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Pauli Murto
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Economics

Julia Salmi
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Economics

We introduce a collective experimentation problem where a continuum of agents
choose the timing of irreversible actions under uncertainty and where public feed-
back from the actions arrives gradually over time. The leading application is the
adoption of new technologies. The socially optimal expansion path entails an in-
formational trade-off where acting today speeds up learning but postponing cap-
italizes on the option value of waiting. We contrast the social optimum to the de-
centralized equilibrium where agents ignore the social value of information they
generate. We show that the equilibrium can be obtained by assuming that agents
ignore the future actions of other agents, which lets us recast the complicated two-
dimensional problem as a series of one-dimensional problems.

Keywords. Social learning, experimentation, optimal stopping, technology
adoption.

JEL classification. C61, C73, D82, D83.

1. Introduction

Innovation adoption decisions have long-run consequences that can be observed only
gradually over time. Consider an individual firm contemplating whether to invest in a
novel production technology or an individual consumer contemplating whether to pur-
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chase a novel durable good. Each new adopter begins to observe how well the technol-
ogy functions in different situations and whether technical problems emerge over time.
The experiences of the adopters spill over to potential future adopters through private
communications, social media, or platforms that collect reliability statistics. An individ-
ual who has not yet made an adoption decision utilizes such information in deciding
whether and when to adopt the new technology herself. Since past adopters continue
to produce information over time, the current efficacy of learning is increasing in the
number of past adopters.

In this paper, we analyze how this kind of endogenous gradual learning shapes the
socially optimal path of incremental actions and we contrast this to a situation where the
actions are decentralized. The key feature of our model is that each individual action has
a long-run impact on the flow of information that is publicly observed.

In the model, a continuum of small agents decide whether and when to take an ir-
reversible action (e.g., adopt the new innovation). We refer throughout the paper to the
action as a decision to “stop.” An unknown binary state determines if stopping is prof-
itable for the agents. Crucially, learning is gradual: upon stopping, each agent initiates
a persistent flow of information that other agents observe over time. This is in contrast
to the standard experimentation models where an action generates an instantaneous
one-time signal and further actions are needed to learn more.1

Our main question is how the incremental path of stopping decisions—the adop-
tion path—is determined on the one hand in a decentralized equilibrium where agents
optimize individually, and on the other hand, when a central planner coordinates the
actions to maximize the expected welfare summed over the agents. The contribution of
this paper is twofold. First, we develop a novel methodological approach with suitable
solution techniques. Second, we analyze economic trade-offs that arise in the combina-
tion of gradual learning and irreversible decisions. Gradual learning creates a new trade-
off for the socially optimal expansions: the information generation effect calls for aggres-
sive expansion to improve information for future decisions and the option value effect
calls for cautious expansion to have better information for the current decisions. Previ-
ous literature has studied environments where these two effects arise separately; we fo-
cus on the informational trade-off between them.2 A social planner trades off these two
effects dynamically over time, but individual agents internalize only the option value
effect, and thus the decentralized equilibrium suffers from informational free-riding.

We approach experimentation under gradual learning by modeling the cumulative
path of individual actions as a stock process, which controls the speed of learning. The
micro-foundation for our specification is that each agent who has stopped produces
a persistent stream of i.i.d. signals conditional on the true state. In continuous time,

1In reality individual adoption decisions are often costly to reverse, if not entirely irreversible, which
is enough to add persistence in the social learning. We look at the extreme case of such persistence—
adoption decisions that are infinitely costly to reverse—to understand clearly the theoretical implications
of irreversibility and gradual learning.

2This informational trade-off would not arise in a model where learning is instantaneous rather than
gradual because there would then be no scope for improving information by delaying adoption. Papers
studying instantaneous learning include Bonatti (2011), Che and Hörner (2017), Frick and Ishii (2024), and
Laiho and Salmi (2024).
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this leads to an aggregate signal that follows a Brownian motion with an unknown drift,
determined by the true state, and a signal-to-noise ratio that is increasing in the stock of
agents who have stopped. Each stopping decision thus affects information generation
gradually over time.

The techniques to solve the decentralized equilibrium and the socially optimal pol-
icy turn out to be quite different. The common challenge is that the problems are two-
dimensional, as both the current stock and the current belief about the state affect the
optimal decisions. Furthermore, the stock and the belief processes are interlinked as
the stock determines the flow of new information. We show that the decentralized equi-
librium can be solved by analyzing the optimal stopping decisions of agents who ig-
nore that the other agents stop in the future, i.e., they take the stock as fixed on the
current level. This property turns the two-dimensional problem into a series of one-
dimensional stopping problems. Our proof for the equivalence between the two stop-
ping problems builds on the fact that information arrives smoothly over time under
gradual learning.

Unlike the decentralized equilibrium, the socially optimal policy takes into account
the social value of faster learning. Optimization under the assumption that the stock
remains fixed does not work because the value of information depends on the expected
future actions. We cannot solve the optimal policy in closed form, but we derive a non-
linear differential equation that determines the policy and allows us to characterize it.
Because of the information generation effect, socially optimal policy favors earlier and
more aggressive expansions than what happens in the decentralized equilibrium. The
difference between the two is especially pronounced when the learning technology is
good and learning could potentially be fast. Compared to the no-learning benchmark,
gradual learning tends to increase the socially optimal stock for low beliefs and decrease
it for high beliefs due to the informational trade-off between information generation
and the option value of waiting.

Solving the social planner’s problem is an important part of our contribution. The
problem is of independent interest also because it can be interpreted as the canonical
problem of a single decision maker choosing how to expand a capital stock over time
under uncertainty. The key difference to existing literature in this area (see, e.g., Dixit
and Pindyck (1994)) is that in our model the uncertainty is resolved endogenously. This
is precisely what causes the disparity between the social optimum and the decentralized
equilibrium in our model.

1.1 Related literature

Using the framework of our paper, the previous literature on learning can be organized
based on whether the information generation effect or the option value effect is present
in the model. The current paper is the first to analyze the interaction of these effects.

The information generation effect is present in papers analyzing classic single-agent
bandit problems and experimental consumption (Gittins and Jones (1974), Rothschild
(1974), Prescott (1972) and Grossman, Kihlstrom, and Mirman (1977)). Introducing mul-
tiple agents to these models adds an informational externality that dampens the infor-
mation generation effect. Bolton and Harris (1999), Keller, Rady, and Cripps (2005), and
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Keller and Rady (2010) analyze such models under different assumptions on the learn-
ing technology. Applications include Bergemann and Välimäki (1997, 2000) and Bonatti
(2011) who analyze dynamic pricing. The option value effect does not arise in these pa-
pers because actions are reversible, and hence, learning always increases the level of op-
timal quantities relative to the no-learning benchmark. Strulovici (2010) shows that also
collective decision making by voting has the effect of reducing experimentation below
the socially optimal level.

When actions are irreversible but information arrives exogenously rather than en-
dogenously, only the option value effect is present. Seminal papers in this literature
include McDonald and Siegel (1986), Pindyck (1988), and Dixit (1989) and the ensuing
literature on real options is summarized in Dixit and Pindyck (1994). One can see our so-
lution to the social planner’s problem as extending the real options literature to endoge-
nous learning. In contrast to models with exogenous uncertainty, the social planner’s
solution diverges from the decentralized equilibrium.

A few papers investigate social learning with irreversible actions, which bears sim-
ilarities with informational free-riding in our decentralized solution. Frick and Ishii
(2024) analyze the adoption of new technologies using a Poisson process with instan-
taneous feedback to model learning. Because feedback from past actions is instanta-
neous, endogenous learning does not create an option value effect for the social plan-
ner unlike in our model with gradual learning. In equilibrium, on the other hand, free-
riding on the information generated by others creates an option value effect for individ-
ual agents, resulting in an inefficiently low rate of innovations. An early paper by Rob
(1991) makes a similar observation when analyzing sequential entry into a market of
unknown size. Similarly, in the models of optimal timing under observational learning,
the option value creates an incentive to wait causing socially inefficient delays (Chamley
and Gale (1994), Murto and Välimäki (2011)).

Introducing a large player can overturn the effect of social learning on optimal quan-
tities because a large player internalizes the information generation effect. Che and
Hörner (2017) study how a social planner, who designs a recommendation system for
consumers, can mitigate informational free-riding. Laiho and Salmi (2024) analyze
monopoly pricing in a similar setup. Both in Che and Hörner (2017) and in Laiho and
Salmi (2024), the presence of a social planner or a monopolist induces information gen-
eration effect. The crucial difference from the present paper is that there is no option
value effect since the principle gets more information only by attracting new consumers.

Our assumption that learning is gradual implies that past actions matter for the
current information flow. Two contemporaneous papers share this feature with us, al-
though their models and key trade-offs are otherwise different from ours. Liski and
Salanié (2023) analyze a single-agent problem where a decision maker controls the accu-
mulation of a stock that triggers a one-time catastrophe at an unknown threshold level.
The novel feature in their model is a random delay between the crossing of the threshold
and the onset of the catastrophe. Martimort and Guillouet (2020) analyze a model with
similar features focusing on a time-inconsistency problem under their assumptions.

Finally, the present paper is related to the literature on innovation adoption. Tradi-
tionally, the theoretical literature has focused on explaining adoption patterns through
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 97

noninformational (Mansfield (1961), Farrell and Saloner (1986), and Jovanovic and Lach
(1989)) or purely exogenous channels (Jensen (1982)). The few exceptions are Frick and
Ishii (2024) (discussed above), Young (2009), and Wolitzky (2018). In Young (2009) and
Wolitzky (2018), adopters are myopic, and hence, the option value effect does not arise.
There is vast empirical evidence for social learning in innovation adoption, including
Foster and Rosenzweig (1995), Duflo and Saez (2003), Munshi (2004), Bandiera and Ra-
sul (2006), and Conley and Udry (2010).3 The present paper contributes to this literature
by proposing a tractable model that matches the key characteristic in the studied real-
life settings: gradual learning from others’ outcomes.

2. Model

2.1 Actions and payoffs

A unit mass of small agents choose when, if ever, to take an irreversible action (to stop).
We index individual agents by their type θ and assume that θ is distributed according to
a continuously differentiable distribution function F with a full support on � := [θ, θ].
Time t is continuous and goes to infinity.

An agent’s stopping payoff, vω(θ), depends on the state of the world ω ∈ {H, L} such
that the payoff is higher in the high state of the world for all types: vH(θ) ≥ 0 > vL(θ).4

Payoffs are continuously differentiable with bounded derivatives and increasing in type:
for each θ ∈ �, v′

ω(θ) ≥ 0 for both ω ∈ {H, L} and v′
ω(θ) > 0 for either ω = H or ω = L

(or both).5 The realized payoff for an agent of type θ, who stops at time t, is e−rtvω(θ)
where r is the common discount rate. The payoff of not stopping (i.e., stopping at t = ∞)
is zero. We normalize vH(θ) = 0 so that type θ is indifferent between stopping and never
stopping if he is sure that ω = H; types lower than θ would be redundant since they
would never want to stop.

Agents are risk-neutral and maximize their expected discounted stopping payoffs.
The agents do not know the state of the world ω but learn about it over time as we will
describe next.

2.2 Learning

The key idea of gradual learning is that every agent who has stopped generates a flow of
conditionally independent public signals. Therefore, we consider endogenous learning
from the stock of stopped agents: let qt denote the stock (measure) of agents who have
stopped by time t.

3The findings in Foster and Rosenzweig (1995), Munshi (2004), and Bandiera and Rasul (2006) support
the importance of the option value effect and informational free-riding; individuals with good prospects to
learn from others are less likely to be early adopters.

4The analysis easily extends to the case where vL(θ) > 0 for some types. The only change is that all types,
who get a positive stopping payoff in both states of the world, stop immediately.

5This assumption ensures that the stopping payoff is strictly increasing in type for any interior belief
about the state.
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98 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Specifically, the public learns about the state by observing a Brownian diffusion:6

dyt = qtμω dt + σ
√
qt dwt , (1)

where we normalize μH = 1/2 and μL = −1/2, σ > 0 is the standard deviation of the
process, and wt is a standard Wiener process. Signal process (1) is the limit of a model
where qt is composed of discrete units that produce conditionally independent noisy
signals over time and where the total informativeness per unit of q is normalized to stay
constant. The signals can be, for example, interpreted as realized individual payoffs (see
Appendix A).7

We denote by xt the public posterior belief xt = Pr(ω =H|Ft ), where Ft is the natural
filtration generated by the signal process (1). The unconditional law of motion for the
public belief follows from Bayes’ rule:

dxt =
√
qt

σ
xt(1 − xt )dw̃t , (2)

where w̃t is a standard Wiener process. In equation (2), the term
√
qt/σ is the signal-to-

noise ratio of the process (1) and determines how fast the belief converges to the truth.
Hence, the higher the stock of stopped agents, the more informative the public signals.

2.3 Solution concepts

We will consider two outcomes of our model, one where individual agents choose their
stopping times in a decentralized manner and one where a social planner chooses the
stopping times in a centralized manner. In both cases, we use the term policy for a de-
scription of how the stock qt evolves over time. A policy Q = {qt }t≥0 is an increasing
stochastic process adapted to Ft . Notice that the signal process itself depends on the
evolution of qt , so that in effect we are defining policy Q jointly with signal process Y .

In the decentralized solution, individual agents take the policy Q as given when they
choose their stopping strategies. A strategy for an agent of type θ is a stopping time τ(θ)
adapted to Ft . Type θ solves

sup
τ(θ)

E
[
e−rτ(θ)vω(θ)|Q

]
, (3)

where the vertical line notation means that the expectation is for some fixed process Q.
We say that a stopping profile T = {τ(θ)}θ∈� is consistent with Q if

Pr
[∫ θ

θ
1
(
τ(θ) ≤ t

)
dF(θ) = qt

∣∣∣Q]
= 1

6The process is otherwise equivalent to the learning processes in Bolton and Harris (1999) and in
Moscarini and Smith (2001) but learning is from the stock of cumulative actions instead of being from the
flow of new actions. Note that this formulation gives rise to a bounded rate of learning even when all the
agents have stopped, i.e. when qt = 1.

7See Bergemann and Välimäki (1997, 2000), Bolton and Harris (1999), Moscarini and Smith (2001), and
Bonatti (2011) for other applications and further discussion. The difference to these papers is that they do
not consider learning from the stock but from the flow of new actions.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 99

for all t. In other words, T is consistent with Q if the measure of agents that it commands
to stop always matches the policy.

It is convenient to define solution concepts directly in terms of a policy rather than
in terms of a stopping profile. We consider two solution concepts. In a decentralized
equilibrium, agents optimize individually taking the policy as given.

Definition 1. A policy QE is a decentralized equilibrium if there exists a profile T E

such that (i) it is consistent with QE and (ii) τE(θ) solves (3) for each θ when Q =QE .

The socially optimal policy maximizes the expected total welfare.

Definition 2. A policy Q∗ is socially optimal if there exists a profile T ∗ such that: (i) it
is consistent with Q∗ and (ii)

E

[∫ θ

θ
e−rτ∗(θ)vω(θ)dF(θ)

∣∣∣Q∗
]

≥ E

[∫ θ

θ
e−rτ(θ)vω(θ)dF(θ)

∣∣∣Q]
,

for any policy Q and profile T = {τ(θ)}θ∈� consistent with Q.

In Section 3.5, we recast the problem of finding the social optimum as a control
problem for the stock process {qt }. This control problem is of independent interest for
various applications as a single-agent experimentation model.

3. Analysis

Our objective is to analyze how gradual learning affects stopping decisions. First, we dis-
cuss some common properties that hold regardless of whether stopping times are indi-
vidually or socially optimal and present the no-learning benchmark. Then we solve both
the (unique) decentralized equilibrium and the socially optimal policy. Lastly, we com-
pare the decentralized equilibrium and the socially optimal solution to the no-learning
benchmark and provide comparative statics results on the effects of learning.

3.1 Higher types stop first

In principle, one can implement a policy Q by many different stopping profiles. How-
ever, because the stopping payoffs are increasing in θ, in equilibrium higher type agents
want to stop whenever a lower type agent wants to stop, which leads to monotone stop-
ping profiles:

Lemma 1. If T ={τ(θ)}θ∈� maximizes (3) for each θ for given process Q, then

Pr
[
τ(θ) ≤ τ

(
θ′)|Ft ; Q

] = 1

whenever θ > θ′.

Also, socially optimal stopping order is monotone.
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Lemma 2. Any stopping profile T = {τ(θ)}θ∈� consistent with Q satisfies:

E

[∫ θ

θ
e−rτ(θ)vω(θ)dF(θ)

∣∣∣Ft ; Q
]

≤ E

[∫ θ

θ
e−rτmon(θ)vω(θ)dF(θ)

∣∣∣Ft ; Q
]

,

where τmon(θ) := inf{t : qt ≥ 1 − F(θ)}.

Lemma 2 states that any nonmonotone stopping profile can be improved by rear-
ranging the agents to stop in descending order of type while keeping the evolution of qt
unchanged.

We prove both Lemma 1 and Lemma 2 in Appendix A. The lemmas mean that it is
without loss of generality to restrict attention to stopping profiles where the agents stop
in a descending order by type. It follows that there is a one-to-one mapping between
the stock qt and the largest type θt who has not stopped: qt = 1 −F(θt ). Throughout the
paper, we use notation q(θ) := 1 − F(θ) to denote the stock as a function of the current
highest type, which has an inverse (current highest type): θ(q) := {θ : 1 −F(θ) = q}. With
a slight notational abuse, we use vω(q) to denote the stopping payoff of type θ(q).

3.2 Boundary policies

This subsection discusses the dynamics in our model. It turns out that both solutions
can be characterized as boundary policies.

Definition 3. A policy Q is a boundary policy if there exists a continuous function q̃ :
[0, 1] → [0, 1] such that qt = q̃(maxs∈[0,t] xs ) where q̃ is strictly increasing for all x such
that q̃(x) > 0.

A boundary policy is Markovian: agents’ stopping decisions depend only on the
stock and the belief. Because stopping is irreversible, the stock at time t is determined
by the highest belief reached up to t. A boundary policy hence divides the stock-belief
state space into two regions: in the expansion region, more agents stop until the stock
equals q̃(x) and in the waiting region, everyone waits.

A boundary policy is fully characterized by the inverse of q̃, an increasing policy func-
tion x̃ : [0, 1] → [0, 1], which maps the stock to the cutoff belief.8 It turns out that it is eas-
ier to use policy functions to characterize our solutions than functions q̃. Figure 1 illus-
trates a boundary policy and the implied dynamics in the state space. Above the bound-
ary, the stock increases (horizontal movement in the figure) and below it, the stock stays
constant and only the belief moves (vertical movement). As soon as the belief hits the
boundary from below, the quantity is pushed toward right along the boundary. The ex-
pansions in the stock are immediate (depicted by solid arrows in the figure), whereas
the belief fluctuates according to the diffusion process (2) (dashed arrows). Apart from
the possible initial jump, the stock process stays below the boundary and is continuous
almost surely.

8We use the term policy to describe a stock process Q that can depend on the news process in an arbitrary
way. The term policy function defined here refers to the characterization of a particular type of policy—a
boundary policy—in the (q, x)-space.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 101

Figure 1. Dynamics in the waiting and expansion regions of the state space.

It is useful to note that since a boundary policy is Markovian in the stock-belief state
space, we can express an individual agent’s best-response to such a policy as an op-
timally chosen stopping region in the state space. We utilize this in establishing the
existence and uniqueness of a decentralized equilibrium.

3.3 No-learning benchmark

We start our analysis with the benchmark case without learning, which allows us to dis-
entangle how learning affects the decentralized equilibrium and the socially optimal
solution.

When there is no learning but the common belief stays constant, the agents’ stop-
ping problem is myopic. An agent stops if and only if his type is so high that the expected
payoff is positive: xvH(θ) + (1 − x)vL(θ) ≥ 0, or x≥ −vL(θ)/(vH(θ) − vL(θ)). Hence, the
policy function associated with the no-learning benchmark is given by

xmyop(q) = −vL(q)
vH(q) − vL(q)

,

where vω(q) := vω(θ(q)).
Individually optimal and socially optimal policies coincide when there is no learn-

ing.

3.4 Decentralized equilibrium

We next characterize the decentralized equilibrium defined in Definition 1. An optimal
stopping time for an individual agent trades off the cost of waiting with the option value
of waiting. Because the belief process changes endogenously as the stock of stopped
agents increases, waiting not only brings more information but also faster learning. De-
spite this, we show that we can solve equilibrium stopping times by first solving a se-
quence of stopping problems where each agent finds the optimal time to stop when
the stock is fixed. That is, we fix qt = q̂ for all t and find the optimal stopping time for
type θ(q̂) assuming that qt is constant and equal to q̂. This one-dimensional stopping
problem can be solved using standard techniques in the literature (see, e.g., Dixit and
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102 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Pindyck (1994) and the team problem in Bolton and Harris (1999)). We show that an
equilibrium in the original problem is obtained by solving the problem with fixed stock
separately for each individual type and tying these solutions together.9 In effect this
pins uniquely down a necessary condition for the threshold belief at which the “next”
agents stops, given the current stock qt , and hence, the procedure also establishes the
uniqueness of the equilibrium. Intuitively, uniqueness arises because actions are strate-
gic substitutes: an agent is less willing to stop if many other agents stop because then
information arrives faster.

We elaborate here further the intuition for the equivalence between the problem
with fixed stock and the original problem. Consider the problem of type θ who is con-
sidering whether or not to stop today. By Lemma 1, later expansions in the stock will only
take place when some lower type θ′ < θ finds it optimal to stop, in which case it is also
optimal for the higher type θ to stop. In other words, future expansions only take place
under circumstances where θ wants to stop in any case and, therefore, those expansions
have no bearing on the marginal consideration for stopping today. Hence, today’s con-
tinuation value of the marginal type is the same in equilibrium as it is in the problem
where stock is fixed. As this intuition suggests, the optimality of ignoring future changes
in the stock is an equilibrium property and may well be violated against other (nonequi-
librium) stock processes. The intuition does not rely on the properties of the learning
process in any way and, therefore, we expect the result to generalize to other processes
as such.10 In Appendix B, we formalize the argument to get the following result.

Proposition 1. There is a unique decentralized equilibrium, which is a boundary policy
characterized by a strictly increasing policy function xE :

xE(q) := −β(q)vL(q)(
β(q) − 1

)
vH(q) −β(q)vL(q)

,

where β(q) := 1
2 (1 +

√
1 + 8rσ2

q ).

According to Proposition 1, an agent of type θ waits until the belief reaches the cutoff
xE(q(θ)), which is precisely the optimal stopping threshold for the agent of type θ who
assumes that the stock remains fixed at q(θ) forever. The term β(q) reflects the cost of
waiting for information. We have β(q) > 1 for all q, but limq→∞β(q) = 1. The threshold
xE(q(θ)) is decreasing in β(q), which in turn is increasing in σ and r and decreasing in q.

9Our method to solve the decentralized equilibrium is inspired by a model of industry level investments
by Leahy (1993) who shows that under exogenous uncertainty the competitive equilibrium behavior coin-
cides with that of “myopic” investors who ignore the effect the future investments have on the price.

10One critical assumption for the result is that agents are infinitesimally small, which implies that an
individual deviation will not influence the stock process. Suppose, to the contrary, that there are N players
and by stopping a player causes a discrete jump in the stock. With incomplete information (i.e., if players’
types are private information), the result would not carry over, which we can deduce from the model an-
alyzed by Décamps and Mariotti (2004). With complete information, we believe that this property would
continue to hold (see, e.g., Cetemen, Urgun, and Yariv (2023) for a similar equilibrium property in another
context), but contrary to our setup there might be multiple equilibria.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 103

Figure 2. Equilibrium policy xE(q) for different σ when vH(q) = 1 − q, vL(q) = −1/2, and
r = 0.1.

The decentralized equilibrium is a boundary policy: whenever the belief is about to
cross the boundary xE(q), more agents stop. Notice that xE(q) is increasing in the signal
precision (decreasing in σ), which means that a better learning technology decreases the
stock of agents who are willing to stop at any given belief. This is because the better the
learning technology, the greater the option value of waiting, and hence, the higher the
belief threshold at which an agent stops. Figure 2 depicts the policy for different values
of σ . The no-learning benchmark is a special case of the decentralized equilibrium as
we take σ → ∞, which directly gives (by using that β(q) > 1):

Corollary 1. The policy function in the decentralized equilibrium is strictly higher than
the no-learning benchmark: xE(q) > xmyop(q) for all σ ≥ 0 and all q ≥ 0.

Notice that the limit σ → 0 corresponds to the case, where the state will be revealed
immediately. In that limit, xE(q) → 1 for all q > 1. The agents who learn very quickly
stop only once they are sure that the state is good.

3.5 Social optimum

We now consider the problem in Definition 2 where a benevolent social planner seeks
to maximize agents’ expected joint payoff. The problem is identical to a problem of a
single decision maker who controls a path of incremental expansions.

From Lemma 2, we know that the skimming property holds for the social optimum,
and hence, the problem is reduced to finding the policy Q that maximizes the expected
social welfare. We use notation U(Q; x, q) to denote the expected total payoff of agents
that have not yet stopped, given current state (x, q) and given a policy Q:

U(Q; x, q) = E

[∫ 1

q
e−rτ(s)(xτ(s)vH(s) + (1 − xτ(s) )vL(s)

)
ds

∣∣∣x, q; Q
]

. (4)
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104 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

The planner’s problem is then equivalent to solving supQU(Q; x, q) for all (x, q). By ap-
plying Itô’s lemma and using the properties of the Brownian motion, we get the following
Hamilton–Jacobi–Bellman (HJB) equation for the planner’s problem:

rV (x, q) = max
q′≥q

(
r

∫ q′

q

(
xvH(s) + (1 − x)vL(s)

)
ds + 1

2
Vxx

(
x, q′)x2(1 − x)2

σ2 q′
)

. (5)

We will solve the planner’s problem by showing that the HJB equation is satisfied by
a particular boundary policy that cuts the state space into an expansion region and a
waiting region. A verification argument then shows that the candidate solution obtained
in this way also maximizes the original objective (4).

We derive here heuristically the solution to the HJB equation (the formal proof and
the verification argument are in Appendix C). In principle, the optimal policy could
consist of several waiting and expansion regions. We start by guessing that there is only
one expansion and only one waiting region. Let x∗ : [0, 1] → [0, 1] denote our candidate
solution, which splits the state space in two so that for a given q the planner waits for
beliefs x < x∗(q) and expands for beliefs x ≥ x∗(q). Since the planner internalizes the
value of information for further decisions, we should intuitively expect the socially op-
timal expansion region to be larger than in the case of decentralized equilibrium, i.e.,
x∗(q) < xE(q). We shall verify that also this property indeed holds.

We first pin down the functional form for the value function that solves the HJB
equation (5) in the waiting region, i.e., below x∗. There it should be optimal to choose
q′ = q, and hence, (5) reduces to a differential equation:

rV (x, q) = 1
2
Vxx(x, q)

x2(1 − x)2

σ2 q.

This has a closed-form solution:11

V (x, q) = B(q)�(x, q), (6)

where B(q) is a function yet to be determined and

�(x, q) := xβ(q)(1 − x)1−β(q) and β(q) = 1
2

(
1 +

√
1 + 8rσ2

q

)
as in Proposition 1.

The value function (6) captures the option value of the future actions for the planner in
state (x, q).

The next step is to find functions B and x∗ that make sure that the right side of the
HJB equation is maximized everywhere. To do this, we first derive heuristically two ad-
ditional conditions that will pin down a candidate for B and x∗, and prove the opti-
mality of the candidate afterwards. To understand these conditions, imagine the so-
cial planner solving the problem in small successive steps, where each step consists of
choosing the optimal time to add the next increment dq to the current stock q. The

11We have discarded the other root of the characteristic equation, �̃(x, q) := x1−β(q)(1 − x)β(q), as we
must have that the value converges to the static solution as x→ 0 and x → 1.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 105

planner’s value function V (x, q) encompasses the values of options to all future stock
increments. At the time of adding dq, the planner obtains direct payoff increment
(x(q)vH(q) − (1 − x(q))vL(q))dq, but at the same time foregoes the option to add that
increment at some later moment thus inducing a change Vq(x, q)dq in the value func-
tion. Requiring these to be in balance at the moment of hitting the threshold x∗(q) gives
a condition analogous to the value-matching condition in the literature of optimal stop-
ping: Vq(x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) = 0. This is an accounting equation
that would have to hold irrespective of whether stock increment is undertaken at the
optimal time instant or not, so we need a second condition to guarantee the optimality
of the timing. Analogous to the smooth-pasting optimality condition in the literature of
optimal stopping, we require that derivatives with respect to x of the two terms match
at the threshold x∗(q): Vqx(x∗(q), q) + vH(q) − vL(q) = 0.12 Using equation (6), we can
write these two conditions as

x∗(q)vH(q) + (
1 − x∗(q)

)
vL(q) +Bq(q)�

(
x∗(q), q

) +B(q)�q
(
x∗(q), q

) = 0, (7)

vH(q) − vL(q) +Bq(q)�x
(
x∗(q), q

) +B(q)�xq
(
x∗(q), q

) = 0. (8)

Since we have derived conditions (7)–(8) heuristically, we proceed in the spirit of guess-
and-verify: we use them to pin down a candidate policy, but we will not rely on them
when we prove the optimality of the candidate.

We show in Appendix C that the system (7)–(8) can be transformed into a nonlinear
differential equation that defines our candidate policy x∗:

x∗′(q) = g
(
x∗(q), q

)
, (9)

where

g(x, q) = x(1 − x)
[
x
(
β′(q)

(
β(q) − 1

)
v′
H(q) − ((

β(q) − 1
)
β′′(q) − 2

(
β′(q)

)2)
vH(q)

)
+ (1 − x)

(
β′(q)β(q)v′

L(q) − (
β(q)β′′(q) − 2

(
β′(q)

)2)
vL(q)

)]
/
[(
x
(
β(q) − 1

)2
vH(q) + (1 − x)

(
β(q)

)2
vL(q)

)
β′(q)

]
.

The appropriate initial condition for the differential equation is x∗(1) = 1 because the
solution must equal the no-learning benchmark when the belief equals one.

The denominator of function g is zero at (1, 1), and hence, a potential singularity
problem arises. However, we show in Appendix C that the initial value problem has a
unique solution that satisfies x∗(q) ≤ xE(q) for all q ∈ [0, 1] (proof of Lemma 5 in Ap-
pendix C.2). This solution is our candidate for social optimum. We then take the fol-
lowing steps in Appendix C. First, we verify that, together with the value function in (6),
the candidate solves the HJB equation. We then further verify that it also maximizes the
original objective (4). In the process, we show that x∗(q) is continuous and strictly in-
creasing in q, and hence, satisfies the requirements for a boundary policy. We have the
following.

12See Dixit and Pindyck (1994), Chapter 11.1A or Pindyck (1988) for a more formal justification of analo-
gous conditions in a model with an exogenous stochastic process.
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106 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Proposition 2. The socially optimal policy x∗ is a boundary policy that satisfies x∗(q) ≤
xE(q) for all q ∈ [0, 1]. It solves the initial value problem (9) with initial value x∗(1) = 1.

Proposition 2 confirms that we can solve the potentially complicated history-
dependent problem with a simple boundary policy. However, unlike the decentralized
equilibrium, we cannot solve the planner’s problem in closed form because the planner
is truly forward-looking. For the socially optimal policy, both past and future actions are
relevant. The past generates information that is useful in evaluating the right decision
today, whereas future decisions can be based on information generated by today’s ac-
tion. The socially optimal policy balances the resulting trade-off between the efficient
use of information (option value effect) and the efficient production of information (in-
formation generation effect). In decentralized equilibrium, the agents only account for
the former effect, so it is the information generation effect that induces the social planner
to adopt faster than the decentralized equilibrium.

Figure 3 provides a numerical example of the effects of the signal precision. The
smaller the noise parameter σ is, the more precise the signals are. Better learning tech-
nology decreases the cutoff belief x∗(q) when the stock is small and increases it when the
stock is high. This arises because improved learning amplifies both information genera-
tion and option value effects. The former dominates in the beginning, when the existing
stock is low and there are many uncommitted agents who benefit from more informa-
tion. Conversely, the option value effect dominates later when there are few such agents.
Notice that the policies with learning (finite σ) are first below and later above the my-
opic policy without learning (σ = ∞). Hence, gradual learning may either increase or
decrease expansions as the informational trade-off suggests. The following proposition
generalizes this observation (see Appendix C.4 for the proof).

Proposition 3. There exists x ∈ (xmyop(0), 1) and x ∈ [x, 1) such that the socially opti-
mal stock is strictly larger than the no-learning benchmark for all beliefs in (x∗(0), x) and
strictly lower for all beliefs in (x, 1).

Figure 3. Socially optimal policy x∗(q) for different σ when vH(q) = 1 − q, vL(q) = −1/2, and
r = 0.1.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 107

Figure 4. Different policies when vH(q) = 1 − q, vL(q) = −1/2, σ = 0.5, and r = 0.1.

Figure 4 illustrates the relationship between the solutions. Compared to the no-
learning benchmark, gradual learning first increases and then decreases optimal expan-
sions over time. The decentralized policy requires a higher belief for further expansions
than the other policies.

Finally, it is illuminating to look at what happens to the actual speed of learning
when the learning technology improves. To do that, let q∗

σ (x) and qEσ (x) denote the
socially optimal and the decentralized stocks for signal precision σ .

Proposition 4. (a) The socially optimal signal-to-noise ratio explodes as noise vanishes:√
q∗
σ (x)/σ → ∞ as σ → 0 for all x ∈ (0, 1). (b) The signal-to-noise ratio in decentralized

equilibrium stays bounded as noise vanishes:
√
qEσ (x)/σ → a(x) as σ → 0 where a(x) = 0

for all x≤ xstat(0) and a(x) ∈ (0, ∞) for all x ∈ (xstat(0), 1).

Learning gets arbitrarily fast in the socially optimal solution when the learning tech-
nology improves, whereas learning remains slow in the decentralized equilibrium. The
latter is caused by informational free-riding: no-one wants to be the first one to stop if
information arrives fast. This result suggests that the signal precision σ is an important
determinant of welfare implications of the model. In Appendix C.5, we prove Proposi-
tion 4 and derive the functional form for a(x).

3.6 Adoption path and long-run distribution of the stock

Our model generates an S-shaped adoption path. We do not have a closed-form solu-
tion for the expected stock at a given time, but it is straightforward to generate one by
simulation. Figure 5 shows the simulated average stock both in the decentralized equi-
librium and in the social optimum, conditional on ω= H. The adoption is first slow but
then gets faster due to faster learning. Eventually, adoption slows as the marginal agent’s
valuation gets lower and the option value effect increases.

One can compute explicitly the probability distribution of the stock in the long-run
for any boundary policy, including the decentralized equilibrium and social optimum.
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108 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Figure 5. Expected adoption paths conditional on ω = H. Parameters: vH(q) = 1 − q,
vL(q) = −1/2, σ = 0.5, r = 0.12, x0 = 0.15, q0 = 0.01.

Since the long-run stock q∞ := limt→∞ qt is equal to the value of the boundary policy q̃(·)
evaluated at the historical maximum value of the process xt , we can do this by analyzing
the distribution for the maximum value of the belief process xt . Here, we utilize the
belief process being a martingale with a continuous path that eventually converges to
truth. Note that if ω = H, then the stock qt must converge to 1 as the agents learn that
stopping is profitable, whereas if ω = L, the long run stock remains random as some
fraction of the agents will have stopped by mistake.

Proposition 5. Take an arbitrary boundary policy q̃(x) with inverse x̃(q) and assume
that the initial stock satisfies q0+ := max(q0, q̃(x0 )) > 0.13 The probability distribution of
the long-run stock is given by

Pr(q∞ ≤ q|ω=L) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if q < q0+ ,
x̃(q) − x0

x̃(q)(1 − x0 )
if q0+ ≤ q < q̃(1),

1 if q ≥ q̃(1),

Pr(q∞ ≤ q|ω=H ) =
{

0 if q < q̃(1),

1 if q ≥ q̃(1).

Since the socially optimal policy function is always below the decentralized equilib-
rium policy function, i.e., x∗(q) < xE(q) for all q, the long-run stock tends to be higher
in social optimum than in equilibrium:

Corollary 2. The long-run stock in social optimum dominates the long-run stock in
decentralized equilibrium in the sense of first-order stochastic dominance.

13If q0+ = 0, i.e., x0 ≤ x̃(0) and q0 = 0, then qt ≡ 0 for all t ≥ 0 and no learning will ever take place.
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4. Concluding remarks

Modeling gradual arrival of endogenous information enables the analysis of various
real-life situations where the long-run consequences of a decision determine its prof-
itability. Because gradual learning creates a novel informational trade-off on the social
level between information generation and the option value of waiting, it dramatically
shapes the incentives of experimentation.

Our model of gradual learning has also technical appeal as a tool for applied work. As
demonstrated in this paper, the decentralized equilibrium can be solved in closed form.
We believe that the solution method can be extended to richer environments, such as
models where the stock controls a generic state process or where the actions of other
players affect the profitability of stopping directly through payoff externalities.

An important takeaway from the paper is that the signal precision has subtle im-
plications for learning and welfare. We show that even if signals get arbitrarily precise,
learning remains slow in the equilibrium. This contrasts with the socially optimal so-
lution, in which the true state is learned arbitrarily fast as the learning technology im-
proves. As a result, the equilibrium welfare loss is particularly severe if the learning tech-
nology is good.

As a final point, note that irreversibility of actions is a crucial assumption in our
model. The conclusions in models with fully reversible actions such as Bonatti (2011)
are significantly different. A natural extension to our model would be to analyze what
happens if stopping decisions are partially reversible. While we believe that many of the
qualitative properties of our results stay the same, pursuing such an extension is beyond
the scope of this paper.

Appendix A: Additional material for Sections 2 and 3.1

A.1 Learning process as the continuous limit

Consider a discrete model where the number of agents is n and where the period length
is dt. Let the signal process be such that in each period, each agent who has stopped
generates a normally distributed conditionally i.i.d. signal:

yit ∼N

(
μω dt

n
,
σ2 dt

n

)
.

This normalization keeps the informativeness of the aggregate signal constant while let-
ting the number of small agents to grow as in Bergemann and Välimäki (1997).

When the number of agents who has stopped is k ≤ n, this implies the following
aggregate signal:

k∑
i=1

yit ∼ N

(
μω dt

k

n
, σ2 dt

k

n

)
.

Let q = k/n denote the fraction of agents who have stopped. Now, the signal process
(1) follows once we take the limit when n → ∞ (and k → ∞ so that k/n stays fixed) and
dt → 0.
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110 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Notice that the limiting distribution for the aggregate signal depends only on the
mean and the variance of yit (the central limit theorem). Hence, the signal process (1) is
also the limiting process for the case where yit is not normally distributed, including the
case where agents communicate through binary signals.

Furthermore, we can rewrite the model so that the individual signals represent real-
ized payoffs in a model where agents start receiving a stochastic flow payoff after stop-
ping: πt(θ) = πω(θ) + εt(θ) where εt(θ) ∼ N(0, σ2(πH(θ) − πL(θ))2 ). The noise term is
scaled so that every increment in q is equally informative. This assumption is not nec-
essary: in an earlier working paper version, we have analyzed the case of heterogeneous
informativeness and shown that both the analysis and the qualitative results remain un-
changed if the stopping profile is monotone. When we set πω(θ) = rvω(θ), the expected
stopping payoff is xtvH(θ) + (1 − xt )vL(θ) just like in the main text. Since there are no
further actions after stopping, it does not matter how fast the agents learn privately after
they have stopped: the parameter σ can be interpreted to capture both the noise in the
private learning and the noise in communication.

A.2 Proof of Lemma 1

Proof. Let policy Q be fixed. Type θ wants to stop at time t if

xtvH(θ) + (1 − xt )vL(θ) ≥ E
[
e−r(τ−t )(xτvH(θ) + (1 − xτ )vL(θ)

)
|Ft ; Q

]
,

for all stopping rules τ. Or equivalently,

vL(θ)
(
1 − xt −E

[
e−r(τ−t )(1 − xτ )|Ft ; Q

]) + vH(θ)
(
xt −E

[
e−r(τ−t )xτ|Ft ; Q

]) ≥ 0.

The left-hand side is increasing in θ because expressions (1−xt −E[e−r(τ−t )(1−xτ )])
and (xt −E[e−r(τ−t )xτ]) are positive (follows from that xτ is a martingale and e−r(τ−t ) < 1)
and vω is increasing. Therefore, if type θ wants to stop, type θ′ > θ wants to stop, too.

A.3 Proof of Lemma 2

Proof. T and T mon are both consistent with Q. We show that monotone stopping or-
dering maximizes ex post welfare for all realized paths of (X , Q). The claim follows once
we show that for all types θ, θ′ ∈ [θ, θ] such that θ > θ′ and for all realized stopping times
t, t ′ ∈R+ such that t ≤ t ′,

e−rtvω(θ) + e−rt ′vω
(
θ′) ≥ e−rt ′vω(θ) + e−rtvω

(
θ′).

The above condition is equivalent with (e−rt − e−rt ′ )(vω(θ) − vω(θ′ )) ≥ 0, which neces-
sarily holds as t ≤ t ′ and vω(θ) ≥ vω(θ′ ) by assumption if θ > θ′.

Appendix B: Decentralized equilibrium

B.1 Proof of Proposition 1

We will show that the policy in Proposition 1 is a decentralized equilibrium. Fix policy
Q to be the boundary policy in Proposition 1 and consider optimal stopping of type θ
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 111

against it. Except possibly at the initial time t = 0, the state (xt , qt ) will remain in set X
that we call the feasible region:

X : = {
(x, q) : 0 ≤ q ≤ 1, 0 < x ≤ xE(q)

}
.

Since Q is a Markovian process, we can express the stopping problem of type θ as a
Markovian problem, where the task it to choose optimally a stopping set Sθ ⊆ X in the
feasible region. (We will also check at the end that the optimal behavior outside of X
is consistent with the initial jump at time t = 0.) Denote by Fθ(x, q) the value function
under optimally chosen stopping set Sθ:

Fθ(x, q) = E
(
e−rτ(Sθ )uθ(xτ(Sθ ) )|x, q

)
,

where τ(Sθ ) = inf(t : (xt , qt ) ∈ Sθ ) is the first hitting time of Sθ and uθ(x) := xvH(θ) + (1 −
x)vL(θ) is the stopping value at belief x.

Before analyzing the shape of the optimal stopping set, we can already conclude
some basic properties of Fθ(x, q). In the stopping set, (x, q) ∈ Sθ, we must have
Fθ(x, q) = uθ(x). In the continuation set, (x, q) ∈ X\Sθ, the properties of Fθ(x, q) are
determined by the infinitesimal generator of the process (xt , qt )t≥0. Although the pro-
cess is two-dimensional, qt increases only when xt hits new historical record values and
the set of such times is of zero measure. The process qt is hence constant almost every-
where and the infinitesimal generator of (xt , qt ) in the interior of X\Sθ reduces to that of
the process xt as if qt is fixed. We can write the infinitesimal generator of xt as (see, e.g.,
Peskir, Shiryaev, and Shirayev (2006)):

x2(1 − x)2q

2σ2

∂2

∂x2 .

It follows that the Hamilton–Jacobi–Bellman equation for the agent’s value in the interior
of X\Sθ takes the form:

rFθ(x, q) = x2(1 − x)2

2σ2 q
∂2Fθ(x, q)

∂x2 .

This is a partial-differential equation of Fθ(x, q), but it only involves derivatives with
respect to x, and we can write its general solution in closed form as

Fθ(x, q) =Aθ(q)�(x, q) +Bθ(q)�̃(x, q), (10)

where Aθ(q) and Bθ(q) are functions of q (we index by θ to emphasize where depen-
dence on type enters), and where

�(x, q) = xβ(q)(1 − x)1−β(q),

�̃(x, q) = x1−β(q)(1 − x)β(q),

β(q) = 1
2

(
1 +

√
1 + 8rσ2

q

)
.
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112 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

At the boundary xE(q), the stock qt increases instantaneously as x hits new record val-
ues. Whenever such a boundary point is in the continuation region, the following con-
dition of normal reflection must hold (Peskir, Shiryaev, and Shirayev (2006)):14

∂

∂q

[
Fθ(x, q)

]
x=xE(q) = 0. (11)

As a preliminary step, we solve an auxiliary optimal stopping problem, where the
stock is assumed to be fixed at qt ≡ q forever.

Lemma 3. Assume that the stock is fixed at qt ≡ q forever. Then it is optimal for θ to stop
if and only if xt ≥ x̂θ(q), where

x̂θ(q) = β(q)vL(θ)

β(q)vL(θ) + (
1 −β(q)

)
vH(θ)

.

The corresponding value function is

Fθ(x; q) =

⎧⎪⎨⎪⎩
uθ(x) if x≥ x̂θ(q),(

x

x̂θ(q)

)β(q)( 1 − x

1 − x̂θ(q)

)1−β(q)

uθ
(
x̂θ(q)

)
if x < x̂θ(q),

where uθ(x) := xvH(θ) + (1 − x)vL(θ) is the stopping value at belief x.

Proof. This is a standard one-dimensional optimal stopping problem and it is well
known that the solution is some stopping threshold that we denote x̂θ(q) (see, e.g., Dixit
and Pindyck (1994) or the team problem in Bolton and Harris (1999)). The value func-
tion, denoted Fθ(x; q), must take the form (10) when x < x̂θ(q). If it is certain that ω =L,
then the option to stop is worthless and we get the boundary condition Fθ(0; q) = 0.
This implies Bθ(q) = 0. The value-matching condition Fθ(x̂θ(q); q) = uθ(x̂θ(q)) and
the smooth-pasting condition ∂

∂xFθ(x̂θ(q); q) = ∂
∂xuθ(x̂θ(q)) uniquely determine the re-

maining constant Aθ(q) and the stopping threshold x̂θ(q) and we get the formulas given
in the lemma.

The lemma says that it is optimal to wait below x̂θ(qt ) if qs is assumed fixed for all
s > t. If we relax this assumption and allow qs to increase arbitrarily for s > t, then wait-
ing at time t becomes even more desirable. This is because higher future values of qs
means improved future learning, which in turn will increase the value of waiting rela-
tive to immediate stopping. The lemma therefore implies that no matter what policy we
have, it can never be optimal for θ to stop if xt < x̂θ(qt ).

Lemma 4. If the current belief satisfies xt < x̂θ(qt ), then stopping immediately is strictly
dominated for type θ.

14When the boundary xE(q) is hit, the time path of qt is not differentiable; the time derivative dq/dt is
unbounded. Therefore, if it were to be the case that ∂

∂q [Fθ(x, q)]x=xE (q) 
= 0, then the expected instanta-
neous rate of change in the value function, E[dFθ(x, q)]/dt, would explode at the moment of hitting the
boundary.
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Theoretical Economics 20 (2025) Gradual learning from incremental actions 113

Proof. Assume that the current belief is (xt , qt ) = (x, q), where x < x̂θ(q). Consider a
simple strategy such that θ stops as soon as xt hits x̂θ(q) (no matter how qt evolves). For
a moment, assume that the stock is fixed at qs = q for all s > t. Then by Lemma 3, this
simple strategy gives value

Fθ(x; q) =
(

x

x̂θ(q)

)β(q)( 1 − x

1 − x̂θ(q)

)1−β(q)

uθ
(
x̂θ(q)

)
.

On the other hand, if we keep the threshold x̂θ(q) as above, but assume that the cur-
rent stock is fixed at a higher level, qs = q′ > q for all s > t, then the value of this simple
strategy gives (

x

x̂θ(q)

)β(q′ )( 1 − x

1 − x̂θ(q)

)1−β(q′ )
uθ

(
x̂θ(q)

)
>

(
x

x̂θ(q)

)β(q)( 1 − x

1 − x̂θ(q)

)1−β(q)

uθ
(
x̂θ(q)

) = Fθ(x; q),

where the inequality follows from β(q) being decreasing in q. In other words, the value
of such a simple threshold strategy is increasing in the learning speed determined by q.
It then follows that for an arbitrary Q (where qt = q and qs ≥ q for s > t), the value of the
simple strategy of stopping at threshold x̂θ(q) is weakly higher than Fθ(x; q). This means
that Fθ(x, q) ≥ Fθ(x; q), where Fθ(x, q) is the value of θ under optimal stopping rule
(instead of the simple strategy). Since we assumed x < x̂θ(q), we have Fθ(x; q) > uθ(x)
by Lemma 3 and, therefore, also Fθ(x, q) > uθ(x). Hence, stopping immediately cannot
be optimal for θ.

With these preliminary results in place, we now consider the optimal stopping policy
of θ against Q. Our plan is to show that the optimal stopping region Sθ is the dark blue
shaded region in Figure 6, i.e.,

Sθ = {
(x, q) : q ≥ q(θ), x ∈ [

x̂θ(q), xE(q)
]}

. (12)

Figure 6. Optimal stopping for type θ.
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114 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

As a first step, we note that it cannot be optimal for θ to stop at any (x, q) ∈ X with
q < q(θ). This follows directly from Lemma 4 above. Since all (x, q) ∈ X with q < q(θ)
satisfy x < x̂θ(q), it is strictly dominant for θ to wait.

As a second step, we will show that when q ≥ q(θ), it is always optimal to stop at the
boundary of X, i.e., at x = xE(q). Suppose, to the contrary, that there is some (x, q) /∈ Sθ,
where x= xE(q) and q ≥ q(θ). This amounts to assuming that Fθ(xE(q), q) > uθ(xE(q)).
We will show below that this implies

∂

∂x

[
Fθ(x, q)

]
x=xE(q) ≥ ∂

∂x

[
uθ(x)

]
x=xE(q), (13)

which, as we will further show below, leads to a contradiction.
There are two possible cases that we consider separately. First, suppose that even

though (xE(q), q) /∈ Sθ, it is optimal to stop at some lower belief, i.e., there is some x′ <
xE(q) such that (x′, q) ∈ Sθ (let x′ denote the highest such belief). In that case, Fθ(x′, q) =
uθ(x′ ). The continuation value Fθ(x, q) takes the form (10) in the interval (x′, xE(q))
with boundary condition Fθ(x′, q) = uθ(x′ ). Direct calculations show that Fθ(x, q) is
convex in x on the interval. Since we also necessarily have Fθ(x, q) ≥ uθ(x) for all x ∈
(x′, xE(q)), (13) follows.

Second, suppose that it is optimal to wait for all (x, q), where x < xE(q), in which
case Fθ(x, q) > uθ(x) for all x < xE(q). The continuation value must vanish as x → 0,
and the corresponding boundary condition Fθ(0, q) = 0 implies that the term Bθ in (10)
vanishes. Hence, the value function Fθ(x, q) takes the form Fθ(x, q) = Aθ(q)�(x, q)
for some function Aθ(q), and hence, ∂

∂x [Fθ(x, q)]x=xE(q) = Aθ(q)�x(xE(q), q). Our as-
sumption Fθ(xE(q), q) > uθ(xE(q)) is equivalent to

Aθ(q)�
(
xE(q), q

)
> xE(q)vH(θ) + (

1 − xE(q)
)
vL(θ),

which further implies

∂

∂x

[
Fθ(x, q)

]
x=xE(q) >

�x
(
x(q), q

)
�

(
x(q), q

) [
xE(q)vH(θ) + (

1 − xE(q)
)
vL(θ)

]
= β(q) − xE(q)(

1 − xE(q)
) vH(θ) + β(q) − xE(q)

xE(q)
vL(θ).

The last expression is greater than vH(θ) − vL(θ) if and only if

xE(q) ≥ β(q)vL(θ)

β(q)vL(θ) + (
1 −β(q)

)
vH(θ)

= x̂θ(q),

which is the case if and only if q ≥ q(θ). Noting that ∂
∂x [uθ(x)]x=xE(q) = vH(θ) − vL(θ),

we may conclude that (13) holds in this case, too.
Given that (13) holds, the rate of change in Fθ(x, q) along the boundary is

d

dq
Fθ

(
xE(q), q

) = ∂

∂x

[
Fθ(x, q)

]
x=xE(q)

d

dq
xE(q) + ∂

∂q

[
Fθ(x, q)

]
x=xE(q)
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= ∂

∂x

[
Fθ(x, q)

]
x=xE(q)

d

dq
xE(q)

≥ ∂

∂x

[
uθ(x)

]
x=xE(q)

d

dq
xE(q) = d

dq
uθ

(
xE(q)

)
,

where the last term of the first line disappears by (11) and where the inequality follows
from (13).

We have now shown that Fθ(xE(q), q) > uθ(xE(q)) implies d
dqFθ(xE(q), q) ≥

d
dquθ(xE(q)). Applying this iteratively to all q′ > q, we conclude that this implies fur-

ther that Fθ(xE(q′ ), q′ ) > uθ(xE(q′ )) for all q′ ∈ [q, 1], and in particular Fθ(xE(1), 1) >
uθ(xE(1)). We know that xE(1) = 1, so this yields Fθ(1, 1) > vH(θ). This is a contra-
diction, because vH(θ) is the stopping payoff under certainty of state ω = H, which is
clearly an upper bound for the value function for θ.

We conclude that it is optimal to stop at all boundary points for q > q(θ). To see that
this implies that it is also optimal to stop within the whole dark blue shaded region in
Figure 6, i.e., {(x, q) : q ≥ q(θ), x ∈ [x̂θ(q), xE(q)]} ∈ Sθ, note that qt can only increase if
xt reaches xE(q). Since θ stops at latest when xt reaches xE(q), the optimal continua-
tion value Fθ(x, q) cannot exceed the corresponding value with q fixed, i.e., Fθ(x; q). To
achieve that value, θ should optimize as if q is fixed, i.e., stop at all points [x̂θ(q), xE(q)].

We have now shown that the stopping rule defined in (12) maximizes (3) for policy Q.
Since qt can only increase at the boundary points xE(q), the first point in Sθ ever reached
is (x̂θ(q(θ)), q(θ)) and so the optimal stopping rule commands θ to stop exactly when qt
reaches 1 − F(θ) and is therefore consistent with Q. Since the initial state point (x0, q0 )
may be above the boundary, we must also check the optimal behavior of θ for initial state
points (x0, q0 ) /∈ X. If (x0, q0 ) /∈ X, then Q commands the stock to jump instantaneously
to point q0+ := {q : xE(q) = x0}. The point (x0, q0+ ) is in the optimal stopping region
of θ if and only if x0 ≥ x̂θ(q(θ)) and, therefore, it is optimal for θ to stop at time t = 0
if (x0, q0 ) /∈ X and x0 ≥ x̂θ(q(θ)). We conclude that the optimal stopping region of θ
contains also the light shaded region in Figure 6. This means that the initial jump from
(x0, q0 ) to (x0, q0+ ) is consistent with all types θ ≥ θ(q0+ ) optimally stopping at t = 0.
Collecting all this together, we can conclude that Q is a decentralized equilibrium.

It remains to prove the uniqueness part of the proposition, i.e., that no other equilib-
rium policies exist than the boundary policy defined in the proposition. For this, it suf-
fices to show that in any equilibrium qt cannot increase at state points where xt < xE(qt )
and qt cannot stay put at state points where xt > xE(qt ).

Take some decentralized equilibrium policy and some arbitrary history ht with cur-
rent state (xt , qt ). Since by Lemma 1 optimized stopping times are monotone in θ, it
must be that types θ > θ(qt ) have stopped while types θ < θ(qt ) have not yet stopped at
ht . We now show that for the cutoff type θ(qt ) both waiting above the boundary xE(qt ),
and stopping below the boundary xE(qt ) are inconsistent with Q being an equilibrium.

Consider first the case where the state after history ht satisfies xt < xE(qt ). But then
xt < x̂θ(qt ) for all types θ ≤ θ(qt ) (this is because x̂θ(qt )(qt ) = xE(qt ) and x̂θ(qt ) is de-
creasing in θ). By Lemma 4, it is strictly dominant for all types who have not yet stopped
to wait. We conclude that qt cannot increase at ht .
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116 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Consider next the case where the state after history ht satisfies xt > xE(qt ). For con-
tradiction, suppose that it is optimal for the cut-off type θ(qt ) to wait, i.e., it is optimal
to choose some stopping time τ that gives

E
(
e−rτuθ(qt )(xτ )|ht

)
> uθ(qt )(xt ).

By Lemma 1, equilibrium stopping times are monotone in θ and so the lower types must
wait even longer, i.e., optimal stopping times for types θ < θ(qt ) satisfy τ(θ) ≥ τ a.s. But
this means that qt stays fixed until τ, and hence, the same stopping time τ would give
type θ(qt ) a payoff strictly higher than uθ(qt )(xt ) also in the auxiliary problem analyzed in
Lemma 3, where qt is fixed by assumption. Since we have xt > xE(qt ) = x̂θ(qt )(qt ), this is
a contradiction with Lemma 3. We conclude that it cannot be optimal for the cut-off type
θ(qt ) to delay stopping. Since this conclusion holds for the cut-off type in any state value
(xt , qt ) satisfying xt > xE(qt ), the only policy consistent with players choosing optimally
their stopping times is the one where qt jumps immediately to the boundary point q

satisfying xE(q) = xt .

Appendix C: Socially optimal policy

C.1 Omitted calculations

We use the partial derivatives of �(x, q) in many proofs of this section:

�=
(

x

1 − x

)β(q)

(1 − x), �q =�β′(q) ln
(

x

1 − x

)
,

�x = �

(
β(q) − x

)
x(1 − x)

, �xx = �
β(q)

(
β(q) − 1

)
x2(1 − x)2 =�

2rσ2

x2(1 − x)2q
,

�xq = �β′(q)x−1(1 − x)−1
[

1 + (
β(q) − x

)
ln

(
x

1 − x

)]
,

�xxq = �
β′(q)

x2(1 − x2)[
β(q) + (

β(q) − 1
)(

1 +β(q) ln
(

x

1 − x

))]
.

Deriving the differential equation We first show that the conditions (7) and (8) imply
the differential equation in (9). Solving (7) and (8) for Bq(q) and B(q) yield

Bq(q) = A1(x∗(q), q
)
x∗(q) +A2(x∗(q), q

)
, (14)

B(q) = U1(x∗(q), q
)
x∗(q) +U2(x∗(q), q

)
, (15)

where

A1(x, q) := −�xq(x, q)
(
vH(q) − vL(q)

)
�(x, q)�xq(x, q) −�q(x, q)�x(x, q)

,

A2(x, q) := �xq(x, q)
(−vL(q)

) +�q(x, q)
(
vH(q) − vL(q)

)
�(x, q)�xq(x, q) −�q(x, q)�x(x, q)

,
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U1(x, q) := �x(x, q)
(
vH(q) − vL(q)

)
�(x, q)�xq(x, q) −�q(x, q)�x(x, q)

,

U2(x, q) := −�x(x, q)
(−vL(q)

) −�(x, q)
(
vH(q) − vL(q)

)
�(x, q)�xq(x, q) −�q(x, q)�x(x, q)

.

Differentiating (15) with respect to q and using the chain rule gives

Bq(q) = [
U1
x

(
x∗(q), q

)
x∗′(q) +U1

q

(
x∗(q), q

)]
x∗(q) +U1(x∗(q), q

)
x∗′(q)

+U2
x

(
x∗(q), q

)
x∗′(q) +U2

q

(
x∗(q), q

)
(16)

Equating (14) and (16), solving for x∗′(q), and simplifying yield the expression (9) in
the text.

C.2 Proof of Proposition 2

The proof contains three parts. In part 1, we show that the initial value problem (9) has a
solution x∗(q) that we take as our candidate for socially optimal policy. The candidate is
continuous and strictly increasing, and hence, defines a boundary policy. In part 2, we
show that our candidate policy x∗(q) satisfies the HJB equation (5). In part 3, we verify
that the solution to the HJB equation solves the original problem.

Part 1: Solution to the initial value problem (9) We first establish some key properties
of function g in (9).

Lemma 5. For all (x, q) such that q < 1 and x ≤ xE(q), function g(x, q) in (9) is strictly
positive, strictly increasing in x, and Lipschitz continuous. Furthermore, g(xE(q), q) >
xE

′
(q) for q < 1, and limq→1 g(xE(q), q) = xE

′
(1).

The proof is by straightforward inspection of the properties of g in (9) and of xE
′
(q)

in Proposition 1 and we relegate it to Appendix C.3.
The singularity at (1,1) prevents us from directly applying the Picard–Lindelöf theo-

rem to show the existence and uniqueness of a solution to the initial value problem (9).
Instead, we note that the requirements for the Picard–Lindelöf theorem are satisfied for
all initial conditions x(q1 ) = x1 where x(q1 ) ≤ xE(q1 ) and q1 < 1, and hence, each such
initial value problem defines a unique solution. Since g is increasing in x, these solu-
tions diverge when approaching (1, 1), and hence, at most one path can approach (1, 1)
from below the decentralized policy. The fact that limq→1 g(xE(q), q) = xE

′
(1) implies

that there is a path that approaches (1, 1) from the same direction as the decentralized
policy xE(q) and the fact that g(xE(q), q) > xE

′
(q) for q < 1 implies that such a path

must be strictly below the decentralized solution for all q < 1. It follows that the initial
value problem has a unique solution below the decentralized solution.

We have now shown that the initial value problem (9) has a unique solution x∗ such
that x∗(q) ≤ xE(q) for all x ≤ q. This solution x∗(q) is continuous and strictly increasing
in q, and it is our candidate policy.
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Part 2: Our candidate x∗ solves the HJB equation Fix x∗(q) to be the candidate policy
defined in part 1 and let q∗(x) be its inverse with the convention q∗(x) = 0 for x ≤ x∗(0).
By construction of this policy, the value function of the planner following x∗ is

V ∗(x, q)

=

⎧⎪⎨⎪⎩
∫ q∗(x)

q

(
xvH(s) + (1 − x)vL(s)

)
ds +B

(
q∗(x)

)
�

(
x, q∗(x)

)
for q < q∗(x)

B(q)�(x, q) for q ≥ q∗(x),
(17)

where �(x, q) = xβ(q)(1 − x)1−β(q) and B(q) is given by (15), which simplifies to

B(q) = x∗(q)
(
β(q) − 1

)
vH(q) + (

1 − x∗(q)
)
β(q)vL(q)

�
(
x∗(q), q

)
β′(q)

. (18)

Recall also that we have derived x∗(q) and B(q) utilizing conditions (7)–(8), which must
therefore hold. We rewrite them for convenience as

V ∗
q

(
x∗(q), q

) + x∗(q)vH(q) + (
1 − x∗(q)

)
vL(q) = 0, (19)

V ∗
qx

(
x∗(q), q

) + vH(q) − vL(q) = 0. (20)

We next state three lemmas that state some further properties of the value function
(17) that hold below, above, and at the boundary, respectively. The results follow from
(17)–(20) by straightforward calculations, which are provided in Appendix C.3.

Lemma 6. For all (x, q) with q < q∗(x), we have

V ∗
xx(x, q) = V ∗

xx

(
x, q∗(x)

) = B
(
q∗(x)

)
�xx

(
x, q∗(x)

)
.

Lemma 7. For all (x, q) with q > q∗(x), we have

V ∗
q (x, q) + xvH(q) + (1 − x)vL(q) ≤ 0.

Lemma 8. For all (x, q∗(x)) with q∗(x) > 0, we have

V ∗(x, q∗(x)
)

q∗(x)
+ xvH

(
q∗(x)

) + (1 − x)vL
(
q∗(x)

)
> 0.

Next, we show that the value function V ∗(x, q) in (17) satisfies

rV ∗(x, q) = max
q′≥q

�
(
q′; q

)
,

where

�
(
q′; q

) = r

∫ q′

q

(
xvH(s) + (1 − x)vL(s)

) + 1
2
V ∗
xx

(
x, q′)x2(1 − x)2

σ2 q′. (21)

 15557561, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
5452 by Z

B
W

 K
iel - H

am
burg (G

erm
an N

ational L
ibrary of E

conom
ics), W

iley O
nline L

ibrary on [04/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Theoretical Economics 20 (2025) Gradual learning from incremental actions 119

Using Lemma 6 and noting that �xx(x, q) = �(x, q) 2rσ2

x2(1−x)2q
, we can write

V ∗
xx

(
x, q′) =

{
B

(
q∗(x)

)
�xx

(
x, q∗(x)

)
for q′ < q∗(x)

B
(
q′)�xx

(
x, q′) for q′ ≥ q∗(x),

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B

(
q∗(x)

)
�

(
x, q∗(x)

) 2rσ2

x2(1 − x)2q∗(x)
for q′ < q∗(x)

B
(
q′)�(

x, q′) 2rσ2

x2(1 − x)2q′ for q′ ≥ q∗(x).

We can now rewrite (21) as

�
(
q′; q

)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r

∫ q′

q

(
xvH(s) + (1 − x)vL(s)

) + rB
(
q∗(x)

)
�

(
x, q∗(x)

) q′

q∗(x)
for q′ < q∗(x)

r

∫ q′

q

(
xvH(s) + (1 − x)vL(s)

) + rB
(
q′)�(

x, q′) for q′ ≥ q∗(x).

The function �(q′; q) is continuous in q′ and its derivative is

d�
(
q′; q

)
dq′ =

⎧⎪⎨⎪⎩r
(
xvH

(
q′) + (1 − x)vL

(
q′)) + rB

(
q∗(x)

)
�

(
x, q∗(x)

)
q∗(x)

r
(
xvH

(
q′) + (1 − x)vL

(
q′)) + r

(
Bq

(
q′)�(

x, q′) +B
(
q′)�q

(
x, q′))

=

⎧⎪⎨⎪⎩r

((
xvH

(
q′) + (1 − x)vL

(
q′)) + V ∗(x, q∗(x)

)
q∗(x)

)
for q′ < q∗(x)

r
((
xvH

(
q′) + (1 − x)vL

(
q′)) + V ∗

q

(
x, q′)) for q′ > q∗(x).

From Lemma 7, it follows that d�(q′;q)
dq′ ≤ 0 for q′ > q∗(x). Noting that vH(q) and vL(q)

are decreasing in q, it follows from Lemma 8 that d�(q′;q)
dq′ > 0 for q′ < q∗(x). Therefore,

we have

max
q′≥q

�
(
q′; q

)
=

{
�

(
q∗(x); q

)
for q < q∗(x)

�(q; q) for q ≥ q∗(x)

=

⎧⎪⎨⎪⎩r

∫ q∗(x)

q

(
xvH(s) + (1 − x)vL(s)

) + rB
(
q∗(x)

)
�

(
x, q∗(x)

)
for q < q∗(x)

rB(q)�(x, q) for q ≥ q∗(x).

= rV ∗(x, q)

Notice as well that from Lemma 6 we have that the partial derivative V ∗
xx is continuous.

Thus, our candidate V ∗ satisfies the HJB equation (5).
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120 Laiho, Murto, and Salmi Theoretical Economics 20 (2025)

Part 3: Verification The verification of the solution follows from the standard argu-
ments in the literature (see, e.g., Fleming and Soner (2006)). Let V ∗ be the candidate
solution (17), which also solves the HJB equation (5) and let q∗(x, q) = max{q, q∗(x)} be
the corresponding q∗. Then let T ≥ t be the time at which the candidate value function
is evaluated. From the generalized Itô’s formula, we have15

e−rT V ∗(xT , qT )

= e−rtV ∗(xt , qt ) −
∫ T

t
e−rsrV ∗(xs , qs )ds +

∫ T

t
e−rsV ∗

x (xs , qs )dxs

+
∫ T

t
e−rsV ∗

q (xs , qs )dqs + 1
2

∫ T

t
e−rsV ∗

xx(xs , qs )d[x]s + 1
2

∫ T

t
e−rsV ∗

qq(xs , qs )d[q]s

+
∫ T

t
e−rsV ∗

qs(xs , qs )d[q, x]s

where d[x]t and d[q]t are the quadratic variations of x and q and d[x, y]t is their
quadratic covariation. The process Qt has bounded variation, and hence, d[q]t =
d[x, y]t = 0. Notice also that dxt = xt(1 −xt )σ−1√qt dwt and d[x]t = x2

t (1 −xt )2σ−2qt dt.
We can further simplify the equation by noting that V ∗

q dq = −(xvH(q)+(1−x)vL(q))dq.
The HJB equation gives an upper bound for qs

σ2 x
2
s (1 − xs )2V ∗

xx(xs , qs ) − rV ∗(xs , qs ) ≤∫ q∗(xs ,qs )
qs

(xvH(q) + (1 − x)vL(q))dq, which equals zero for almost all s. Combining gives

e−rT V ∗(xT , qT ) ≤ e−rtV ∗(xt , qt ) −
∫ T

t
e−rs

(
xsvH(qs ) + (1 − xs )vL(qs )

)
)dqs

+
∫ T

t
e−rsVx

∗(xs , qs )
√
qs

σ
xs(1 − xs )dws .

Taking conditional expectations, multiplying by −ert , and simplifying then give

V ∗(xt , qt ) ≥ E

[∫ T

t
e−r(t−s)(xsπH(qs ) + (1 − xs )πL(qs )

)
ds + e−r(T−t )V ∗(xT , qT )|Ft

]
.

The candidate value function is bounded and, therefore, clearly satisfies the trans-
versality condition: limT→∞E[e−r(T−t )V ∗(xT , qT )] = 0. Hence, taking the limit T → ∞
gives that V ∗(x, q) ≥ maxQU(Q; x, q).

The last step is to use the fact that Q, induced by policy x∗, achieves the point-
wise maximum of the HJB-equation, and thus the inequalities above become equalities:
V ∗(x, q) = maxQU(Q; x, q). Our solution solves the original problem.

C.3 Proofs of Lemmas 5, 7, 6, and 8

Proof of Lemma 5. Taking the derivative of g(x, q) with respect x gives

gx(x, q) = − [
β′′(q)

(
x2(1 − 2x)

(
β(q) − 1

)3
vH(q)2 − 2(1 − x)xβ(q)

(
β(q) − 1

)
15To see that V ∗ ∈ C2 check V ∗

x at the boundary. The continuity of V ∗
xx and V ∗

qq follows from Lemma 6
and the continuity of V ∗

q and V ∗
xq are implied by conditions (7) and (8).
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× vH(q)vL(q)
(
(1 − 2x)β(q) − x

) + (1 − x)2(1 − 2x)β(q)3vL(q)2)
+β′(q)(2x2(2x− 1)

(
β(q) − 1

)2
vH(q)2β′(q) + (1 − x)2β(q)2vL(q)

× (
2(1 − 2x)vL(q)β′(q) − 2x

(
β(q) − 1

)
v′
H(q) − (1 − 2x)β(q)v′

L(q)
)

+ xvH(q)
(
4(1 − x)vL(q)β′(q)

(
(1 − 2x)β(q)2 + 2xβ(q) + x

)
− x

(
β(q) − 1

)2(
(1 − 2x)

(
β(q) − 1

)
v′
H(q) + 2(1 − x)β(q)v′

L(q)
))

)
]

/
[(
x
(
β(q) − 1

)2
vH(q) + (1 − x)

(
β(q)

)2
vL(q)

)2
β′(q)

]
.

Both g(x, q) and gx(x, q) are bounded if their denominators are bounded away from
zero. We show that this is true if q < 1 and x ≤ xE(q) by showing that it holds at x = xE .
First, for the denominator of g(x, q), we have

xE(q)
(
β(q) − 1

)2
vH(q) + (

1 − xE(q)
)(
β(q)

)2
vL(q) < 0, (22)

for all q ∈ [0, 1). Notice that the left side is increasing in x, and hence, (22) implies the
same inequality for all lower x. The condition (22) is equivalent with

−(
β(q) − 1

)
β(q)vH(q)vL(q)

β(q)vL(q) − (
β(q) − 1

)
vH(q)

< 0

which is true because the numerator is positive (other terms are positive except vL(q) <
0) and the denominator is negative. Together with β′(q) < 0, this implies that the de-
nominator of g is strictly positive and bounded away from zero. We can also conclude
that both g and gx are bounded and continuous in both x and q for all (x, q) such that
q < 1 and x≤ xE(q). Hence, g is Lipschitz continuous for all q < 1.

To see that g(x, q) > 0, it is now enough to show that the numerator of (9) is strictly
positive. First, notice that the second term inside the brackets is always positive but
the first term can be negative.16 The first term is scaled by x, while the second therm
is scaled by (1 − x). Therefore, if the numerator is positive at a belief above the bound-
ary, it must be positive for the belief at the boundary as well. Since the decentralized
belief, xE(q), is always above the fully optimal boundary, we can use it to show that the
numerator is positive.

Plugging in xE(q) to the numerator of (9) and dividing by x(1 − x) give

β(q)vL(q)
(
β′(q)

(
β(q) − 1

)
v′
H(q) − ((

β(q) − 1
)
β′′(q) − 2

(
β′(q)

)2)
vH(q)

)
β(q)vL(q) + (

1 −β(q)
)
vH(q)

+
(
1 −β(q)

)
vH(q)

(
β′(q)β(q)v′

L(q) − (
β(q)β′′(q) − 2

(
β′(q)

)2)
vL(q)

)
β(q)vL(q) + (

1 −β(q)
)
vH(q)

.

Since the denominator is negative (vL < 0 and β> 1), this is proportional to[
vH(q)v′

L(q) − v′
H(q)vL(q)

]
β′(q)β(q)

(
β(q) − 1

) − 2vH(q)vL(q)
(
β′(q)

)2
,

16This follows from vL(q) < 0, v′
ω(q) < 0, β′(q) < 0, β(q) > 1, and that β(q)β′′(q) > 2(β′(q))2.
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which is always positive because vH(q) > 0 and vL(q), v′
H(q), v′

L(q) < 0. Hence,
q(x, q) > 0 for all q ∈ [0, 1) and x≤ xE(q).

Similar direct calculations show that gx > 0 for all (x, q) such that q < 1 and x ≤
xE(q).

Next, insert xE(q) to (dropping all dependencies) (9):

g
(
xE(q), q

) =
( −β(1 −β)vLvH(

βvL + (1 −β)vH
)2 /

β′β(1 −β)vLvH
βvL + (1 −β)vH

)

·
(
β′β(1 −β)

(
vLv

′
H − v′

LvH
)

βvL + (1 −β)vH
+ βvLvH

(−2β′2 + (β− 1)β′′)
βvL + (1 −β)vH

+ (β− 1)vLvH
(−2β′2 +ββ′′)

βvL + (1 −β)vH

)

= vH
(
2vLβ

′ − (β− 1)βv′
L

) + (β− 1)βvLv
′
H(

(β− 1)vH −βvL
)2 .

The derivative of the decentralized policy xE is

xE
′
(q) =vH

(
vLβ

′ − (β− 1)βv′
L

) + (β− 1)βvLv
′
H(

(β− 1)vH −βvL
)2 .

By subtracting xE
′
(q) from g(xE(q), q), we get

g
(
xE(q), q

) − xE
′
(q) = β′(q)vL(q)vH(q)(

β(q)vL(q) + (
1 −β(q)

)
vH(q)

)2 .

This expression is strictly positive for q < 1 and goes to zero as q goes to 1 (since vH(q) →
0).

Proof of Lemma 6. Fixing some (x, q) such that q < q∗(x), differentiating (17) twice
with respect to x, and simplifying give

V ∗
xx(x, q) = V ∗

xx

(
x, q∗(x)

) + 2
(
q∗)′

(x)
(
V ∗
xq

(
x, q∗(x)

) + vH
(
q∗(x)

) − vL
(
q∗(x)

))
+ (

q∗)′′
(x)

(
V ∗
q

(
x, q∗(x)

) + xvH
(
q∗(x)

) + (1 − x)vL
(
q∗(x)

))
+ ((

q∗)′
(x)

)2(
V ∗
qq

(
x, q∗(x)

) + xv′
H

(
q∗(x)

) + (1 − x)v′
L

(
q∗(x)

))
. (23)

Noting that q∗(x) is the inverse function of x∗(q), the second term on the right-hand
side vanishes by condition (20) and the third term vanishes by the condition (19). Let us
look at the last term. First, since (19) holds along the boundary (x, q∗(x)), we can totally
differentiate it with respect to x to get

0 = V ∗
xq

(
x, q∗(x)

) + V ∗
qq

(
x, q∗(x)

)(
q∗)′

(x) + vH
(
q∗(x)

) − vL
(
q∗(x)

)
+ [

xv′
H

(
q∗(x)

) + (1 − x)v′
L

(
q∗(x)

)](
q∗)′

(x).
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Applying (20), several terms disappear and this reduces to

V ∗
qq

(
x, q∗(x)

) + xv′
H

(
q∗(x)

) + (1 − x)v′
L

(
q∗(x)

) = 0.

The last term in (23) vanishes as well, and it follows that V ∗
xx(x, q) = V ∗

xx(x, q∗(x)).

Proof of Lemma 7. If the claim is not true, there must be some x and q > q∗(x) such
that

V ∗
q (x, q) + xvH(q) + (1 − x)vL(q) > 0. (24)

We show that this leads to a contradiction by showing that (24) implies V ∗
xq(x, q) +

vH(q) − vL(q) > 0, which further implies that (24) holds also for all beliefs in [x, x∗(q)],
including V ∗

q (x∗(q), q) + x∗(q)vH(q) + (1 − x∗(q))vL(q) > 0, which contradicts (19).
It remains to show that (24) implies V ∗

xq(x, q) + vH(q) − vL(q) > 0. First, notice that
V ∗
q (x, q) = Bq(q)�(x, q) +B(q)�q(x, q), which then together with (24) implies

Bq >−�q

�
B − xvH + (1 − x)vL

�

where we have left out all dependencies to simplify notation. We now get the following
lower bound:

V ∗
xq + vH − vL = Bq�x +B�xq + vH − vL

> −�q�x

�
B − �x

�

(
xvH + (1 − x)vL

)
+B�xq + vH − vL

= �−1[B(�xq�−�q�x ) +�(vH − vL ) −�x
(
xvH + (1 − x)vL

)]
. (25)

The first term can be simplified as

�−1B(�xq�−�q�x ) = B�β′

x(1 − x)

= �β′

x(1 − x)

�∗
x

(
x∗vH + (

1 − x∗)vL) −�∗(vH − vL )

�∗
xq�

∗ −�∗
q�

∗
x

= x∗(1 − x∗)
x(1 − x)

�

�∗�∗
[
�∗

x

(
x∗vH + (

1 − x∗)vL) −�∗(vH − vL )
]
,

where the notation �∗ refers to �(x∗(q), q).
Now, (25) becomes

x∗(1 − x∗)
x(1 − x)

�

�∗�∗
[
�∗

x

(
x∗vH + (

1 − x∗)vL) −�∗(vH − vL )
]

− 1
�

[
�x

(
xvH + (1 − x)vL

) −�(vH − vL )
]

= 1
x(1 − x)

(
�

�∗
(
(β− 1)x∗vH +β

(
1 − x∗)vL) − (

(β− 1)xvH +β(1 − x)vL
))

, (26)
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where we have used the following for both terms inside the brackets:

�(vH − vL ) −�x
(
xvH + (1 − x)vL

) =�(vH − vL ) −�
β− x

x(1 − x)

(
xvH + (1 − x)vL

)
= −�

x(1 − x)

(
(β− 1)xvH +β(1 − x)vL

)
.

To conclude that (26) is larger than 0, notice first that (β−1)xvH +β(1 −x)vL < 0 when-
ever x < xE(q) and that it is increasing in x. Then observe that �/�∗ ∈ (0, 1), and hence,
(β− 1)xvH +β(1 − x)vL < (�/�∗ )((β− 1)x∗vH +β(1 − x∗ )vL ).

We conclude that V ∗
q + xvH + (1 − x)vL > 0 implies V ∗

xq + vH − vL > 0 and the proof
is complete.

Proof of Lemma 8. By definition of function �(x, q), the following holds for all x > 0,
q > 0:

rB(q)�(x, q) = 1
2
B(q)�xx(x, q)

x2(1 − x)2

σ2 q.

Differentiating w.r.t. q, the following holds as well:

r
(
Bq(q)�(x, q) +B(q)�q(x, q)

)
= 1

2
B(q)�xx(x, q)

x2(1 − x)2

σ2

+ 1
2

(
Bq(q)�xx(x, q) +B(q)�xxq(x, q)

)x2(1 − x)2

σ2 q

= r
B(q)�(x, q)

q
+ 1

2

(
Bq(q)�xx(x, q) +B(q)�xxq(x, q)

)x2(1 − x)2

σ2 q.

In particular, this holds for any q > 0, x = x∗(q):

r
(
Bq(q)�

(
x∗(q), q

) +B(q)�q
(
x∗(q), q

))
= r

B(q)�
(
x∗(q), q

)
q

+ 1
2

(
Bq(q)�xx

(
x∗(q), q

) +B(q)�xxq
(
x∗(q), q

))x∗(q)2(1 − x∗(q)
)2

σ2 q. (27)

From (19), we have

r
(
x∗(q)vH(q) + (

1 − x∗(q)
)
vL(q)

) + r
(
Bq(q)�

(
x∗(q), q

) +B(q)�q
(
x∗(q), q

)) = 0, (28)

and so combining (27) and (28), we get

r
(
x∗(q)vH(q) + (

1 − x∗(q)
)
vL(q)

) + r
B(q)�

(
x∗(q), q

)
q

+ 1
2

(
Bq(q)�xx

(
x∗(q), q

) +B(q)�xxq
(
x∗(q), q

)) · x
∗(q)2(1 − x∗(q)

)2

σ2 q = 0. (29)
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Plugging in (14) and (15) for B(q) and Bq(q), we get by direct computation at x= x∗(q):

Bq(q)�xx
(
x∗(q), q

) +B(q)�xxq
(
x∗(q), q

)
= x∗(q)

(
β(q) − 1

)2
vH(q) − (

1 − x∗(q)
)(
β(q)

)2
vL(q)

x∗(q)2(1 − x∗(q)
)2 . (30)

Rearranging the equation that defines the policy function xE(q) of the decentralized
equilibrium in Proposition 1, we have

xE(q)
(
β(q) − 1

)
vH(q) − (

1 − xE(q)
)
β(q)vL(q) = 0.

We have shown in Part 1 of the Appendix C.2 that x∗(q) < xE(q). Noting that β(q) >
1, vH(q) > 0, and vL(q) < 0, it follows that

x∗(q)
(
β(q) − 1

)2
vH(q) − (

1 − x∗(q)
)(
β(q)

)2
vL(q) < 0

and so it follows from (30) that

Bq(q)�xx
(
x∗(q), q

) +B(q)�xxq
(
x∗(q), q

)
< 0. (31)

Combining (29) and (31) give

r
(
x∗(q)vH(q) + (

1 − x∗(q)
)
vL(q)

) + r
B(q)�

(
x∗(q), q

)
q

> 0,

which is equivalent to

xvH
(
q∗(x)

) + (1 − x)vL
(
q∗(x)

) + B
(
q∗(x)

)
�

(
x, q∗(x)

)
q∗(x)

> 0

for all x for which q∗(x) > 0.

C.4 Proof of Proposition 3

Proof. First, recall that x∗(0) < xE(0) = xstat(0) by the proof of Proposition 2. Using
this together with the continuity of the policy functions, we find that there exists q > 0
such that xstat(q) > x∗(q) for all q < q. As the policy functions are strictly increasing and
continuous, the stocks q∗(x) and qstat(x) are pinned down as the inverse of the policy
functions for all x ≥ x∗(0) and x ≥ xstat(0), respectively. In addition, q∗(x) = 0 for all
x≤ x∗(0) and qstat(x) = 0 for all x≤ xstat(0), and hence, q∗ and qstat are continuous.

Let x := xstat(q) > xstat(0) where the inequality follows from xstat being strictly in-
creasing. Then qstat(x) < q∗(x) for all x ∈ [xstat(0), x) by that q∗ and qstat are the inverse
functions of x∗ and xstat. Furthermore, qstat(x) = 0 < q∗(x) for all x ∈ [x∗(0), xstat(0)],
which completes the proof.

Next, we show the other direction by showing that x∗(1) = xstat(1) = 1 and x∗
q(1) <

xstat
q (1). The first part is immediate. For the second part, use Lemma 5 and the unique-

ness of the solution to get x∗
q(1) = xEq (1). Now it is enough to show that the derivative of
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the equilibrium is smaller than of the myopic solution:

xEq(1) − xstat
q(1) = (β− 1)βvLv

′
H

(βvL )2 − vLv
′
H

(vL )2 = −vLv
′
H

βv2
L

< 0.

The myopic and optimal solutions meet at q = 1 but the optimal solution reaches
the point above the myopic solutions. Hence, by continuity there must exist q < 1 such
that x∗(q) > xstat(q) for all q ∈ (q, 1), which then further implies the existence of x < 1
by the same argument as used above for x.

C.5 Proof of Proposition 4

Proof. Part (a): We show the result by contradiction. By using the solution from Propo-
sition 2 and the value function derived in its proof, we show that q∗ = 0 cannot maximize
the HJB equation (5) in the limit as σ → 0 unless

√
q∗
σ (x)/σ → ∞. If q∗(x) goes to any

other value than 0, the claim immediately follows.
By taking the first-order condition from (5), we get

xvH
(
q∗) + (1 − x)vL

(
q∗) + 1

2
x2(1 − x)2

σ2

(
Vxx

(
x, q∗) + Vxxq

(
x, q∗)q∗).

The first-order condition is necessarily strictly positive at q∗ = 0 in the limit as σ → 0
once we show that Vxx(x, q) > 0 and Vxxq(x, q) is finite.

Recall that the value function is V (x, q) = B(q)�(x, q) and its derivatives are then
Vxx = B(q)�xx and Vxxq = Bq(q)�xx +B(q)�xxq. By plugging in the values of �xx, we get
Vxx = B(q)β(q)�(β(q) − 1)/(x2(1 − x)2 ). We know that B > 0 for all q < 1 in the optimal
solution and that � > 0 for all x ∈ (0, 1). Then Vxx > 0 whenever β > 1, which is true
whenever the signal-to-noise ration is finite.

We can write Vxxq as

Vxxq =
(
(β− x)2 + x(1 − x)

)(
xvH + (1 − x)vL

)
��xq −�q�x

+ (�q�xx −��xxq )(vH − vL )
��xq −�q�x

= (β− x)2 + x(1 − x)

x2(1 − x)2

(
xvH + (1 − x)vL

) −
β+ (β− 1) ln

(
x

1 − x

)
x(1 − x)

(vH − vL ).

Both terms in this expression are finite for all x ∈ (0, 1).
Hence, we conclude that for the first-order condition to be satisfied, we must have√

q∗
σ (x)/σ → ∞ as σ → 0.
Part (b): We fix the belief to be x ∈ (0, 1). By rearranging the solution in Proposition 1,

we get

β(q) = xvH(q)
xvH(q) + (1 − x)vL(q)

.

We take the limit limσ→0 β(qEσ (x)) = xvH(0)/(xvH(0) + (1 − x)vL(0)), which is strictly

larger than 1 for all x > xstat(q), and hence, further implying that limσ→0

√
qEσ (x)/σ <

 15557561, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.3982/T

E
5452 by Z

B
W

 K
iel - H

am
burg (G

erm
an N

ational L
ibrary of E

conom
ics), W

iley O
nline L

ibrary on [04/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Theoretical Economics 20 (2025) Gradual learning from incremental actions 127

∞. More precisely, we get the limit of the signal-to-noise ratio as a(x) satisfying
xvH(0)/(xvH(0) + (1 − x)vL(0)) = 1

2 (1 +
√

1 + 8ra(x)−2 ).

C.6 Proof of Proposition 5

Proof. Take an arbitrary boundary policy q̃(x) with inverse x̃(q). The long-run stock,
denoted q∞, is equal to q̃(x), where x := sup(xt |t > 0) is the long-run maximum value
of the belief. Deriving the distribution of the long-run stock boils down to deriving the
distribution of the maximum value of the belief. We do that utilizing the fact that the
belief process xt is a martingale with continuous path that eventually converges to truth.

Denote the initial belief by x0, and consider some x′ ∈ (x0, 1). Let τ(x′ ) := inf(t :
xt ≥ x′ ) denote the time of reaching belief x′ (with the convention τx′ = ∞ if x′ is never
reached). Since xt has continuous path and will converge to either 0 or 1 (depending on
true state), xτ(x′ ) is a random variable that takes value either x′ or 0. By Doob’s optional
sampling theorem, we have

x0 = E(xτ(x′ ) ) = Pr
(
x≥ x′) · x′ + Pr

(
x < x′) · 0,

from which we can solve Pr(x ≥ x′ ) = x0
x′ . On the other hand, we can write

Pr
(
x ≥ x′) = x0 Pr

(
x ≥ x′|ω= H

) + (1 − x0 ) Pr
(
x ≥ x′|ω= L

)
Since the belief converges to truth, we also have Pr(x ≥ x′|ω=H ) = 1.

Using the equations above, we get Pr(x ≥ x′|ω=L) = x0(1−x′ )
x′(1−x0 ) and so

Pr
(
x≤ x′|ω= L

) = 1 − Pr
(
x≥ x′|ω=L

) = x′ − x0

x′(1 − x0 )
.

Noting that Pr(q∞ ≤ q|ω) = Pr(x ≤ x̃(q)|ω), yields the long-run distribution of the stock
in the proposition.
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