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Causal Inference With Endogenous Price Response

Przemyslaw Jeziorski Dingzhe Leng Stephan Seiler

UC Berkeley UC Berkeley Imperial College London

& CEPR

This draft: May 10, 2025

We study the estimation of causal treatment effects on demand when treatment is randomly assigned but

prices adjust in response to treatment. We show that regressions of demand on treatment or on treatment

and price lead to biased estimates of the direct treatment effect. The bias in both cases depends on the

correlation of price with treatment and points in the same direction. In most cases including an endogenous

price control reduces bias but does not remove it. We show how to test whether bias from an endogenous

price response arises and how to recover an unbiased treatment effect (holding price constant) using a price

instrument. We apply our approach to the estimation of the impact of feature advertising across several

product categories using supermarket scanner data and show that the bias when not instrumenting for price

can be substantial.

Keywords: Causal Inference, Endogeneity, Endogenous Controls, Instrumental Variables



1 Introduction

A common research question in economics and marketing is how a specific treatment, such as

advertising, customer word-of-mouth, or a nutritional label, affects demand. Although not always

explicitly stated, the goal is typically to identify the impact of the treatment on demand holding

price constant ; that is, to estimate the shift in the demand curve caused by the intervention. The

estimation of this direct treatment effect is often complicated by the fact that a shift in demand

caused by the treatment may lead to price adjustment among treated units. For example, an online

marketplace might run an A/B test that randomly improves the product detail pages for certain

third party sellers. Such an enhancement increases demand for treated products, which in most

cases will prompt the treated sellers to raise prices. As a consequence, the measured change in

demand is smaller than the underlying shift in the demand curve because higher prices offset the

direct treatment effect.1 To account for such endogenous price adjustments, many studies attempt

to isolate the direct treatment effect by using model specifications that control for price. However,

as we demonstrate, using price as a control variable results in a biased estimate of the direct

treatment effects, even if treatment is exogenous. This is because price is typically correlated both

with the treatment and the error term due to the post-treatment endogenous price adjustment.

In this paper we analyze the bias originating from endogenous price adjustments, provide testable

conditions for the existence of such bias, and show how to obtain unbiased estimates of the direct

causal effect of treatment.

Our analysis proceeds as follows. In Section 2, we assume random treatment assignment, a

linear demand function, and a reduced-form pricing equation to derive expressions for the bias in

the treatment effect estimate in two scenarios: when price is omitted from the regression, and when

price is included as an endogenous control variable. We derive the formula for the direction and

relative magnitude of the bias in both situations. We also show that the bias in the treatment

coefficient, when using an endogenous price control, can be expressed as a function of the bias

in the price coefficient. We then demonstrate how to obtain an unbiased estimate using price

instruments and show that no correlation between treatment and price is a sufficient condition

for the absence of bias. Importantly, this condition is testable. In Section 3, we illustrate these

theoretical findings by conducting a series of numerical simulations. We start with linear demand

and supply equations, and then expand our analysis to non-linear settings common in structural

demand and supply frameworks. Finally, in Section 4, we use supermarket scanner data across

multiple product categories to estimate the impact of feature advertising on demand, controlling

for prices. We show that failing to use a valid instrument when controlling for prices can lead to

substantial bias, overestimating the effect of feature ads by a factor of 3 to 4 in some categories.

Our research contributes to a large literature in marketing and economics that seeks to estimate

1In some settings, the equilibrium effect on demand may be of interest. We take as given that the research
objective is to estimate the direct causal effect when holding price constant. As we show below, many papers
explicitly control for price, indicating that their aim is to isolate the direct impact of a given treatment rather than
capturing equilibrium market response.
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the causal impact of firm or policy interventions on demand. Many studies include price as an

endogenous control variable. A non-exhaustive list of papers using such a specification includes

the sales impact of feature advertising (Seiler and Yao, 2017), Super Bowl advertising (Hartmann

and Klapper, 2018), TV advertising for consumer-packages goods (Shapiro et al., 2021), the effect

of income and wealth on private label demand (Dubé et al., 2018), the effect of product labels

such as nutritional labels (Barahona et al., 2023),2 and “Made in USA” labels (Kong and Rao,

2021).3 Price endogeneity is generally considered a major concern in studies focusing on estimating

price elasticities, such as demand estimation for the purpose of informing firms’ optimal pricing

strategies or merger evaluations. However, when price is merely used as a control, these concerns

are often perceived as less important. For example Kong and Rao (2021) state “The endogeneity

of price [...] does not affect our main coefficient of interest [...] because the exogeneity of treatment

still holds conditional on price ...”. As our analysis shows, this claim is only correct under specific

conditions. In most cases a biased price coefficients leads to a biased treatment coefficient, even

when treatment is randomly assigned. Few papers implement the test we propose for endogenous

price responses, i.e., evaluate whether treatment and price are correlated, possibly conditional on

other control variables. Among the papers mentioned above, Shapiro et al. (2021) implement such

a test and find that price and advertising are uncorrelated and hence an endogenous price response

does not pose a concern.4

Our setting fits within a broader causal inference literature that analyzes regressions with en-

dogenous control variables. Rosenbaum (1984) shows that controlling for an endogenous regressor,

which he refers to as a “post-treatment variable”, can yield a biased estimate of the treatment effect

even when treatment is randomized. Similarly, Angrist and Pischke (2009) define “bad controls”

as variables that are “themselves outcome variables” – in our case, prices. Perils of controlling

for post-treatment variables has been discussed across various fields, such as, medicine (Streiner,

2016), political science (Montgomery et al., 2018), sociology (Cinelli et al., 2024), and organiza-

tional research (Mändli and Rönkkö, 2025). Most of these papers highlight biases when including

endogenous controls and recommend not including them and thus estimating only the joint effect.

Our paper goes beyond such an analysis by deriving explicit expressions for the bias arising from

endogenous controls, showing how to test for endogenous adjustments, and proposing a solution

that allows the researcher to estimate direct and indirect effects. We believe such an analysis is

important for settings like the one we analyze where isolating only the direct effect of treatment

(the impact on demand holding price constant) is often of interest to the researcher.

Our paper is also closely related to the mediation analysis literature, where the focus is explicitly

on distinguishing direct and indirect effect. Researchers frequently conduct “path analysis” by

2In their reduced-form analysis, Barahona et al. (2023) regress demand on label dummies and price without
instrumenting the latter. In their structural model they do use price instruments.

3The broader practice of using endogenous post-treatment variables as controls is also prevalent in other fields.
Acharya et al. (2016) survey the empirical political science literature and find that two-thirds of papers use such
controls.

4Dubé et al., 2018 regress price on macroeconomic indicators and find that some of them have a significant effect
on prices.
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controlling for intermediate variables along the causal pathway. They subsequently check if the

original effect disappears to establish whether a direct causal relationship remains (Hayes, 2017).

Several papers across different disciplines highlight that mediation without random variation in the

mediator leads to biased estimates (e.g. Acharya et al. (2016), Judd and Kenny (1981), Petersen

et al. (2006)). Several solutions have been proposed. Acharya et al. (2016) propose a sequential

estimator that is valid based on two separate conditional independence assumption with regards

to the treatment and the intermediate variable. Imai et al. (2011) similarly propose a sequential

ignorability assumption which assumes that the mediator (price in our setting) is not affected by

any variable that also affects the outcome (expect for the treatment itself) conditional on a set of

pre-treatment control variables. This assumption is unlikely to be fulfilled in our setting because

unobserved factors that impact demand will also likely impact prices. Bullock and Green (2021)

and MacKinnon and Pirlott (2014) propose using treatment as an instrument for the mediator,

which only works if treatment has no direct effect on the outcome and therefore does not apply to

our setting. To the best of our knowledge, no causal meditation paper has proposed instruments

that affect the mediator separately from treatment as a solution to separating direct and indirect

effects.5

2 Bias Arising from Price Response

We consider a setting where J products are sold in T markets. All variables may vary by market

but we omit the market subscripts to simplify notation. We study the impact of a marketing

variable (treatment) Treatj on the demand for product j. The canonical example is advertising;

however, our arguments apply for other marketing mix variables shifting demand that are likely to

pass-through to prices, e.g., service effort, product quality, or product labeling.

The demand curve is given by

qj = α0 − αppj + αTTreatj + ξj , (1)

where qj and pj denote quantity and price, respectively. The term ξj denotes an unobserved demand

shock. We consider the case of downward sloping demand and a positive treatment effect, that is,

αp > 0 and αT > 0. Throughout the paper we assume that treatment is exogenous, i.e., orthogonal

to ξj . For instance, Treatj may be randomly assigned.

This general structure of demand encompasses two standard specifications: (i) a reduced-form

linear demand equation (e.g. Porter (1983), DellaVigna and Gentzkow, 2019) with log-transforms

of quantity and price; and (ii) a structural logit model, in which case the quantity variable is equal

to ln(sj)− ln(s0), as in Berry (1994).

The reduced-form pricing equation is given by

5The closest approach to ours is the “double randomization” approach (see e.g. Bullock et al. (2010)) where the
mediator is randomly assigned in a separate experiment that is used only to measure the effect of the mediator on
the outcome.
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Treatment Quantity Sold

Price

Demand Shock (ξ)

Figure 1: Directed Acyclic Graph: Relationship between Treatment, Price, Quantity,
and Unobserved Demand Shock.

pj = β0 + βTTreatj + βξξj + ηj , (2)

where ηj are supply shifters, such as cost shocks. The unobserved terms in the demand and supply

equation, denoted by ξj and ηj , are assumed to be uncorrelated.

We expect that in most settings βξ > 0 because an increase in demand typically leads to higher

prices. The coefficient βT is likely to be non-zero for two reasons. First, treatment can affect

prices indirectly via demand. For example, when treatment increases demand, it is plausible to

expect a price increase, in which case βT would be positive. Second, treatment can affect prices via

the supply side. For instance, in our empirical application, we analyze the impact of supermarket

feature advertising, which tends to be associated with lower prices. Such a price decrease likely

occurs because manufacturers offer wholesale price discounts when their product is advertised. To

accommodate both cases, we keep the derivations in this section general, and allow for positive and

negative βT .

Figure 1 represents an alternative way to illustrate the equations outlined above using a directed

acyclic graph (DAG). The DAG depicts two causal pathways through which treatment affects quan-

tity sold, namely, the direct effect and the indirect effect via prices. The direct effect of treatment

on demand is depicted at the bottom of the graph and corresponds to αT – the treatment coefficient

in the demand equation. The indirect effect depends on the relationship between treatment and

price (βT ) and the causal effect of price on demand (−αp). Importantly, price reacts to ξ, which

also enters the demand equation. There are therefore three paths that connect treatment and quan-

tity sold in this DAG: the direct causal path (Treatment → Quantity), the indirect causal path

(Treatment→ Price→ Quantity), and the backdoor path via price and the unobserved demand

shock (Treatment→ Price← ξ → Quantity). We will refer back to the relationships depicted in

the DAG throughout the paper.
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2.1 Bias Without Price Control

First, we consider the case where the researcher regresses quantity on treatment without controlling

for price. Such a regression estimates the relationship between treatment and demand after prices

have adjusted in response to the treatment. We derive this relationship by substituting the pricing

equation into the demand equation:

qj = (α0 − αpβ0) + (αT − αpβT )Treatj + [(1− αpβξ)ξj − αpηj ]. (3)

If βT > 0, then the impact of treatment is underestimated. In this case, treatment shifts the

demand curve up, which results in an increase in prices (because βT > 0), which in turn leads to

a decrease in realized demand (because −αppj < 0). Hence the possible increase in demand due

to treatment is “dampened” by the price increase. Conversely, if βT < 0, as in the case of feature

advertising, the treatment coefficient is overestimated because the positive demand effect of the

price decrease is falsely attributed to treatment.

In terms of the DAG presented in Figure 1, this regression recovers a combination of the

direct effect of treatment (αT ) and the indirect effect due to price adjustments (−αpβT ). In DAG

terminology, price is a collider, meaning that the indirect path from advertising to quantity via the

unobserved demand shock is blocked. As a result, only the direct and indirect causal paths are

open.

We note that if the goal is to measure the impact of treatment on equilibrium quantity, then a

simple regression of quantity on treatment will provide an unbiased estimate of this object. When

we use the term “bias” with regards to a regression without price control, we refer to the case where

the aim is to isolate the direct effect on demand.

2.2 Bias when Controlling for Price

Next, we turn to the scenario where the researcher regresses quantity on treatment while also

controlling for price, which is endogenous and correlated with both treatment and the demand

shock ξj (see equation (2) and Figure (1)).

To derive the bias that results from including the endogenous price control, we rely on standard

properties of linear regression. In particular, one way to interpret the multi-variate regression of

quantity on treatment and price is a two-step process: first, regress treatment on price, and then

regress quantity on the residual from the first-stage regression. By the Frisch-Waugh Theorem (see

Frisch and Waugh, 1933), the coefficient on the treatment variable in the second regression is the

same as the multi-variate regression coefficient.

We let T̃ reatj denote the residual from the first-stage regression:

T̃ reatj = Treatj − (γ0 + γppj),

where γp will have the same sign as βT , the treatment coefficient in the pricing equation.
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The second-state coefficient of a regression of quantity on the first-stage residuals is given by:

α̂T =
Cov(T̃ reat, q)

V ar(T̃ reat)
=

Cov(T̃ reat, αTTreat+ ξ)

V ar(T̃ reat)
=

Cov(T̃ reat, αT T̃ reat+ ξ)

V ar(T̃ reat)

= αT − γp
Cov(p, ξ)

V ar(T̃ reat)
(4)

= αT − βTβξ
V ar(ξ)

V ar(p̃)
(5)

where the second equality in the first line follows from the fact that T̃ reat is uncorrelated with

price. The third equality in the first line follows from the fact that Treat can be decomposed into

T̃ reat and the fitted value of the first stage regression (γ0 + γppj) and again the fact that T̃ reat

is uncorrelated with price. The expression in the second line follows from the fact that Treat is

uncorrelated with ξ (due to random assignment). The final line can be derived by plugging equation

(2) into the covariance expression.6 The term p̃ denotes the residual from a regression of price on

treatment.

In the case of βT > 0, it follows that α̂T < αT , and the treatment effect is underestimated

when including an endogenous price control in the regression. Conversely, if βT < 0, it follows

that α̂T > αT , and the treatment effect is overestimated when including an endogenous price

control in the regression. Therefore, the estimate of the treatment effect when including price as

an endogenous control variable leads to a bias in the same direction as the bias from a regression

without price control. Whether the bias is larger with or without price control is not immediately

obvious when comparing equations (3) and (5). However, a re-arranged bias expression, which we

present below, will allow us to compare the bias magnitude in both cases.

The presence of a bias in this regression is also visible in the DAG. As mentioned earlier, price

is a collider because it depends on both the treatment and the demand shock. Conditioning on

price has two effects. First, it closes the indirect causal path via price. However, at the same

time, it opens the backdoor path via the demand shock ξ. The fundamental issue is therefore that

either choice, omitting or including price leads to open paths causing bias. We either leave open

the indirect causal path in the former case, or the backdoor path, previously blocked by price, in

the latter case. The open paths in both versions of the regression, without price control and with

an endogenous price control, correspond to the different bias formulas we derived above.

The expression in equation (5) provides insights into the conditions under which this bias

occurs. In particular, the bias occurs only if price is correlated with both the treatment (βT ̸= 0)

and the demand-side error (βξ ̸= 0). Hence, the bias stems from the fact that two demand shifters,

treatment and ξ, affect price due to the equilibrium response to changes in demand. In terms of

the DAG representation, bias occurs only if there are arrows between price and treatment, and

between price and the demand shock ξ. If either arrow was absent, price does not function as a

6We also write γp as a function of βT and plug it into the relationship. See Appendix A for more details.
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collider, in which case the regression with price control would produce an unbiased estimate of the

direct causal effect of treatment.

Finally, to assess the relative magnitude of the bias we provide an alternative formulation where

the bias in the treatment coefficient is expressed as a function of the bias in the price coefficient:7

α̂T − αT = (α̂p − αp)βT = −αpβT+α̂pβT (6)

The first equality links the bias in the estimate of the treatment effect to the bias in the estimate

of the price coefficient. The second equality highlights the relative magnitude of the bias in both

regressions because the bias when not controlling for price is equal to −αpβT .

As explained earlier, if price is positively related to the treatment, i.e., βT > 0, the biases in

the price coefficient and treatment effect in the regression controlling for the price have the same

direction. That is, if the regression underestimates the price coefficient, it also underestimates

the treatment effect. This is the most common case, as in most setups price endogeneity leads to

attenuation of the price coefficient.8 In addition to the direction of the bias, it is useful to assess

the relative magnitude of the bias in both regressions, which is equal to α̂pβT . If the estimate of

price coefficient is negative, i.e., if α̂p > 0, then the regression controlling for price has smaller

bias. This is because the bias difference term is positive, and it mitigates the negative bias from

the regression without the price. Conversely, if the price endogeneity is large enough to result in

an upward sloping demand curve estimate, i.e., α̂p < 0, a regression controlling for price produces

more bias. In the knife edge case of α̂p = 0, the estimates are the same in both regressions, which

is intuitive because a zero price coefficient is equivalent to excluding price from the regression.

Importantly, the same degree of the bias in both regression does not necessarily mean no bias; in

other words, both regressions are likely to produce biased treatment effects, even if the estimated

price coefficient is zero. Therefore, testing if the price coefficient in the demand regression is zero

is not a valid test for the presence of the bias in the treatment effect.

The case of negative correlation between the price and treatment effect, that is if βT < 0, is

potentially more problematic. In this circumstance, the bias in treatment effect has the opposite

sign compared to the bias in the price coefficient. For instance, the common case of an underes-

timated price coefficient results in an overestimation of the treatment effect, which may lead to

false positives. In other words, we may detect positive treatment effects, when the true effect is

absent, or even negative. This occurs in both regressions, as the bias in the regression without

the price is given by −αpβT . Again, the relative magnitude of the bias depends on the sign of the

estimated price coefficient in the exact same way as for the case of βT > 0. For example, consider

a common situation, when the estimate of the demand curve is attenuated, but is still downward

sloping, α̂p > 0. We obtain a negative difference term α̂pβT < 0, and since the bias in the regression

7See Appendix A for a detailed derivation.
8In a less common case, when price coefficient is overestimated (which may occur under countercyclical pricing,

or βξ < 0), the treatment effect is also biased upwards.
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Treatment Quantity Sold

Price

Demand Shock (ξ)Price Instrument

Figure 2: Amended DAG with Price Instrument.

without price is positive, the corresponding bias in a regression with price would be smaller.9

In summary, our derivations provide testable guidelines to the researcher about the direction

and relative degree of the bias when including and omitting price in the regression. Primarily, the

direction of the bias depends on the correlation of prices and treatment, which is observed in the

data. Further, the relative bias magnitudes, when including and omitting price, depend on the sign

of the estimate of price coefficient, which is also observable. Specifically, if the regression recovers

downward sloping demand, it would typically lead to lower bias in the treatment effect. Perhaps

more importantly, these relationships also deliver a formal test for the bias, which we present in

Section 2.4.

2.3 Instrumenting Price

Equation (4) points towards a possible way to obtain an unbiased estimate of the direct effect of

treatment on demand. The bias in this equation arises because price is correlated with the unob-

served demand shock ξ. Therefore, standard price instruments, i.e., variables that are correlated

with price but not with the demand shock, allow the researcher to obtain an unbiased estimate of

the treatment effect. When instrumenting price, the expression in equation (4) will depend on the

covariance of instrumented price with the demand shock. If the instrument is valid, the covariance

will be zero and therefore the entire bias term is equal to zero. An alternative way to obtain the

same conclusion is to examine equation (6), which shows that the bias in the treatment coefficient

disappears when the price coefficient is unbiased. An unbiased estimate of price coefficient can be

obtained by employing a valid price instrument.

Further, inspecting the DAG relationships provides evidence for the empirical strategy of using

a price instrument. If the instrument is uncorrelated with the demand shock, as depicted in Figure

2, then it isolates the variation in price that is uncorrelated with the demand shock. This feature is

indicated in the graph by the absence of an arrow from the demand shock to the instrument. The

instrument thus allows us to control for price, by blocking the indirect causal pathway, without

opening the backdoor path via the demand shock.

9Again, if the recovered demand curve is upward sloping, the estimate without the price controls is preferable.
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2.4 Testing for Endogenous Price Response

A simple way to test for the possible bias in the treatment effect without accounting for an endoge-

nous price response is to regress price on treatment. This regression recovers an unbiased estimate

of βT due to the random assignment of treatment. If βT = 0, then no bias arises when regressing

quantity on treatment, or when controlling for price without an instrument. Inspecting equations

(3) and equation (6) shows that the bias terms disappear when βT = 0 holds. In this case, a simple

regression of quantity on treatment delivers an unbiased estimate of the direct treatment effect, as

the indirect effect is zero.10

Two other conditions lead to an absence of bias: when the true price coefficient is zero, i.e., if

αp = 0, no bias occurs in the regression without price control, and if βξ = 0 the regression with

an uninstrumented price control is unbiased. Both cases are not directly testable, as the true price

coefficient and demand shocks are typically unobserved. Both cases are also unlikely to apply in

most settings, because they imply either that demand does not react to price, or that prices do not

react to demand shocks.

Finally, we note that finding a similar value of the treatment coefficient in a regression without

price and regression with an endogenous price control is not sufficient to conclude that the treatment

coefficient is unbiased. Because both coefficients are biased, it is possible that the treatment

coefficient is equally biased in both cases. As we showed earlier (see equation (6)), this case arises

when the price coefficient is equal to zero.

3 Simulations

In this section, we illustrate the size and direction of the possible bias in specifications with and

without a price control using a set of numerical simulations. We start with simulations based on

linear demand and supply equations that match the ones in the previous section and then extend the

analysis to a structural price setting model and a more flexible demand model with heterogeneous

consumers.

3.1 Reduced-form Pricing Equation

We consider a standard micro-foundation for the demand function in equation (1). Suppose that

each consumer has a utility for product j given by

uijt = α0 − αppjt + αTTreatjt + ξjt + εijt, (7)

where εijt is distributed as type-1 extreme value. Consumers can also choose an outside option

denoted by j = 0, with normalization ui0t = εi0t. Consumers purchase one product per period

10As we show later, there still may be an advantage of including price as a control in this setting, even if the price
coefficient is biased due to endogeneity. This is because, including the price may lower the variance of the error term,
and increase power when estimating the treatment effect.
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that yields the highest utility. Denote market share of the product j in market t as sjt. Berry

(1994) shows that in this case the aggregate demand function can be linearized. We supplement

the demand relationship with a reduced-form pricing equations.

The parametrization of demand and supply is given by:

ln(sjt)− ln(s0t) = α0 − αppjt + αTTreatjt + ξjt

pjt = β0 + βTTreatjt + βξξjt + βZZjt + ηjt, (8)

which is identical to the framework outlined in the previous section, except for the fact that we use

the difference in log-shares as the outcome variable in the demand equation. This transformation

allows us to obtain a structural interpretation of the regression coefficients as utility parameters.

We also introduce an instrument in the supply equation denoted by Zjt. The instrument is a cost

shifter uncorrelated with ξ and η. We use the instrument to demonstrate how to obtain an unbiased

estimate of αT .

We simulate treatment, prices and consumer choices for 1,000 markets with two inside goods.

We set the following default values of the parameters on the demand side: {α0 = 10, αp = 1, αT =

1, σξ = 1.2}, and on the supply-side: {β0 = 10, βT = 0.5, βξ = 0.4, ση = 1} in all simulations, unless

specified otherwise.11 We assume that treatment is a dummy variable that takes a value of 1 with

50% probability and that it is IID across firms and markets. We consider a set of different cases

that generate different biases (or an absence of bias) depending on the values of βT , βξ and σξ.

Unbiased Estimates Without Instruments We start by considering two special cases in

which it is not necessary to instrument for price. In the first case, we simulate data for a model

where pricing does not react to treatment, i.e. βT = 0. We estimate the model without controlling

for price and controlling for price without an instrument and report results in columns (2) and (3)

of Table 1. Given our assumption that price and treatment are uncorrelated in the data-generating

process, it is unsurprising that that the estimated treatment effect is close to the true value in both

regressions. The price coefficient in column (3) is biased due to the correlation of price the demand

shock, which introduces the standard price endogeneity concerns. Crucially, this endogeneity does

not influence the estimation of the treatment coefficient, as treatment remains uncorrelated with

price. This follows directly from equations (3) and (4), where the bias terms disappears if βT = 0.

Including price in the regression enhances the precision of the (unbiased) treatment effect estimate

by reducing its standard error, even though the price coefficient itself is biased. We also present

results for the case in which price is instrumented, despite instrumenting being unnecessary in

this context. As expected, the treatment coefficient remains unbiased; however, its standard error

increases relative to the regression that includes price as an uninstrumented control due to decrease

in power cased by the (unnecessary) first-stage regression.

11ξjt and ηjt are drawn from normal distributions with mean zero and the indicated variance. Zjt is drawn from a
standard normal distribution.
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(1) (2) (3) (4)
No Price Endogenous Price Control

True Values Control Price Control with Instrument

(a) No Correlation Treatment 1 1 1 1
between Price (0.057) (0.049) (0.054)
and Treatment Price -1 -0.56 -1
βT = 0 (0.021) (0.088)

(b) No Price Treatment 1 0.5 1 1
Endogeneity (0.070) (0.056) (0.071)
βξ = 0 Price -1 -1 -1

(0.026) (0.089)

(c) Low Price Treatment 1 0.5 0.78 1
Endogeneity (0.057) (0.050) (0.070)
σξ = 1.2 Price -1 -0.56 -1

(0.022) (0.091)

(d) Medium Price Treatment 1 0.5 0.5 1
Endogeneity (0.076) (0.077) (0.127)
σξ = 2.14 Price -1 0 -1.01

(0.027) (0.162)

(e) Large Price Treatment 1 0.5 0.35 1.01
Endogeneity (0.085) (0.086) (0.158)
σξ = 2.7 Price -1 0.29 -1.02

(0.028) (0.216)

(f) Negative Correlation Treatment 1 1.5 1.22 1
between Price (0.054) (0.049) (0.072)
and Treatment Price -1 -0.56 -1
βT = −0.5 (0.022) (0.093)

Table 1: Estimation Results Based on Simulated Data. Parameters taken on the following
default values on the demand side: {α0 = 10, αp = −1, αT = 1, σξ = 1.2} and on the supply-side:
{β0 = 10, βT = 0.5, βξ = 0.4, ση = 1} in all simulations. Any deviations from default parameters
are indicated in the left-most column.

In the second case, we set βξ = 0, which implies that pricing reacts to treatment but not

to demand shocks. While this may appear like an unusual assumption, we believe it serves as a

useful benchmark for the reasons we outline below. In this setting, a regression without the price

control leads to an underestimation of the treatment coefficient because price reacts positively to

treatment. This is in contrast to the first case, where treatment did not influence price, allowing

for unbiased estimation even without price control. When controlling for price, see column (3), we

obtain an unbiased estimate of the treatment effect. Notably there is no need to instrument for

price because price does not react to demand shocks.12 This scenario is particularly noteworthy

12Instrumenting for price also leads to an unbiased treatment coefficient, but increases the standard error of the
treatment coefficient because it utilizes only part of the variation in the (exogenous) price control variable.
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because it represents the only special case in which including a price control is necessary and

where the inclusion of the uninstrumented price control yields an unbiased treatment coefficient.

Although it is common in empirical work to control for price without instrumenting, we believe

the conditions under which this specification is valid are restrictive and unlikely in most real-world

settings. Specifically, for this approach to be correct, price must respond exclusively to treatment

and remain unaffected by any other demand shocks.

Downward Bias: Positive Correlation Between Price and Treatment Next, we simulate

data using different values of σξ = {1.2, 2.14, 2.7}, while setting βT and βξ to their default values.

The results are presented in panels (c) to (e) of Table 1. Intuitively, regulating the variance of

the unobserved demand shock, regulates the severity of price endogeneity. As the variance of ξ

increases, a larger part of the total price variation is driven by the unobserved shock, thus leading

to a larger bias in the price coefficient, holding everything else constant.

For a low value of σξ, we find that the bias in the treatment coefficient is smaller with an endoge-

nous price control than in a regression without a price control. As discussed earlier, equation (6)

reveals that the bias in the treatment coefficient is related to the bias in the price coefficient. Our

numerical results confirm that the underestimation of the price coefficient leads to an underestima-

tion of the treatment coefficient. Further, despite the bias, the price coefficient remains negative.

Thus, according to our earlier result, including the endogenous price control shrinks the bias in the

treatment effect estimate. Instrumenting for price, however, fully resolves the endogeneity issue

and produces an unbiased estimate of the treatment effect.

In panel (d), we increase the variance of the demand shock which leads to a larger downward bias

in the price coefficient because the influence of the demand shock on price grows. We intentionally

set the variance such that the estimated price coefficient is approximately zero. This case is logically

equivalent to omitting price from the regression altogether, implying that the bias in the treatment

coefficient is the same in columns (2) and (3). Importantly, even in this case, the bias remains large.

As before, instrumenting leads to unbiased estimates of both the price and treatment coefficient.

Finally, in panel (e) we induce high enough variance that so that the estimated price coefficient

becomes positive. In this scenario, the treatment coefficient is relatively more biased when using

an endogenous price control versus a regression without price. As we discussed earlier, this case is

detectable because a positive price coefficient should immediately signal that the price coefficient

is biased.

In summary, the three cases in panels (c) to (e) highlight that if the price coefficient estimate is

negative, the relative bias when controlling for prices without instrumenting tends to be lower than

when not controlling for price . The case of zero price coefficient is particularly noteworthy, because

a researcher running regressions with and without price control might be tempted to conclude that

the price “does not matter.” Further, the researcher may deduct that the treatment coefficient is

unbiased, because it is “robust” to the inclusion of the price control. However, this interpretation

is incorrect, as both specifications are equally biased. Finally, when the sign of the price coefficient
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becomes positive, controlling for prices without an instrument exacerbates the bias in the treatment

coefficient. This final case is easy to detect because a positive price coefficient should signal an

obvious endogeneity problem.

Upward Bias: Negative Correlation Between Price and Treatment In panel (f) of Table

1, we consider the case where price and treatment are negatively correlated. This case behaves

similarly to the positive correlation case, but with the reverse direction of the bias. We set βT =

−0.5, and σξ = 1.2, making this dataset equivalent to the one in panel (c), except that price

and treatment are now negatively correlated. When regressing log-shares on treatment alone, the

treatment coefficient is biased upwards. This upward bias occurs because treatment is accompanied

by lower prices, and hence, both treatment and the price reduction increase market shares. When

controlling for price without an instrument, the upward bias is reduced but not fully eliminated.

As in all other cases, using an instrument for price leads to unbiased estimates of the treatment

and price coefficients. Although not reported in the table, setting the variance of the demand shock

high enough can change the sign of the estimated price coefficient. When this occurs, controlling

for endogenous prices worsen bias instead of reducing it. This case is identical to the case in panel

(e) but with a bias occurring in the opposite direction.

3.2 Bertrand-Nash Competition

In this section, we examine a micro-founded pricing model based on a price-setting game, following

Berry et al. (1995) (henceforth, BLP).

Logit Demand We start by considering the same demand specification as in the previous section.

That is, the utility is given by equation (7), which generates standard logit market shares. Further,

we assume that firms face marginal cost, represented by

cjt = c̄+ γTTreatjt + γZZjt + ηjt, (9)

where Zjt are cost shifters observed by the econometrician, assumed to follow a standard normal

distribution, while ηjt denotes unobserved cost shifters, which are log-normally distributed (ob-

tained by exponentiating a normal distribution with standard deviation of 0.3). Notably, Zjt serves

a role analogous to the reduced-form price shifters in equation (8); however, unlike the reduced-

form price shifters, these cost shifters are structural, as they have an economic interpretation in

terms of marginal cost. We set {c̄ = 10, γT = 0, γZ = 0.3} as the default parameters. The value of

γZ and the distribution of ηjt remain unchanged throughout the paper.

We derive equilibrium prices by solving the first-order conditions for profit maximization, given

by the system of equations

∂sjt(pjt,p−jt; Treatjt)

∂pjt
(pjt − cjt) + sjt = 0, (10)
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where p−jt is the price charged by the competitor. We assume that firms take competitors’ prices

as given, implying that the solution to the above equations (subject to second-order conditions)

represents the Bertrand equilibrium of the pricing game.13

This specification allows for two pathways by which treatment affects prices. First, treatment

affects market shares via the utility function, altering the demand elasticity, and thereby affecting

the solution to the first-order conditions – a mechanism we refer to as the demand effect. Second,

treatment may directly affect marginal costs, as modulated by the parameter γT . The resulting

change in marginal costs is subsequently passed through to prices, which we term the supply effect.

The latter mechanism is relevant in contexts, such as promotions, when manufacturers can offer

retailers a discounted wholesale price when a product is advertised or featured (see Blattberg and

Levin, 1987; Kumar et al., 2001). Both the demand and supply effects provide micro-foundations

for the parameter βT in equation (8), generating either a positive or negative correlation between

treatment and price. Finally, we note that the first-order conditions dictate the dependence of

prices on ξ, which provides micro-foundations for the parameter βξ.

The structural parameters are calibrated to align with the various cases in the reduced-form

simulations presented in Table 1, with the exception of the first case, in which price and treatment

are uncorrelated.14 Consistently with the reduced-form analysis, we manipulate the degree of price

endogeneity by adjusting the variance of the demand shifter ξ. The first set of simulations excludes

supply-side effects of treatment by setting γT = 0.

The first row of Table 2 examines a scenario where σξ = 0, eliminating price endogeneity. A

key distinction from the reduced-form approach is worth noting: in the reduced-form framework,

the absence of endogeneity was achieved by setting βξ = 0, which allows for variation in ξ while

mechanically shutting down an endogenous price response. However, replicating this setup within

a structural supply-side pricing model is challenging, as it would require assuming that firms do not

incorporate ξ into their pricing decision – a deviation from the canonical supply model. Instead,

we eliminate price endogeneity by setting the variance of ξ to zero. While this setting is somewhat

artificial and possibly less practically relevant, we include it as a benchmark for the comparison

with the subsequent results. The simulation under this configuration yields a positive correlation

between prices and treatment. This outcome occurs because treatment leads to an outward shift

in demand, reducing the demand elasticity for any fixed price.15 One can show that less elastic

demand leads to a higher price best response, and as a result, equilibrium prices for both companies

increase. The results closely mirror those obtained using the reduced-form analysis. Both the OLS

regression with a price control and the IV estimator produce unbiased estimates of the treatment

effect. 16

13The system of equations is solved using a standard Newton method. We verify second-order conditions for every
solution.

14This case is omitted due to the trivial conclusions when price and treatment are uncorrelated. We note that
in the setting with a structural supply model, such scenario would only arise if the supply and demand effects of
treatment on prices cancel each other.

15In the logit model, price elasticity is given by −αP pjt(1 − sjt).Since the treatment increases sjt for any given
price, the demand becomes less elastic.

16Notably, in the specifications with price control (OLS and IV), the standard errors are zero, as we set the variance
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(1) (2) (3) (4)
No Price Endogenous Price Control

Coefficients True Values Control Price Control with Instrument

(b) No price endogeneity Treatment 1 0.65 1 1
σξ = 0 (0.008) (0.00) (0.00)

Price -1 -1 -1
(0.00) (0.00)

(c) Low price endogeneity Treatment 1 0.65 0.82 1
σξ = 0.6 (0.011) (0.013) (0.017)

Price -1 -0.47 -1
(0.014) (0.034)

(d) Medium price endogeneity Treatment 1 0.63 0.63 1.01
σξ = 1.4 (0.023) (0.025) (0.045)

Price -1 0 -1
(0.011) (0.088)

(e) Large price endogeneity Treatment 1 0.63 0.58 1.00
σξ = 2.9 (0.041) (0.043) (0.082)

Price -1 0.13 -0.99
(0.026) (0.160)

(f) Negative correlation Treatment 1 1.89 1.27 1
between price (0.026) (0.012) (0.084)
and treatment Price -1 -0.27 -1
σξ =1.5, c̄ = 3, γT = −2 (0.012) (0.089)

Table 2: Simulations with Structural Supply & Logit Demand Model. Parameters taken
on the following default values on the demand side: {α0 = 10, αp = −1, αT = 1} and on the supply-
side: {c̄ = 1, γT = 0, γZ = 0.3} in all simulations except when different values are indicated in the
left-most column. We label the cases to mirror the reduced-form results in Table 1 and therefore
start with case (b).

To explore varying degrees of price endogeneity, we adjust the variance of unobserved demand

heterogeneity by setting σξ = {0.6, 1.4, 2.9}. As in the reduced-form case, each of these scenarios

produces a positive correlation between prices and treatment. The bias patterns replicate the

corresponding reduced-form results in Table 1. Specifically, models excluding price, as well as OLS

models incorporating price, tend to underestimate the treatment effect. When price endogeneity

becomes more pronounced, the inclusion of price exacerbates bias, but only when the estimated

price coefficient is positive. Finally, we observe substantial bias even in cases where the price

coefficient in the OLS model is zero (see case (d)), again mirroring the equivalent result from the

reduced-form simulations.

We also replicate a scenario in which price is negatively correlated with treatment, as in the last

of ξ to zero. This is because removing ξ leads to deterministic market shares; thus, the Berry logit inversion produces
an OLS regression without residuals.
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row of Table 1. This case cannot be achieved within the standard logit model without supply-side

effects, as the demand effect alone consistently induces a positive correlation between treatment and

price. There are two potential approaches to address this challenge. The first involves enriching the

demand model to allow for a rotation of the demand curve induced by treatment. Such a rotation

could increase the demand elasticity for the marginal consumer, thereby generating a negative

correlation between optimal prices and treatment. The second approach introduces supply-side

effects, such as trade promotions. Since supply-side effects preserve the linear demand assumption,

they provide a natural starting point, maintaining linear demand and ensuring compatibility with

the theoretical framework outlined in Section 2 and the reduced-form analysis is Section 3.1.

In the last row of Table 2, we consider a case where c̄ = 3 and γT = −2, which produces

a negative correlation between prices and treatment. In line with the reduced-form results, we

replicate the upward bias observed in the treatment effect estimate, both in the regression without

the price and in an OLS regression with an endogenous price control.

Heterogeneous Preferences Next, we consider a richer demand model with random coefficients,

akin to the BLP framework. This extension is motivated by two objectives. First, it allows us to

demonstrate that the bias of non-IV estimators persists even in a non-linear demand setting, when

the theoretical results from Section 2.2 are not directly applicable. Second, it enables us to consider

the case in which prices and treatment are negatively correlated without relying on supply-side

effects. As noted earlier, achieving a negative correlation requires a rotation of the demand curve

due to treatment, which may arise if the price coefficient varies heterogeneously across consumers.

To this end, we consider the simplest version of a random coefficient logit model with two

latent consumer classes (henceforth referred to as segments), differentiated by their intercepts and

price coefficients. To maintain focus on the estimation bias of a single parameter, we exclude

heterogeneous treatment coefficients, thereby facilitating a clearer discussion of bias direction. The

utility function is specified as:

uijt = α0g(i) − αpg(i)pjt + αTTreatjt + ξjt + εijt,

where g(i) ∈ 0, 1 is the segment of consumer i. Market shares for each segment, sgjt, are derived

using the standard logistic formula. The aggregate market share is computed as a weighted sum

of the segment-specific shares: sjt =
∑

g sgjtPg, where Pg denotes the proportion of consumers in

segment g. For simplicity, we assume Pg = 0.5, and that this value is known to the econometri-

cian. This assumption ensures a conservative assessment of estimation bias by eliminating potential

misspecification due to errors in segment size estimation. Additionally, we assume that the econo-

metrician observes only aggregate market shares, not segment-specific shares. The marginal cost

specification follows equation (9), with parameter values set to {c̄ = 1, γT = 0, γZ = 0.3}.
We classify consumers into two segments: “loyals,” and “switchers.” . Loyals are an inelastic

group, characterized by a high baseline utility for inside goods (or a low utility for the outside

option), while switchers are an elastic group, with low baseline utility for inside goods (or a high
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No Price Endogenous Price Control
Coefficients True Values Control Price Control with Instrument

BLP with positive Treatment 2 1.21 1.75 1.97
correlation (0.019) (0.028) (0.035)
between price Intercept 6 -0.94 2.65 5.51
and treatment - Loyals (0.145) (0.298) (0.203)
ρ(p,Treat) = 0.28 Intercept 3 -2.08 4.46 3.10
ρ(p, ξ) = 0.25 - Switchers (0.160) (0.4151) (0.188)

Price -2.3 -1.15 -2.12
- Loyals (0.103) (0.068)
Price -2.3 -2.72 -2.32
- Switchers (0.158) (0.083)

BLP with negative Treatment 2 1.51 1.44 1.93
correlation (0.027) (0.018) (0.042)
between price Intercept 6 2.82 2.64 5.43
and treatment - Loyals (0.067) (0.162) (0.201)
ρ(p,Treat) = −0.19 Intercept 3 -4.15 -1.02 2.70
ρ(p, ξ) = −0.09 - Switchers (0.036) (0.056) (0.191)

Price -0.2 0.067 -0.15
- Loyals (0.013) (0.016)
Price -2.3 -0.82 -2.18
- Switchers (0.018) (0.042)

Table 3: Simulations with Structural Supply & BLP Random Coefficients Demand
Model. Supply-side parameters taken on the following values: {σξ = 0.8, c̄ = 1, γZ = 0.3, γT = 0}in
all simulations.

utility for the outside option). Although treatment affects the utility of both groups equally, its

impact on market share is more pronounced for switchers due to the non-linear effect of utility

on market shares in the logit framework. Consequently, when the treatment is active, the set of

marginal consumers contains a relatively larger proportion of switchers. This leads to a rotation

of the aggregate demand curve when treatment is active. Consequently, as more switchers become

marginal, the firm faces downward pricing pressure. Simultaneously, the firm faces incentives to

raise prices to capitalize on the outward shift in demand by exploiting the increased willingness

to pay of the infra-marginal loyals. The net effect of treatment on the the price effect depends on

the relative magnitudes of these two opposing forces, the demand rotation and the outward shift

in demand.

We estimate the model using a Generalized Method of Moments (GMM) approach, opera-

tionalized through a nested fixed-point inversion of market shares. In the inner loop, we ob-

tain a vector, ξjt, by inverting aggregate marker shares sjt for a given set of parameters α =

{α00, α01, αp0, αp1, αT }. In the outer loop, we estimate the parameters by matching the moment
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conditions E[ξjtIjt;α] = 0, where Ijt is a vector of GMM instruments.17 We employ optimal

instruments for prices and costs shifters to eliminate any degree of freedom in selecting the func-

tional form of the instruments. To ensure robustness, we also repeated the analysis using BLP

instruments and found numerically similar results. The choice of instruments varies depending on

the specification of the model.

� Model without price controls: We use six instruments: a vector of ones, the firm’s own

treatment Treatjt , and the competitor’s treatment Treat−jt, each interacted with firm identity

(3 × 2 vectors).

� Model with endogenous price controls: We use a vector of ones, optimal instruments for price

defined by E
[
∂ξjt
∂α |pjt

]
and E

[
∂ξjt
∂α |p−jt

]
(5-parameter vector per each conditional expecta-

tion), the firm’s own treatment Treatjt, and the competitor’s treatment Treat−jt, resulting

in 13 moments.

� Model with exogenous cost shifters: We replace optimal price instruments that condition on

price with instruments that condition on exogenous cost shifters. Formally, the new optimal

instruments are given by E
[
∂ξjt
∂α |Zjt

]
and E

[
∂ξjt
∂α |Z−jt

]
.

In the model with endogenous price controls, we deliberately use misspecified moment conditions

by constructing the optimal instruments conditional on prices, pjt. Since prices are endogenous,

these optimal instruments are not orthogonal to the error term ξjt. This exercise mimics the

orthogonality violation in the “un-instrumented” OLS case and is therefore expected to produce a

biased estimate of the treatment effect.18

All estimators follow a two-step procedure to derive the optimal weighting matrix. In the first

step, we use an initial weighting matrix (a diagonal matrix with inverses of moment condition

variances, evaluated at the true parameters) to obtain preliminary parameter estimates. In the

second step, we compute the optimal weighting matrix based on these estimates and re-estimate

the model to improve efficiency. Standard errors are computed using a parametric bootstrap.

Table 3 presents two representative cases. In case 1, loyals and switchers are equally price-elastic.

In this scenario, treatment leads to a price increase, and the estimated treatment effects are biased

downward. This outcome replicates the reduced-form results. In case 2, loyals are highly inelastic,

leading to a demand rotation as switchers enter the market. In this scenario, treatment induces

price reductions to attract switchers. However, the treatment effects are again underestimated.

Notably, the bias direction in case 2 is opposite to previous examples (see case (f) in Tables 1

and 2), in which a negative correlation of price with treatment resulted in upwards bias. This dis-

17We use the term “GMM instruments” in a broad sense, referring to any variables that interact with the residuals to
construct moment conditions. In this context, GMM instruments encompass not only traditional exogenous variables
but also price instruments, denoted by Z, which serve to address endogeneity in price estimation.

18A typical estimation procedure with optimal instruments is to obtain a preliminary estimate of αusing sub-optimal
instruments, construct optimal instruments, and then re-estimate α. Our optimal instruments are evaluated at true
value of α to avoid applying additional bias from mis-estimation of the derivative of ξ due to price endogeneity. The
conditional expectations are estimated using separate kernel regressions employing squared exponential kernel with
standard deviation of 0.1.
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crepancy is likely driven by the countercyclical pricing property of this parameterization, wherein

ξ and prices exhibit a negative correlation (ρ = −0.09). According to equation (4), the bias sign

is determined by the correlation between prices and treatment, as well as the the term cov(ξ, p).

In prior cases, the covariance term was always positive, but the demand rotation in the random

coefficient model leads to a negative correlation. Crucially, since cov(ξ, p) is unobserved, deter-

mining the bias direction in practice is challenging and requires additional assumptions about the

unobserved relationship between prices and demand shocks.

4 Application: Impact of Feature Advertising on Demand

In this section, we apply our framework to a core marketing question: the estimation of the causal

impact of feature advertising on demand for the featured product. We estimate demand for in-

dividual products using panel data at the store/week-level and a standard two-way fixed effect

regression model:

qjt = αfeatFeatjt + αpricepjt + δj + θt + εjt, (11)

where δj and θt denote store and week fixed effects, respectively. The coefficient of primary interest

is the feature coefficient, αfeat. We use log-transforms of purchase quantities and price. Following

our earlier discussion, we show results for three specifications: (i) without price control, (ii) with

an endogenous price control, and (iii) with instrumented price. We note that the specification in

equation (11) is widely used in marketing research (e.g. Seiler and Yao (2017), Thomas (2020),

Jindal et al. (2020), Goli et al. (2022)). Often, a similar model is embedded within a discrete-choice

framework, where utility is specified as a function of price, advertising, and product fixed effects or

product characteristics (see, e.g., Chintagunta and Dubé (2005), Chintagunta et al. (2005), Hendel

and Nevo (2006)).

Consistent with the previous literature, we assume that the variation in feature advertising is

as-good-as-random conditional on fixed effects. The key distinction in our analysis is the focus on

the role of endogenous prices. Specifically, while we assume that feature advertising is uncorrelated

with the error term, we allow for price to be potentially correlated with the regression error. This

scenario is plausible because prices are easier to adjust in response to local demand shocks, and

they vary at the store/week level. In contrast, feature advertising decisions are typically made at a

higher geographic level for all stores belonging to the same chain, and are often predetermined as

part of annual promotional calendars negotiated between manufacturers and retailers (Anderson

et al. (2017)).19

We use retail scanner data from Nielsen-Kilts, which covers a broad set of retail stores in the

US and focus our analysis on the top three products in seven product categories.20 We start by

19If price endogeneity is absent and our instrument is valid, instrumenting for price should not alter the estimated
coefficients on price and feature advertising. Thus, while we do not assume price endogeneity conditional on fixed
effects, we allow for this possibility.

20For each product we only retain stores where non-zero sales occur in at least 45 out of 52 weeks. We implement

19



(1) (2) (3)
Price/Feat. Correlation

Dependent Variable Log Price Log Price Log Price
Feature Dummy -0.263*** -0.182*** -0.217***

(0.002) (0.002) (0.002)

No Price Control

Dependent Variable Log Quantity Log Quantity Log Quantity
Feature Dummy 1.082*** 0.681*** 1.103***

(0.011) (0.006) (0.007)

Endogenous Price Control

Dependent Variable Log Quantity Log Quantity Log Quantity
Feature Dummy 0.454*** 0.249*** 0.603***

(0.026) (0.006) (0.017)
Log Price -2.386*** -2.376*** -2.302***

(0.097) (0.026) (0.076)

Store Fixed Effects Yes Yes Yes
Week Fixed Effects Yes Yes Yes
Observations 198,160 129,690 261,526

Table 4: Feature Ads: Price Correlation & Biased Sales Regressions.

presenting results for the top three products in the Mayo category as an illustrative example before

reporting results across all categories.

Before discussing the main regression results, we first estimate the correlation between features

and price conditional on fixed effects by regressing price on the feature dummy, as well as store

and week fixed effects. These results are reported in the top panel of Table 4. Each column

represents one of the top three products in the category. For all three products, we find a negative

and statistically significant relationship between feature advertising and price. A product being

featured corresponds to approximately a 18%-26% price reduction, which is consistent with the

typical size of temporary discounts that often accompany feature advertisements.

4.1 Biased Regression Specifications

Next, we proceed with the main regression analysis, and start by estimating equation (11) without

including price in the regression. The results are reported in middle panel of Table 4. We find a

large and statistically significant feature coefficient across all three products. We then add price

this selection step because price is not observed for weeks with zero sales. Only weeks with non-zero sales are included
in our final sample.
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(1) (2) (3)
1st Stage

Dependent Variable Log Price Log Price Log Price
Feature Dummy -0.012*** -0.067*** -0.047***

(0.001) (0.003) (0.002)
Cost Advantage 0.973*** 0.834*** 0.896***

(0.004) (0.007) (0.005)

Partial F-Stat 386,295 143,959 215,521

2nd Stage

Dependent Variable Log Quantity Log Quantity Log Quantity
Feature Dummy 0.264*** 0.217*** 0.397***

(0.007) (0.006) (0.005)
Log Price -3.107*** -2.552*** -3.251***

(0.021) (0.031) (0.019)

Store Fixed Effects Yes Yes Yes
Week Fixed Effects Yes Yes Yes
Observations 198,160 129,690 261,526

Table 5: Feature Ads: Instrumental Variable Regressions.

to the regression without instrumenting, thus treating it as an endogenous control. The results are

presented in the lower panel of Table 4. Comparing these results to the results in the middle panel

obtained without price control, we find that the feature coefficient decreases significantly for all

products. This pattern aligns with our derivations in Section 2.2 , which show that when feature

advertising and price are negatively correlated, omitting the price results in an upward bias in the

estimated effect of feature advertising. Further, if the estimated price coefficient is negative, even

if price is treated as endogenous control, we should expect a smaller bias if the price is included

in the regression. The estimates confirm these theoretical results. However, if the price coefficient

is underestimated (in absolute terms) due to endogeneity, the regression with the price control

but without instruments is still biased upwards – though to a lesser degree than the specification

without any price control.

4.2 IV regressions

To address the potential endogeneity of price, we propose an instrument that is based on cross-

market correlations in price, similar to commonly used Hausman-type instruments. For each store-

week observation, we construct an instrument by computing the chain-specific average price across

all stores that belong to the same retailer but are located outside of the focal store’s Designated
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Market Area (DMA). The instrument captures chain-wide price fluctuations that are due to changes

in input costs or wholesale prices which vary at the chain-level rather than at the level of the

individual store. The usual assumption for the instrument to be valid is that demand shocks must

be uncorrelated across markets. Because we control for store and week fixed effects, correlated

demand shocks can only arise if there are chain-specific temporal demand fluctuations, which are

less likely. We note that our instrument is identical the instrument proposed in DellaVigna and

Gentzkow (2019), who estimate a two-way fixed effect model, and instrument for price with chain-

specific average prices in other markets. They do not include a feature dummy in their regression,

because their primary focus is on estimating price elasticities. Allcott et al. (2019) also use a

very similar instrument in a cross-sectional setting. They argue that this instrument captures

retailer-specific cost advantages in distribution networks.

In the top panel of Table 5 we present the first-stage results. We find that the cost advantage

coefficient is close to one and statistically significant. The partial F-statistic of the excluded instru-

ment is large, suggesting that we do not suffer from weak instrument concerns. The coefficient value

of close to one suggests a strong correlation in prices across markets, in a manner consistent with

DellaVigna and Gentzkow (2019) and Hitsch et al. (2021), who show that many pricing decisions

occur at the retail-chain level.

We report results from the second stage of the IV regression in the lower panel of Table 5. We

find that the price coefficient becomes, in absolute terms, larger than estimates in the specification

without a price instrument. This pattern is consistent with price being set higher in periods of high

demand, i.e. βξ > 0 in equation (2). Turning to the featured advertising coefficient, we find that

for all three products, the estimated coefficient is significantly smaller than the feature coefficient in

the two biased specifications. The magnitude of the bias is substantial. Compared to the regression

without price control, the feature coefficient is 3-4 times smaller across the three products. Relative

to the endogenous price control regressions, the effect size shrinks by about 40% for two out of three

products. These results highlight the importance of properly addressing price endogeneity when

estimating the causal effect of feature advertising. We further demonstrate below that similar bias

magnitudes are observed across a broader set of product categories.

4.3 Cross-category Results

To extend our analysis, we implement the regressions above across the top 3 products in 7 different

product categories, resulting in a total of 21 products. The categories used for this analysis are:

Potato Chips, Diapers, Ice Cream, Ketchup, Mayo, Ready-to-Eat Cereal, and Soft Drinks. We

implement the same set of regressions that we reported for the mayo category, and plot the estimated

coefficients to visualize the patterns that arise across the different categories.

In the top graph in Figure 3, we plot the distribution of the feature coefficient in a regression

of price on a feature dummy and fixed effects. These results correspond to the regression results

reported for Mayo in the top panel of Table 4. We rank the products by their degree of correlation

between feature advertising and price in this and all subsequent graphs. We find a negative impact
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Figure 3: Price / Feature Correlation & Feature Coefficients in Different Specifications.
The top panel shows the feature coefficients from regressions of log-price on the feature dummy and
fixed effects across products. The bottom panel displays results from regressions of log-quantity
sold on the feature dummy and fixed effects, ranked by the size of the price-feature relationship
presented in the top panel. We display the feature coefficient when not controlling for price (black),
when using price as an endogenous control (red) and when instrumenting price (green).
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Figure 4: Price Coefficients with and without Instrument. Each dot represents the price
coefficient from a regression of log-quantity on the feature dummy, log-price and fixed effects,
estimated separately by product. Red dots show coefficients from uninstrumented regressions,
while green dots reflect those from IV regressions. Products are ordered from left to right by the
strength of the price-feature correlation, from most to least correlated.

of feature advertising on (log) price ranging from -0.35 to -0.05. This coefficient corresponds to

βT in the model derivations presented in Section 2. Because feature ads negatively correlate with

price, failing to instrument price will lead to a positive bias in the feature coefficient, and hence

an overestimation of the impact of a feature. Moreover, larger correlation of the feature with price

will lead to a greater bias, both in a regression without price control, and in a regression with

endogenous price control. We therefore expect a greater bias for UPCs depicted on left side of the

graph.

In the lower graph of Figure 3 we plot the estimated feature coefficients from a set of regressions

of quantity on feature advertising. We order products in the same way as in the top graph; that is,

by the correlation of feature advertising and price. We report coefficients from a regression without

price control (black), with an endogenous price control (red), and when price is instrumented

(green). In all comparisons, we treat IV numbers (green) as consistent estimates of true effects.

Several patterns in this graph are noteworthy. First, we examine the bias when omitting price

controls altogether. As predicted, the bias is larger for products with a stronger correlation between

feature advertising and price. For roughly the first half of the UPCs, the bias from omitting price

is substantial, and yields an average feature coefficient of around 1.0, whereas regressions using a

price instrument lead to an average coefficient of 0.1-0.2. For the final five products, on the right-

hand side of the graph, the bias is much smaller because the feature advertising / price correlation

is relatively small. In all cases, omitting price leads to upward bias, as the black dots are always

above green dots.
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Second including price as an endogenous control delivers mixed results. In cases with large

correlation of price and feature, the estimated feature coefficient remains significantly biased up-

wards (red dots are above green dots). However, for several products, especially towards the right

half of the graph, the red (endogenous control) and green (instrumented) estimates are similar.

This is again consistent with theory as feature and price is less correlated for products toward the

right of the graph. For one product, including an endogenous price control leads to a bias in the

opposite direction because the price coefficient is overestimated rather than underestimated for the

particular product. In all cases, absolute magnitude of the bias is smaller when including price

controls.

As we showed earlier, the severity of the bias when using an endogenous price control depends

on the bias in the price coefficient (see equation (6)). To illustrate this, we plot the estimated price

coefficient from the instrumented and uninstrumented regressions in Figure 4. Consistent with the

relative bias reported in Figure 3, the price coefficient is in most cases underestimated (in absolute

terms). However, in some instances, such as product 15, the two price coefficients are relatively

close together. In this case, price endogeneity is not very severe resulting in a small bias in the

estimated effect of feature advertising when controlling for price without instruments.

5 Conclusion

In this paper, we analyze the setting where treatment is (quasi-) randomly assigned, but price

and treatment are correlated due to post-treatment price adjustments. We show that the com-

mon practice of including price as an (endogenous) control variable leads to a biased treatment

effect estimate, where the magnitude of the bias is proportional to the bias in the price coeffi-

cient. Although both approaches typically lead to bias, as long as the estimated price coefficient

is negative, a regression with an endogenous price controls generates less bias than a regression

without any price control. Because bias only occurs when price and treatment are correlated, a

simple regression of price on treatment allows the researcher to assess whether post-treatment price

adjustments are present. Furthermore, we show that using standard price instruments allows for

the unbiased estimation of the treatment effect coefficient. We derive theoretical expressions for

the bias in the linear setting. Moreover, we show via simulations that the bias persist across linear

and non-linear models. Finally, we illustrate the importance of correctly dealing with endogenous

price adjustments using a canonical marketing setting: the estimation of the impact of supermarket

feature advertising on demand. We find that the bias from not appropriately controlling for price

using instruments can lead to an economically substantial overestimation of the impact of feature

advertising on demand.

We hope that this paper raises awareness of the implications of using endogenous price controls

and provides researchers with a framework to assess possible biases when using endogenous controls,

to test for the presence of price adjustments, and to deal with endogenous prices using instruments.
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A Bias when Controlling for Price

We first derive the expression for the bias in the price coefficient in a regression of quantity on

treatment and price. We let p̃ denote the residual form a regression of price on treatment and δT

denotes the coefficient when regressing price on treatment. The multivariate regression coefficient

on price is given by:

ˆ−αp =
Cov(p̃, q)

V ar(p̃)
=

Cov(p̃,−α1p+ ξ)

V ar(p̃)

= −αp +
Cov(p̃, ξ)

V ar(p̃)

= −αp +
Cov(p, ξ)

V ar(p̃)

αp ˆ−αp =
Cov(p, ξ)

V ar(p̃)

where the second line follows form the fact that p = p̃+ (δ0 + δTTreat) and p̃ is uncorrelated with

Treat. The third line follows because Treat is uncorrelated with ξ due to random assignment of

Treat.

We can now plug this expression into equation (4):

αT − α̂T = γp
Cov(p, ξ)

V ar(T̃ reat)

= γp
Cov(p, ξ)

V ar(p̃)

V ar(p̃)

V ar(T̃ reat)

= γp(α1 ˆ−α1)
V ar(p̃)

V ar(T̃ reat)

= βT
V ar(Treat)

V ar(p)
(α1 ˆ−α1)

V ar(p̃)

V ar(T̃ reat)

= (αp ˆ−αp)βT
V ar(Treat)

V ar(T̃ reat)

V ar(p̃)

V ar(p)

= (αp ˆ−αp)βT

where the fourth line follows because γp = Cov(Treat, p)/V ar(p) and βT = Cov(Treat, p)/V ar(Treat)

and therefore γp = βTV ar(Treat)/V ar(p). The last line follows because the last terms are equal

to one.

To see that this term is equal to one, we need to write out the relationship between the variances

of treatment and price and their residualized versions. As before, we denote the coefficient when

regressing treatment on price by γp and the coefficient when regressing price on treatment by δT .

We can express the variance of the treatment residual as a function of the variance of the treatment
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variable as follows:

V ar(T̃ reat) = V ar(Treat)− V ar( ˆTreat)

= V ar(Treat)− V ar(γpp)

= V ar(Treat)− γ2pV ar(p)

= V ar(Treat)− Cov(Treat, p)Cov(Treat, p)

V ar(p)

= V ar(Treat)− Cov(Treat, p)Cov(Treat, p)

V ar(p)V ar(Treat)
V ar(Treat)

= V ar(Treat)− γpδTV ar(Treat)

V ar(T̃ reat)/V ar(Treat) = 1− γpδT

and similarly for price:

V ar(p̃) = V ar(p)− V ar(p̂)

= V ar(p)− V ar(δTTreat)

= V ar(p)− δ2TV ar(Treat)

= V ar(p)− Cov(Treat, p)Cov(Treat, p)

V ar(Treat)

= V ar(p)− Cov(Treat, p)Cov(Treat, p)

V ar(Treat)V ar(p)
V ar(p)

= V ar(p)− γpδTV ar(p)

V ar(p̃)/V ar(p) = 1− γpδT

From the two expressions above, it follows that V ar(Treat)

V ar(T̃ reat)

V ar(p̃)
V ar(p) = 1.

The expression in equation (5) can be obtained by plugging the price coefficient bias formula

into equation (6):

αT − α̂T = (αp ˆ−αp)βT

= βT
Cov(p, ξ)

V ar(p̃)

= βTβξ
V ar(ξ)

V ar(p̃)
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