
elasticities in a narrow set. These findings strongly support the usage of robust confi-
dence sets when assessing uncertainty around parameter estimates obtained using non-
Gaussianity as an identifying assumption.

For the oil price model of Kilian and Murphy (2012), non-Gaussian structural shocks
provide substantially more identifying power. In fact, we show that our robust method-
ology yields a finite confidence set for the short-run oil supply elasticities, thus avoiding
the need to impose a priori bounds on these elasticities. For instance, the bounds im-
posed in Kilian and Murphy (2012) have been criticized for being too tight in Baumeister
and Hamilton (2019) and have led to a large literature that assesses their importance; see
Herrera and Rangaraju (2020) for an overview. We show that exploiting non-Gaussian
shocks leads to finite bounds that are within the range of estimates documented in the
literature, hence providing a data driven solution to the determination of appropriate
bounds.

This paper relates to several strands of literature. First and foremost, the paper con-
tributes to the SVAR literature that exploits non-Gaussianity of the structural shocks for
identification (see the references above). Most related, Drautzburg and Wright (2023)
are also concerned about identification when using higher-order moment restrictions
for identification. To circumvent distortions in confidence sets, they exploit the identifi-
cation robust S-statistic of Stock and Wright (2000) as well as a nonparametric indepen-
dence test for conducting inference. The benefit of the S-statistic is that it is not nec-
essary to assume full independence of the structural shocks. Instead, typically only the
third- and fourth-order higher cross-moments are set to zero, leaving all higher-order
moments unrestricted. A downside of such a robust moment approach is that it requires
the existence of substantially higher-order moments. For instance, when using fourth-

6The assumption of independence among the structural shocks is maintained throughout this paper.
Therefore, in each application we test for the existence of independent components following both Matte-
son and Tsay (2017) and Olea et al. (2022).
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order moment restrictions, the convergence of the S-statistic requires the existence of at
least eight moments. We provide a detailed comparison between the approaches in our
simulation study.

Besides the non-Gaussian SVAR literature, we note that our approach is inspired by
the identification robust inference literature in econometrics (e.g., Stock and Wright
(2000), Kleibergen (2005), Andrews and Mikusheva (2015)). The crucial difference in
our setting is that the nuisance parameters which determine identification status are
infinite-dimensional, that is, the densities of the structural shocks. Despite this differ-
ence, conceptually our approach is similar to the score testing approach developed
for weakly identified parametric models in Andrews and Mikusheva (2015). To handle
infinite-dimensional nuisance parameters, we build on the general statistical theory dis-
cussed in Bickel, Klaasen, Ritov, and Wellner (1998) and van der Vaart (2002). While the
majority of the statistical literature focuses on efficient estimation in semiparametric
models, a few papers have contributed to testing in well-identified models (e.g., Choi,
Hall, and Schick (1996), Bickel, Ritov, and Stoker (2006)). The major difference with our
paper is that in our setting, a subset of the parameters of interest are possibly weakly—or
un/underidentified, which violates a key regularity condition assumed in this literature.
Lee and Mesters (2024a) consider a similar score testing approach, but their setting only
considers static linear models, and hence their results cannot be applied to the SVAR
models that are of interest in this paper.

The remainder of this paper is organized as follows. Section 2 casts the SVAR model
as a semiparametric model and discusses the needed regularity conditions. Section 3
establishes a number of preliminary results that are of general interest. The semi-
parametric score testing approach is presented in Section 4 and inference for smooth
structural functions is covered in Section 5. Section 6 discusses point estimation under
strong identification. Section 7 evaluates the finite-sample performance of the proposed
methodology and Section 8 discusses the results from the empirical studies. Section 9
concludes. Any references to sections, equations, lemmas, etc., which start with “S,” re-
fer to the Supplementary Material (Hoesch, Lee, and Mesters, 2024).

2. Semiparametric SVAR model

In this section, we cast the SVAR model as a semiparametric model and impose some
primitive assumptions that will be maintained throughout the text. For convenience,
we adopt the following notation for the SVAR model:

Yt = BXt +A−1(α, σ )εt , t ∈ Z, (2)

where Xt := (1, Y ′
t−1, � � � , Y ′

t−p )′, B := (c, B1, � � � , Bp ), and A(α, σ ) is a K ×K invertible
matrix that is parametrized by the vectors α and σ .

In general, we leave the choice for the specific parametrization of A(α, σ ) open to
the researcher. The key restriction is that σ should be recoverable from the variance
of Yt − BXt after α has been fixed, whereas α itself may be unidentified depending
on the distribution of the structural shocks. One popular choice in this context sets
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A−1(α, σ ) = �1/2(σ )R(α), where �1/2(σ ) is a lower triangular matrix (with positive di-
agonal elements) parametrized by the vector σ and R(α) is a rotation matrix that is
parametrized by the vector α. Alternatively, letting σ capture the lower triangular entries
of A−1(α, σ ) and α the strictly upper triangular entries also defines an easy to interpret
parametrization.7

To describe the nonparametric part of model (2), we let η= (η1, � � � , ηK ) correspond
to the density functions of εt = (ε1,t , � � � , εK,t )′. All parameters are summarized as fol-
lows:

θ= (γ, η), γ = (α, β), β= (σ , b), (3)

where b= vec(B).
LetYn = (Y1, � � � , Yn )′ and letPnθ denote the distribution ofYn conditional on the ini-

tial values (Y1−p, � � � , Y0 ). Throughout, we work with these conditional distributions; see
Hallin and Werker (1999) for a similar setup. For a sample of size n, our semi-parametric
SVAR model is the collection

Pn
� = {Pnθ : θ ∈�}, �= A×B︸ ︷︷ ︸




×H, (4)

where 
 ⊂ R
L, with L = Lα + Lσ + Lb corresponding to the dimensions of (α, σ , b),

Lβ =Lσ +Lb, and H ⊂∏K
k=1 H with

H :=
{
f ∈L1(λ) ∩ C1 : f (z) ≥ 0,

∫
f (z) dz = 1,

∫
zf (z)dz = 0,

∫
κ(z)f (z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1 is the class of real functions on R, which
are continuously differentiable and κ(z) = z2 − 1. It is understood that γ ∈ 
 and η ∈ H,
where the parameter space for the densities ηk is restricted such that εk,t has mean
zero and variance one. Further restrictions are placed on the parameter space � in the
assumptions below.

Assumptions

Having defined the semiparametric SVAR model, we now proceed to formulate the re-
quired assumptions. Broadly speaking, we split our assumptions into two parts: As-
sumption 1 details the main assumptions that allow us to establish the properties of
the semiparametric score test and Assumption 2 defines a set of regularity conditions
on densities ηk under which the log density scores can be consistently estimated us-
ing B-splines.8 These scores are an important ingredient for the methodology discussed
below.

The main assumption is stated as follows.

7In general, different parametrizations are often used in practice (cf. Section 8) and our general formu-
lation allows for all sufficiently smooth choices (cf. Assumption 1). The Supplementary Material (Hoesch,
Lee, and Mesters (2024)) provides more discussion and examples.

8Lemma 2 in the Appendix shows that, under Assumptions 1 and 2, the B-spline based estimator satisfies
a particular high-level condition; the results of this paper will continue to apply if any alternative density
score estimator, which also satisfies this high-level condition is used.
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Assumption 1. For model (2), we assume that:

(i) For all β ∈ B, |IK −∑p
j=1Bjz

j| �= 0 for all |z| ≤ 1 with z ∈C.

(ii) Conditional on the initial values (Y ′−p+1, � � � , Y ′
0 )′, εt = (ε1,t , � � � , εK,t )′ is inde-

pendently and identically distributed across t, with independent components εk,t .
Each η= (η1, � � � , ηK ) ∈ H is such that each ηk is nowhere vanishing, dominated
by Lebesgue measure on R, continuously differentiable with log density scores de-
noted by φk(z) := ∂ logηk(z)/∂z, and for all k= 1, � � � , K:

(a) Eεk,t = 0, Eε2
k,t = 1, Eε4+δ

k,t <∞, E(ε4
k,t ) − 1 > E(ε3

k,t )
2, and Eφ4+δ

k (εk,t ) <∞
(for some δ > 0);

(b) Eφk(εk,t ) = 0, Eφ2
k(εk,t ) > 0, Eφk(εk,t )εk,t = −1, Eφk(εk,t )ε2

k,t = 0, and

Eφk(εk,t )ε3
k,t = −3;

(iii) 
 is an open subset of RL and for all (α, β) ∈ 
 we have that

(a) A(α, σ ) is nonsingular

(b) (α, σ ) →A(α, σ ) is continuously differentiable

(c) (α, σ ) → [Dαl (α, σ )]k•A(α, σ )−1
•j and (α, σ ) → [Dσm(α, σ )]k•A(α, σ )−1

•j , with
Dαl (α, σ ) := ∂A(α, σ )/∂αl and Dσm(α, σ ) := ∂A(α, σ )/∂σm, are locally Lips-
chitz continuous for all l= 1, � � � , Lα,m= 1, � � � , Lσ , and j, k= 1, � � � , K, where
the notation M•j or Mj• denotes the jth column or row of a matrix M .

Part (i) imposes that the SVAR model (2) admits a stationary and causal solution.
Part (ii) imposes that the densities of the shocks are continuously differentiable and cer-
tain moment conditions hold. Specifically, part (a) normalizes the shocks to have mean
zero, variance one, and finite four + δ moments.9 Additionally, we require the log den-
sity scores φk(x) = ∂ logηk(x)/∂x evaluated at the shocks to have finite 4 + δ moments.
Part (b) simplifies the construction of the efficient score functions. While this may at
first glance appear a strong condition, in the Supplementary Material (Hoesch, Lee, and
Mesters (2024, Lemma S20)), we show that simple sufficient condition is that the tails
of the densities ηk converge to zero at a polynomial rate. The final part (iii) of the as-
sumption imposes thatA(α, σ ) is invertible and that the parametrization chosen by the
researcher is sufficiently smooth.10 These conditions can be easily verified for specific
choices for A(α, σ ).

9
E(ε4

k,t ) − 1 ≥ E(ε3
k,t )

2 always holds; this is known as Pearson’s inequality. See, for example, result 1 in

Sen (2012). Assuming that E(ε4
k,t ) − 1 > E(ε3

k,t )
2 rules out (only) cases where 1, εk,t , and ε2

k,t are linearly
dependent when considered as elements of L2. See, for example, Theorem 7.2.10 in Horn and Johnson
(2013).

10All of our results continue to hold without the restriction that 
 is open provided γ is an interior point
of 
.
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Next, we impose a number of smoothness conditions on the densities ηk. These as-
sumptions facilitate the estimation of the log density scores φk(z) = ∇z logηk(z), which
are an important ingredient for the efficient score test discussed below.

Assumption 2. Let φk,n := φk1[�Lk,n,�Uk,n], �k,n := �Uk,n − �Lk,n, and νn = ν2
n,p with 1 <

p≤ 1 + δ/4 and n−1/2(1−1/p) = o(νn,p ). Suppose that for [�Lk,n, �Uk,n] ↑ �̃⊃ supp(ηk ) and
δk,n ↓ 0 it holds that:

(i) P(εk,t /∈ [�Lk,n, �Uk,n]) = o(ν2
n );

(ii) For some ι > 0, n−1�2+2ι
k,n δ−(8+2ι)

k,n = o(νn );

(iii) ηk is bounded (‖ηk‖∞ < ∞) and differentiable, with a bounded derivative:
‖η′

k‖∞ <∞;

(iv) For each n, φk,n is three-times continuously differentiable on [�Lk,n, �Uk,n] and

‖φ(3)
k,n‖2∞δ6

k,n = o(νn );11

(v) There are c > 0 and N ∈ N such that for n ≥ N we have infs∈[�Lk,n,�Uk,n] |ηk(s)| ≥
cδk,n.

These assumptions are similar to those considered in Chen and Bickel (2006). They
ensure that the log density scores can be estimated sufficiently accurately using B-spline
regressions (as explained in Section 4).12 Formally, we require that the support of the
density ηk is contained with high probability in the interval [�Lk,n, �Uk,n]. These lower
and upper points will correspond to the smallest and largest knots of the B-splines. Sec-
ond, condition (ii) ensures that the number of knots does not increase too fast, relative to
the sample size n. Conditions (iii) and (iv) impose that the density is sufficiently smooth,
such that it can be well-fitted by B-splines. The final condition restricts the tails of the
density.

3. Preliminary results

In this section, we present two preliminary results for semiparametric SVAR models that
we believe are useful more broadly. First, we provide a (uniform) local asymptotic nor-
mality [(U)LAN] result for the semiparametric SVAR model in (2). The primary difference
with existing results is that we explicitly perturb the nonparametric part of the model,
that is, the densities ηk, whereas existing (U)LAN results for VARs hold this fixed (e.g.,
Hallin and Saidi (2007)). This extension is necessary for deriving the form of the score
test proposed in this paper and can be used in other applications. Second, we analyti-
cally derive the efficient score function for the semiparametric SVAR model; see, for ex-
ample, van der Vaart (1998), Bickel et al. (1998) for general discussions on efficient score

11The differentiability and continuity requirements at the end-points are one-sided.
12These assumptions are tailored to the specific density score estimator we propose in this paper. Never-

theless, in principle, other density score estimators may be used. Inspection of the proofs reveals that any
such estimator, which satisfies the conclusions of Lemma 2, can be adopted.
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functions. Readers who are mainly interested in implementing the methodology of this
paper can safely skip this section.

3.1 Uniform local asymptotic normality

Let Gk denote the law on R corresponding to ηk (k= 1, � � � , K) and define

Ḣ :=
K∏
k=1

Ḣk, Ḣk :=
{
hk ∈ C1

b(λ) :
∫
hk dGk =

∫
hkιdGk =

∫
hkκdGk = 0

}
, (5)

where ι is the identity function, κ(z) = z2 − 1 (as defined above) and C1
b(λ) denotes

the class of real functions on R which are bounded, continuously differentiable, and
have bounded derivatives. Note that RL × Ḣ is a linear subspace of RL ×∏K

k=1L2(Gk ).

Let this be normed by ‖(g, h)‖ :=
√

‖g‖2
2 +∑K

k=1 ‖hk‖2
L2(Gk ) where ‖ · ‖2 denotes the Eu-

clidean norm.
For an arbitrary convergent sequence (gn, hn ) → (g, h) ∈ R

L × Ḣ , let θn := θn(gn,
hn ) := (γ+gn/

√
n, η(1 +hn/

√
n)). Denote by pnθ the density of Pnθ with respect to λn and

�nθn the (conditional) log likelihood ratio:

�nθn := log
(
pnθn
pnθ

)
=

n∑
t=1

�θn(Yt , Xt ) − �θ(Yt , Xt ), (6)

where �θ(Yt , Xt ) denotes the tth contribution to the conditional log likelihood for the
SVAR model evaluated at θ. We note that this can be explicitly written as

�θ(Yt , Xt ) = log
∣∣det

(
A(α, σ )

)∣∣+ K∑
k=1

ηk
(
Ak•(α, σ )(Yt −BXt )

)
.

With this notation established, we first derive the scores for the full vector of finite-
dimensional parameters γ = (α, σ , b). The score functions with respect to the compo-
nents αl, σl, and bl are

�̇θ,αl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζαl,k,jφk(Ak•Vθ,t )Aj•Vθ,t

+
K∑
k=1

ζαl,k,k

(
φk(Ak•Vθ,t )Ak•Vθ,t + 1

)
, (7)

�̇θ,σl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζσl,k,jφk(Ak•Vθ,t )Aj•Vθ,t

+
K∑
k=1

ζσl,k,k

(
φk(Ak•Vθ,t )Ak•Vθ,t + 1

)
, (8)
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�̇θ,bl (Yt , Xt ) =
K∑
k=1

φk(Ak•Vθ,t ) × [−Ak•DblXt ], (9)

where Vθ,t := Yt −BXt , A :=A(α, σ ), Dαl (α, σ ) := ∇αlA(α, σ ), Dσl (α, σ ) := ∇σlA(α, σ ),
Dbl = ∇blB, ζαl,k,j := [Dαl (α, σ )]k•A−1

•j , ζσl,k,j := [Dσl (α, σ )]k•A−1
•j , and φk(z) :=

∇z logηk(z).
We collect these scores in the vector

�̇θ(Yt , Xt ) := ((�̇θ,αl (Yt , Xt )
)Lα
l=1,

(
�̇θ,σl (Yt , Xt )

)Lσ
l=1,

(
�̇θ,bl (Yt , Xt )

)Lb
l=1

)′
.

Under Assumption 1, we have the following ULAN result.13

Proposition 1 (ULAN). Suppose that Assumption 1 holds. Then as n→ ∞,

�nθn
(
Yn
)= gn

(
Yn
)− 1

2
Eθ
[
gn
(
Yn
)2]+ oPnθ (1), (10)

where Eθ indicates that the expectation is taken under Pnθ and

gn
(
Yn
)

:= 1√
n

n∑
t=1

[
g′�̇θ(Yt , Xt ) +

K∑
k=1

hk(Ak•Vθ,t )

]
,

with A=A(α, σ ). Moreover, under Pnθ ,

gn
(
Yn
)
�N

(
0, �θ(g, h)

)
, �θ(g, h) := lim

n→∞Eθ
[
gn
(
Yn
)2]

.

The corollary below follows from Le Cam’s first lemma (e.g., van der Vaart (1998,
Example 6.5)).

Corollary 1. If Assumption 1 holds, then the sequences (Pnθn )n∈N and (Pnθ )n∈N are mu-
tually contiguous.

The importance of this result is that the semiparametric SVAR model can be locally
asymptotically approximated by a Gaussian shift experiment. This local approximation
can be exploited to derive the form of the score test below as well as its limiting distri-
bution under local alternatives, but can be more broadly used for other inference prob-
lems, such as building estimators.

3.2 Efficient score function

One of the key ingredients in our framework is the efficient score function for the param-
eter of interest, α. Loosely speaking, this is defined as the projection of the score function
for α on the orthogonal complement (inL2) of the space spanned by the score functions

13The proof of LAN is based on verifying the conditions of Lemma 1 in Swensen (1985). ULAN then
follows by combining this with an asymptotic equicontinuity condition on (g, h) �→ Pnθn(g,h).
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for the nuisance parameters (β, η) (e.g., Bickel et al. (1998), van der Vaart (2002), Newey
(1990), Choi, Hall, and Schick (1996)).

In the case of interest here, where the nuisance parameter contains both finite- (β)
and infinite-dimensional (η) components, the efficient score function can be calculated
in two steps: (1) compute the projection of the score for γ = (α, β) on the orthocomple-
ment of the space spanned by the score functions for η, and (2) partition the resulting
object into the components corresponding to α and β and project the former onto the
orthocomplement of the latter.

We proceed according to this two-step procedure and now establish the form of the
first projection.

Lemma 1. Given Assumption 1, the efficient score function for γ in the semiparametric
SVAR model Pn

� at any θ = (γ, η) with γ = (α, β), α ∈ A, β = (σ , b) ∈ B, and η ∈ H is
given by �̃n,θ(Yn ) =∑n

t=1 �̃θ(Yt , Xt ), where

�̃θ(Yt , Xt ) = ((�̃θ,αl (Yt , Xt )
)Lα
l=1,

(
�̃θ,σl (Yt , Xt )

)Lσ
l=1,

(
�̃θ,bl (Yt , Xt )

)Lb
l=1

)′
with components

�̃θ,αl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζαl,k,jφk(Ak•Vθ,t )Aj•Vθ,t

+
K∑
k=1

ζαl,k,k

[
τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t )

]
,

�̃θ,σl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζσl,k,jφk(Ak•Vθ,t )Aj•Vθ,t

+
K∑
k=1

ζσl,k,k

[
τk,1Ak•Vθ,t + τk,2κ(Ak•Vθ,t )

]
,

�̃θ,bl (Yt , Xt ) =
K∑
k=1

−Ak•Dbl

[
(Xt −μ)φk(Ak•Vθ,t ) −μ

(
ςk,1Ak•Vθ,t + ςk,2κ(Ak•Vθ,t )

)]
,

where Vθ,t = Yt −BXt , ζαl,k,j := [Dαl (α, σ )]k•A−1
•j withDαl (α, σ ) := ∂A(α, σ )/∂αl, ζσl,k,j :=

[Dσl (α, σ )]k•A−1
•j with Dσl (α, σ ) := ∂A(α, σ )/∂σl , Dbl := ∂B/∂bl, μ := (1, vec(ιp ⊗ (IK −

B1 − · · · −Bp )−1c)′ )′, and τk := (τ1,k, τ2,k )′ and ςk := (ς1,k, ς2,k )′ are defined as

τk :=M−1
k

(
0

−2

)
,

ςk :=M−1
k

(
1
0

)
where Mk :=

(
1 Eθ(Ak•Vθ,t )3

Eθ(Ak•Vθ,t )3
Eθ(Ak•Vθ,t )4 − 1

)
.
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The derivation of the efficient scores �̃θ(Yt , Xt ) follows along the same lines as
in Amari and Cardoso (1997), Chen and Bickel (2006), Lee and Mesters (2024a). The
dependence on η comes through (a) the log density scores φk(z) = ∇z logηk(z), for
k= 1, � � � , K and (b) the third- and fourth-order moments of εk in Mk.

For future reference, we partition

�̃θ(Yt , Xt ) =
(
�̃θ,α(Yt , Xt )
�̃θ,β(Yt , Xt )

)
,

where �̃θ,α(Yt , Xt ) = (�̃θ,αl (Yt , Xt ))Lαl=1 and �̃θ,β(Yt , Xt ) = ((�̃θ,σl (Yt , Xt ))Lσl=1, (�̃θ,bl (Yt ,

Xt ))Lbl=1 )′.
Based on the efficient scores, we define the efficient information matrix for γ by

Ĩn,θ := 1
n

n∑
t=1

E �̃θ(Yt , Xt )�̃′θ(Yt , Xt ) with partitioning Ĩn,θ =
(
Ĩn,θ,αα Ĩn,θ,αβ

Ĩn,θ,βα Ĩn,θ,ββ

)
. (11)

With Lemma 1 and the efficient information matrix in place, we can compute the
efficient score function for α with respect to β and η. In particular, this score can be
computed by the second projection (e.g., Bickel et al. (1998, p. 74))

κ̃n,θ(Yt , Xt ) := �̃θ,α(Yt , Xt ) − Ĩn,θ,αβĨ
−1
n,θ,ββ�̃θ,β(Yt , Xt ), (12)

as long as Ĩθ,ββ is positive definite. The corresponding efficient information matrix is
given by

Ĩn,θ := Ĩn,θ,αα − Ĩn,θ,αβĨ
−1
n,θ,ββĨn,θ,βα. (13)

We note that the efficient score function κ̃θ(Yt , Xt ) and the efficient information matrix
Ĩn,θ can be evaluated at any parameters θ= (α, β, η) and variables (Yt , Xt ).

Building tests or estimators based on the efficient score function is attractive as effi-
ciency results are well established; see Choi, Hall, and Schick (1996), Bickel et al. (1998),
and van der Vaart (2002). A crucial difference in our setting is that the efficient informa-
tion matrix might be singular. For instance, if more than one component of εt follows an
exact Gaussian distribution, Ĩn,θ is singular; see Lemma S15 in Lee and Mesters (2024b).
The singularity plays an important role in the construction of the semiparametric score
statistic below.

4. Inference for potentially nonidentified parameters

In this section, we consider conducting inference on αwithout assuming that α is locally
identified. Specifically, and in contrast to the existing literature, we do not assume that
sufficiently many components of εt have a non-Gaussian distribution. Only Assump-
tions 1 and 2 are imposed, under which α may not be (locally) identified.

Our approach is based on testing hypotheses of the form

H0 : α= α0, β ∈ B, η ∈ H against H1 : α �= α0, β ∈ B, η ∈ H. (14)
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The main idea is to consider test statistics whose computation does not require evalua-
tion under the alternativeH1, thus avoiding the need to consistently estimate α. Clearly,
based on the trinity of classical tests, the score test is the only viable candidate and we
will proceed by constructing score tests in the spirit of Neyman–Rao, but adapted for the
semiparametric setting (e.g., Choi, Hall, and Schick (1996)). Such test statistics can then
be inverted to yield a confidence region for α with correct coverage. This confidence re-
gion then forms the basis for constructing confidence intervals for structural functions
as we show in the next section.

In our setting, we rely on the efficient score functions for the SVAR model to con-
struct test statistics. The functional form of the efficient scores �̃θ(yt , xt ) was analytically
derived in Lemma 1. These scores can be estimated by replacing the population quanti-
ties by sample equivalents. We have

�̂γ(Yt , Xt ) = ((�̂γ,αl (Yt , Xt )
)Lα
l=1,

(
�̂γ,σl (Yt , Xt )

)Lσ
l=1,

(
�̂γ,bl (Yt , Xt )

)Lb
l=1

)′
(15)

with components

�̂γ,αl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζαl,k,jφ̂k,n(Ak•Vγ,t )Aj•Vγ,t

+
K∑
k=1

ζαl,k,k

[
τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t )

]
,

�̂γ,σl (Yt , Xt ) =
K∑
k=1

K∑
j=1,j �=k

ζσl,k,jφ̂k,n(Ak•Vγ,t )Aj•Vγ,t

+
K∑
k=1

ζσl,k,k

[
τ̂k,1Ak•Vγ,t + τ̂k,2κ(Ak•Vγ,t )

]
,

�̂γ,bl (Yt , Xt ) =
K∑
k=1

−Ak•Dbl

[
(Xt − X̄n )φ̂k,n(Ak•Vγ,t )

− X̄n
(
ς̂k,1Ak•Vγ,t + ς̂k,2κ(Ak•Vγ,t )

)]
,

where Vγ,t = Yt − BXt and X̄n = 1
n

∑n
t=1Xt .14 The estimates for the τk’s and ςk’s are ob-

tained by replacing the population moments defined in Lemma 1 by their sample coun-
terparts: τ̂k = M̂k(0, −2)′ and ς̂k = M̂k(1, 0)′, where

M̂k :=

⎛
⎜⎜⎜⎜⎝

1
1
n

n∑
t=1

(Ak•Vγ,t )3

1
n

n∑
t=1

(Ak•Vγ,t )3 1
n

n∑
t=1

(Ak•Vγ,t )4 − 1

⎞
⎟⎟⎟⎟⎠ . (16)

14Note that the components are now indexed by γ as the score estimates no longer depend onη, recalling
that θ= (γ, η).
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Finally, the estimates of �̂γ(Yt , Xt ) depend on φ̂k,n(·), which is the estimate for the
log density scores φk(z) = ∇z logηk(z). In practice, we estimate these density scores
using B-splines following the methodology of Jin (1992) and Chen and Bickel (2006).
To set this up, let bk,n = (bk,n,1, � � � , bk,n,Bk,n )′ be a collection of Bk,n cubic B-splines

and let ck,n = (ck,n,1, � � � , ck,n,Bk,n )′ be their derivatives: ck,n,i(x) := dbk,n,i(x)
dx for each

i = 1, � � � , Bk,n. The knots of the splines, ξk,n = (ξk,n,i )
Kk,n
i=1 are taken as equally spaced

in [�Lk,n, �Uk,n]. In practice, we take these points as the 95th and 5th percentile of the
samples {Ak•Vt }ni=1 adjusted by log(log(n)), where A=A(α, σ ) and Vt = Yt − BXt for a
given parameter choice γ = (α, β).15

With this our estimate for the log density score, φk is given by

φ̂k,n(z) := ψ̂′
k,nbk,n(z), (17)

where

ψ̂k,n := −
[

1
n

n∑
t=1

bk,n(Ak•Vγ,t )bk,n(Ak•Vγ,t )′
]−1

1
n

n∑
t=1

ck,n(Ak•Vγ,t ). (18)

This shows that computing the log density score estimate (17) only requires computing
the B-spline regression coefficients ψ̂k,n in (18). The working paper version of this paper
(i.e., Hoesch, Lee, and Mesters (2023)) provides the exact expressions for the B-splines
and more discussion.

Having defined all the components of the efficient score estimates, we may estimate
the efficient information matrix for γ by

În,γ = 1
n

n∑
t=1

�̂γ(Yt , Xt )�̂γ(Yt , Xt )′. (19)

With the estimates for the efficient scores and information for γ, we can estimate the
efficient score and information for α. This amounts to replacing the population score
κ̃n,θ(Yt , Xt ) and information Ĩn,θ in (12) and (13) by their sample counterparts. We have
that

κ̂n,γ(Yt , Xt ) = �̂γ,α(Yt , Xt ) − În,γ,αβÎ
−1
n,γ,ββ�̂γ,β(Yt , Xt ) (20)

and

În,γ = În,γ,αα − În,γ,αβÎ
−1
n,γ,ββÎn,γ,βα. (21)

Since the information matrix may be singular, we need to make an adjustment. Specifi-
cally, given the truncation rate νn defined in Assumption 2, we define a truncated eigen-
value version of the information matrix estimate as

Î tn,γ = Ûn�̂n
(
ν

1/2
n

)
Û ′
n, (22)

15In the simulation study below, we fix the number of B-splines Bk,n = 7, and in the working paper ver-
sion (Hoesch, Lee, and Mesters (2023)) we also investigate a data driven selection procedure.
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where �̂n(ν1/2
n ) is a diagonal matrix with the ν1/2

n -truncated eigenvalues of În,γ on the
main diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be
specific, let {λ̂n,i}Li=1 denote the nonincreasing eigenvalues of În,γ , then the (i, i)th ele-

ment of �̂n(νn ) is given by λ̂n,i1(λ̂n,i ≥ ν
1/2
n ). Similar truncation schemes are discussed

for reduced rank Wald statistics in Dufour and Valery (2016).
Based on this, we define the semiparametric score statistic for the SVAR model as

follows:

Ŝn,γ :=
(

1√
n

n∑
t=1

κ̂n,γ(Yt , Xt )

)′
Î t,†n,γ

(
1√
n

n∑
t=1

κ̂n,γ(Yt , Xt )

)
, (23)

where Î t,†n,γ is the Moore–Penrose pseudo-inverse of Î tn,γ . We note that the test statistic
can be evaluated at any γ = (α, β). In practice, we will set α= α0, that is, fixing the poten-
tially unidentified parameters under the null (14), and β̂n, some

√
n-consistent estimate

for the finite-dimensional nuisance parameters.
For such parameter choices, the limiting distribution of Ŝn,γ (under the null hypoth-

esis α= α0) is derived in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold and that β̂n is a
√
n-consistent estimator

of β under Pnθ , for θ = (α0, β, η). Define Sn = n−1/2CZLβ for some C > 0 and let β̄n be a
discretized version of β̂n, which replaces its value with the closest point in Sn; define γ̄n =
(α0, β̄n ). Let rn = rank(Î tn, γ̄n ) and denote by cn the 1 − a quantile of the χ2

rn
distribution,

for any a ∈ (0, 1). Then if θn := (α0, β+ b/
√
n, η(1 + h/

√
n)),

lim
n→∞Pnθn(Ŝn, γ̄n > cn ) ≤ a,

with inequality only if rank(Ĩθ ) = 0. Moreover, this size control is uniform over (b, h) ∈
B� ×H� ⊂R

Lβ × Ḣ , where B� and H� are compact.16 That is,

lim
n→∞ sup

(b,h)∈B�×H�
Pnθn(b,h)(Ŝn, γ̄n > cn ) ≤ a.

The theorem shows that the efficient score test (23) is locally uniformly asymptot-
ically correctly sized when we choose the critical value cn to correspond to the 1 − a

quantile of the chi-squared distribution with degrees of freedom equal to the rank of the
truncated (estimated) efficient information matrix. Several comments are in order.

First, we do not impose which estimator β̂n should be adopted as the theorem holds
for any

√
n-consistent estimator. In practice, standard estimators (e.g., GMM estima-

tors) will satisfy this condition. Moreover, given that the efficient scores for γ need to be
computed anyway, it is attractive to rely on one-step efficient estimates for β= (σ , b) as
discussed in van der Vaart (1998, Section 5.7). These estimates are guaranteed to satisfy
the requirements of the theorem and typically improve the (finite-sample) power of the
test.17

16H� ⊂ Ḣ ⊂∏K
k=1L2(Gk ) and is equipped with the

∏K
k=1L2(Gk ) norm.

17See the simulation results of Section 7.
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Second, the score statistic is evaluated at the discretized estimator β̄n, which takes
the estimate β̂n and replaces its value with the closest point in Sn = n−1/2CZL2 . Note
that this changes each coordinate of β̂n by a quantity which is at most Op(n1/2 ), hence
the

√
n-consistency is retained by discretization. Since the constant C can be chosen

arbitrarily small this change has no practical relevance for the implementation of the
test.18 Discretization is a technical device due to Le Cam (1960) that allows the proof to
go through under weak conditions; see Le Cam and Yang (2000, p. 125) or van der Vaart
(1998, pp. 72–73) for further discussion.

Third, the practical choice for the eigenvalue truncation rate ν1/2
n , which theoreti-

cally needs to satisfy Assumption 2, appears to have little effect on the finite-sample
results. In our simulation studies and empirical applications, we always truncate at ma-
chine precision which implies that Î t,†n,γ is similar to Î†

n,γ , the Moore–Penrose inverse of
În,γ . Experimenting with different, but small, truncation rates appears to show that this
choice matters little in practice.

Fourth, if Ĩθ has full rank, the singularity adjusted score statistic is asymptotically
equivalent to its nonsingular version that is computed with Î−1

n, γ̄n
instead of Î t,†n, γ̄n

; it is

well known that the former is (locally asymptotically) optimal in a number of settings.19

Moreover, if the rank of Ĩθ is positive, the singularity adjusted score statistic is (locally
asymptotically) maximin optimal, as can be shown by an argument analogous to that
given in Lee (2024).

Confidence set A confidence set for the parameters α can be constructed by inverting
the efficient score test Ŝn,γ over an arbitrarily fine grid of values for α. Formally, for any
a ∈ (0, 1) we define the 1 − a confidence set estimate for α as

Ĉn,1−a := {α ∈ A : Sn,(α,β̄n ) ≤ cn,α},

where cn,α the 1 − a quantile of the χ2
rn,α

distribution and rn,α = rank(Î t
n,(α,β̄n )

). The fol-

lowing corollary establishes that the confidence set Ĉn,1−a has asymptotically correct
coverage, uniformly over local alternatives in the nuisance parameters.

Corollary 2. Suppose that Assumptions 1 and 2 hold. Let β̄n, B�, H� and θn(b, h) be as
in Theorem 1. Then

lim
n→∞ inf

(b,h)∈B�×H�
Pnθn(b,h)(α ∈ Ĉn,1−a ) ≥ 1 − a. (24)

The confidence set Ĉn,1−a is the main building block for constructing confidence
bands for the structural functions in the next section. In addition, this set may be of in-
terest in its own right as in some models the coefficients α have a direct structural inter-
pretation; see, for instance, the labor supply-demand model of Baumeister and Hamil-
ton (2015) that is considered in Section 8.

18Indeed, in practice, we always discretize at machine precision; see Algorithm 1.
19This can be seen by comparison of the asymptotic local power of this test with the power bound in

the appropriate limit experiment. For example, see Theorem 25.44 in van der Vaart (1998) for the one-
dimensional one-sided case; optimality among unbiased tests in the two-sided case can be shown similarly.
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Algorithm 1 Confidence set for α

1. Choose a set A;

2. For each α ∈ A:

(a) Obtain estimates β̂n = (σ̂n, b̂n ), with bn = vec(Bn ), and set V̂t = Yt − B̂nXt ;

(b) For k= 1, � � � , K, compute the log density scores φ̂k(A(α0, σ̂n )k•V̂t ) from (17);

(c) Compute the efficient scores �̂γ̂n(Yt , Xt ) from (15) and the information matrix

În, γ̂n from (19) using γ̂n = (α0, β̂n );

(d) Compute κ̂n, γ̂n(Yt , Xt ) and În, γ̂n from (20) and (21).

(e) Compute the score statistic Ŝn, γ̂n from (23) and accept H0 : α= α0 if Ŝn, γ̂n ≤ cn,
where cn is the 1 − a quantile of the χ2

rn
distribution with rn = rank(Î tn, γ̂n

).

3. Collect the accepted values for α to form Ĉn,1−a.

We finish this section by summarizing the practical implementation for the con-
struction of the confidence set, which naturally includes the implementation for the
efficient score test.

The algorithm highlights that the computation costs for evaluating the score test,
that is, step 2, are modest. Only K B-spline regressions and a few standard computa-
tions are needed. That said, for some applications the dimension of α may be large and,
therefore, the grid over which the test needs to be computed is large as well leading to
substantial computational costs. To avoid this somewhat, it is attractive to parameterize
A(α, σ ) such that α is as low-dimensional as possible, that is, Lα =K(K− 1)/2. In addi-
tion, it is attractive to incorporate additional restrictions, for example, in our empirical
work we typically use sign restrictions to a priori shrink the set A.

5. Robust inference for smooth functions

In this section, we discuss the methodology for conducting robust inference on smooth
functions of the finite-dimensional parameters γ = (α, β). The main functions of inter-
est are the structural impulse response functions (sIRF), but also forecast error variance
decompositions and forecast scenarios can be considered within the general framework
that we develop (e.g., Kilian and Lütkepohl (2017)). The main difference with the preced-
ing section is that we are now explicitly interested in conducting inference on functions
of both α and β, where we recall that the parameters β are

√
n-consistently estimable,

but α may not be consistently estimable due to a potential lack of identification.
We define the general function of interest by

g(α, β) :Dg →R
dg , with Dg ⊃ A×B, (25)

where Dg is the domain of g and dg is some positive integer. The following assumption
restricts the class of functions that we consider.
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Assumption 3. g : Dg → R
dg is continuously differentiable with respect to β and the

Jacobian matrix Jγ := ∇β′g(α, β) has full column rank on Dg.

The differentiability condition allows for the application of the (uniform) delta-
method, whereas the rank condition ensures that no further degeneracy in the asymp-
totic distribution occurs, apart from that caused by α potentially suffering from identifi-
cation problems.

For concreteness, the next example provides the details for a vector of structural im-
pulse response functions.

Example 1. Consider the vector that collects all sIRF at horizon l,

IRF(l) = g(α, β) := vec
(
DB(b)lD′A(α, σ )−1),

where

D :=
[
IK 0K×K(p−1)

]
, and B(b) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

B1 B2 · · · Bp−1 Bp
IK 0 · · · 0 0
0 IK · · · 0 0
...

...
. . .

...
...

0 0 · · · IK 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

In our general notation, we have dg = K2 and we note that, given Assumption 1, this

function is continuously differentiable with respect to β. The Jacobian Jγ ∈ R
K2×Lβ has

the form Jγ = [Jγ,1, Jγ,2] where

Jγ,1 := [(A(α, σ )−1)′ ⊗ IK
] {h−1∑

j=0

[
D
(
B(b)′

)h−1−j ⊗ (DB(b)jD′)]},

Jγ,2 := [IK ⊗DB(b)hD′]∇σ vec
(
A(α, σ )−1).

Similar details can be worked out for forecast error variance decompositions and
other structural functions of interest.

In general, our objective is to construct a valid 1 − q confidence set for g(α, β). In-
tuitively, we proceed in two steps: first we construct a valid confidence set for α using
the methodology of the previous section, and second, for each included α we construct
a confidence set for g(α, β̂n ). The union over the latter sets provides the final set. Over-
all, this two-step Bonferroni approach is similar to the approach utilized by Granziera,
Moon, and Schorfheide (2018) and Drautzburg and Wright (2023).

Formally, let q1, q2 ∈ (0, 1) such that q1 +q2 = q ∈ (0, 1). In the first step, we construct
a 1 − q1 confidence set Ĉn,1−q1 for α using Algorithm 1. The asymptotic validity of this
set was proven in Corollary 2. Second, for each α ∈ Ĉn,1−q1 we compute  ̂α,n := g(α, β̂n ).
The confidence set for ν̂α,n is given by

Ĉn,g,α,1−q2 := { : n( ̂α,n − )′V̂ −1
n,α ( ̂α,n − ) ≤ cq2

}
, (26)
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where  := g(α, β) and V̂n,α = Jγ̂�̂nJ
′
γ̂

, with γ̂ = (α, β̂n ) and �̂n a consistent estimate for

the asymptotic variance of β̂n. The critical value cq2 corresponds to the 1 − q2 quantile
of a χ2

1−q2
random variable. The following proposition establishes the conditions on the

estimates β̂n that ensure that the confidence set (26) is valid.

Proposition 2. Suppose that Assumption 3 holds. Let β̂n and �̂n be sequences of esti-
mates and B� ⊂ B, H� ⊂ Ḣ be compact. Let βn(b) := β + b/

√
n. If, for any θn(b, h) :=

(α, βn(b), η(1 + h/
√
n)) with (b, h) ∈ B� ×H�,

√
n
(
β̂n −βn(b)

) Pnθn� N (0, �), and, �̂n
Pnθn−−→ �,

where � is positive definite, then the confidence set Ĉn,g,α in (26) satisfies

lim
n→∞ inf

(b,h)∈B�×H�
Pnθn(b,h)

(
g
(
α, βn(b)

) ∈ Ĉn,g,α,1−q2

)= 1 − q2. (27)

The proposition formally establishes that if β̂n is asymptotically normal along the
local sequences θn(b, h), then the confidence set Ĉn,g,α is valid. The proof of this propo-
sition is a straightforward application of the uniform delta method.

The condition imposed on the estimator β̂n is satisfied by most typical estimators
(e.g., GMM estimators) under appropriate regularity conditions. Additionally, it can al-
ways be ensured (under Assumption 1) by taking β̂n as a one-step efficient estimator
based on any initial

√
n—consistent estimator (cf. Section 6).

The final confidence set for g(α, β), that is, Ĉn,g, is formed by taking the union of the
sets Ĉn,g,α,1−q2 over α ∈ Ĉn,1−q1 . Formally, we consider

Ĉn,g :=
⋃

α∈Ĉn,1−q1

Ĉn,g,α,1−q2 . (28)

The confidence set Ĉn,g is a valid 1 − q confidence set as we formally establish in the
following corollary.

Corollary 3. Let βn(b), θn(b, h), and B�, H� be as in Proposition 2. If Ĉn,1−q1 satisfies
(24) and Ĉn,g,α,1−q2 satisfies (27), then

lim inf
n→∞ inf

(b,h)∈B�×H�
Pnθn(b,h)

(
g
(
α, βn(b)

) ∈ Ĉn,g
)≥ 1 − q.

This corollary requires only the conclusions of Corollary 2 and Proposition 2.20 For
convenience, we summarize the practical implementation in the following algorithm.

As is demonstrated in the subsequent section, for structural impulse responses this
approach often provides confidence sets with shorter average length when compared to
alternative robust confidence set constructions proposed in the literature.

20These are proven under Assumptions 1 and 2, which we reiterate, do not impose that the structural
shocks have non-Gaussian distributions.
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Algorithm 2 Robust confidence sets for smooth functions

1. Obtain the confidence set Ĉn,1−q1 for α using Algorithm 1;

2. For each α ∈ Ĉn,1−q1 ,

(a) Estimate β̂n and �̂n;

(b) Compute V̂n,α = Jγ̂�̂J
′
γ̂

with Jγ̂ and γ̂ = (α, β̂n )

(c) Construct the confidence set Ĉn,g,α,1−q2 as in (26);

3. Construct Ĉn,g from (28).

The structure of Algorithm 2 implies that different parametrizations for A(α, σ ) can
lead to different confidence sets for the structural functions. For example, suppose that
K = 2: we could choose A(α, σ ) = �1/2(σ )R(α) such that α is a scalar, or we could set
α= (α1, α2 ) as the off-diagonal elements of A(α, σ ) and let σ = (σ1, σ2 ) capture the di-
agonal elements. The stated results hold for both options, but which approach results
in the smallest confidence sets for a given structural function depends on the true data
generating process. In practice, unless the researcher is interested in jointly testing spe-
cific entries of A, we recommend choosing α as small as possible, this reduces the com-
putational burden of searching over the set A in Algorithm 1 and, therefore, immediately
reduces the computational cost of Algorithm 2.

6. Point estimation under strong identification

While the main emphasis of this paper is on providing robust confidence sets for (func-
tions of) possibly weakly identified parameters in non-Gaussian SVAR models, the re-
sults from Section 3 can also be exploited to construct point estimates for the finite-
dimensional parameters γ = (α, σ , b). Under an additional strong identification as-
sumption, for example, that the densities of the errors are non-Gaussian, such estimates
have desirable efficiency properties as we document in this section.21

Assumption 4. The limiting efficient information matrix for γ, Ĩθ = limn→∞ Ĩn,θ is non-
singular, where Ĩn,θ is as in (11).

A necessary underlying condition for this assumption is that at most one of the struc-
tural shocks can follow a Gaussian distribution (e.g., Comon (1994)).22 Under this as-
sumption the literature has developed a variety of

√
n—consistent estimators for this

case; see the references cited in the Introduction. Based on any of such estimators, we

21These efficiency properties transfer to smooth functions of γ (e.g., IRFs) in the usual way (cf. Sec-
tion 25.7 in van der Vaart (1998)).

22We note that primitive sufficient conditions depend also on the specific parametrization that is chosen
for A(α, σ ).



Quantitative Economics 15 (2024) Robust inference non-Gaussian SVAR 543

define the one-step efficient estimator as

γ̂n = γ̄n + Î−1
n, γ̄n

�̄n, γ̄n , where �̄n, γ̄n = 1
n

n∑
t=1

�̂n, γ̄n(Yt , Xt ), (29)

with �̂n,γ(Yt , Xt ) and În,γ defined in (15) and (19), respectively, and γ̄n a discretized ver-
sion of any

√
n–consistent estimator γ̃n = (α̃n, β̃n ). We note that under Assumption 4

and the regularity conditions stated above Î−1
n, γ̄n

exists with probability approaching one.
See van der Vaart (1998) for a more elaborate discussion on one-step efficient estima-
tors.

The following theorem summarizes the main result.

Theorem 2. Suppose that Assumptions 1, 2, and 4 hold. Let γ̃n be a
√
n–consistent esti-

mator of γ under Pnθ . Let γ̄n be a discretized version of γ̃n, which replaces its value with
the closest point in S ∗

n := n−1/2CZL. Then

√
n(γ̂n − γ) = 1√

n

n∑
t=1

Ĩ−1
θ �̃θ(Yt , Xt ) + oPnθ (1) �N

(
0, Ĩ−1

θ

)
(30)

and, moreover,

Ĩ
1/2
θ

√
n(γ̂n − γ) �N (0, I ).

The theorem reveals that the estimator γ̂n is asymptotically efficient in the sense that
it is locally regular and achieves the asymptotic semiparametric efficiency bound for
locally regular estimators given by an infinite-dimensional version of the Hájek–Le Cam
convolution theorem; see, for example, Theorem 3.11.2 in van der Vaart and Wellner
(1996) for a version of this theorem, which applies to the present setting. The estimator
in (29) can be iterated to achieve finite-sample improvements.

7. Finite-sample performance

This section discusses the results from a collection of simulation studies that were de-
signed to evaluate the size and power of the proposed inference procedures. Additional
results are presented in the working paper version of this paper (e.g., Hoesch, Lee, and
Mesters (2023)).

7.1 Size of semiparametric score test

We start by evaluating the empirical rejection frequencies of the score test Ŝn, γ̂n for the
semiparametric SVAR model. We consider SVAR(p) specifications with p= 1, 4, 12 lags,
K = 2, 3 variables, and sample sizes T = 200, 500, 1000. We simulate the SVAR(p) model
for ten different choices for the distributions of the structural shocks εk,t . The density
functions that we consider and their abbreviated names are reported in Table 1. We nor-
malize each εk,t to have mean zero and variance one by standardizing by the population
mean and variance implied by the densities in Table 1.
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Table 1. Distributions for structural shocks.

Abbreviation Name Definition

N (0, 1) Gaussian 1√
2π

exp(− 1
2x

2 )

t(ν), ν = 15, 10, 5 Student’s t

( ν+1

2 )√
νπ
( ν2 ) (1 + x2

ν )(− ν+1
2 )

SKU Skewed Unimodal 1
5N (0, 1) + 1

5N ( 1
2 , ( 2

3 )2 ) + 3
5N ( 13

12 , ( 5
9 )2 )

KU Kurtotic Unimodal 2
3N (0, 1) + 1

3N (0, ( 1
10 )2 )

BM Bimodal 1
2N (−1, ( 2

3 )2 ) + 1
2N (1, ( 2

3 )2 )

SPB Separated Bimodal 1
2N (− 3

2 , ( 1
2 )2 ) + 1

2N ( 3
2 , ( 1

2 )2 )

SKB Skewed Bimodal 3
4N (0, 1) + 1

4N ( 3
2 , ( 1

3 )2 )

TRI Trimodal 9
20N (− 6

5 , ( 3
5 )2 ) + 9

20N ( 6
5 , ( 3

5 )2 ) + 1
10N (0, ( 1

4 )2 )

Note: The table reports the distributions that are used in the simulation studies in Section 7 to draw the structural shocks.
The mixture distributions are taken from Marron and Wand (1992); see their Table 1.

For the purpose of the simulation study, we parametrize the contemporaneous ef-
fect matrix by A(α, σ )−1 = �1/2(σ )R(α)′ where �1/2(σ ) is lower triangular and the rota-
tion matrix R(α) is parametrized using the Cayley transform: R(α) = [IK − 
(α)][IK +

(α)]−1, where 
(α) is a skew-symmetric matrix with elements α.23 The true structural
parameters α0 are fixed at randomly sampled values. Furthermore, we choose �1/2 to be
lower triangular with ones on the main diagonal and zeros elsewhere. The coefficient
matrices, Aj , j = 1, � � � , p are parametrized as Aj = φjIK where φj are fixed at values
that ensure the SVAR is stationary. We use 400 burn-in periods to simulate data, and
unless indicated differently, we use M = 2500 Monte Carlo replications throughout the
simulations.

Table 2 reports the empirical rejection frequencies of the semiparametric score test
defined in Section 4 for testing the hypothesis H0 : α = α0 versus H1 : α �= α0. The test
is implemented following steps 2.1–2.5 of Algorithm 1 for α= α0 and using B = 7 cubic
B-splines for the estimation of the log density scores. The nuisance parameters β are
estimated using either OLS or using a one-step efficient estimator for β which update
the OLS estimates using one Gauss–Newton iteration (van der Vaart (1998, Section 5.7)).
All tests are conducted at 5% nominal size.

For the one-step efficient estimates (top panel), we find that the size of the test is
generally very close to the nominal size of 5%, regardless of the dimension of the SVAR
or the number of lags. Only for SVARs with a large number of parameters (high K and
high p), do we see minor size distortions. Most notably for K = 3, p = 12, and n = 200
the empirical size of the test is often below the nominal level. We note that such settings,
where the number of nuisance parameters Lβ is proportional to the sample size is not
covered by our theory, which imposes Lβ/n→ 0.

23Our results are robust to using different parametrizations such as parametrizing R(α) by Euler angles
(e.g., Rose (1957)) or directly parametrizing A−1(α, σ ) =L(σ ) +U(α) where L(σ ) is a lower triangular ma-
trix and U(α) is an upper triangular matrix excluding the main diagonal. Hoesch, Lee, and Mesters (2023)
reports the results for the latter case.
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Table 2. Empirical rejection frequencies.

K p n N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

One-Step Efficient Estimates
2 1 200 5.4 6.3 5.8 5.4 5.8 5.3 4.6 4.3 4.7 4.8
2 1 500 6.6 6.3 6.1 6.1 5.4 5.4 4.2 4.2 5.5 4.9
2 1 1000 5.9 6.3 5.7 5.2 4.8 6.1 4.4 4.1 4.8 5.2

2 4 200 4.3 6.0 6.0 4.4 4.5 4.2 5.2 5.4 3.8 4.6
2 4 500 6.0 5.7 6.0 5.3 4.6 5.5 5.6 5.9 4.6 4.8
2 4 1000 5.8 5.8 6.6 4.7 4.8 5.3 4.3 4.0 4.8 4.4

2 12 200 4.7 4.3 5.0 4.7 4.4 3.9 4.6 6.5 3.3 5.4
2 12 500 6.2 6.9 5.0 4.9 4.2 4.5 5.2 5.8 4.7 4.6
2 12 1000 6.8 5.7 5.5 5.4 4.4 4.8 4.3 4.4 5.0 5.6

3 1 200 7.2 7.6 7.6 8.4 7.4 7.2 4.8 4.4 4.8 5.7
3 1 500 7.4 8.3 8.1 6.6 6.1 5.6 5.6 5.4 5.2 4.9
3 1 1000 7.4 7.8 6.5 5.6 5.0 5.5 4.6 4.2 5.3 4.1

3 4 200 6.2 7.6 7.5 8.3 6.0 5.9 3.6 4.1 5.5 3.6
3 4 500 9.5 7.2 8.0 7.7 6.4 6.2 5.9 5.6 4.7 4.5
3 4 1000 7.8 6.7 7.9 6.2 5.3 6.7 5.7 5.5 5.0 5.0

3 12 200 2.4 2.7 3.3 4.5 3.1 2.7 3.2 2.0 2.3 3.4
3 12 500 8.4 8.5 9.4 9.4 6.6 4.7 3.9 3.5 5.3 2.4
3 12 1000 8.4 8.0 8.5 8.1 5.8 6.6 6.7 6.3 5.3 4.6

OLS Estimates
2 1 200 4.0 4.4 4.8 5.7 4.4 5.0 3.8 3.5 4.0 3.8
2 1 500 4.6 5.0 5.5 6.6 5.0 5.0 3.6 4.0 4.2 4.6
2 1 1000 4.7 5.4 4.9 5.0 4.8 6.2 3.9 3.8 5.1 4.9

2 4 200 4.6 6.1 5.1 5.1 3.5 4.0 3.0 2.8 4.0 3.0
2 4 500 5.0 5.3 5.5 5.9 5.1 4.0 3.5 3.7 4.1 3.6
2 4 1000 4.8 5.4 5.4 4.8 5.0 4.6 3.9 3.3 4.0 3.5

2 12 200 8.2 6.9 8.5 9.6 4.7 5.4 4.8 4.0 5.6 3.5
2 12 500 6.7 7.8 6.4 6.7 5.4 3.4 3.5 2.7 4.4 3.6
2 12 1000 6.3 5.3 5.8 5.6 6.2 3.7 3.9 3.0 4.6 4.2

3 1 200 5.6 6.9 7.1 10.2 5.7 5.7 3.4 2.5 4.4 3.0
3 1 500 5.4 6.4 6.7 8.6 5.6 5.9 3.3 3.0 4.2 3.0
3 1 1000 5.0 5.9 5.5 6.6 4.8 6.0 3.6 3.2 4.4 3.2

3 4 200 7.7 8.9 10.1 11.5 5.7 3.7 2.4 1.3 4.7 1.9
3 4 500 6.9 6.3 7.7 9.0 5.9 3.0 2.5 1.8 3.5 2.2
3 4 1000 6.1 5.7 7.5 6.7 5.0 4.2 3.0 2.4 3.9 2.6

3 12 200 16.0 18.5 19.7 20.6 11.0 9.7 6.1 4.8 13.6 4.7
3 12 500 12.7 13.6 13.7 14.5 7.2 2.5 2.5 1.4 6.2 1.5
3 12 1000 8.5 8.8 8.7 8.4 7.0 2.5 2.9 1.4 4.3 2.0

Note: The table reports empirical rejection frequencies for the semiparametric score test of the hypothesis H0 : α =
α0 versus H1 : α �= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameter estimates β̂ are ei-
ther one-step efficient or OLS estimates. The columns correspond to the dimension K, the number of lags p, the sample size
n, and the different choices for the distributions of the structural shocks, εk,t for k= 1, � � � , K. The distributions are reported in
Table 1. Rejection rates are computed based on M = 2500 Monte Carlo replications.
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Most importantly, however, and central to the main objective of this paper, the re-
sults are similar across the different densities for εk,t . Regardless whether the density is
Gaussian, close-to-Gaussian, or far away from the Gaussian density the behavior of the
test is similar, and we do not see an increase in the rejection frequency around the point
of no-identification, that is, the Gaussian density.

For the test that is based on OLS estimates (bottom panel), the results are quite sim-
ilar. The only difference is that for small sample sizes with K and p large the test over-
rejects substantially more when compared to the test based on one-step efficient es-
timates. The reason is that OLS estimates are considerably more noisy and biased in
settings where the number of parameters is proportional to the number of observa-
tions.

7.2 Comparison to alternative approaches

Next, we compare the performance of the semiparametric score test to a variety of alter-
native methods that have been proposed in the literature based on size and power. We
focus on an SVAR(1) model with K = 2 variables and a sample size of T = 500. We use
the same parametrization and parameter values as described in the previous subsection
to generate the data.

We distinguish between two types of alternative tests: (i) tests that do not fix α un-
der the null (e.g., Wald and likelihood ratio type tests) and (ii) tests that fix α under the
null (e.g., score type or Lagrange multiplier tests). We expect the tests in the first cat-
egory to perform poorly as they are more vulnerable to identification failures.24 In the
first category, we consider three different Wald and three different likelihood ratio tests.
The first test (WPML,t) is a pseudo-maximum likelihood test based on the t-distribution,
implemented using one (standardized) t(7) density and a (standardized) t(12) density
for the second shock. The test is closely related to the Wald test of Gouriéroux, Monfort,
and Renne (2017). We also consider the (pseudo-)likelihood ratio test (LRPML,t). In ad-
dition, we consider two tests based on the work of Lanne and Luoto (2021)—the GMM
Wald (WGMM,LL) and likelihood ratio (LRGMM,LL) tests, which are based on higher (third-
and fourth-) order moment conditions. We also include the closely related moment es-
timator from Keweloh (2021) for a Wald (WGMM,Kew) and likelihood ratio (LRGMM,Kew )
test.

In the second category, we consider five tests. First, we have the pseudo-maximum
likelihood Lagrange multiplier test (LMPML,t) that is based on work of Gouriéroux, Mon-
fort, and Renne (2017). This test is based on the score of the pseudo-log likelihood, which
we take, following Gouriéroux, Monfort, and Renne (2017), to be the Student’s t with de-
grees of freedom fixed at ν = 7 and ν = 12 for the first and second shocks, respectively.25

24Simulation evidence in Lee and Mesters (2024a) has shown that tests that do not fix α under the null
often show severe overrejection in static ICA models when the errors are close to Gaussian.

25Note that this test is not actually discussed in Gouriéroux, Monfort, and Renne (2017), but the simu-
lations in Lee and Mesters (2024a) show that it has reliable size for ICA models. Moreover, the same idea
could be implemented using mixtures of normals instead of the Student’s t density (Fiorentini and Sentana
(2022)).
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Second, we consider the LM tests corresponding to the GMM setups of Lanne and Luoto
(2021) (LMGMM,LL) and Keweloh (2021) (LMGMM,Kew). Lastly, we compare to the recently
proposed robust GMM methods of Drautzburg and Wright (2023). We include both tests
that they propose. The first is based on the S-statistic of Stock and Wright (2000), which
sets the cross- (third- and fourth-order) moments to zero (SDW). Second, we include
their nonparametric test, which is based on Hoeffding (1948) and Blum, Kiefer, and
Rosenblatt (1961) and sets all higher-order cross-moments to zero (BKRDW). The SDW

has the benefit that it does not require a full independence assumption, whereas the
BKRDW test, similar to our semiparametric score test, requires full independence of the
structural shocks. We implement the SDW and BKRDW tests using the bootstrap proce-
dure described in Drautzburg and Wright (2023).

Size comparison Table 3 compares the size of the different testing procedures.
First as expected, the tests in group (i) —Wald and likelihood ratio type tests—tend to

perform very poorly, with the simulation results demonstrating both substantial overre-
jection and extremely conservative performance, depending on the test and distribution
pair. This leads to the strong recommendation to avoid tests that are not robust to weak
deviations from Gaussian densities.

Table 3. Empirical rejection frequencies for alternative tests.

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ε1,t ∼ ε2,t

Ŝols 5.3 5.7 6.1 5.7 4.4 5.7 4.0 3.7 4.8 3.9
Ŝonestep 7.8 6.5 6.7 6.0 4.7 5.3 5.2 5.0 5.5 4.7
SDW 3.9 3.8 3.7 5.8 5.3 4.3 2.6 2.9 3.6 3.7
BKRDW 3.8 3.9 4.3 4.9 5.5 28.5 5.9 5.5 7.9 6.1

LMPML,t 5.1 5.1 5.7 5.3 4.9 6.8 16.6 22.2 5.4 21.7
LMGMM,LL 1.8 1.5 4.2 12.1 16.2 10.6 3.5 3.7 2.3 3.9
LMGMM,Kew 1.4 1.5 4.0 15.0 15.3 6.5 4.5 4.3 1.4 4.1

LRPML,t 34.7 13.1 7.6 3.7 1.6 1.9 100.0 100.0 14.0 100.0
LRGMM,LL 7.4 10.5 11.7 19.2 16.1 12.6 3.9 3.4 9.6 3.8
LRGMM,Kew 9.8 10.3 13.7 20.0 16.9 12.6 4.6 4.7 9.4 4.3

WPML,t 16.7 10.8 11.3 8.1 6.2 5.9 37.4 41.7 12.4 38.5
WGMM,LL 20.5 24.5 23.5 27.2 22.2 17.9 4.4 4.8 22.8 4.5
WGMM,Kew 33.0 29.7 28.7 24.1 21.1 14.5 5.0 5.3 27.6 4.8

Note: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 versus H1 : α �= α0 with 5%

nominal size for the SVAR(1) model with K = 2 and T = 500, and α0 = 0.5594. Ŝols denotes the semiparametric score test using
OLS estimates for β, Ŝonestep uses one-step efficient estimates. LMPML,t, WPML,t, and LRPML,t denote the pseudo-maximum

likelihood tests based on Gouriéroux, Monfort, and Renne (2017), assuming t-distributed shocks. LMGMM,LL, WGMM,LL, and
LRGMM,LL denote the GMM-based tests based on Lanne and Luoto (2021) with one co-kurtosis condition based on ε3

1t ε2t .

LMGMM,Kew, WGMM,Kew, and LRGMM,Kew denote the corresponding GMM-based tests of Keweloh (2021) using both co-
kurtosis conditions. Finally, SDW and BKRDW denote the bootstrapped GMM-based and nonparametric test of Drautzburg
and Wright (2023), respectively. The columns correspond to different choices for the distributions of the structural shocks, εk,t
for k = 1, � � � , K. The distributions are reported in Table 1. The tests of Drautzburg and Wright (2023) use 500 bootstrap repli-
cations to simulate the null distribution of the test statistics. Rejection rates are computed based on M = 1000 Monte Carlo
replications.
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Overall, all tests in group (ii) perform much better, yet there are some differences
that are worth noting. First, similarly as before, the rejection rates for the two efficient
score tests (Ŝ) are close to the nominal size of 5%, regardless of the distribution of the
structural shocks (as in Table 2).

Next, consider the LM test based on Gouriéroux, Monfort, and Renne (2017)
(LMPML,t): this test is able to control size for most of the distributions, however over-
rejects for the BM, SPB, and TRI distributions. The LM tests based on Lanne and Lu-
oto (2021) (LMGMM,LL) and Keweloh (2021) (LMGMM,Kew) display mixed performance,
with milder overrejections for about a third of the distributions and strong conserva-
tiveness for other distributions. The identification robust moment tests of Drautzburg
and Wright (2023) (SDW and BKRDW) generally perform well, with the former always con-
trolling size correctly and the latter overrejecting only in a few cases (e.g., the kurtotic
unimodal distribution). This overrejection is not due to identification failure but rather
slow convergence due to the higher- order moment conditions used.

To summarize, most of the nonrobust alternative procedures lead to incorrect in-
ference if the distribution of the structural shocks is not “sufficiently” non-Gaussian.
Furthermore, the identity of the best-performing alternative procedure crucially de-
pends on which non-Gaussian distribution generated the data. In contrast, the semi-
parametric score test proposed in this paper gives correct inference regardless of the
distribution of the structural shocks.

Power comparison Next, we compare power among the identification robust tests. We
again focus on an SVAR(1) model with K = 2 variables a sample size of T = 500.

Figure 1 reports the raw (i.e., not size-adjusted) power for the semiparametric score
test using one-step nuisance parameter estimates (red solid line), the semiparamet-
ric score test using OLS nuisance parameter estimates (black solid line), the pseudo-
maximum likelihood LM test (dot-dashed blue line), the Drautzburg and Wright (2023)
GMM test (dotted green line), and the nonparametric Drautzburg and Wright (2023) test
(dot-dashed purple line).

For the t-distributions in the first row of the figure, the best performing test is the
pseudo-maximum likelihood LM test. This is not surprising as this test is based on the
t—density and, therefore, is close to correctly specified. The efficient score tests show
greater power than either of the other tests considered. Moreover, in the other panels,
the efficient score tests are typically the most powerful tests (that also control size),
with the one-step update version performing slightly better. The quality of the other
three tests depends to a large extent on the underlying density. For example, the tests of
Drautzburg and Wright (2023) offer very little power in the t-distribution cases, but for
the other distributions their nonparametric test has power curves, which are not much
below those of the efficient score test.26

26For the kurtotic unimodal distribution, the power curve of this test is higher; however, this test is sub-
stantially oversized for this density. It should also be noted that the tests of Drautzburg and Wright (2023)
are substantially more computationally demanding than the efficient score based approaches, as they use
a bootstrap approach to obtain the critical value. Relying on asymptotic critical values for these tests yields
substantially worse performance.
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Figure 1. Power in the SVAR(1) model. The figure reports unadjusted empirical power curves
for tests of the hypothesis H0 : α = α0 versus H1 : α �= α0 with 5% nominal size for the SVAR(1)
model with K = 2 and T = 500. The x-axis corresponds to different alternatives for α around
α0 = 0.5594. Ŝols denotes the semiparametric score test using OLS estimates for β, Ŝonestep uses
one-step efficient estimates. LMPML,t denotes the pseudo-maximum likelihood test based on
Gouriéroux, Monfort, and Renne (2017), SDW denotes the GMM-based test of Drautzburg and
Wright (2023), BKRDW denotes the nonparametric test of Drautzburg and Wright (2023). The
tests of Drautzburg and Wright (2023) use 500 bootstrap replications to obtain critical values.
Rejection frequencies are computed using M = 1000 Monte Carlo replications.

7.3 Additional results

Hoesch, Lee, and Mesters (2023) show additional results that evaluate (i) the score test
under alternative parametrizations, (ii) the score test for higher dimensions, (iii) the
score test with cross-validation for selecting the number of B-splines as in Chen and
Bickel (2006), (iv) the confidence sets for smooth functions of the SVAR parameters as
discussed in Section 5 (both coverage and confidence set length), and (v) the point es-
timates introduced in Section 6. The results show that the finite sample properties of
the score test are invariant to the specific parametrization chosen. The cross-validation
procedure leads to rejection frequencies that are generally closer to the nominal level.
In higher dimensions, the performance of the test deteriorates; similar to other SVAR
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studies, a bootstrap implementation of our test is likely to be preferable in such settings.
The evaluation of the impulse responses shows that the two-step Bonferroni approach
is conservative; but if the efficient score test, based on one-step efficient estimates, is
used as the first step the coverage becomes much closer to the nominal size. Also, the
efficient score approach gives the smallest length among all procedures considered and
for all densities. Finally, the one-step efficient point estimates are generally more accu-
rate when compared to nonefficient competitors, that is, their root mean-squared error
is lower when compared to existing estimators.

8. Empirical studies

In this section, we discuss the results from two empirical studies: one for labor supply
and demand and the other for the oil market. We investigate the consequences of re-
placing some of the identifying information used in previous studies with identification
based on non-Gaussianity and illustrate the calculation of confidence sets based on the
methodology of this paper.

8.1 Labor supply–demand model of Baumeister and Hamilton (2015)

We revisit the bivariate SVAR(p) model of the U.S. labor market as considered in
Baumeister and Hamilton (2015). We have Yt = (�wt , �ηt )′, where �wt is the growth
rate of real compensation per hour and �ηt is the growth rate of total U.S. employment.
The SVAR model for Yt is defined by (2) with parametrization27

A−1(α, σ ) =
(

−αd 1
−αs 1

)−1(
σ1 0
0 σ2

)
.

It follows that here the parameter αd is the short-run wage elasticity of demand, and αs

is the short-run wage elasticity of supply. The number of lags used is p= 8, the sample
is from 1970:Q1 through 2014:Q2, and conventional sign restrictions are imposed on the
supply and demand elasticities (αd ≤ 0, αs ≥ 0). These restrictions ensure that we test
economically interesting permutations of the impact matrix.

Without further identifying information, any fixed point that satisfies the sign re-
strictions is a valid point and nothing more can be learned. To improve identification,
Baumeister and Hamilton (2015) introduce carefully motivated priors on the short-run
labor supply and demand elasticities, based on estimates from the micro-econometric
and macroeconomic literature, as well as a long-run restriction on the effect of labor-
demand shocks on employment (e.g., Shapiro and Watson (1988)). We investigate
whether such additional identifying assumptions can be avoided by exploiting possi-
ble non-Gaussianity in the supply and demand shocks. For the purpose of our analysis,
we consider a wide grid of potential elasticities, (αd , αs ) ∈ [−3, 0) × (0, 3], which covers
the majority of elasticity estimates reported in the microeconometric literature, as well

27In Hoesch, Lee, and Mesters (2023), we provide additional results from an alternative parametrization
of the model using a rotation matrix.
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as findings from theoretical macroeconomic models (see the discussion in Baumeister
and Hamilton (2015)). We confine our analysis to this grid, which can be regarded as an
additional identification restriction.

Recently, Lanne and Luoto (2022) adopted the methodology of Lanne and Luoto
(2021) to assess identification of the model using non-Gaussianity, but this approach
may yield incorrect coverage when the shocks are close to Gaussian (cf. Section 7). Here,
we will adopt the robust score testing approach of Sections 4 and 5 to construct confi-
dence sets for the elasticity parameters as well as impulse responses to labor supply and
labor demand shocks. Specifically, we construct confidence sets for α using Algorithm 1
and confidence bands for the impulse responses using Algorithm 2. For both algorithms,
we make use of one-step efficient parameter estimates β̂n.

Before getting there, we recall that our methodology relies on the assumption that
the demand and supply shocks are independent and not merely uncorrelated. There-
fore, we start by testing for independent components using the permutation tests of
Matteson and Tsay (2017) and Olea et al. (2022). To compute the test, we obtain an ini-
tial GMM estimate of α using the moment conditions of Keweloh (2021). For the given
sample period, we obtain a p-value of 0.12 for the test of Matteson and Tsay (2017) and
a p-value of 0.55 for the test of Olea et al. (2022), hence we conclude this assumption is
not unreasonable and proceed with constructing confidence sets for the elasticity pa-
rameters.

Confidence sets for (αd , αs ) Figure 2 shows the 95% and 67% joint confidence sets for
labor demand (αd ) and labor supply (αs ) parameters obtained using Algorithm 1 of Sec-

Figure 2. Confidence sets for labor demand and supply elasticities. 95% (light blue) and 67%
(dark blue) confidence regions for labor demand and supply elasticities obtained using Algo-
rithm 1 with 250,000 equally-spaced grid points for (αd , αs ) ∈ [−3, 0) × (0, 3].



552 Hoesch, Lee, and Mesters Quantitative Economics 15 (2024)

tion 4. The confidence sets are constructed based on a grid of 250,000 equally spaced
points spanning the elasticity ranges discussed above. The figure shows that overall,
non-Gaussianity is not sufficient to pin down a precise region for the elasticities, though
it does rule out parts of the parameter space, which would be accepted under Gaus-
sianity. For sufficiently negative values of the short-run demand elasticity, the short-run
supply elasticity is reasonably well identified from non-Gaussianity with confidence sets
indicating that αs lies in the 0–0.3 range for both 95% and 67% confidence level. In con-
trast, for values of αd that are less negative (smaller absolute value), the confidence sets
support a wide range of values for the supply elasticity, up to 0.6 at 67% confidence level
and spanning almost all values in the inspected grid at 95% confidence level. Our results
match the findings of Baumeister and Hamilton (2015) who report that the main poste-
rior mass for αs lies in the 0–0.5 range while the posterior for αd indicates that demand
elasticities between −3 and 0 are well supported by the model.

Note that the estimate of Lanne and Luoto (2022) obtained using non-Gaussianity
identification (αd = −0.317, αs = 0.514) falls within our confidence set at 95% level.
However, they find narrow confidence sets for the elasticity parameters while our weak-
identification robust approach results in much wider confidence sets, similar to the
credible sets of Baumeister and Hamilton (2015).

Confidence sets for impulse responses Figure 3 shows our identification-robust 95%
and 67% confidence sets for the impulse responses to labor-demand and labor-supply
shocks. Comparing the impulse response bands to the posterior credible sets reported
by Baumeister and Hamilton (2015), we note that the implied impulse responses are
overall very similar and show long and persistent responses to the supply and de-
mand shocks. The main differences are that our 95% identification-robust bands sup-
port slightly negative long-run responses of the real wage and employment to a de-
mand shock, as well as a more pronounced negative long-run response of employment
to a supply shock while Baumeister and Hamilton’s (2015) credible sets contain only
(weakly) positive responses. Comparing our results to Lanne and Luoto (2022), we note
several differences. First, Lanne and Luoto (2022) find a significant negative long-run
response of the real wage to a supply shock while our confidence sets do not rule out
that the long-run response is weakly positive. Second, and most important, they find a
strong and significant dynamic response of both the real wage and employment to the
labor demand shock, inconsistent with the tight prior variance Baumeister and Hamil-
ton (2015) impose on the long-run response of employment to a demand shock. In con-
trast to their findings, both our 67% and 95% identification-robust confidence bands do
not rule out that the long-run response of either variable to the demand shock is zero.
This evidence suggests that the long-run restriction of Baumeister and Hamilton (2015)
cannot be rejected solely on the basis of non-Gaussianity.

8.2 Oil price model of Kilian and Murphy (2012)

Next, we revisit the trivariate oil market SVAR(p) model of Kilian and Murphy (2012). We
have Yt = (�qt , xt , pt )′ where �qt is the percent change in global crude oil production,



Quantitative Economics 15 (2024) Robust inference non-Gaussian SVAR 553

Figure 3. IRF confidence bands for labor demand and supply shocks. 95% (light blue)
and 67% (dark blue) identification-robust confidence bands for impulse responses to la-
bor supply and labor demand shocks, obtained using 250,000 equally-spaced grid points for
(αd , αs ) ∈ [−3, 0) × (0, 3].

xt is an index of real economic activity representing the global business cycle, and pt is
the log of the real price of oil. The SVAR model is parameterized as follows:

Yt = c+B1Yt−1 + · · · +BpYt−p +A−1(α, σ )εt ,

A−1(α, σ ) =
⎡
⎢⎣σ1 αqx · σ5 αqp · σ6

σ2 σ4 αxp
σ3 σ5 σ6

⎤
⎥⎦ , (31)

where following Baumeister and Hamilton (2019) we use p = 12. In this model, εt in-
cludes a shock to the world production of crude oil (“oil supply shock”), a shock to the
demand for crude oil and other industrial commodities associated with the global busi-
ness cycle (“aggregate demand shock”), and a shock to demand for oil that is specific to
the oil market (“oil-market-specific demand shock”). In the parametrization above, αqx is
the short-run (impact) demand elasticity of oil supply while αqp captures the short-run
(impact) price elasticity of oil supply.
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The baseline model of Kilian and Murphy (2012) makes use of the following sign
restrictions on the impact responses in A−1 to identify impulse responses:28

A−1(α, σ ) =
⎡
⎢⎣+ + +

+ + −
− + +

⎤
⎥⎦ . (32)

In addition, Kilian and Murphy (2012) impose a set of upper bounds on the short-run oil
supply elasticities implied by the model to shrink the identified set for the impulse re-
sponses. Specifically, they assume that αqp < 0.0258, αqx < 0.0258 and that αxp >−1.5.
These restrictions, in particular the elasticity bound on αqp, have been criticized by
Baumeister and Hamilton (2019) as being too tight and there is an active debate around
which values for these bounds are reasonable (see Herrera and Rangaraju (2020) for an
overview).

We investigate whether the bounds on the elasticities can be avoided by exploiting
non-Gaussian features of the structural shocks. We base our analysis on the monthly
data sample considered in Zhou (2020), which spans February 1973–August 2009. This
data corresponds to the original data of Kilian and Murphy (2014), but includes the cor-
rection to the index of global economic activity discussed in Kilian (2019). We consider
the robust score testing approach of Sections 4 and 5 to construct confidence sets for the
elasticity parameters as well as the impulse responses to the oil supply shock, the aggre-
gate demand shock, and the oil-market-specific demand shock. Our implementation is
similar as in the previous application. We start by testing for independent components
using the permutation tests of Matteson and Tsay (2017) and Olea et al. (2022). As be-
fore, we base the test on a GMM estimate of α obtained using the moment conditions
of Keweloh (2021). For the given sample period, we obtain a p-value of 0.35 for the test
of Matteson and Tsay (2017) and a p-value of 0.47 for the test of Olea et al. (2022), hence
we conclude this assumption is not unreasonable and proceed with constructing confi-
dence sets for the elasticity parameters.

Confidence sets for oil supply elasticities (αqx, αqp ) Figure 4 shows the 95% and 67%
joint confidence sets for the price elasticity of oil supply (αqp) and the demand elasticity
of oil supply (αqx) obtained using Algorithm 1 of Section 4 from a grid of 500,000 points
for (αqx, αqp, αxp ) ∈ (0, 0.25]× (0, 0.1]× [−3, 0) with 100 points for αqx and αqp each and
50 points for αxp. The confidence set for (αqx, αqp ) is obtained by projecting over all val-
ues of αxp in the grid. The end points of the grid were chosen by (i) doubling the bound
on αxp imposed by Kilian and Murphy (2012), (ii) allowing for a large range of values for
αqx, and (iii) substantially relaxing the bound on the price elasticity of oil supply (αqp) in
Kilian and Murphy (2012) to address the critique of Baumeister and Hamilton (2019). In
particular, the grid end-point of 0.1 for αqp matches the largest supply elasticity bound
considered in the sensitivity analysis of Baumeister and Hamilton (2019)’s model car-
ried out in Herrera and Rangaraju (2020) and nests the relaxed supply elasticity bound

28Kilian and Murphy (2012) normalize the first shock to be an oil supply disruption, leading to inverted
signs in the first column of A−1. Following Baumeister and Hamilton (2019), we consider a positive oil
supply shock.
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Figure 4. Confidence sets for (αqx, αqp ). 95% (light blue) and 67% (dark blue) confidence re-
gions for supply elasticities (αqx, αqp ) obtained using Algorithm 1 using 500,000 grid points for
(αqx, αqp, αxp ) ∈ (0, 0.25] × (0, 0.1] × [−3, 0) by projection across accepted values for αxp. The
black-dashed lines denote the original supply elasticity bounds of 0.0258 imposed by Kilian and
Murphy (2012).

considered in Zhou (2020). To ensure that our robust confidence set is compatible with
the sign restrictions in (32), we impose these signs in the estimation of the nuisance
parameters σ .29

Inspecting the confidence set depicted in Figure 4, we note that non-Gaussianity
significantly helps to identify the price elasticity of the oil supply, but is less able to ac-
curately pin down the demand elasticity of oil supply. In particular, while the considered
grid allows for supply elasticities up to 0.1, the bound on the price elasticity of oil sup-
ply implied by the 95% and 67% confidence set for αqp falls within the relaxed bound of
0.04 considered by Zhou (2020). In addition, at the 67% level, the elasticity lies within
the bound of 0.0258 originally considered in Kilian and Murphy (2012). At the 95% level,
non-Gaussianity cannot rule out that αqp falls outside this bound. For the demand elas-
ticity of oil supply (αqx), the confidence set spans a large range of values between zero
and 0.22, depending on the value for αqp.

Overall, our results suggest that non-Gaussianity is informative about the oil supply
elasticities αqx, αqp in the model of Kilian and Murphy (2012). However, it is not able to
justify the bounds considered in Kilian and Murphy (2012).

29Note that the set of sign restrictions on A−1 does not merely pin down a signed permutation of A−1,
but also imposes additional restrictions on the magnitudes of elasticities; see the discussion in Baumeister
and Hamilton (2019, p. 1881).
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Figure 5. IRF confidence bands in the oil market model. 95% (light blue) and 67% (dark blue)
identification-robust confidence bands for the impulse responses to oil supply, aggregate de-
mand, and oil-specific demand shocks, obtained using 500,000 equally-spaced grid points for
(αqx, αqp, αxp ) ∈ (0, 0.25] × (0, 0.1] × [−3, 0).

Confidence sets for impulse responses Finally, we turn to inspecting the 95% and 67%
confidence bands for impulse responses to oil supply, aggregate demand, and oil-
specific supply shocks, which are depicted in Figure 5. We note that our confidence
bands overall exhibit response patterns that are similar to the results reported in Kilian
and Murphy (2012) based on sign restrictions and the elasticity bound of 0.0258. How-
ever, our procedure results in substantially wider confidence bands for the responses of
global real activity and the real price of oil than the ones originally reported in Kilian
and Murphy (2012). In particular, while the responses of oil production are identified
precisely, the responses of global real activity and of the real price of oil exhibit large un-
certainty with insignificant and flat responses to the oil supply shock, significant positive
hump-shaped responses to the aggregate demand shock, and mixed response patterns
to the oil-specific demand shock.

9. Conclusion

This paper develops robust inference methods for structural vector autoregressive
(SVAR) models that are identified via non-Gaussianity in the distributions of the struc-
tural shocks. We treat the SVAR model as a semiparametric model where the densities of
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the structural shocks form the nonparametric part and conduct inference on the possi-
bly weakly identified or nonidentified parameters of the SVAR, using a semiparametric
score statistic. We additionally provide a two-step Bonferroni-based approach to con-
duct inference on smooth functions of all the finite-dimension parameters of the model.

We assess the finite-sample performance of our method in a large simulation study
and find that the empirical rejection frequencies of the semiparametric score test are
always close to the nominal size, regardless of the true distribution of the shocks. More-
over, the power of the test is typically higher than alternative methods that have been
proposed in the literature.

Finally, we employ the proposed approach in a number of empirical studies. Overall
our findings are mixed. While non-Gaussianity does provide some identifying informa-
tion for the structural parameters of interest, it is unable to always pin down the parame-
ter values or impulse responses precisely. These exercises also highlight the importance
of using weak identification robust methods to assess estimation uncertainty when us-
ing non-Gaussianity for identification.

Appendix A: Proofs and additional results

Here, we prove the main results of the paper. Only the main arguments are given here,
with the verification of technical details relegated to lemmas, which can be found in the
Supplementary Material (Hoesch, Lee, and Mesters (2024)).

A.1 Notation

x := y means that x is defined to be y. The Lebesgue measure on RK is denoted by λK or
λ if the dimension is clear from context. The standard basis vectors in R

K are e1, � � � , eK .
We make use of the empirical process notation: Pf := ∫ f dP , Pnf := 1

n

∑n
i=1 f (Yi ), and

Gnf := √
n(Pn−P )f . For any two sequence of probability measures (Qn )n∈N and (Pn )n∈N

(where Qn and Pn are defined on a common measurable space for each n ∈ N), Qn � Pn
indicates that (Qn )n∈N is contiguous with respect to (Pn )n∈N. Qn � � Pn indicates that
both Qn � Pn and Pn � Qn hold; see van der Vaart (1998, Section 6.2) for formal defi-
nitions. X ⊥⊥ Y indicates that random vectors X and Y are independent; X � Y indi-
cates that they have the same distribution. a � b means that a is bounded above by
Cb for some constant C ∈ (0, ∞); the constant C may change from line to line. clX
means the closure of X . vec−1 is the inverse vec operator, that is, if b = vec(B) then
B = vec−1(b). If S is a subset of an inner product space (V , 〈·, ·〉), S⊥ is its orthogonal
complement, that is, S⊥ = {x ∈ V : 〈x, s〉 = 0 for all s ∈ S}. If S ⊂ V is complete (hence
a Hilbert space), the orthogonal projection of x ∈ V onto S is "(x|S). The total varia-
tion distance between measures P and Q defined on the measurable space (#, F ) is
dTV(P , Q) = supA∈F |P(A) −Q(A)|. � denotes weak convergence.

A.2 Density score estimation

Lemma 2. Suppose Assumptions 1 and 2 hold. Let θn = (αn, βn, η) → θ be a deterministic
sequence with

√
n‖βn −β‖ =O(1). Then the log density score estimates φ̂k,n defined as in
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(17) satisfy for j, k= 1, � � � , K, k �= j,

1
n

n∑
t=1

[
φ̂k,n

(
An,k•(Yt −BnXt )

)−φk
(
An,k•(Yt −BnXt )

)]
Wn,t = oPn

θ̃n

(
n−1/2), (33)

where An :=A(αn, βn ), Bn := B(βn ) and Wn,t are any mean-zero random variables inde-
pendent from all An,k•(Ys − BnXs ) with s ≥ t and such that supn∈N,1≤t≤nEθ̃n W

2
n,t < ∞.

Additionally, for νn = ν2
n,p with 1<p≤ 1 + δ/4 and n−1/2(1−1/p) = o(νn,p ) we have

1
n

n∑
t=1

([
φ̂k,n

(
An,k•(Yt −BnXt )

)−φk
(
An,k•(Yt −BnXt )

)]
Wn,t

)2 = oPn
θ′n

(νn ). (34)

where Wn,t are any random variables independent from all An,k•(Ys − BnXs ) with s ≥ t

and such that supn∈N,1≤t≤nEθ̃n W
2
n,t <∞.

Proof. The claim follows by an argument analogous to that used to prove Lemma 4 of
Lee and Mesters (2024a); see Lee and Mesters (2024b) for the proof.30

A.3 ULAN

To establish ULAN, we establish LAN, as in Proposition 3 directly below. Following this
in Proposition 4, we show that (g, h) �→ Pnθn(g,h) is asymptotically equicontinuous in total
variation. These properties are together equivalent to ULAN.

Proposition 3 (LAN). Suppose that Assumption 1 holds. Then for any g, h ∈ R
L × Ḣ

such that θn(g, h) = (γ+ g/
√
n, η(1 + h/

√
n)), as n→ ∞,

�nθn(g,h)

(
Yn
)= gn

(
Yn
)− 1

2
E
[
gn
(
Yn
)2]+ oPnθ (1), (35)

where the expectation is taken under Pnθ and

gn
(
Yn
)

:= 1√
n

n∑
t=1

[
g′�̇θ(Yt , Xt ) +

K∑
k=1

hk(Ak•Vθ,t )

]
,

with A=A(α, σ ). Moreover, under Pnθ ,

gn
(
Yn
)
�N

(
0, �θ(g, h)

)
, �θ(g, h) := lim

n→∞E
[
gn
(
Yn
)2]

.

Proof. Throughout, we work conditional on (Y−p+1, � � � , Y0 )′. Define Vθ,t := Yt −BXt ,

Wn,t := 1

2
√
n

[
g′�̇θ(Yt , Xt ) +

K∑
k=1

hk(Ak•Vθ,t )

]
,

30Note that in the statement of Lemma 4 of Lee and Mesters (2024a) the object corresponding toWn,t here
(their Zn,i) is assumed to be mean zero in the equations corresponding to both (33) and (34). Inspection of
the proof reveals that this is unnecessary for the equation corresponding to (34).
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and Fn,t := σ(Yt , Xt ) and note that (Wn,t , Fn,t )n∈N, 1≤t≤n forms an adapted stochastic
process. By Assumption 1 part 2,

E[Wn,t|Fn,t−1] = 1

2
√
n

[
g′
E
[
�̇θ(Yt , Xt )|Fn,t−1

]+ K∑
k=1

E
[
hk(Ak•Vθ,t )|Fn,t−1

]]= 0, (36)

almost surely, where the expectation is taken under Pnθ .
Next, define Un,t := (un,t/un,t−1 )1/2 − 1 where un,0 = 1 and else

un,j :=
( |An|

|A|
)j

×
j∏
t=1

K∏
k=1

ηk(An,k•Vθn,t )
ηk(Ak•Vθ,t )

(
1 + hk(An,k•Vθn,t )√

n

)
, (37)

with A :=A(α, σ ) and An :=A(α+ gα/
√
n, σ + gσ/

√
n). That is,

Un,t :=
[( |An|

|A|
)

×
K∏
k=1

ηk(An,k•Vθn,t )
ηk(Ak•Vθ,t )

(
1 + hk(An,k•Vθn,t )√

n

)]1/2

− 1. (38)

We now verify conditions (1.2)–(1.6) of Lemma 1 in Swensen (1985), having shown
(1.7) to hold above. (1.2), that is, that E

∑n
t=1[Wn,t − Un,t ]2 → 0, where the expectation

is taken under Pnθ is shown to hold in Lemma S5. For (1.3), note that by Lemma S4,
Pnθ [|

√
nWn,t|2+ρ] ≤ C for some ρ > 0. Hence,

sup
n∈N

Pnθ

[
n∑
t=1

W 2
n,t

]
≤ sup
n∈N

1
n

n∑
t=1

Pnθ (
√
nWn,t )2 � C.

For (1.4), by Lemma S4 and Markov’s inequality,

Pnθ

(
max

1≤t≤n |Wn,t |> ε
)

≤ Pnθ

(
n∑
t=1

W 2
n,t1
{|Wn,t |> ε

}
> ε2

)

≤ ε−2
n∑
t=1

E
[
W 2
n,t1
{√
n|Wn,t |>

√
nε
}]

→ 0.

Condition (1.5) follows from Lemma S7. For (1.6), by Lemma S4 and the fact that condi-
tional expectations are L1 contractions we have for any ε > 0,

E

∣∣∣∣∣
n∑
t=1

E
[
W 2
n,t1
{|Wn,t |> ε

}
|Fn,t−1

]∣∣∣∣∣≤
n∑
t=1

E
∣∣E[W 2

n,t1
{√
n|Wn,t |>

√
nε
}

|Fn,t−1
]∣∣

≤
n∑
t=1

E
[
W 2
n,t1
{√
n|Wn,t |>

√
nε
}]

→ 0.
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underPnθ . Additionally (iii) of Theorem 1 in Swensen (1985) holds since the relevant mea-
sures are both absolutely continuous with respect to Lebesgue measure (cf. Taniguchi
and Kakizawa (2000, p. 34)). Therefore, by Lemma 1 in Swensen (1985), under Pnθ ,

�nθn(g,h)

(
Yn
)= 2

n∑
t=1

Wn,t − τ2/2 + oPnθ (1) �N
(

−τ
2

2
, τ2
)

.

Given the form of Wn,t , it remains only to show that E[gn(Yn )2] → τ2. Since gn(Yn ) =
2
∑n

t=1Wn,t and Wn,t forms a martingale difference array with respect to Fn,t (equation
(36)),

E
[
gn
(
Yn
)2]= 4E

[
n∑
t=1

Wn,t

]2

= 4E
n∑
t=1

W 2
n,t .

That this converges to τ2 follows from Lemma S7 and the reverse triangle inequality.

Proposition 4. Suppose that Assumption 1 holds. Then, if (gn, hn ) → (g, h),

lim
n→∞dTV

(
Pnθn(gn,hn ), Pnθn(g,h)

)= 0.

Proof. By Lemmas S8 and S9,

log
pnθn(gn,hn )

pnθn(gn,h)
= oPnθn(gn ,h)

(1) and log
pnθn(gn,h)

pnθn(g,h)
= oPnθn(g,h)

(1), (39)

whenever (gn, hn ) → (g, h). Therefore, by Lemma S23, (i) dTV(Pnθn(gn,hn ), Pnθn(gn,h) ) → 0
and (ii) dTV(Pnθn(gn,h), Pnθn(g,h) ) → 0.

Proof of Proposition 1. The only conclusion of Proposition 1, which is not immedi-
ately implied by those of Proposition 3, is that

�nθn(gn,hn )

(
Yn
)− gn

(
Yn
)+ 1

2
E
[
gn
(
Yn
)2]= oPnθ (1).

By Proposition 3,

�nθn(g,h)

(
Yn
)− gn

(
Yn
)+ 1

2
E
[
gn
(
Yn
)2]= oPnθ (1),

and hence it suffices to show that

�nθn(gn,hn )

(
Yn
)−�nθn(g,h)

(
Yn
)= oPnθ (1). (40)

By Proposition 4, dTV(Pnθn(gn,hn ), Pnθn(g,h) ) → 0, hence (Pnθn(gn,hn ) )n∈N and (Pnθn(g,h) )n∈N are
mutually contiguous (e.g., Lemma 2.15 and Remark 18.3 in Strasser (1985)). By Propo-
sition 3 and Example 6.5 in van der Vaart (1998), the same is true of (Pnθn(g,h) )n∈N and
(Pnθ )n∈N. By the transitivity of mutual contiguity, we conclude that (Pnθn(gn,hn ) )n∈N and
(Pnθ )n∈N are mutually contiguous. Combine this with equation (39) to conclude that (40)
holds.
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Proof of Corollary 1. Combine Example 6.5 in van der Vaart (1998) with the fact that
by Proposition 1, under Pnθ ,

�nθn(gn,hn ) �N
(

−1
2
�(g, h), �(g, h)

)
.

A.4 Scores

Proof of Lemma 1. Define

T η|γ
Pθ ,H :=

{
n∑
t=1

K∑
k=1

hk(Ak•Vθ,t ) : h= (h1, � � � , hK ) ∈ Ḣ

}
, Vθ,t := Yt −BθXt . (41)

It suffices to show that (a) �̃θ(Ys , Xs ) ∈ [T η|γ
Pθ,H ]⊥ ⊂L2(Pnθ ) (componentwise) and (b)

�̇θ(Ys , Xs ) − �̃θ(Ys , Xs ) ∈
{

K∑
k=1

hk(Ak•Vθ,s ) : h= (h1, � � � , hK ) ∈ clḢ

}
, s = 1, � � � , n.

(42)
For (a), the fact that �̃θ(Ys , Xs ) ∈ L2(Pnθ ) follows straightforwardly from its form and

the moment conditions in Assumption 1. Next, note that for any h ∈ Ḣ , 1 ≤ s ≤ n,

n∑
t=1

K∑
k=1

E
[
�̃θ(Ys , Xs )hk(Ak•Vθ,t )

]= 0

will be obtained under Pnθ if for all k, j, m ∈ [K] with m �= j and all 1 ≤ s ≤ n, 1 ≤ t ≤ n,

E
[
φl(εm,s )εj,shk(εk,t )

]= 0,

E
[
εm,shk(εk,t )

]= 0,

E
[
κ(εm,s )hk(εk,t )

]= 0,

E
[
(Xs −μ)φm(εm,s )hk(εk,t )

]= 0,

the first three of which follow from the independence between components and
across time of (εt )t≥1. If s ≤ t, then by independence E[(Xs − μ)φm(εm,s )hk(εk,t )] =
E[(Xs−μ)]E[φm(εm,s )hk(εk,t )] = 0. If s > t, then E[(Xs−μ)φm(εm,s )hk(εk,t )] = E[(Xs−
μ)hk(εk,t )E[φm(εm,s )|σ(ε1, � � � , εs−1 )]] = 0 again by independence.

For (b), we note that for the components corresponding to a xl ∈ {αl : l= 1, � � � , Lα} ∪
{σl : l= 1, � � � , Lσ } and we have

�̇θ,xl (Ys , Xs ) − �̃θ,xl (Ys , Xs ) =
K∑
k=1

φk(Ak•Vθ,s )Ak•Vθ,s + 1 − τk,1Ak•Vθ,s − τk,2κ(Ak•Vθ,s ).

That this is mean zero and has finite second moment follows immediately from Assump-
tion 1. That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s ) is ensured by the choice
of τk.
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For the components xl ∈ {bl : l= 1, � � � , Lb},

�̇θ,xl (Ys , Xs ) − �̃θ,xl (Ys , Xs ) =
K∑
k=1

(
φk(Ak•Vθ,s ) + ςk,1Ak•Vθ,s + ςk,2κ(Ak•Vθ,s )

)[−e′
kμ
]
.

Again that this is mean zero and has finite second moment follows immediately from
Assumption 1. That it has covariance zero with Ak•Vθ,s and κ(Ak•Vθ,s ) is ensured by the
choice of ςk.

This establishes that (42) holds since these are the defining properties of clḢ .31

A.5 Main theorems

Proof of Theorem 1. Define

Rn,1(γ� ) := ∥∥√nPn[�̂γ� − �̃θ� ]
∥∥,

Rn,2(γ� ) := ∥∥√nPn[�̃θ� − �̃θ] + √
nĨn,θ(γ� − γ)

∥∥,

Rn,3(γ� ) := ν
−1/2
n ‖În,γ� − Ĩθ‖,

where γ� := (α, β� ) and θ� := (γ�, η). By Corollary 1, Pnθ � �Pnθn((0,bn ),0) for any bn → b ∈
R
Lβ . It then follows by Lemmas S13, S15, and Le Cam’s first lemma (e.g., van der Vaart

(1998, Lemma 6.4)) that

Rn,i(γn )
Pnθ−→ 0 for i= 1, 2, 3,

for any sequence γn = (α, β+ bn/
√
n) with bn → b ∈R

Lβ . Hence, by Lemma S21 also

Rn,i(γ̄n )
Pnθ−→ 0 for i= 1, 2, 3. (43)

It follows that

√
nPn[�̂γ̄n − �̃θ] = √

nPn[�̂γ̄n − �̃θ̄n ] + √
nPn[�̃θ̄n − �̃θ] = −Ĩn,θ

(
0,

√
n(β̄n −β)′

)′ + oPnθ (1),

and În, θ̄n

Pnθ−→ Ĩθ and so K̂θ̄n,n

Pnθ−→ K̃θ for

K̃θ :=
[
I −Ĩθ,αβĨ

−1
θ,ββ

]
, K̂n,θ :=

[
I −În,θ,αβÎ

−1
n,θ,ββ

]
.

We combine these to obtain

√
nPn[κ̂γ̄n,n − κ̃n,θ]

= (K̂n, γ̄n − K̃θ )
√
nPn[�̂γ̄n − �̃θ] + K̃θn

√
nPn[�̂γ̄n − �̃θ] + (K̂n, γ̄n − K̃θ )

√
nPn�̃θ

= −K̃θĨθ
(
0,

√
n(β̄n −β)′

)′ + oPnθ (1)

31This follows by the argument of Lemma S8 in Lee and Mesters (2024b), noting that in the present con-

text their H0, H�
0, H̃0 may be dropped.
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= −
[
I −Ĩθ,αβĨ

−1
θ,ββ

][Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

][
0√

n(β̄n −β)

]
+ oPnθ (1)

= oPnθ (1).

Next, let Zn := 1√
n

∑n
t=1 κ̂n, γ̄n(Yt , Xt ) and rewrite it as

Zn = 1√
n

n∑
t=1

κ̃θ(Yt , Xt ) + 1√
n

n∑
t=1

(
κ̂γ̄n,n(Yt , Xt ) − κ̃θ(Yt , Xt )

)

= 1√
n

n∑
t=1

κ̃θ(Yt , Xt ) + oPnθ (1).

By (i) of Lemma S15 and Le Cam’s third lemma (e.g., (van der Vaart, 1998, Example 6.7)),

1√
n

n∑
t=1

�̃θ(Yt , Xt ) �N
(
Ĩθ
(
0′, b′)′, Ĩθ) under Pθn ,

and hence under Pθn

Zn = 1√
n

n∑
t=1

�̃θ,α(Yt , Xt ) − Ĩθ,αβĨ
−1
θ,ββ�̃θ,β(Yt , Xt ) + oPnθn

(1) �Z ∼ N (0, Ĩθ ).

By repeated addition and subtraction along with the observations that any submatrix
has a smaller operator norm than the original matrix, we obtain and the matrix inverse
is Lipschitz continuous at a nonsingular matrix and we obtain

‖În, γ̄n − Ĩθ‖2 � ‖În, γ̄n − Ĩθ‖2.

Hence, by (43) have ‖În, γ̄n − Ĩθ‖2 = oPnθn
(ν1/2
n ). By Proposition S1 in Lee and Mesters

(2024b),

Î t,†n, γ̄n

Pnθn−−→ Ĩ†
θ and PnθnRn → 1, where Rn := {rank

(
Ĩ tn, γ̄n

)= rank(Ĩθ )
}

.

Suppose first that r := rank(Ĩθ )> 0. By Slutsky’s lemma and the continuous mapping
theorem, we have that

ŜSRn, γ̄n =Z′
nÎ

t,†
n, γ̄n

Zn �Z′Ĩ†
θZ ∼ χ2

r ,

where the distributional result X := Z′Ĩ†
θZ ∼ χ2

r , follows from, for example, Theo-
rem 9.2.2 in Rao and Mitra (1971). On Rn cn is the 1 − a quantile of the χ2

r distribution,

which we will call c. Hence, we have cn
Pnθn−−→ c and as a result, ŜSRn, γ̄n

− cn �X − c where

X ∼ χ2
r . Since the χ2

r distribution is continuous, we have by the Portmanteau theorem

Pnθn
(
ŜSRn, γ̄n > cn

)= 1 − Pnθn
(
ŜSRn, γ̄n − cn ≤ 0

)→ 1 − P(X − c ≤ 0) = 1 − P(X ≤ c) = a,

which completes the proof in the case that r > 0.
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We next handle the case with r = 0. On the sets Rn, we have that Î tn, γ̄n
is the zero

matrix, whose Moore–Penrose inverse is also the zero matrix. Hence, on these sets we
have ŜSRn, γ̄n

= 0 and cn = 0 and, therefore, do not reject, implying

Pnθn
(
ŜSRn, γ̄n > cn

)≤ 1 − PnθnRn → 0.

It follows that Pnθn(ŜSRn, γ̄n
> cn ) → 0.

This completes the demonstration of the pointwise convergence

lim
n→∞Pnθn(b,h)(Ŝn, γ̄n > cn ) =

{
α if rank(Ĩθ )> 0,

0 if rank(Ĩθ ) = 0.

Finally, to complete the proof, note that the norm on B × Ḣ induces the product
topology, hence B� ×H� is compact. The uniformity then follows from the asymptotic
uniform equicontinuity in total variation of (b, h) �→ Pnθn(b,h) on B�×H�, which is an im-
mediate consequence of Lemma 4 and the fact that asymptotic uniform equicontinuity
is implied by asymptotic equicontinuity on a compact set.

Proof of Corollary 2. Apply Theorem 1 to conclude:

lim
n→∞ inf

(b,h)∈B�×H�
Pnθn(b,h)(α ∈ Ĉn ) ≥ 1 − lim

n→∞ sup
(b,h)∈B�×H�

Pnθn(b,h)

(
ŜSRn, γ̄n > cn

)≥ 1 − α.

Proof of Proposition 2. By the uniform delta method (van der Vaart (1998, Theo-
rem 3.8)), under Pnθn(b,h),

√
n
(
g(α, β̂n ) − g

(
α, βn(b)

)) Pnθn(b,h)� N
(
0, Jγ�J′

γ

)
.

Combine with V̂n,α
Pnθn(b,h)−−−−→ Jγ�J

′
γ � 0 and the continuous mapping theorem to obtain

ng(α, β̂n )′V̂ −1
n,αg(α, β̂n )

Pnθn(b,h)� χ2
dg

.

Hence, pointwise in (b, h) ∈ B� ×H�,

lim
n→∞Pnθn(b,h)

(
g
(
α, βn(b)

) ∈ Ĉn,g,αn,1−a
)= lim

n→∞Pnθn(b,h)

(
ng(α, β̂n )′V̂ −1

n,αg(α, β̂n ) ≤ ca
)

= 1 − a.

The uniform statement then follows from Proposition 4.

Proof of Corollary 3. This follows directly from the hypotheses and the fact that

Pnθn(b,h)

(
g
(
α, βn(b)

) ∈ Ĉn,g
)

≥ Pnθn(b,h)

({
g(α, β̂n ) ∈ Ĉn,g,α,1−q2

}∩ {α ∈ Ĉn,1−q1 }
)

≥ Pnθn(b,h)

(
g(α, β̂n ) ∈ Ĉn,g,α,1−q2

)+ Pnθn(b,h)(α ∈ Ĉn,1−q1 ) − 1.
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Proof of Theorem 2. Similar to as in the proof of Theorem 1, define

Rn,1(γ� ) := ∥∥√nPn[�̂γ� − �̃θ� ]
∥∥,

Rn,2(γ� ) := ∥∥√nPn[�̃θ� − �̃θ] + √
nĨn,θ(γ� − γ)

∥∥,

Rn,3(γ� ) := ‖Îγ�,n − Ĩθ‖,

where θ� := (γ�, η). By Corollary 1, for any gn → g ∈ R
Lα+Lβ , Pnθ � �Pnθn(gn,0). By Lemmas

S13, S15, and Le Cam’s first lemma (e.g., van der Vaart (1998, Lemma 6.4))

Rn,i(γn )
Pnθ−→ 0 for i= 1, 2, 3,

where γn = γ+ gn/
√
n. Hence, by Lemma S21 also

Rn,i(γ̄n )
Pnθ−→ 0 for i= 1, 2, 3. (44)

Combine these and (29) to yield

√
nĨθ(γ̂n − γ) = √

nĨθ(γ̄n − γ) + √
nĨθÎ

−1
n, γ̄n

�̄n, γ̄n

= √
nĨθ(γ̄n − γ) + √

nPn(�̂n, γ̄n − �̃θ̄n ) + √
nPn(�̃θ̄n − �̃θ )

+ √
nPn�̃θ + oPnθ (1)

= √
nPn�̃θ + oPnθ (1).

Combine this with Lemma S15(i) and the continuous mapping theorem.
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