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We use the complete set of administrative public healthcare records in Mexico
to provide the first nationwide assessment of diagnosed morbidity attributable
to PM2.5 exposure across various health conditions in a developing country. By
leveraging quasi-random air pollution shocks from variations in the planetary
boundary layer height across Mexican municipalities, we determine the causal
impact of PM2.5 on healthcare demand. Our findings indicate that a marginal
increase in PM2.5 leads to a 2.3% rise in emergency department admission rates.
This effect varies significantly by age group and exposure levels. While most of
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JEL codes: Q53, Q58, I31, I18

Keywords: Air pollution, Public health, Development, Environmental policy,
Health inequality

∗We are grateful to Moritz Drupp, Björn Bos, Felix Schaumann, Jonas Grunau, Lutz Sager, Nicolas Koch,
Hannah Klauber, Johannes Brehm, Henri Gruhl, Iivo Vehvilainen and Lassi Ahlvik as well as audiences
in Hamburg, Bordeaux, Berlin, and Helsinki for helpful comments and feedback. Piero Basaglia acknowl-
edges financial support from IdEx Université de Bordeaux / GPR HOPE.
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1. Introduction

Air pollution is the leading environmental cause of morbidity and mortality worldwide (Fuller

et al., 2022). A growing body of evidence indicates that even low to moderate levels of air

pollution can significant impact human health (e.g., Liu et al. 2019), with broad implications

for economic outcomes. Most causal empirical research on the health effects of pollution

has focused on developed countries, creating a critical gap on our understanding of these

impacts across different settings (Barwick et al., 2024). Consequently, researchers often rely

on dose-response relationships between pollution exposure and health outcomes estimated in

the US or Europe to inform policy frameworks in low- and middle-income countries (Arceo

et al., 2016). This practice raises concerns about the external validity of such benefit-transfer

methods, particularly due to differences in defensive behaviors and baseline pollution levels

across different contexts.

This paper provides, to our knowledge, the first nationwide causal assessment of the impact

of fine particulate matter (PM2.5) exposure on diagnosed morbidity in a developing coun-

try. We construct a novel dataset that combines administrative healthcare records in Mexico

with high-resolution satellite-based PM2.5 pollution maps. We extract daily emergency de-

partment (ED) admission data from public hospitals using the Mexican Ministry of Health’s

information system and calculate municipal admission rates for all clinical diagnoses from

2008 to 2022. Mexico serves as an ideal setting for our analysis due to its universal healthcare

system, which enables a representative examination of health outcomes across diverse demo-

graphic groups. About 70.9% of the population has public healthcare insurance, primarily

through the Instituto Mexicano del Seguro Social (IMSS) and the Instituto de Salud para el

Bienestar (INSABI) programs (INEGI, 2020). A key feature of Mexico’s healthcare system

is that EDs serve as a primary entry point for medical care, addressing both routine and

urgent healthcare needs (OECD, 2016b). Consequently, we interpret ED admissions as a

broader proxy measure of general healthcare demand in this context.

The challenges of isolating the causal relationship between pollution concentrations and

health outcomes are well-documented in economics and epidemiology. A primary identi-

fication threat is endogeneity related to sorting (e.g., Chay and Greenstone, 2005; Heblich

et al., 2021). To address these concerns, we use quasi-random shocks in air pollution caused

by monthly variations in the height of the planetary boundary layer (PBL) across Mexican

municipalities. The PBL is the lowest part of the Earth’s atmosphere interacting directly

with the surface. An increase in PBL height allows a greater volume of air to disperse

pollution through vertical mixing, thereby reducing ground-level concentrations (Levi et al.,

2020). We leverage this inverse relationship between PBL height and pollution concentrations
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within a Two-Stage Least Squares (2SLS) framework. Our preferred specification includes

flexible municipality-by-year fixed effects and month-of-the-year-by-municipality fixed effects,

meaning that the identifying variation arises from deseasonalized inter-annual municipal de-

viations. The exclusion restriction for our instrumental variable strategy asserts that, after

flexibly controlling for weather variables and municipality-specific year fixed effects, varia-

tions in PBL height do not affect local health outcomes except through their impact on air

pollution concentrations.

Our empirical analysis reveals three key findings. First, our estimates show that a 1 µg/m3

increase in PM2.5 results in a 2.3% rise in overall admission rates. We provide evidence

that this increase primarily arises from a increase in non-fatal conditions and morbidity,

rather than mortality. Our calculations suggest that lowering Mexico’s PM2.5 to the World

Health Organization (WHO) annual standard of 10 µg/m3 could reduce annual healthcare

expenditures by at least 0.5%. This reduction exceeds the estimated decline in hospitalization

costs from Deryugina et al. (2019) for a comparable PM2.5 reduction in the US (0.25%) but

is lower than the estimate from Barwick et al. (2024) for PM2.5 reductions to meet WHO

limits in China (1.5%). Our findings challenge the notion that morbidity constitutes a minor

aspect of the overall health burden of pollution (e.g., WHO and OECD 2015).

Second, we show that the estimated effect varies significantly by age group and primarily

relates to respiratory conditions and other unexplored health issues. Our estimates reveal

a U-shaped pattern across age groups, with the strongest impacts observed in pediatric

and elderly patients. Moreover, we do not reject the hypothesis that these effects extend

beyond the traditionally studied respiratory and cardiovascular conditions (e.g., Ward 2015;

Deschenes et al. 2017). Consequently, previous estimates that focus solely on these conditions

may underestimate the overall health burden of pollution exposure (e.g., OECD 2016a).

Third, we present evidence of the nonlinear nature of the dose-response function, indicating

that the estimated effects primarily arise from municipalities with higher baseline PM2.5. This

finding underscores potential biases when applying dose-response functions from high-income

countries to estimate mortality or morbidity benefits from reduced pollution in developing

countries, which frequently experience higher levels of air pollution (Lelieveld et al., 2015).

Related literature: A substantial body of research confirms that ambient air pollution,

especially fine particulate matter (PM2.5), poses a serious threat to public health and incurs

significant economic costs (Chay and Greenstone, 2003; Currie and Neidell, 2005; Currie and

Walker, 2011; Ebenstein et al., 2017; Wu et al., 2020; Sarmiento, 2023). The WHO estimates

that air pollution causes approximately 7 million premature deaths annually (World Health

Organization, 2014), making it the largest environmental health risk worldwide. In addition
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to mortality, pollution leads to significant morbidity: short-term spikes in PM2.5 correlate

with increased hospital and emergency department admissions for cardiac and respiratory

conditions, acute bronchitis, asthma attacks, and other symptoms (California Air Resources

Board, 2021). These health impacts create substantial economic burdens. For instance,

pollution-related diseases and premature deaths cost the European economy an estimated

$1.6 trillion annually (WHO and OECD, 2015), with global welfare losses from ambient air

pollution reaching approximately $5 trillion.

Despite the broad consensus on the dangers of air pollution, important gaps and limitations

persist in the literature. First, much of the empirical evidence, especially causal analyses,

comes from high-income countries with relatively low pollution levels. Seminal studies have

developed quasi-experimental strategies to estimate the health effects of pollution in the

United States and Europe. Previous research has employed various plausibly exogenous

sources of pollution variation, such as economic recessions (Chay and Greenstone, 2003),

airport congestion (Schlenker and Walker, 2016), changes in boat traffic (Moretti and Neidell,

2011), local traffic and public transport strikes (Knittel et al., 2016; Giaccherini et al., 2021),

and extreme natural events like sandstorms or volcanic eruptions (Halliday et al., 2019).

Researchers have also considered atmospheric phenomena, such as wind patterns (Deryugina

et al., 2019; Balietti et al., 2022) and thermal inversions (Arceo et al., 2016; Graff Zivin et al.,

2023) to identify effects. However, the external validity of their estimates for developing

countries remains unclear. Pollution concentrations in low- and middle-income countries

often significantly exceed those in high-income nations, and the dose–response relationship

may be non-linear (Deryugina et al., 2019). As Arceo et al. (2016) argues, health responses

estimated at relatively low PM levels in the U.S. may underestimate damages in regions where

pollution frequently reaches much higher peaks. Moreover, people in developing contexts may

exhibit different defensive behaviors—such as inadequate housing insulation—and baseline

health statuses that can exacerbate the effects of pollution.

A second gap in the literature is its focus on the mortality impacts of pollution, which limits

our understanding of its morbidity effects. Many influential studies prioritize infant survival

and senior citizen mortality because deaths are easily measured and represent the most severe

consequences of exposure (Deryugina et al., 2019; Anderson, 2020). In contrast, few studies

examine non-fatal health effects—such as acute illnesses requiring urgent care—particularly

in younger or working-age populations (e.g., Deschenes et al., 2017). This gap partly arises

from data limitations: tracking pollution-related sickness in large populations is challeng-

ing, especially in developing countries with limited data collection infrastructure (Landrigan

et al., 2018). Morbidity outcomes include a range of endpoints such as acute and chronic

conditions, as well as complications for individuals with preexisting health issues (Klauber
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et al., 2024; Barwick et al., 2024). While these pollution-related conditions may not be fatal,

they can result in significant hospitalizations and public health costs (e.g., He et al., 2019).

In summary, we lack a complete understanding of how air pollution affects health across

the age and morbidity spectrum in developing countries, as existing estimates may not fully

capture the true burden on healthcare systems under higher pollution regimes or different

populations behaviors than in high-income countries.

Contribution: Our study contributes to the literature on several ways. Methodologically,

we implement a novel quasi-experimental design to identify pollution’s impact on healthcare

demand. We exploit plausibly random atmospheric fluctuations in PBL height that cause

sharp, transient changes in local PM2.5 concentrations (International Growth Centre, 2016).

This natural experiment allows us to isolate exogenous pollution shocks from confounding

factors, such as economic activity or systematic avoidance behavior, thereby addressing en-

dogeneity challenges documented in prior work (Deryugina et al., 2019). Our approach builds

on the innovative strategies of earlier studies using health microdata but, to our knowledge,

it is the first applied nationwide in a developing country context. We select a continuous

instrumental variable (IV) to address concerns about inflated estimates caused by the low sta-

tistical power associated with low-frequency event instruments (Bagilet and Zabrocki-Hallak,

2022). Experimental and cohort studies in developing countries often face ethical concerns,

logistical challenges, and limited scalability. Our observational approach provides instead

a modeling framework that combines real-world and satellite-based data to capture a more

representative spectrum of exposure-health relationships, offering broader applicability and

policy relevance.

Geographically, our analysis focuses on Mexico, providing rare evidence from the developing

world. Previous studies in Mexico and other developing countries have typically focused on

specific cities or infant mortality (Arceo et al., 2016; Imelda, 2020; Balietti et al., 2022). In

contrast, we present the first causal estimates of PM2.5 effects on morbidity across all ages

and regions in an emerging economy. This approach fills the external validity gap by testing

whether findings from U.S. and European settings apply under different environmental and

institutional conditions. Unlike Barwick et al. (2024) who uses credit card transactions to

estimate pollution-induced healthcare costs in China, we directly observe health outcomes,

patients’ demographic profiles, and diagnoses. This allows us to link PM2.5 shocks to di-

agnosed morbidity and analyze effects on different populations. Additionally, Mexico offers

an ideal setting to test for nonlinearities, as it experiences pollution levels typical of many

developing countries. Yet, due to significant variability in pollution levels, its range also

includes values comparable to those observed in the US. Finally, our findings broaden the

understanding of pollution’s impacts on morbidity. We show that even marginal increases in
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PM2.5 raise emergency department visits, resulting in a few percent increase in admissions.

This effect size is economically significant, indicating a considerable additional burden on

hospitals during polluted periods.

Importantly, we document heterogeneity across health conditions and demographic groups.

The pollution-induced surges in emergency room demand are driven largely by respiratory

emergencies (e.g., acute exacerbations of asthma and chronic obstructive pulmonary dis-

ease), which aligns with medical evidence linking particulates to cardiopulmonary problems.

However, we also identify increases in previously under-studied acute conditions not typi-

cally associated with pollution exposure, suggesting a broader range of health vulnerabilities.

Moreover, the impact differs by age group: as expected, young children and the elderly expe-

rience the largest increases in emergency visits when air quality deteriorates, reflecting their

greater susceptibility, while working-age adults show more moderate responses (Deryugina

et al., 2019). By quantifying these differential effects, our study sheds light on the distri-

butional consequences of air pollution in a developing country, a key area of research where

evidence remains scarce (Drupp et al., 2025). Our results demonstrate that the health costs of

pollution extend beyond mortality into significant short-run demands on healthcare systems

and that these costs are unevenly borne across the population. These quasi-experimental

findings help bridge the gap between developed- and developing-country evidence and offer

relevant insights for environmental policy and public health planning in emerging economies.

2. Data

Air pollution. We utilize representative PM2.5 estimates from remote sensing to assess the

impact of air pollution variations on emergency room admissions (Van Donkelaar et al., 2021).

The PM2.5 data consists of 0.01 by 0.01 degree gridded monthly PM2.5 estimates from 1998

to 2022. Each gridded value integrates aerosol optical depth data from the North American

Space Agency (NASA) with a chemical transport model and geographically weighted regres-

sions. After obtaining the PM2.5 data, we aggregate it into monthly population-weighted

averages for each municipality across the country. For this, we use data from the Gridded

Population of the World raster (GPWv4) provided by NASA’s Center for Socioeconomic

Data and Applications. GPWv4 offers spatially resolved population estimates with a resolu-

tion of 30 arc seconds (i.e., approximately 1 km at the equator).

Weather. Weather conditions significantly influence air pollution and health status. We

combine PM2.5 data with weather covariates from the ERA5 dataset, a leading atmospheric

reanalysis product by the European Center for Medium-Range Weather Forecasts (ECMWF).
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This dataset provides hourly estimates of weather variables, such as air temperature, precip-

itation, and atmospheric pressure. We aggregate weather measures into population-weighted

averages for each municipality, consistent with our treatment of PM2.5.

Emergency room admissions. We obtain data on daily ED visits from the health informa-

tion system of the Mexican health ministry. The dataset includes all emergency department

visits in public hospitals across Mexico from 2008 and 2022. Each observation records a

single admission and provides information on patient characteristics (age, sex, residence, in-

surance), event details (outcome, ICD-10 code, reason), and geographical identifiers (hospital

ID, municipality, state). Using these data, we constructed a panel of daily admissions per

100,000 persons for municipalities with at least one hospital. For this, we sourced population

data from the Mexican Census for 2000, 2010, and 2020. We also categorized the number

of visits by sex (men and women), age (six age groups), ICD-10 code (e.g., cardiovascular,

respiratory, infectious-parasitic), and outcome (death, hospitalization, home).

Table 1 presents various descriptive statistics related to our data. The average monthly

admission rate is 157 cases per 100,000 people. Women have higher rates than men because

many Mexican women visit the ED for routine obstetric check-ups and follow-ups. The age

dynamics reveal distinct patterns. Admission rates for children under 12 exceed those for

adolescents aged 12 to 20, reflecting the generally weaker immune systems of younger children.

As we transition from adolescents to young adults aged 20 to 40, the rate increases by nearly

20%, primarily due to obstetric conditions. After reaching the end of their reproductive

years, the rate decreases by 36% for those aged 40 to 60 but rises again in older cohorts.

Respiratory and cardiovascular diseases, often linked to air pollution, contribute significantly

to hospital visits. Admissions for external causes, obstetric issues, digestive problems, and in-

fectious diseases are also important. We present descriptive statistics on air pollution, includ-

ing raw and population-weighted average values, to highlight potential variations. The aver-

age population-weighted PM2.5 concentration is 17.29 micrograms per cubic meter (µg/m3),

with a standard deviation of 7.52 µg/m3. These levels exceed the WHO’s recommended daily

exposure limit of 10 µg/m3.

3. Empirical design

Our empirical strategy estimates the effect of PM2.5 variations on monthly emergency de-

partment visits in each municipality using fixed-effects Poisson Pseudo-Maximum Likelihood

Estimator (PPML) panel models (Wooldridge, 1999). We chose this approach because Or-

dinary Least Squares (OLS) violates the assumptions of homoskedasticity and normally dis-
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tributed errors due to the count nature of the data (Chen and Roth, 2023). Equation 1

presents the econometric specification of our primary regression model.

EDct = exp

[
βPM2.5ct + γXct + δcm + δcy

]
+ ϵct (1)

In this model, EDct denotes the admission rate per 100,000 people in municipality c during

period t (year-month). β is the parameter of interest, measuring the marginal effect of an

additional unit of PM2.5 on the logarithm of the admission rate. Xct represents a matrix

of weather control variables. Our preferred specification includes five indicator variables for

average temperature and precipitation. We also include fixed effects for municipality/month-

of-the-year (δcm) and municipality/year of observation (δcy). This combination of fixed effects

allows us to identify the coefficient from interannual changes in PM2.5 within each municipal-

ity. We cluster standard errors at the municipal level to address correlations in unobservables

within municipalities and to account for autocorrelation over time. Additionally, we weight

all estimates by the population in each municipality to enhance spatial representativeness

and account for heteroskedasticity.

Instrumental variable approach. As noted by Deryugina et al. (2019), a limitation of the

previous model is that, despite our controls and fixed effects, the estimates of Equation 1 may

remain biased. This bias arises because exposure to air pollution is not randomly assigned

and is subject to measurement error. To address this issue, we employ a control function

approach, which is simpler to implement with non-linear Poisson models (Lin andWooldridge,

2019; Burkhardt et al., 2019; Klauber et al., 2020). In the first stage, we conduct an OLS

estimation of the endogenous variable (PM2.5). In the second stage, we apply the previously

discussed PPMLE, using the fitted values from the first stage as the causal variable.

Following previous studies, we used the height of the planetary boundary layer (PBLH) as

an instrumental variable for PM2.5 (e.g., Godzinski and Castillo 2021; Kögel 2022). The

planetary boundary layer is the lowest part of the atmosphere, directly influenced by Earth’s

surface. Air pollutant concentrations inversely correlate with PBLH. A low PBLH traps

pollutants in a smaller air volume, leading to higher concentrations and poorer air quality.

Conversely, a higher PBLH facilitates pollutant dispersion, reducing near-surface concen-

trations. Figure 1 presents a diagram illustrating the theoretical relationship between the

planetary boundary layer and air pollution.

A potential identification threat is that pollution could affect the PBLH. As Dechezleprêtre

et al. (2019), we refer to atmospheric physics literature that confirms aerosols can reduce
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the PBLH by reflecting sunlight. However, modeling evidence suggests this effect occurs

only at extremely high baseline pollution levels—approximately 30 times the sample aver-

age—combined with a significant pollution shock around 5 times the standard deviation of

our sample (Petäjä et al., 2016). In our empirical setting, we can reasonably rule out reverse

causality.

We chose to use variations in the height of the PBL as our instrument instead of thermal

inversions or wind direction, as seen in previous research, for two main reasons. First, recent

evidence suggests that using thermal inversions computed at coarse resolutions can inflate

coefficient sizes due to the rarity of these events (Bagilet and Zabrocki-Hallak, 2022). Second,

while wind direction does not face the same issues as thermal inversions, its first stage is often

difficult to interpret because the mechanisms behind the estimated coefficients are unclear

(Deryugina et al., 2019).

We construct the PBLH instrument using ERA5 gridded hourly data from ECMWF. We

aggregate this data to daily levels by calculating the arithmetic mean for each day. To

convert daily gridded values to municipal values, we compute the population-weighted average

of all grids within each municipality. After calculating daily PBLH for each municipality,

we aggregate it to the monthly level by taking a simple average of all days. Figure B.1

in the Appendix illustrates the relationship between the monthly average PBLH and PM2.5

in our data. Consistent with the physical properties of PBLH, increasing the layer height

substantially reduces average PM2.5 levels.

One concern about using PBLH as an instrument for air pollution parallels issues observed

with other weather instruments, such as wind direction and thermal inversions. Temperature

variations and other weather factors can affect both PBLH and the dependent variable. For

instance, during warmer periods, solar radiation heats the ground and the air above it, causing

the air to rise and increasing the PBLH. Thus, while PBLH does not directly affect health,

it could correlate with weather conditions that affect both air pollution and emergency room

admissions (White, 2017; Gould et al., 2024). To mitigate this concern, we include various

weather controls in our regression analysis. We use non-parametric indicators for temperature

and precipitation, along with average values of relative humidity and atmospheric pressure

in the preferred specification.

The primary assumption is that, after controlling for fixed effects and meteorological con-

ditions, changes in PBLH act as a natural experiment that exogenously modifies individual

exposure to air pollution. Equation 2 outlines the econometric strategy for the first-stage re-

lationship between PM2.5 and PBLH. In this equation, PM2.5ct represents the average value

of PM2.5 for municipality c at time t. PBLHct indicates the average PBLH. The remaining

9



parameters correspond to Equation 1.

ˆPM2.5ct =

[
βPBLHct + γXct + δcm + δcy + ϵct

]
ωct (2)

After estimating ˆPM2.5ct, we use it as the dependent variable in the second stage of the

control function approach (I.e.,Equation 3). We apply bootstrapped nonparametric standard

errors, clustered at the municipal level, to address the use of fitted values instead of actual

PM2.5 in the econometric design (Lin and Wooldridge, 2019).

ERct = ωct ×

[
exp

(
β ˆPM2.5ct + γXct + δcm + δcy

)
+ ϵct

]
(3)

4. Results

Baseline. Table C.3 presents point estimates from the control function approach for the

general population. We provide results for three specifications. (1) includes fixed effects

for the municipality to control for cross-sectional differences in PM2.5 levels and mortality

rates. (2) adds weather controls along with fixed effects for the year and month of observation.

Weather controls are crucial as they affect admission rates, air pollution, and our instrument.

We account for temperature non-linearly using six intervals ranging from 10°C or below to

over 35°C, with 20°C and 25°C as the reference interval. For precipitation, we include five

variables representing the number of days per month when precipitation volumes fall within

each quintile of the municipal value distribution. We also include average values for relative

humidity and atmospheric pressure. The fixed effects for year and month account for common

shocks impacting all municipalities, like changes in social security access or seasonal influenza

(Graff Zivin et al., 2023). (3) captures municipal seasonality and yearly shocks with more

nuanced fixed effects, such as municipality-specific month-of-the-year and municipality-by-

year fixed effects.

The results are statistically significant across all specifications. They indicate that emergency

room admission rates increase by 0.4% to 2.3% with each additional µgm3. We select the third

specification as our preferred model. Using the average admission rate, the 2.3% increase

corresponds to 3.8 additional monthly admissions per 100,000 people. With an average

population of 148,000, this marginal effect results in 5.6 additional monthly patients requiring

emergency services per municipality for each additional µg/m3 of PM2.5. Table C.4 in the

Appendix shows that the estimated effect results from an increase in non-fatal conditions
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and morbidity rather than mortality.

We estimate lower-bound monetary values for increased admissions using cost data from the

Mexican Health Ministry, which reports material and labor costs per admission at 4,200 MXP

(Instituto Mexicano del Seguro Social, 2023). We supplement this figure with the average

daily wage of a Mexican worker, approximately 260 MXP, as a proxy for the marginal cost

of labor (OECD, 2016c).1 Based on the admission cost, this totals 114.3 million MXP, or

about 14 million USD. Assuming each admission results in a loss of one average workday, we

add an additional 870,000 USD, leading to total costs of nearly 15 million USD per month,

or approximately 180 million USD per year. This amount represents about 0.5% of Mexico’s

annual healthcare expenditure.2

We can compare our findings with existing literature on the impact of air pollution on health

in the United States to clarify the magnitude of our estimations. Deryugina et al. (2019)

find that a 1 µg/m3 increase in PM2.5 leads to an additional 0.69 deaths and 2.05 ED visits

per million elderly over three days. This increase corresponds to a 0.17% rise in mortality

and a 0.11% rise in ED admission rates. To compare these estimates with our findings, we

divide a 30-day month into 10 independent three-day periods, assuming a simple linear and

non-overlapping combination of point estimates. Extrapolating the three-day coefficients

to monthly values yields an approximate 1.1% increase in ED admission rates per month.

Assuming full additivity, where daily exposure contributes an independent 0.33% increase,

the monthly impact could reach 3.3%. Our point estimates, which aggregate exposures and

outcomes at the monthly level, fall between these two values.

In terms of medical expenses, Deryugina et al. (2019) indicates that a 4.9 µg/m3 reduction

in PM2.5 in the US leads to approximately 1.5 billion USD in annual hospitalization cost

savings. This scales to about 2.3 billion USD for a comparable 7.5 µg/m3 reduction. This

linear interpolation allows us to compare this estimate to our calculations for Mexico. With

total US healthcare expenditures of 0.92 trillion USD, a 7.5 µg/m3 reduction in PM2.5 cor-

1We estimate this value from the average monthly wage in the National Survey of Employment and Occu-
pation for the third trimester 2024 (Secretaŕıa de Economı́a, Gobierno de México, 2024). This value is
equivalent to 8,200 pesos or about 260 MXP per day. Including wages in these calculations assumes that
all people admitted to the ED are workers. We defend this assumption using previous evidence that even
if they are not actively working, family members will likely lose a workday because of care. For instance,
Aragon et al. (2016) find evidence of significant labor supply shocks associated with PM2.5 occur through
the care channel. Moreover, the additional cost of losing one work day represents less than 10% of our
back-of-the-envelope calculation.

2Cost estimates have been converted from MXP to USD using a 2015 PPP-adjusted exchange rate of 8.1
MXN per dollar, as per the International Monetary Fund. Data on healthcare expenditures have been
retrieved from OECD Health Statistics. Here, we used Mexico’s annual real healthcare expenditures in
2015, which amounted to 36.667 billion USD (PPP-adjusted).
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responds to an estimated 0.25% decrease in healthcare spending.3 The larger percentage

reduction in healthcare spending in Mexico (0.5%) compared to the U.S. (0.25%) suggests

that health-related costs of air pollution have a more significant impact on Mexico’s health-

care costs. That is, despite the absolute reductions are lower, the relative impact on the

country’s healthcare budget is notably higher, indicating a greater relative opportunity cost

in healthcare fund allocation.

Heterogeneous effects by demographic groups. Table 4 presents heterogeneous treat-

ment effects by age group and sex. The effects by age group form a U-shaped curve. The

largest impact occurs in children under 12, reflecting a 4.7% increase in the admission rate.

The next highest effects are observed in individuals over 80 (3.1%), those aged 12 to 20

(2.6%), 60 to 80 (1.7%), and 20 to 40 (1.4%). Marginal effects are important; however,

converting rates into patient counts is essential for assessing the impact on service demand.

This conversion indicates an increase of 2.8 pediatric patients, 1 adolescent, 1.2 young adults,

approximately 0.4 persons aged 60 and 80, and 2 individuals over 80 per municipality per

month. Analysis by sex reveals slightly greater effects for men. The marginal effect indi-

cates a 2.5% increase for men and a 2.2% increase for women. However, this difference lacks

statistical significance and requires cautious interpretation. Converting the relative increase

into patient counts implies an increase of 3.5 women and 2.3 men seeking ED services.

Heterogeneous effects by health conditions. Most literature on the health effects of

air pollution examines its impact on respiratory and cardiovascular diseases (RCV). This

emphasis arises from robust epidemiological evidence linking exposure and RCV conditions

(Pope et al., 2002; Brook et al., 2010). However, concentrating solely on RCV may overlook

other mechanisms through which PM2.5 influences the demand for emergency room services.

These include exacerbating pre-existing conditions by increasing strain on the body (Klauber

et al., 2024), promoting violence (Bondy et al., 2020), or causing traffic-related accidents

(Sager, 2019). Table 3 estimates the effect of PM2.5 on RCV and other conditions separately

to identify potential impacts on diseases beyond RCV.

In line with the epidemiological literature, the effect on RCV significantly exceeds the general

impact. An additional unit of PM2.5 increases the RCV admission rate by 7.9%, leading to

4.4 more patients in the emergency department. Non-RCV conditions also show a positive

and statistically significant effect, though smaller. This effect leads to a 1.2% increase in

conditions unrelated to the respiratory or cardiovascular systems, averaging 2.4 additional

patients per month per municipality.

Table C.1 of the Appendix presents results for each ICD-10 chapter. We estimate increases in

3For this calculation, we used US annual real healthcare expenditures in 2013 from OECD Health Statistics.
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respiratory diseases (9.1%), eye and ear conditions (2.8%), abnormal clinical findings (2.3%),

infectious diseases (1.7%), external causes (1.1%), and other unclassified conditions (1.4%).

For the remaining chapters, we observe positive coefficients, except for mental and behavioral

admissions. However, these coefficients lack statistical significance at conventional levels.4

Nonlinear impacts of air pollution. Table 5 presents heterogeneous effects based on

varying exposure levels, using both a median and quartile split of municipal average PM2.5.

The first two columns highlight a clear contrast between municipalities with PM2.5 levels

below and above the median (13.12 µg/m3). A quasi-random shock in PM2.5 has a negligible

effect on municipalities with lower pollution levels (0.1%) but a significant positive effect

on those with higher pollution levels (4.9%). This finding suggests that the ED admission

rate is more sensitive to increases in PM2.5 in municipalities with higher baseline pollution.

Analyzing the quartile split reveals further details. The effect progressively increases with

higher PM2.5 concentrations. For municipalities with low PM2.5 exposure (first quartile, ≤
10.48 µg/m3), we do not observe an statistically significant relationship. As baseline pollu-

tion levels rise, the estimated effect of a pollution shock becomes positive and increases in

magnitude. Municipalities in the second quartile (10.48 < PM2.5 ≤ 15.70 µg/m3) experience

a moderate increase in admissions (1.8%), though this is not statistically significant. In con-

trast, those in the third quartile (15.70 < PM2.5 ≤ 19.16 µg/m3) show a stronger, statistically

significant effect (4.1%). The effect continues to rise in the highest exposure group (PM2.5

> 23.38 µg/m3), reaching a 5.6% increase in admissions. However, the rate of increase slows

compared to the change between the second and third quartiles. This suggests that beyond

a certain threshold, the additional health burden per µg/m3 increase in PM2.5 may grow at

a decreasing rate, possibly due to nonlinear physiological responses or adaptation effects.

Our findings suggest diminishing marginal effects that plateau beyond certain thresholds.

This contrasts with recent evidence from China, which shows a linear relationship between

pollution and health effects (Barwick et al., 2024). These differences can arise from the

heterogeneous distribution of pollution levels in China and Mexico. While pollution levels

in China average 56.33 µg/m3, our setting encompasses a broader range of lower pollution

levels, where nonlinear effects are more evident. At higher pollution concentrations, as seen

in China, the relationship may appear more linear, potentially explaining the differences

between our findings and (Barwick et al., 2024).

4When correcting for multiple hypothesis testing, only respiratory diseases and eye–ear conditions remain
statistically significant. Yet, given the robustness of our model—which utilizes strong instruments and
high-dimensional fixed effects to control for unobserved confounders—we contend that the unadjusted
p-values may be more reliable. In our case, the high correlation between ICD-10 chapters implies that
standard corrections like the Bonferroni method may underestimate the true relevance of some effects
(Rothman, 1990; Perneger, 1998) .
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5. Discussion

Research in epidemiology and economics has long examined the health effects of air pollution,

particularly its impact on mortality. However, most studies focus on high-income nations.

This study addresses this gap by utilizing administrative public healthcare records from

Mexico, providing a first nationwide assessment of diagnosed morbidity due to PM2.5 exposure

in a non-high-income country. To address endogeneity concerns, we exploit quasi-random air

pollution shocks caused by variations in the height of the planetary boundary layer across

Mexican municipalities.

Our analysis shows that a 1 µg/m3 increase in PM2.5 leads to a 2.3% rise in emergency

department visits, primarily due to an increase in non-fatal diagnoses. The estimated effect

varies by age, with the strongest impacts observed on children and the elderly. We document a

nonlinear dose-response relationship, indicating stronger effects in municipalities with higher

baseline pollution levels. This raises concerns about extrapolating estimates from high-

income countries, which typically have lower air pollution levels, to other contexts (Lelieveld

et al., 2015). We provide back-of-the-envelope calculations suggesting that compliance with

the WHO annual PM standard could save approximately 180 million USD per year, or

about 0.5% of annual health expenditures. This highlights a significant opportunity cost in

healthcare resource allocation and underscores the economic burden pollution imposes on

public funds.

More generally, our results show that neglecting the economic burden of morbidity can signif-

icantly underestimate the overall economic costs of pollution, consistent with recent evidence

from Barwick et al. (2024). Additionally, we show that these impacts extend beyond the res-

piratory and cardiovascular diseases typically considered in previous studies (e.g., Deschenes

et al. 2017). However, these estimates represent only a lower bound of potential benefits from

pollution reduction. Prior literature suggests that air pollution also affects additional dimen-

sions not captured in our analysis, such as mortality (Deryugina et al., 2019), productivity

(Chang et al., 2019; Sarmiento, 2022; Leroutier and Ollivier, 2025), labor supply (Hoffmann

and Rud, 2024; Hanna and Oliva, 2015), private defensive behavior (Ito and Zhang, 2020),

road accidents (Sager, 2019) and violence (Bondy et al., 2020; Sarmiento, 2023). Further-

more, limited healthcare access in Mexico may lead to an underestimation of effects, as some

morbidity may go unrecorded in healthcare utilization data (Gutiérrez et al., 2014).

Our findings have important policy implications. First, using average dose-response func-

tions from high-income countries with lower pollution levels for cost-benefit evaluations likely

misguides policy prioritization and resource allocation in low- and middle-income economies

(Muller and Mendelsohn, 2009). Moreover, we show that the morbidity impacts of air pol-
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lution are unevenly distributed, with the most severe effects concentrated in municipalities

with higher baseline pollution. These environmental inequalities can worsen existing eco-

nomic disparities, as disadvantaged populations often live in more polluted areas (Colmer

et al., 2020, 2024; Sager, 2025). Poor air quality not only increases healthcare expenditures

but also hinders human capital accumulation, potentially creating pollution-income traps

(Drupp et al., 2025). Policymakers should account for these differential effects when design-

ing local pollution reduction strategies to ensure both efficiency and equity. This may involve

incorporating distributional weights into environmental policy assessments, as suggested in

the literature (e.g., Adler 2016).

Second, we show that the morbidity impacts of air pollution may represent a significant

portion of overall healthcare costs. Our results suggest that the non-linear increase in ad-

missions during periods of high pollution could overwhelm public hospitals, especially in

resource-limited settings. Investing in nationwide public education campaigns and pollu-

tion alerts can produce substantial health benefits at relatively low costs. These campaigns

enable individuals to adopt protective measures, such as reducing outdoor exposure dur-

ing high-pollution periods. Increasing awareness of pollution’s health effects can also foster

public support for stricter environmental regulations. Finally, our findings are relevant for

evaluating national climate policy scenarios and their distributional effects in Mexico. While

carbon abatement policies do not directly target air pollutants, they can significant improve

air quality by reducing emissions of toxic co-pollutants (Hernandez-Cortes and Meng, 2023;

Basaglia et al., 2024; Loughlin et al., 2024). To accurately account for these benefits (and

their distribution) in cost-benefit analyses, context-specific pollution damage estimates are

essential. Further research is urgently needed to understand the complex dynamics of air

pollution and public health, especially in developing countries. A promising approach in-

volves monitoring individuals’ exposure to outdoor and indoor pollution throughout the day

to assess their differential impacts on health outcomes (e.g., Metcalfe and Roth 2025).
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Table 1: Summary Statistics

Average Standard Deviation Maximum Minimum Units

Admission Rates
General 157.31 188.26 4273.71 0.00 per 100,000 people
Male 117.74 151.43 3332.14 0.00 per 100,000 people
Female 194.78 228.96 5172.77 0.00 per 100,000 people
Age 0-12 166.03 232.06 4367.28 0.00 per 100,000 people
Age 12-20 152.22 181.13 4395.47 0.00 per 100,000 people
Age 20-40 183.55 215.80 5208.89 0.00 per 100,000 people
Age 40-60 116.33 160.36 3044.87 0.00 per 100,000 people
Age 60-80 148.93 216.60 3746.16 0.00 per 100,000 people
Age 80-130 224.57 332.84 6698.20 0.00 per 100,000 people
Population 148,841 25,594 198,560 1,037 #

Main conditions
Respiratory/Cardiovascular 34.45 49.12 1035.16 0.00 per 100,000 people
External Causes 25.46 31.23 871.54 0.00 per 100,000 people
Obstetric 14.03 24.20 596.09 0.00 per 100,000 people
Digestive 12.55 15.41 327.27 0.00 per 100,000 people
Infectious 12.50 20.55 810.19 0.00 per 100,000 people
Abnormal Clinical Findings 11.79 18.75 730.69 0.00 per 100,000 people
Eye/Ear 2.83 4.88 129.26 0.00 per 100,000 people
Rest of Conditions 49.73 65.32 1336.04 0.00 per 100,000 people

Main outcome
Patient sent home 133.31 169.35 3745.18 0.00 per 100,000 people
Hospitalization 20.05 31.66 969.64 0.00 per 100,000 people
Death 0.17 2.25 422.33 0.00 per 100,000 people
Unspecified 3.76 18.75 1477.83 0.00 per 100,000 people

Weather
Temperature 19.95 5.01 37.03 3.56 C°
Dew Temperature 12.35 7.09 25.62 -12.07 C°
Rain 35.71 42.48 639.36 0 m3/m2

Air Pollution
PM2.5 16.46 7.58 121.64 1.52 µgm3

PM2.5 Weighted 17.29 7.52 102.83 2.02 µgm3

Notes: Self constructed values using aggregated data from the Health Information System of the Mexican Health Ministry,
ECMWF, and Van Donkelaar et al. (2021).
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a) Low PBLH conditions b) High PBLH conditions

Figure 1: The planetary boundary layer highet and air pollution

Table 2: Marginal Effect of PM2.5 on ED Admission Rates

(1) (2) (3)

Second stage β from Eq. 3

PM2.5 (µg/m3) 0.004*** 0.008*** 0.023***

(0.002) (0.002) (0.006)

Model Statistics

Observations 84,034 84,034 83,666

Municipalities 648 648 648

F-statistic (first stage) 71.74 101.12 100.33

Mean admission rate (per 10k) 167.59 167.59 167.59

Avg. municipal population 148,793 148,793 148,793

Fixed Effects

Municipality ✓ ✓ ✓
Year ✓ ✓
Month ✓ ✓
Municipality × month-of-year ✓
Municipality × year ✓

Controls

Weather variables ✓ ✓

Notes: This table presents point estimates from a control function Poisson MLE regression of municipal emergency depart-
ment (ED) admission rates per 100,000 people in Mexico on instrumented PM2.5. We instrument municipal population-
weighted PM2.5 using the average planetary boundary layer height in the municipality. Weather controls include indicators
for days within five temperature bins (10-30°C), precipitation quintiles, relative humidity, and atmospheric pressure. Stan-
dard errors are clustered at the municipality level. Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3: Marginal effect of PM2.5 on emergency department admission rates:
Heteogeneous effects between RCV and non-RCV conditions

General Effect RCV Non-RCV

Second stage β from Eq. 3
PM2.5 (µg/m3) 0.023*** 0.079*** 0.012**

(0.006) (0.009) (0.006)

Model Statistics
Observations 83666 79578 80237
F-statistic (first stage) 100.328 110.714 110.714
Mean admission rate (per 10k) 167.9 37.9 137.5
Avg. municipal population 148.793 148.793 148.793

Fixed Effects
Municipality × month-of-the-year ✓ ✓ ✓
Municipality × year ✓ ✓ ✓

Controls
Weather variables ✓ ✓ ✓

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency depart-
ment admission rates per 100,000 people in Mexico as a function of instrumented PM2.5. We present results separatelly for
the general admission rate and for the admission rate for respiratory-cardiovascular (RCV) and non-RCV conditions. We
instrument municipal population-weighted PM2.5 with the average planetary boundary layer height in the municipality. All
columns control for municipality-by-year and municipality-by-month fixed effects along with weather controls including five
indicator variables for the number of days per month between 10 and 30 degrees Celsius in five-degree intervals, indicator
variables for the within municipality quintile of daily precipitation, relative humidity and atmospheric pressure. Standard
errors are clustered at the municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.

Table 4: Marginal effect of PM2.5 on emergency department admission rates:
Heterogeneous effects by age group and sex

Age Groups Sex

0-12 12-20 20-40 40-60 60-80 80-130 Female Male

Second stage β from Eq. 3
PM2.5 (µg/m3) 0.047*** 0.026*** 0.014*** 0.008 0.017** 0.031*** 0.022*** 0.025***

(0.008) (0.006) (0.006) (0.006) (0.007) (0.008) (0.005) (0.006)

Model Statistics
Observations 83255 83408 83197 83016 82480 82008 83533 83368
Municipalities 648 648 648 648 648 648 648 648
F.Stat (first stage) 85.851 91.088 94.664 110.459 131.677 133.069 101.887 98.658
Avg. municipal population 31.526 21.604 47.084 32.691 13.599 2.289 76.463 72.331
Mean admission rate (per 10k) 180.7 160.9 193.2 123.1 159.1 243.1 207.6 125.5

Fixed Effects
Municipality by month-of-the-year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Municipality by year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Weather controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency depart-
ment admission rates per 10,000 people in Mexico as a function of instrumented PM2.5. We present results for six different
age categories, females, and males seperately. We instrument municipal population-weighted PM2.5 with the average plan-
etary boundary layer height in the municipality. Weather controls include five indicator variables for the number of days
per month between 10 and 30 degrees Celsius in five-degree intervals, indicator variables for the within municipality quintile
of daily precipitation, relative humidity and atmospheric pressure. Standard errors are clustered at the municipality level.
Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.
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Table 5: Marginal effect of PM2.5 on emergency department admission rates:
Heterogeneous effects by PM2.5 average exposure levels

Median Split Quartile Split

PM2.5 ≤ M1 PM2.5 > M1 PM2.5 ≤ Q1 Q1 < PM2.5 ≤ Q2 Q2 < PM2.5 ≤ Q3 PM2.5 > Q3

Second stage β from Eq. 3
PM2.5 (µg/m3) 0.001 0.049*** -0.014 0.018 0.041*** 0.056***

(0.007) (0.007) (0.010) (0.023) (0.015) (0.010)

Model Statistics
Observations 40530 43136 20046 20484 21970 21166
Municipalities 324 324 162 162 162 162
F.Stat (first stage) 52.47 94.00 64.41 10.66 18.98 87.28
Average PM2.5 13.12 21.23 10.48 15.70 19.16 23.38
Mean admission rate (per 10k) 189.2 147.2 171.8 206.2 169.6 124.0
Avg. municipal population 113377.06 182208.82 130048.90 97019.36 120593.88 246093.54

Fixed Effects
Municipality × month-of-the-year ✓ ✓ ✓ ✓ ✓ ✓
Municipality × year ✓ ✓ ✓ ✓ ✓ ✓

Controls
Weather variables ✓ ✓ ✓ ✓ ✓ ✓

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency de-
partment admission rates per 100,000 people in Mexico as a function of instrumented PM2.5. We instrument municipal
population-weighted PM2.5 with the average planetary boundary layer height in the municipality. We present estimates for
six different sample splits based on the average municipal PM2.5. The first two columns estimates the effect for municipalities
below and above the median PM2.5. The next four columns make the split using quartiles. Standard errors are clustered at
the municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.
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Appendix A The Mexican health-care system.

Mexico’s healthcare system combines public and private components, akin to other middle-

income countries like Brazil, Argentina, Colombia, and South Africa. Public institutions

primarily serve formal workers and their dependents. In addition, the Institute of Health

for Well-being (INSABI), which replaced the Seguro Popular program, provides care for the

uninsured. This public system coexists with a robust private sector that offers high-quality

services. However, these services tend and be more expensive and are mainly accessible to

those with private insurance or sufficient financial resources.

Coverage statistics highlight the system’s heterogeneity. Public social security for formal

workers insures roughly 45% of the population, INSABI covers about 30%, and private insur-

ance accounts for only 2.4%. Despite INSABI’s goal of universal coverage, 20% of Mexicans

reported lacking access to healthcare in 2020. This shortfall contrasts with the United States,

where two-thirds of individuals rely on private insurance, roughly one-quarter benefits from

public programs like Medicare or Medicaid, and around 9% remain uninsured. In Mexico,

individuals without formal insurance can access public sector options for a low fee or choose

private sector services at a higher cost.

When compared to other OECD countries, Mexico’s healthcare model exhibits unique financ-

ing and access dynamics. Unlike the predominantly privatized U.S. approach, which relies

heavily on employer-based coverage and out-of-pocket spending, Mexico aims to broaden

public sector coverage. However, it still faces challenges related to funding and equity. In

contrast, European single-payer systems, such as those in the United Kingdom and Swe-

den, are primarily tax-funded, providing near-universal coverage with minimal out-of-pocket

expenses. Importantly, Mexico’s low healthcare expenditure as a percentage of GDP, com-

bined with a decentralized public-private mix, presents significant challenges in delivering

comprehensive and equitable care comparable to many European nations.

Recent government initiatives have attempted to consolidate and reorient the system. While

reforms under former administrations—such as the creation of Seguro Popular—expanded

access dramatically, subsequent restructuring under President Andrés Manuel López Obrador

aimed to recentralize and streamline services through INSABI. However, challenges in fund-

ing, bureaucratic inefficiencies, and persistent resource constraints have limited the effec-

tiveness of these reforms. For instance, shortages of essential supplies and medications,

exacerbated by issues in procurement and distribution, have repeatedly strained both public

and private institutions, leading to periodic crises in service delivery

Note that the absence of a system for registering with a designated primary care physician
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and limited opening hours foster a reliance in episodic care, leading patients to frequently

utilize hospital emergency departments (ED). For instance, the most common reason for

ED visits in Mexico is ICD-10 code Z34, for supervision of normal pregnancy. Additionally,

85% of ED patients are discharged after their first visit, indicating that our analysis extends

beyond critical condition treatments. Of the remaining 15%, 12.5% are hospitalized, 0.2%

die, and 2.3% have unknown outcomes. While ED visits serve as a proxy for healthcare

demand, they exclude visits to family doctors, pharmacies, or other healthcare services. We

interpret our analysis as providing a lower-bound estimate of pollution-induced morbidity

costs. See the Online Appendix for an overview of Mexico’s healthcare system.
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Appendix B Data

Figure B.1: Average PM2.5 vs PBLH

Notes: We generated the figure by dividing PBLH into five percentile intervals and estimating the average PM2.5 for each
municipality. This method directly assesses the PM2.5 difference across various PBLH values within municipalities. The
difference between the lowest and highest five-percentile intervals is 32%.
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Appendix C Results

Table C.1: Point estimates by ICD-10 chapter

ICD-10 Code Estimate F-Value #Obs PR2 Cor2 MRate Pop PM2.5 P-Value BH

Respiratory 0.0911*** 100.33 82507 1.02 0.88 30.7 148793.06 17.29 0.0000
(0.0107)

Eye and ear 0.0286*** 110.71 77647 1.14 0.87 3.1 148793.06 17.29 0.0024
(0.0079)

Abnormal clinical findings 0.0228** 110.71 78949 1.03 0.87 12.4 148793.06 17.29 0.1879
(0.0107)

Infectious 0.0175* 110.71 79217 1.03 0.89 13.7 148793.06 17.29 0.2557
(0.0093)

Perinatal 0.0151 100.33 72519 6.02 0.83 0.45 148793.06 17.29 0.5906
(0.0190)

Other 0.0141* 110.71 79052 1.01 0.95 23.5 148793.06 17.29 0.2557
(0.0084)

Endocrine 0.0137 110.71 79080 1.06 0.88 5.2 148793.06 17.29 0.3735
(0.0108)

Obstetric 0.0131 100.33 81692 1.02 0.93 14.4 148793.06 17.29 0.3735
(0.0105)

Nervous 0.0120 100.33 81483 1.22 0.83 1.9 148793.06 17.29 0.3735
(0.0098)

External causes 0.0114* 110.71 79802 1.01 0.94 26.5 148793.06 17.29 0.2557
(0.0066)

Neoplasms 0.0104 100.33 77861 1.55 0.85 0.85 148793.06 17.29 0.5906
(0.0146)

Skin 0.0083 100.33 81154 1.13 0.88 3.2 148793.06 17.29 0.5584
(0.0091)

Digestive 0.0048 110.71 79437 1.02 0.92 13.4 148793.06 17.29 0.5906
(0.0069)

Muskuloskeletal 0.0032 110.71 78507 1.07 0.91 5.03 148793.06 17.29 0.7015
(0.0072)

Genitourinary 0.0031 110.71 79351 1.03 0.93 10.6 148793.06 17.29 0.7015
(0.0065)

Circulatory 0.0001 110.71 79218 1.06 0.89 5.8 148793.06 17.29 0.9916
(0.0085)

Mental and behavioral -0.0159 110.71 78813 1.12 0.84 2.3 148793.06 17.29 0.2842
(0.0101)

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency room
admission rates per 100,000 people in Mexico as a function of instrumented PM2.5. We instrument municipal population-
weighted PM2.5 with the average planetary boundary layer height in the municipality. We present estimates for each ICD-10
chapter. Standard errors are clustered at the municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1. We adjust
for multiple hypothesis testing by reporting Benjamini-Hochberg (BH) adjusted p.values.
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Table C.2: First stage: Effects of the average PBL height on PM2.5

(1) (2) (3)

First stage β from Eq. 2
Avg. PBLH (meters) 0.0077∗∗∗ -0.0087∗∗∗ -0.0044∗∗∗

(0.0009) (0.0009) (0.0004)

Model Statistics
Observations 84,034 84,034 84,034
Municipalities 84,034 84,034 84,034
F-test 71.74 101.1 100.3
Average PM25 17.29 17.29 17.29
Average PBLH 579.07 579.07 579.07

Fixed Effects
Municipality ✓ ✓
Year ✓
Month ✓
Municipality × year ✓
Municipality × month-of-the-year ✓

Controls
Weather controls ✓ ✓

Notes: This table presents the point estimates of our first stage on the effects of variations on the height of the PBL on
PM2.5. We present results for three specifications. The first column only controls for cross-sectional differences between
municipalities with municipal fixed effects. The second column adds temporal fixed effects and weather controls which
include five indicator variables for the number of days per month between 10 and 30 degrees Celsius in five-degree intervals,
indicator variables for the within municipality quintile of daily precipitation, relative humidity and atmospheric pressure.
The third column is our prefered specification, which includes municipality by year and municipality by month of the year
fixed effects. Standard errors are clustered at the municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.

Table C.3: Marginal effect of PM2.5 on emergency room admission rates (Excluding the
COVID-19 Period)

(1) (2) (3)

Second stage β from Eq. 3
PM2.5 (µg/m3) 0.011*** 0.012*** 0.027***

(0.002) (0.003) (0.008)

Model Statistics
Observations 78612 78612 78262
Municipalities 648 648 648
F.Stat (first stage) 75.563 84.645 61.571
Mean admission rate (per 10k) 173.059 173.059 173.059
Avg. municipal population 148.793 148.793 148.793

Fixed Effects
Municipality ✓ ✓ ✓
Year ✓ ✓
Month ✓ ✓
Municipality × month-of-the-year ✓
Municipality × year ✓

Controls
Weather controls ✓ ✓

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency room
admission rates per 100,000 people in Mexico as a function of instrumented PM2.5. We instrument municipal population-
weighted PM2.5 with the average planetary boundary layer height in the municipality. We restrict the sample to all periods
before Covid-19 in March 2022. Weather controls include five indicator variables for the number of days per month between 10
and 30 degrees Celsius in five-degree intervals, indicator variables for the within municipality quintile of daily precipitation,
relative humidity and atmospheric pressure. Standard errors are clustered at the municipality level. Significance codes:
∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.
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Table C.4: Effects of PM2.5 on emergency room admission by case outcome

Home Hospitalization Death Unspecified

Second stage β from Eq. 3
PM2.5 (µg/m3) 0.03008*** 0.01561 -0.02597 -0.10523

(0.00543) (0.00962) (0.01910) (0.06714)

Model Statistics
Observations 83506 83076 62637 76994
Municipalities 648 648 648 648
F-Value (first stage) 100.33 100.33 100.33 100.33
Admission Rate (per 10k) 1419.75 211.20 1.71 43.25
Avg. Population 148,793 148,793 148,793 148,793

Fixed Effects
Municipality × month-of-the-year ✓ ✓ ✓ ✓
Municipality × year ✓ ✓ ✓ ✓

Controls
Weather variables ✓ ✓ ✓ ✓

Notes: This table presents the point estimates of a control function approach Poisson MLE of municipal emergency room
admission rates per 100,000 people in Mexico as a function of instrumented PM2.5. We instrument municipal population-
weighted PM2.5 with the average planetary boundary layer height in the municipality. Weather controls include five indicator
variables for the number of days per month between 10 and 30 degrees Celsius in five-degree intervals, indicator variables
for the within municipality quintile of daily precipitation, relative humidity and atmospheric pressure. We present estimates
for four reported outcomes: Patient sent home, hospitalization, death, and unspecified. Standard errors are clustered at the
municipality level. Significance codes: ∗∗∗ < 0.01,∗∗ < 0.05,∗ < 0.1.
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