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Pigovian Transport Pricing in Practice®

Beat Hintermann® Beaumont Schoeman’ Joseph Molloy®
Thomas Gotschi Alberto Castro! Christopher Tchervenkov?
Uros Tomic'l Kay W. Axhausen®
May 7, 2025
Abstract

We implement Pigovian transport pricing in a field experiment in urban agglom-
erations of Switzerland over the course of 8 weeks. Our pricing considers the external
costs from climate damages, health outcomes from pollution, accidents and physical
activity, and congestion. It varies across time, space and mode of transport and is
deducted from a budget provided to GPS-tracked participants. The treatment reduces
the external costs of transport by 4.6% during the course of the experiment. The main
underlying mechanism is a shift away from driving towards other modes, such as pub-
lic transport, walking and cycling. Providing information about the external costs of
transport alone is insufficient to change the transport behavior for the sample majority.
We compute the welfare improvement due to mode shift to be 77 Swiss francs (or US

dollars) per person and year, and that a fuel tax would achieve 70% of this gain.
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1 Introduction

Transport systems face multiple challenges. In many cities around the world, drivers lose
over 100 hours per year due to traffic congestion (INRIX, 2020). Public transport can
help reduce congestion (Anderson, 2014), but increasing the capacity of private and public
transport faces physical limitations and high costs due to competition with other land use.
The transport sector is also among the largest contributors of local air pollution (EEA,
2019) and greenhouse gas emissions (Creutzig et al., 2015), which have plateaued as gains in
efficiency have been neutralized by increases in distance traveled (IEA, 2020). Congestion,
climate damages and health effects constitute the most important marginal external costs of
transport.! In this paper, we implement a multi-modal transport pricing scheme, based on
the values suggested by the Swiss government, and estimate its effects on individual transport
choices. The main modes considered are car, public transport, cycling and walking, and their
combined external costs are around CHF 4.50 per person and day.?

Our study employs a randomized controlled trial (RCT) design embedded within a track-
ing study, which allows for unbiased estimates of treatment effects as well as an analysis of
the underlying mechanisms. Our sample consists of around 3,300 people living in urban
agglomerations of the German- and French-speaking regions of Switzerland who regularly
drive and also have access to public transportation. The pricing affects all modes and is
implemented by providing the participants with a personalized budget, from which the ex-
ternal costs of their transport choices are subtracted during a period of four weeks. The
average short-term effect of the treatment is a reduction in the external costs of transport of
4.6%. The reduction in the external costs is due to a mode shift away from driving and, to a
lesser extent, due to a shift in departure times. Car owners, people living in rural areas, and
those below 30 years of age respond more strongly than the average. A mediation analysis
indicates that a reduction in driving is responsible for close to 80% of the total effect.

To differentiate the pricing effect from a possible effect due to the information that is
embedded in the pricing, the experiment includes a second treatment arm in which the par-
ticipants are provided with the exact same information about the external costs of transport
as the pricing group, but without having to pay anything. This “pure information” effect
is not statistically significant or the overall sample. However, we do observe a significant
reduction in the external costs from participants with an above-average score for an “altru-
istic” measure that we compute using a questionnaire. The differential effect between the

pricing and information groups can be interpreted as the causal effect of adding a financial

'For a discussion of the definition of the external costs of transport, see CE Delft (2019).
2At the start of the study (September 2019), one Swiss franc (CHF) corresponded to 0.92 euro and 1.01
US dollars.



incentive for people who already receive information about their external costs of transport.
This “pure pricing” effect is particularly important in the reduction of congestion external-
ities. Our results thus imply that information and monetary incentives each play a role in
explaining the total response to the intervention, but that the pricing effect dominates.

We approximate the welfare effects from our transport pricing by estimating a discrete-
choice model on the trip level, thus focusing on mode choice. We use the resulting preference
parameters to estimate the monetized utility loss from our pricing. The total welfare effect
is the sum of this utility loss, the raised revenue and the reduction in external costs. In
our central estimate, we compute a (short-run) welfare gain of CHF 77 per person and year.
Due to additional substitution possibilities, the long-run effect is likely larger. Using our
model parameters, we can construct counterfactual policies that raise the same revenue. We
estimate that a fuel tax would capture 70% of the total benefits, and that adding time- and
location-dependent pricing in the form of a city perimeter pricing would add another 9%.
These estimates are sensitive to the main underlying cost parameters, such as the social cost
of carbon, the value of a statistical life or the value of time. The cost parameters used in
this study are taken from the Swiss Federal Office of Spatial Development.

Our discrete choice model can also be used to derive the value of travel time and price
elasticities by mode. We find that people are willing to pay CHF 15 to save one hour of
driving, whereas the corresponding values for public transport, walking and bicycling are
CHF 26, 18 and 53, respectively. Driving is associated with an own-price elasticity of -0.46
in terms of choice probability, and of -0.62 in terms of distances and lower (in absolute value)
than the corresponding price elasticities of public transport.

In most real-world settings, the external costs of transport have been addressed by
“command-and-control” policies such as speed limits (Van Benthem, 2015), fuel standards
(Portney et al., 2003), license-plate restrictions (Davis, 2017) or high occupancy lanes (Bento
et al., 2014). From an economics point of view, price instruments reflecting the external costs
of transport are a more efficient means of regulation as they allow people to retain high-utility
trips while reducing those that they view as less important.

The theoretical foundations for efficient transport pricing were laid by Pigou (1920) and
Vickrey (1963). In first-best pricing, the full marginal external cost is charged to all users,
who will then internalize it when making their private transport choices. Beheshtian et al.
(2020) propose a multi-modal network management scheme for congested transportation
systems based on insights from efficient electricity market mechanisms. In second-best,
the pricing mechanism is also guided by the principle of marginal external costs, but the
implemented scheme is simplified (Verhoef, 2000; Small et al., 2007).

The most prevalent examples of price-based instruments in the transport sector are fuel



taxes, road tolls and registration fees. They are usually imposed to recover only the cost of
road construction and maintenance, and thus typically do not reflect the full external costs
of transport (Parry and Small, 2005; Parry et al., 2007). Congestion charges can act as an
effective way to internalize some of the congestion costs of driving (Small, 2008), and several
cities have introduced fees for driving into the city center at certain times. However, since
these fees tend to be fixed, they cannot fully address the time-varying nature of congestion.
Furthermore, congestion charges usually target only one transport mode and ignore other
external costs, which raises concerns about efficiency and equity within the transport sector
regulation. In this study, we implement first-best pricing that includes all relevant modes
and thus sidestep the various issues that arise when departing from the Pigovian approach.

Besides these conceptual considerations of how transport should be priced, there is also
a growing literature about the empirical effects of such pricing. Previous research includes
estimates of the aggregate effect of congestion charges that were introduced in Singapore
(Agarwal and Koo, 2016), London (Leape, 2006), Stockholm (Eliasson et al., 2009) and
Gothenburg (Bérjesson and Kristoffersson, 2018). Evidence from the congestion charges in
Norway and Milan suggests that they were effective in reducing not only congestion but also
local air pollution (Isaksen and Johansen, 2021; Gibson and Carnovale, 2015).

A number of experimental studies has exposed study participants to individualized pricing
schemes (for a review, see Dixit et al., 2017). For example, studies in Denmark and Australia
exposed drivers to different peak and off-peak charges (Nielsen, 2004; Martin and Thornton,
2017), and commuters using public transit in Singapore were exposed to rewards and social
comparisons with the aim of shifting demand towards off-peak times (Pluntke and Prabhakar,
2013). Most of these studies focused on a single mode of transport and could therefore
not measure modal shifts. A notable exception is the “Spitsmijden” experiment in the
Netherlands, in which commuters responded to financial rewards by shifting departure times,
switching to other modes of transport and working from home (Ben-Elia and Ettema, 2011).

While highly informative in their respective contexts, all of these studies used a before-
vs-after design. The identification strategy is then based on the assumption that no other
important determinants of transport changed as the prices were introduced. By including a
control group that is never treated, we can control for time-varying shocks and thus causally
identify the effect of our treatments.

Only few RCTs of a similar scale to ours have been published to identify the impact of
financial incentives on transport choices. The first is by Rosenfield et al. (2020), who carry
out an experiment involving 2,000 employees at the Massachussetts Institute of Technology.
They find no statistically significant effects of a parking fee on parking events. Goldszmidt

et al. (2020) use exogenous variation in the price and waiting time for Lyft customers in



the US to identify the value of time, and that this depends on market factors such as the
proximity to a transit stop. Christensen and Osman (2023) carry out an experiment with
Uber clients in Egypt and report that a 50 % discount quadruples demand, some of which
comes from a substitution away from public transport (especially for women). However,
none of these experiments was able to directly monitor travel for non-car modes, and the
evidence for modal shift is thus inferred from the reduced demand for driving only. Finally,
Kreindler (2024) measures the effect of a departure time charge and a zonal price on drivers
in Bangalore and computes significant treatment effects using a smartphone app similar to
ours. To the best of our knowledge, MOBIS is the first explicitly multi-modal RCT of a
pricing intervention in the transport context.

Behavioral change could also be achieved by means of non-financial interventions, which
may be easier to implement than prices or taxes. A number of studies have investigated
the effect of non-financial interventions in the transport sector (see Moser and Bamberg,
2008, for a review), and some recent papers have used tracking apps to test the effect of
informational interventions (Maerivoet et al., 2012; Carreras et al., 2012; Bothos et al., 2014;
Jariyasunant et al., 2015). Kristal and Whillans (2020) use a large-scale RCT to examine
the effect of information-based measures on car pooling but find no effect.

Our paper makes several contributions to the literature. We show that it is possible to
compute person-, time- and location-specific taxes and apply them in the field (proof of con-
cept). Second, by implementing this pricing scheme in an RCT involving a representative
sample of the population living in large urban agglomerations, we obtain credible infor-
mation about the short-run behavioral response to transport pricing, and to information,
in a multi-modal context. Third, by estimating a structural model of transport demand,
we can approximate the welfare effects of our intervention, as well as of other price-based
interventions that have a lower information requirement.

The next sections provide more background about the experimental setup, the data and
the computation of the external costs of transport. Section 5 contains the reduced-form

results and section 6 the results from our structural model. Section 7 concludes.

2 The MOBIS experiment

In the following, we describe the main design elements of the Mobility in Switzerland (MO-
BIS) project. For more detailed information about the study design (including recruitment

and attrition rates), we refer the interested reader to Molloy et al. (2023) and Appendix C.



2.1 Study design and sampling

The sample for MOBIS project was recruited among individuals living in the main urban ag-
glomerations in the German- and French-speaking regions of Switzerland. Figure 1 provides
an overview of the study design. We contacted a representative sample of 91,300 people by
letter and invited them to participate in the study. The letters were written in German and
French (depending on the region), with an English translation on the back page. The major-
ity of the addresses were randomly selected and provided by the Federal Office of Statistics,
which maintains a comprehensive registry of inhabitants; the remainder was obtained from

a private vendor.?

Figure 1: Design of the MOBIS experiment

Start Sampling Pool 91 300 Persons

September 2019 People living in urban agglomerations in Switzerland Invitation by letter

Part 1 Initial Survey N =21 800
Socio-demographics, transport behavior Invitation to

smartphone study

Part2Phase 1  smartphone-based RCT N=3616
4 weeks Tracking of trips and modes
Part2 Phase 2 Control group «Information» | «Pricing»
4 weeks as in Phase 1 + Information + Information
+ Pricing
(N=1320) (N=1120) (N=1176)
Part 3 Final Survey N=3520

Opinions, values, life styles
Stated choice experiment

End
January 2020 Incentive: CHF 100 paid after final survey

The first part of the study consisted of an initial online survey, which was completed
by close to 22,000 respondents. It contained questions about travel behavior and socio-
demographics and served as a screening mechanism. To be invited for the second part (the
RCT), respondents had to use a car on at least 2 days per week but could not be professional
drivers. Around 11,000 respondents from the initial survey qualified for the RCT, and a
total of 5,466 registered for it. Two-thirds of those actually started tracking. The third part
consisted in a final survey.

Participation in the RCT required the tracking of daily travel by means of a smartphone

app over a period of 8 weeks. All participants of the RCT were offered an incentive payment

3We were provided with 60,000 addresses from the Federal Office of Statistics at no charge. When it
became clear that this would not be sufficient to recruit the desired number of participants, we purchased
an additional 31,000 addresses from a private marketing firm.



of CHF 100, which they received after completing the tracking and a final survey. The
recruitment took place on a rolling basis between August and November 2019. Once the
participants registered their first track on the app, they became part of the RCT sample.?
The participants knew that they were being recruited for a transport-related tracking study,
but we were careful not to mention an experiment nor external costs. Once the study was
concluded, all participants were informed about having taken part in a research experiment.’

After 4 weeks, the participants in the RCT were randomly assigned to either the control
or one of two treatment groups, with a probability of one-third each. Randomization worked
well, with most variable being balanced across the three groups in the RCT sample (see
Fig. B.1). However, because of the “double” self-selection (first into the survey and then
into the tracking part of the study) and the driving requirement, a careful look at the
composition of this sample relative to the general population is warranted. Table 1 shows
summary statistics of some key socio-demographic variables for the sample that filled in
the introduction survey, the RCT sample, and the Mobility and Transport Microcensus
(MTMC), which is a representative travel diary survey of the Swiss population undertaken
by the Federal Office of Statistics and the Federal Office of Spatial Development (2017). To
provide a meaningful comparison, we restrict the MTMC sample to the same age range and
geographic area as our study. The respondents of the introduction survey are very similar
to the MTMC population. The largest differences are in terms of the share of young adults,
education and nationality.® The tracking sample has a slightly higher employment rate, more
students, and fewer one-person households than the general population, but is similar along
most other socio-demographic characteristics. The share of “suburban” residents somewhat
larger, which is most likely due to the car driving requirement for participation in the study.”
Furthermore, the share of people that have access to a car is higher in the RC'T sample than
in the MTCM as conditioned participation on driving regularly. We discuss the implications

of our sample selection procedure for external validity in section 6.

4The study concluded just before the onset of the COVID-19 pandemic at the beginning of 2020. Some
of the participants agreed to re-start tracking, as part of an effort to study travel patterns in response to
COVID-19 policies; see Molloy et al. (2020, 2021); Hintermann et al. (2023).

5This procedure was pre-approved by the ETH’s Institutional Review Board.

5We believe this due to the fact that our recruitment was based on letters and online surveys, whereas
the MTMC is based on targeted telephone interviews that include translators when necessary. In contrast,
people who are not fluent in German, French or English likely disregarded our invitation.

"The “urbanization” variable is constructed by allocating participants’ home postcodes one of three
degrees of population density: urban, suburban, and rural. These definitions are based on the Swiss Fed-
eral Statistical Office’s definitions, which is partly based on the accessibility of road and public transport
infrastructure (Federal Statistical Office, 2017).



Table 1: Demographic information for the MOBIS sample

Variable Level MOBIS Intro MOBIS Tracking MTMC
Control Info Pricing
Age [18, 25] 20.1 18.2 19.8 19.7 14.3
(25, 35] 194 17.9 18.6 16.8 21.4
(35, 45] 19.9 22.2 21.0 24.4 22.6
(45, 55] 21.6 23.1 24.2 22.7 23.7
(55, 65] 19.0 18.6 16.4 16.3 17.9
Education Mandatory 9.2 8.0 5.1 6.8 13.8
Secondary 43.3 47.3 49.3 48.3 47.5
Higher 47.5 44.7 45.5 44.9 38.7
Employment Employed 68.7 73.5 71.9 70.9 68.8
Self-employed 7.3 6.3 5.2 7.2 8.8
Apprentice 1.9 1.9 1.6 1.6 2.2
Unemployed 4.4 3.3 3.9 4.7 3.9
Student 9.3 7.6 8.7 7.9 3.0
Retired 2.5 2.6 2.2 2.3 3.6
Other 5.9 4.7 6.5 5.4 9.7
Gender Male 48.9 50.3 50.0 49.3 49.4
Female 51.1 49.7 50.0 50.7 50.6
Household size 1 15.5 11.3 114 12.0 18.3
2 31.7 30.1 30.9 28.5 32.0
3 20.5 22.8 21.5 19.9 19.9
4 23.6 25.3 28.0 30.1 20.7
5 or more 8.6 10.5 8.2 9.4 9.1
Income 4,000 CHF or less 12.2 6.6 8.3 7.3 8.8
4,001 - 8,000 CHF 29.4 30.8 29.7 27.0 314
8,001 - 12,000 CHF 24.5 28.1 30.1 30.2 24.6
12,001 - 16,000 CHF 12.1 15.7 13.7 14.5 11.7
More than 16,000 CHF 8.0 9.6 9.4 10.7 8.4
Prefer not to say 13.8 9.1 8.7 10.3 5.8
Don’t know 9.2
Language German 62.7 66.3 65.3 66.4 69.5
French 28.6 26.1 26.5 26.4 26.5
Italian 4.0
English 8.7 7.6 8.2 7.2
Nationality Switzerland 78.1 81.4 80.6 82.3 69.5
Other 21.9 18.6 194 17.7 30.5
Area Urban 75.0 63.8 64.4 64.3 77.4
Intermediate 18.1 28.0 27.0 28.1 16.6
Rural 6.8 8.2 8.6 7.6 6.0
Access to car Yes 61.0 87.1 88.0 87.9 69.7
Sometimes 15.5 11.8 10.5 11.1 22.7
No 23.5 1.2 1.5 0.9 7.5
Full PT subscription Yes 37.2 21.9 25.1 25.3 34.5
Half fare PT subscription  Yes 47.6 49.0 49.1 48.1 37.6
No PT subscription Yes 26.0 33.8 32.5 33.9 37.9
Access to bicycle Yes 68.5 72.7 72.1 69.6 70.1
Sometimes 4.1 44 5.5 3.9 8.8
No 27.4 22.9 22.4 26.5 21.1
N 20.783 1.205 1.208 1.158 21.399

Notes: Descriptive statistics for the MOBIS introduction survey sample, the MOBIS tracking sample (which is a
subset of the former), and the weighted Swiss Mobility and Transport Microcensus 2015 (MTMC) sample. All sam-
ples are restricted to ages 18-65, with the MTMC sample additionally restricted to respondents living in municipali-
ties present in the MOBIS introduction survey sample. See Figure B.1 for information on covariate balance between
the treatment groups based on standardized mean differences.



2.2 Tracking app

The participants in the tracking-part of the study agreed to download the tracking app
“Catch-My-Day” on their smartphones. Catch-My-Day is a location tracker for iOS and
Android, which uses the location services of the respective operating system. The GPS
tracks are stored on the phone and uploaded to the Motiontag analytics platform, where
trip stages are identified and travel modes and activities are imputed based on a machine

learning algorithm. Participants were able to review and correct the mode assignment.

Figure 2: The Catch-my-Day interface
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Notes: From left to right: 1) Calendar home page. 2) Daily view showing recorded trips.
3) Editing the mode of a selected trip.

Figure 2 shows three interfaces of Catch-my-Day. The app provides a best guess of
the travel mode for each stage. The participants could then confirm the imputed mode or
correct it. This confirm-correct procedure was optional but participants were informed that
this would be appreciated.® Around 79% of the stages were confirmed by the participants,
and 5% of the modes were corrected. The database stores both their correction and the
original algorithmic imputation. This algorithm achieved an overall accuracy of over 90%
(see Molloy et al., 2023, Table 8).

The following modes are detected the by Catch-my-Day app: Airplane, bicycle, bus,

8In recent years, state-of-the-art machine learning algorithms for mode and activity detection have
achieved accuracy rates of over 90%, depending on the approach (Wu et al., 2016; Nikolic and Bierlaire,
2017). Hence, we made validation of the trip purpose and mode optional for participants, in order to not
increase the response burden excessively over the 8 weeks.



car, ferry, train (local, regional and long-distance), tram and walk. In addition, users could
select the following modes as a correction: Boat, car sharing, gondola, motorbike/scooter,
taxi/Uber. For the analysis, we retained only trips within Switzerland coded as car (car,
car sharing and taxi/Uber), public transport (intercity, regional and local trains, bus, tram),
cycling and walking. All other modes were excluded. Since the app cannot differentiate
between drivers and passengers, participants could not avoid costs by car-pooling instead of

driving themselves.

2.3 The external costs of transport

The assessment of the external costs of transport in this paper is based on the cost compu-
tations carried out by the Swiss Federal Office of Spatial Development (ARE). The external
costs are defined as those that are not yet internalized in the existing framework of transport-
related taxes on fuel, vehicle registration fees etc. and will therefore vary across jurisdictions
and time, depending on the policy mix in place and the valuation of the external cost com-
ponents. In Switzerland, the costs of road maintenance are paid for by an excise tax on fuels
and are therefore already internalized.”

The non-internalized costs are shown in Table 2 in cents per km. They can be grouped
into climate damages, congestion, and health-related costs. The latter includes health dam-
ages associated with local pollution and noise as well as accident-related health costs. These
are external to the involved persons due to the socialized accident insurance system in
Switzerland. The health dimension also includes health care savings due to improved health
from active transport (Gotschi et al., 2016). Throughout the paper, we focus on the marginal
external costs associated with an individual trip and exclude the life-cycle emissions asso-
ciated with producing cars and building road and rail infrastructure, as well as all internal
costs and benefits.

We computed the external costs for the recorded daily trips using an automated data
pipeline that included also data collected from the online introduction survey (e.g., engine
type and size). For the calculation of external costs associated with driving, a partial-
equilibrium approach described in detail in Molloy et al. (2021) was used. Briefly, the
recorded GPS tracks were aligned to the road network using Graphhopper (Karich and
Schroder, 2014) and processed using modules developed on top of the MATSim framework

9The Swiss fuel tax (currently CHF 0.77 per liter of gasoline and CHF 0.80 per liter of diesel) is earmarked
for road construction and maintenance. According to ARE’s calculations, private motorized transport gen-
erated a total cost of about CHF 52.5 billion in 2019. Road users contributed a total of CHF 45 billion (in
the form of fuel and other taxes), whereas the remaining CHF 7.5 billion were not internalized but borne by
society at large in the form of emissions and health costs (Federal Statistical Office, 2022, Fig. G4). These
are the external costs that we focus on in our study.



Table 2: Average external costs by mode (in Swiss cents per person-km)

Mode CO2 Pollution  Accident Health Con-  Crow- Total
& noise  health costs benefits gestion  ding
Car 2.43 5.36 2.01 - 2.44 - 12.23
Bus 1.44 3.77 1.41 - - 1.18 7.80
Intercity train 0.01 0.91 0.07 - - 1.01 1.99
Regional train 0.01 0.97 0.07 - - 1.82 2.86
Tram & lightrail <0.01 0.16 1.26 - - 1.37 2.79
Bicycle - - 25.70 -18.71 - - 6.99
Walk - - 7.50 -18.62 - - -11.12

Notes: The values for public and active transport are based on NISTRA (Federal Roads Office,
2017). Crowding costs for public transport of CHF 0.1/km were applied for congested links (see
text). Negative costs (walking) indicate an external benefit. The external costs of driving vary over
time and space and were computed within MATSim (Molloy et al., 2021).

to calculate the external costs of congestion and emissions. The emissions factors were taken
from the HBEFA database and applied using the MATSim emissions module (Hiilsmann
et al., 2011; Kickhofer et al., 2013). For congestion, an average marginal cost approach in-
corporating spillback effects and flow congestion was applied, based on the work of Kaddoura
(2015).1% These modules returned quantities of the externalities in grams (for emissions) and
seconds of caused delay (for congestion) for road transport, which were then converted to
monetary costs using a social cost of carbon of CHF 136 per tCOq, CHF 515 (1,358) per kg
of PMjg in rural (urban) areas and 7,109 CHF per ton of NO, and a value of travel time of
CHF 26 per hour. The costs associated with driving vary over time and space mainly due to
changing levels of congestion, but also due to different emission factors depending on speed
and different urban densities.

The marginal external cost of public transport per person-km decreases as the occu-
pancy rate increases. On the other hand, crowding affects the willingness to pay for public
transport and can be seen as a form of congestion in public transport, and delay in some
circumstances (Tirachini et al., 2013). Crowding effects are extremely heterogeneous, both
spatially and temporally (VBZ, 2017). As a practical solution, a peak-hour pricing scheme
was developed for the purpose of the study. The peak windows were set as 7:00 to 9:00 and
17:00 to 19:00. We then applied a peak surcharge of 0.10 CHF /km to PT trips between any

two municipalities (or within a single municipality) for which peak demand exceeds offpeak

10 An alternative way to proceed is the approach by Yang et al. (2020), who exploit a natural experiment
to empirically estimate the causal relationship between traffic density and speed in Beijing. This allows them
to compute the optimal congestion charge for that city.
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demand by more than a factor of 3.1' Throughout the experiment, participants had access
to an interactive map which showed them where and when the PT crowding scheme applied.

For modes other than driving, the per-km values presented in Table 2 were directly
applied to the recorded length of the trip, including the crowding fee if applicable. Whereas
walking is associated with net external benefits, the external accident costs outweigh the
external health benefits from cycling.'?

In principle, we could have used any pricing scheme and estimated the participants’
response to it. We chose the Pigovian rate (or, at any rate, an estimate of it) for two reasons.®
First, internalizing the external costs of transport can be motivated on normative grounds.
The “information only” treatment could thus be interpreted as providing information on true
societal costs about which the participants were likely not perfectly informed. In contrast,
introducing a price unrelated to the external costs would be more difficult to justify and
therefore would be less likely to lead to behavioral change via an altruistic motive. Second,
using the Pigovian rate facilitates the welfare calculations below. Besides this benchmark,
we also provide estimates of the welfare implications if the actual pricing were to deviate
from the Pigovian rate.

Last, we stress that these external cost estimates are average calculations that are subject
to a number of assumptions, and they do not always incorporate all relevant heterogeneity.
For example, whereas the pollution and climate cost estimates depend on the car size and
type, we use the same accident externalities for all cars (despite the fact that larger cars
cause more severe accidents than smaller ones; see Anderson and Auffhammer, 2014) and
irrespective of the weather or the socio-demographic characteristics of the driver. Similarly,
our congestion externality is measured with error and may thus assign a congestion cost for
a particular trip that is absent in reality, and vice versa. For these reasons, our pricing is
an approximation of “first-best” on average, but it cannot capture the true external cost of

every trip.

1 The peak hour windows and the affected municipality-pairs were determined using the MATSim scenario
output for Switzerland (Bosch et al., 2016). If a trip was partially in both the peak and off-peak periods,
only the proportion of the travel duration that overlapped with the peak period was charged.

12Most of the positive health effects from cycling are private in the form of lower morbidity and mortality
and at least partly internalized by cyclists (Gotschi and Hintermann, 2014). In our pricing, we only include
external costs and benefits as they arise via the health insurance system in Switzerland.

BTechnically speaking, the Pigovian rate is the marginal social damage at the social optimum, such that
the pricing implemented in the experiment likely deviates from the true Pigovian tax. If such a scheme were
implemented in practice, however, one would need to monitor the external costs anyway and update the
scheme from time to time, such that the social optimum would be reached iteratively.
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2.4 Intervention

During the observation period, participants were presented with a weekly summary of their
travel behavior by mode of transport, including duration, distance and number of trips. The
participants assigned to the control group received these summaries throughout the study.

On tracking day 29, the participants randomly assigned to the “information” and “pric-
ing” groups received an e-mail that informed them about the external costs of transport,
how these costs are computed and what the participants could do to reduce them. The
e-mail contained a link to a table with average per-km monetized costs by mode (similar to
Table 2). To complement this average price information and to provide the participants with
an idea about their individual level of external costs, they were also shown a personalized
summary of their own external costs from the previous week.!® For the remainder of the
treatment period, the participants were presented with weekly summaries such that they
could observe changes in their external costs. The external costs were always presented by
mode of transport and by type of cost (health, climate and congestion). Even for people with
pre-existing knowledge about the external costs of transport, it would have been difficult to
know the exact magnitude of their own costs based on the ARE methodology. In this sense,
the information contained some novel aspects for everyone.

The participants assigned to the pricing group received the exact same information about
the external costs as the information group, but in addition were given a budget from which
the external costs of transport were deducted. These participants were informed that any
remaining money in their account at the end of the study was theirs to keep (in addition to
the standard incentive of CHF 100 that was paid to everyone). The individualized budgets
were computed based on each participants’ external costs during the observation period, plus
a 20% buffer to allow for the possibility that some participants had to increase their exter-
nal costs of transport for idiosyncratic reasons.'® This treatment thus simulated transport
pricing based on the monetized marginal external costs of transport.

The nested design of the treatments allows for an estimation of the effect of “pure money”
in the sense of providing a monetary incentive to individuals that are perfectly informed

about their external costs of transport.!©

To provide participants with ex-ante personalized costs for particular trips was infeasible within the
project budget as this would have required a lot of additional programming due to the varying nature of
congestion costs. We believe that combining ex-ante averages with ex-post individualized numbers is a
reasonable compromise that sends a price signal without overly taxing participants’ attention.

15We imposed a minimum budget of CHF 50. The average budget was CHF 144, and for some participants
it exceeded CHF 700. Participants were told that the budget could not go below zero. To remove a financial
incentive to disable the app, the participants were informed that their average pre-treatment costs would be
subtracted from the budget for each missing day.

16 According to economic theory, all prices contain information, such that having an additional “price
without information” treatment would not have identified an interesting effect.
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Figure 3: Weekly reports by e-mail

Your external costs for the last week

Health co2 Congestion*
IF 16.70 CHF 4.51 CHF4.32

“Includes the public transport peak hour surcharge

Report | Week 5
/\/\OB‘S 26.10.2019 - 01.11.2019

Dear Mr John Doe

Profit [ Costs Total
Thank you for participating in the MOBIS study. This week was the
5th week of the study. CHF 25.52

CHF 0.00

»

Your participation this week: 7 active days and 0 inactive days

Your use of different travel modes and their external costs are CHF 075

displayed below.

CHF 0.00

R CHF -0.72

.| & |

Remaining Budget on 01.11

CHF 74.46 What do these charts show me?

Each of us, when we travel, generates costs. Some of these costs

This is an estimate based on your most recent available data. CHF are paid for by oursslves and are therefore called “internal”

3.57 was deducted from your budget per inactive day and per day

Examples include maintaining a car, purchasing fuel, paying for a
abroad.

train ticket and the value of our own time spent traveling

However, we also impose costs on others in the form of changes to
the environment, public health and congestion (a time loss to other
drivers). These costs are called "external” because they are not
bome by ourselves but by society as a whole.

Distance by transport mode

®& B & o 3

239 km okm 23km* okm Tkm

© Increase/dscrease In travel distance since last week
** Includes alllocal publi transport: Bus, Tram, Metro & S-Bahn

The figures above illustrate the exteral costs that you imposed on
others last week

For further information about the study, please visit the MOBIS
study website

Notes: The participants in the control group received only the report on the left, but without the
middle module titled “Remaining Budget”; the participants in the information group additionally
received the message on the right, and those in the pricing group received all modules.

The weekly reports were comprised of modular panels, as shown in Figure 3. The in-
troduction and distance by mode panels were presented to all participants in both study
phases. The external cost and chart explanation panels were shown to both the Information
and pricing groups in the treatment phase, whereas the remaining budget panel (middle
module on the left) was presented only to the pricing group. Due to the rolling recruitment

into the experiment, participants received these reports on different days of the week.

3 Data and regression framework

3.1 Data preparation

Our starting sample consists of the people for whom we recorded at least 11 tracking days
during the observation period; the rest was excluded from the study and never assigned to
any group. After receiving the data from the app provider, they were processed using some
routine procedures to remove obviously problematic tracking data. Specifically, we remove
the data on the person-day-level if one of the following was true: Average daily speed for car
and PT above 100 km/h, above 40 km/h for bicycling and above 20 km/h for walking; or
more than 500 km/day for car and PT, and more than 20 km/day for walking. We remove
the first day of tracking (as participants may have started tracking in the middle of the day)
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as well as day 29 (as it is not clear at what time the participants in the treatment group
would open their e-mails). We furthermore restrict the sample to participants that traveled
at least 10 km during the observation period. For the main analysis, we remove 71 people
who did not record any travel days during the observation period as they do not contribute
to the treatment effect; however, these participants are retained for the attrition analysis
(see section 6.3). Taken together, these cleaning procedures reduce the original sample of
179,507 person-days from 3,690 participants to 168,362 person-days from 3,616 participants.
Of these, 1,120 were assigned to the information group, 1,176 to the pricing group and 1,320
to the control group.

Some participants in the treatment group exhausted their budget before the end of the
study and thus no longer had a financial incentive to reduce their external costs. As removing
these person-days from the sample could lead to an imbalance between treatment and control
groups in terms of mean reversion, we retain the affected 379 person-days but mark them

with a dummy in order not to contaminate the treatment effect.

3.2 Tracking summary statistics

Table 3 shows the summary statistics of the tracking data for all modes combined, including
distances, duration, external and private costs. Table B.1 provides a proportional breakdown
of the external costs by mode and cost dimension. The external costs are generally dominated
by driving. Within driving, the most relevant external costs are associated with health costs;
among these, accident costs account for about a quarter, whereas the majority is due to local
air pollution and noise. Most external costs of transport are local, with climate damages
amounting to less than 20% of total external costs.

Almost 74% of the recorded distance is traveled by car, and accordingly the vast majority
of external costs is associated with driving. Public transport accounts for 21% of overall

distance.!”

3.3 Identification of the treatment effect

Our experiment was designed with the aim of satisfying the four cardinal assumptions to
satisfy internal validity for a difference-in-differences design: (i) Statistical independence,
(ii) Stable Unit Treatment Value Assumption (SUTVA), (iii) complete compliance and (iv)
observability. The random assignment of people to the treatment arms satisfies condition

(i) by construction, and since our RCT sample consists of around 3,600 individuals out of

1"Public transport is the sum of bus (10.3%), light rail (23.3%), regional train (13.2%), intercity train
(48.6%) and tram (4.6%).
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Table 3: Tracking summary statistics during pre-treatment period

Control vs. Control vs.

Info. Pricing
Dimension Outcome Unit Control Information Pricing p P
External costs Total CHF/d  4.50 4.58 4.70 0.409 0.083
(5.68) (5.63) (5.79)
Congestion & crowding CHF/d 1.03 1.07 1.14 0.243 0.004
(1.59) (1.58) (1.69)
Climate CHF/d  0.88 0.88 0.90 0.854 0.503
(1.29) (1.28) (1.29)
Pollution & noise CHF/d 197 2.01 2.03 0.442 0.220
(2.59) (2.57) (2.62)
Health care costs CHF/d  0.61 0.62 0.63 0.580 0.371
(1.02) (1.02) (1.05)
Private costs ~ Total CHF/d  22.30 22.71 23.17 0.439 0.231
(31.37) (30.95) (32.37)
Tracking Distance km/d 46.78 47.88 49.31 0.317 0.025
(55.26) (54.62) (57.26)
Duration min/d 92.44 93.22 94.02 0.482 0.195
(84.58) (80.03) (82.78)
Tracking days Nr. 23.64 23.91 23.68 0.065 0.801
(3.74) (3.44) (3.72)
Trips Nr./d 4.84 4.88 4.88 0.566 0.483

(1.60) (1.61) (1.48)

Notes: Average values per participant over the first 28 days of participation (SD in parentheses). “Health
care costs” includes the external health care costs from accidents from all modes, net of the external health
care benefits from walking and cycling.

an overall population of several million (and the treatment is administered identically across
the treated), SUTVA arguably holds too. As we define the treatment as receiving (but
not necessarily reading) e-mails from us, compliance was complete too in the sense that no
person in the control group received a treatment e-mail, and all people in the treatment
groups were sent e-mails. And although we do not observe all people on all days, we show
below (Subsection 6.3) that observability does not systematically vary over the treatment
assignment nor the determinants of the potential outcomes.

Conditional on these assumptions being met, the average treatment effect (ATE) can be
estimated by comparing means between treated and control observations. We aggregate the
data to the person-day level and estimate the ATE using the following regression:

Yis = co+ " - DiDfj 4+ o' - DiDjy, + pi; + pu + i + €its (1)

The dependent variable is the outcome of interest for person ¢ € N on calendar day t € T'
and day of study s € (2,...,56). The main outcome of interest is the total external cost (in

CHF per day), but we also run regressions in which the dependent variable is the external
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cost along a particular dimension (health, climate and congestion), the distance traveled or
the average time of departure.

The two difference-in-differences terms DiD}, and DiD],,

are the products of treatment
group and treatment period dummies and are equal to one if the pricing and information
treatment, respectively, are active for person i on a given day, and zero otherwise. The
ATE of “pricing plus information” is given by the coefficient estimate af’; the ATE for
“information only” is given by a!; and the ATE of “adding pricing to existing information” is

P — . This value could also be computed by estimating (1) for the pricing

their difference, o
group while using the information group as the control. It is therefore a causal ATE in its
own right, rather than simply a difference between two coefficients. To investigate potential
differences of the treatment effect along major socio-economic variables (moderation), we
further interact the DiD terms with categorical variables denoting, e.g., gender or income
groups (see section 4.2).

To control for unobserved heterogeneity, we include fixed effects on the person (1), cal-
endar day (u;) and day-of-study (us) level. The calendar day FE capture common shocks
that affect travel for everyone in Switzerland, whereas the day-of-study FE account for the
possibility that respondents change their behavior in response to being tracked. The combi-
nation of both time-related FE implies that the treatment effect is computed by comparing
participants in the treatment and control groups that started the experiment on the same
day. We allow for a correlation of the error term ¢;s within participants, but not between.
To address the concerns involving two-way FE estimators (see, e.g., De Chaisemartin and
d’Haultfoeuille, 2020), we also apply the “interaction-weighted” estimator developed by Sun
and Abraham (2021). However, because the results are almost identical, we rely on our base
specification throughout the paper.®

Due to the presence of the control group, we do not need to control for any covariates in
principle as they are expected to be balanced across groups. However, because our sample
is finite and weather information is an important predictor especially for active transport,
we enrich our tracking data with temperature (in Celsius) and precipitation (in mm/h) data
from MeteoSwiss provided on a 1 x 1 km grid.'® The weather variables are assigned for each
recorded trip based on the weather station nearest to the point of departure. To allow for

a nonlinear effect of temperature on travel choices, we define the level of “Heat” and and

18Many of the concerns arising from observational studies with two-way FE are attenuated in our setting,
as (i) the treatment is randomized, (ii) there is a never-treated control group, and (iii) all units are observed
for the same time period before and after treatment. However, since it is possible that people who responded
quickly to our first invitation letter have different potential outcomes as those that responded with a delay,
the ATE as computed by eq. 1 may be biased. Comparing Table B.3 with our base results in Table 4 shows
that this is not the case.

9The data is provided by www.meteoswiss.admin.ch.
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“Cold” for an observed trip j on day ¢ in terms of the daily maximum or minimum relative
to threshold values (see appendix).

For the regressions that use external costs as the dependent variable, we estimate eq.
(1) in levels (rather than in logs). This is necessary because the external benefit associated
with walking leads to some person-day observations with a negative external cost (i.e., a net
benefit). We compute the proportional response by dividing the coefficients (in CHF/d) by
the average daily external costs generated by the control group during the treatment period.
For regressions in which the dependent variable is non-negative (e.g., distance traveled),
we estimate proportional effects directly by using a Poisson Pseudo-Maximum Likelihood
(PPML) model. This approach addresses the presence of zeros in the data and the possible

presence of heteroskedasticity, which can lead to a bias in log-linearized regressions.?’

4 Results

4.1 Average treatment effects

Table 4 shows the ATE on the external costs of travel in CHF per day. The first two columns
report the results for the total external costs of transport, with and without controlling for
the weather, whereas the next three pairs of columns contain the ATE on the external
health, climate and congestion costs. About half of the reduction in external costs is due to
a decrease in health costs, followed in magnitude by congestion and then climate costs. The
weather variables are jointly highly significant and affect external costs mainly via distance
traveled (see Table B.5). However, as their inclusion does not change the ATE, we refrain
from showing both versions for the remainder of the paper.

Figure 4 displays the ATE in proportional terms. There is a statistically significant
reduction for all dimensions of external costs, but the effect is particularly large for congestion
costs. The effect of providing information alone has a negative point estimate in Table 4,
but it is not statistically significant for the sample as a whole. The effect of adding a
price to information ( denoted as “Difference”) is statistically significant only for congestion.
Furthermore, the effect is immediate and does not significantly change over the course of the
treatment period (see Tables 11 and B.3 for the effects by treatment week).

To interpret the magnitude of the ATE, we can compare the proportional response in

external costs to the change in the total transport price, including both private and external

20For a discussion of the advantages of using a Poisson model in the presence of zeros and heteroskedas-
ticity, see Santos Silva and Tenreyro (2006). For estimation, we use an estimator developed by Correia et al.
(2019) and Correia et al. (2020).
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Table 4: Average treatment effects on external costs

Total ext. costs

Health costs

Climate costs

Congestion costs

Pricing -0.229%*  -0.230** -0.119%* -0.120** -0.039*% -0.039* -0.071** -0.071**
(0.070)  (0.070)  (0.044)  (0.043) (0.016) (0.016)  (0.022)  (0.022)

Information -0.094 -0.098 -0.051 -0.054 -0.021 -0.022 -0.022 -0.022
(0.067)  (0.067)  (0.042)  (0.042) (0.015) (0.015) (0.021)  (0.021)

Difference -0.135’ -0.133’ -0.068 -0.067 -0.018 -0.017 -0.049*  -0.049*
(0.070)  (0.070)  (0.043)  (0.043) (0.016) (0.016)  (0.021)  (0.021)

Precipitation 0.001 -0.000 -0.000 0.002
(0.004) (0.003) (0.001) (0.001)

Heat -0.499** -0.358** -0.129%* -0.012
(0.073) (0.048) (0.017) (0.018)
Cold 0.189%* 0.158%* 0.058%* -0.027%*
(0.018) (0.012) (0.004) (0.004)

Adj. R? 0.232 0.234 0.225 0.227 0.222 0.224 0.265 0.266
Clusters 3,616 3,616 3,616 3,616 3,616 3,616 3,616 3,616
N 168,359 168,359 168,359 168,359 168,359 168,359 168,359 168,359

Notes: **: p < 0.01, *: p < 0.05, : p < 0.1. The dependent variable is the external cost of

transport aggregated to the person-day level. Standard errors (in parentheses) are clustered at the
participant level. All regressions include fixed effects on the person, calendar-day and day-of-study
level.

costs. For public transport, we use the ticket price as a reference for the private costs.?! For
driving, we directly elicited the private cost from respondents in terms of cents per kilometer.
For those that did not answer this question in the final survey, we computed their expected
private costs based on information about car size, age and fuel type. This led to an average

22 We abstract from

cost of 59 cents/km, with an inter-quartile range of 50-70 cents/km.
the purchase or rental price of bicycles and set the private cost of cycling and walking to
zero. Given these assumptions, we obtain a transport tax-related price increase of 19.3%.
The proportional reduction in the external costs is 4.6%. Dividing the latter by the former

results in -0.24, which describes the short-term elasticity of external costs in response to a

21For participants that hold a flat-rate public transport pass, we approximated the average cost by
applying a discount to the half-fare ticket price (which is the main reference category in Switzerland). The
level of the discount is determined by comparing the cost of a regional PT subscription with the corresponding
cost if one were to buy a daily pass on 22 days per month. The savings implicit in the subscription ranges
from 24% in Geneva to 76% in Basel.

22This question was part of the final survey and asked: ”What is the average private cost of your car
travel per kilometer?” 90% of the respondents answered this question. We excluded values below 1, which
were presumably meant as francs/km instead of cents/km as specified in the question. To account for
unrealistically low or high values (e.g., reflecting the value of a new car rather than the cost per km) we
removed the top and bottom 5%. Finally, we imputed the missing values based on a linear model associating
private costs with information about the age, size and fuel type. Note that these costs may be an under-
estimate of the true costs, as reported by Andor et al. (2020). However, since people make choices based on
their beliefs, it is the expected rather than the actual costs that matter in this context.
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Figure 4: Treatment effect on the external costs of transport

Total external costs I . :v - =
Health costs ' o e —=
Climate costs ' = — —
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Percent change

Notes: The figure shows the proportional treatment effects for overall travel. They are computed
by dividing the regression coefficients in Table 4 by the external cost of the pricing group during
the observation period scaled by the temporal change observed for the control group. The bars
show 90% and 95% confidence intervals.

one-percent increase in the costs of transport. Note, however, that this estimate does not
identify a fundamental behavioral parameter but is specific to our pricing.?

Table B.2 shows the sensitivity of the results with respect to the inclusion of fixed effects
and the presence of a control group. Removing either the study day or the calendar day fixed
effects does not significantly change the results; however, when removing both, the ATE more
than doubles, suggesting that controlling for unobserved temporal shocks is important. When
estimating the effects without a control group and using a before-vs-after setting instead,

the ATE is significantly over-estimated because it also absorbs a part of the seasonal effects.

4.2 Effect heterogeneity

In order to investigate a potential effect heterogeneity, we start by employing a “causal forest”
approach based on the generalized regression forest algorithm proposed by Wager and Athey
(2018) and implemented by Tibshirani et al. (2020). The regression “trees” in the causal
forest algorithm are grown by conditioning on those variables that generate the treatment
heterogeneity at each node, separating participants into different “leaves” according to their

characteristics. This procedure is repeated many times on samples randomly drawn without

23For example, if the same behavioral response were to be achieved by subsidies rather than taxes, the
resulting elasticity would be positive.
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replacement. Figure 5 shows the distribution of the conditional treatment effect, both for

the pricing and the information treatments.

Figure 5: Distribution of conditional effects
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Notes: The figure shows the distribution of the conditional treatment effects resulting from the
causal forest approach for total external costs (top left) and the sub-categories considered.

The splits can be tallied across trees to arrive at a measure for the most important
splitting variables, weighted by the level at which the splits occur. The earlier the split, the
higher the weight assigned to that variable in the importance measure. This results in a list of
“important” variables in the sense that they generate the strongest heterogeneity in the ATE.
To generate a benchmark of importance, we included a continuous and a discrete random
variable. The variables with a higher importance ranking than these are valid candidates to
explain the effect heterogeneity, since they contain “better than random noise” information.
These are shown in Figure B.2 in the appendix.

Besides the socio-demographic variables, we also included a number of variables from the
final survey. A set of 16 questions was used to elicit respondents’ personal values (Schwartz,
1992; De Groot and Steg, 2010) and assign them an index along four dimensions labeled

“altruistic”, “egoistic”, “hedonic” and “biospheric”.?*

24For the exact questions used, see Axhausen et al. (2021, p. 198). Since the personal values were elicited
only after the experiment, it is possible that they are influenced by the treatment and thus do not qualify
as moderators. Table B.12 shows that most values are distributed equally across the treatment groups, with
the exception of ”biospheric” that has lower values for the pricing group. However, this variable did not
turn out to be statistically significant in terms of the effect heterogeneity.
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Table 5: Response to pricing treatment for different subsamples

Treatment effect (%) Total price increase (%) Elasticity
. Lower Upper . Lower Upper . Lower Upper
Estimate Bound Bound Estimate Bound Bound Estimate Bound Bound P N

Total sample -0.046 -0.074  -0.018 0.192 0.186  0.197 -0.239 -0.385  -0.093  0.001 168,359
Age (years)

>5H4 -0.061  -0.128  0.005 0.171 0.160  0.182 -0.358  -0.745 0.029  0.070 33,210

30-54 -0.029  -0.063  0.005 0.193 0.185  0.201 -0.150  -0.326  0.027  0.097 91,632

<30 -0.071  -0.127 -0.015 0.206 0.193  0.219 -0.345  -0.618 -0.071 0.013 43,511
Language

German -0.063  -0.096 -0.031 0.185 0.178  0.192 -0.342  -0.517 -0.167 <0.001 112,149

French 0.001 -0.051  0.053 0.208 0.197  0.220 0.004 -0.246  0.255  0.973 43,924

English -0.049  -0.154  0.057 0.215 0.189  0.241 -0.227  -0.721 0.267  0.368 12,279
Urbanity

Urban -0.032  -0.067  0.002 0.198 0.190  0.206 -0.162  -0.336  0.011  0.067 108,169

Suburban -0.052  -0.102 -0.001 0.183 0.174  0.193 -0.281  -0.554 -0.008 0.044 46,541

Rural -0.115  -0.206 -0.023 0.180 0.165  0.196 -0.635  -1.143 -0.127 0.014 13,636
Car ownership

Yes -0.045  -0.074 -0.015 0.191 0.185  0.197 -0.233  -0.387 -0.079 0.003 147,615

No -0.055 -0.152  0.042 0.197 0.179  0.215 -0.280 -0.767  0.206 0.259 20,743

Notes: The lower and upper bounds reflect the 95%-confidence interval, based on a bootstrap with 1,000
replications. The last columns provides the probability that the elasticity is negative and the size of the
subsample.

We include all variables identified to be important by the CF algorithm as dummy inter-
action terms with the treatment indicators in eq. (1). To account for the correlation among
these variables, we include them jointly in a multi-variate regression. The regression coeffi-
cients are presented in Table B.4. Overall, we find that the effect is relatively homogeneous
across socio-demographic characteristics, with some exceptions. The response is stronger
(i.e., more negative) for the young, those living in rural areas and car owners. The latter two
results can be explained by a higher share of driving among these subgroups. For French
speakers, the effect is weaker.?> Table 5 presents the proportional effects, price increases and
resulting elasticities for the sub-samples for which we found statistically significant treatment
heterogeneity.

Last, we find that the study participants that scored above the median in terms of the
altruistic index responded significantly to the information treatment. This suggests that even
though providing information alone is does not measurably change the transport behavior of
the overall population, it does appear to influence a sub-sample that we categorize as having

higher other-regarding preferences.

25This variable was coded based on participants’ preferred language, not their region of residence. How-
ever, as most French speakers live in the French-speaking region of Switzerland, this interaction may also
reflect a regional effect.
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4.3 Mechanisms

People can reduce their external costs of transport in different ways. They can travel less
frequently or less far, substitute towards modes associated with lower external costs or choose
different routes and departure times. To shed light on potential mechanisms that mediate
the reduction in external costs, Figure 6 shows the effect of the pricing treatment on various
outcomes of interest (for the corresponding regression results, see Tables B.5 - B.10).

The treatment does not reduce overall travel distances for the sample as a whole, but
we measure a statistically significant reduction in car distance countered by increases in
the other modes. The effect can be seen separately on the intensive margin (i.e., distance
conditional on traveling with a particular mode on a given day) and on the extensive margin
(i.e., the probability of using a mode on a day). The mode shift becomes more salient if the
treatment effect is shown for mode (distance) share.

The pricing treatment significantly reduces congestion costs per km of car travel, sug-
gesting that modal shift may not be the only mechanism responsible for the reduction in
external costs. The reduction in congestion per km can be due to a selective mode shift
during congested times, but also due to a change in route or departure times. Using the
departure time (in minutes) as the dependent variable, we observe a statistically significant
shift in the average departure time for car trips in the morning towards earlier departures,
but no effect in the evening.?® Note that we cannot differentiate between a shift in car de-
parture time from a mode shift during the same time frame, as both could affect the average
car departure time measured during the observation period.

To learn more about the underlying mechanisms, we engage in a mediation analysis
following Baron and Kenny (1986) and Kraemer et al. (2008) (for details, see appendix).
The left panel in Table 6 provides the estimates for the pricing effect that is mediated by
car-km. Driving distance is indeed a powerful mediator that captures most of the treatment
effect. However, there is a remaining and statistically significant “direct” effect, which is the
combination of all other mediators. This effect persists despite the inclusion of an interaction
term between the treatment indicator and the mediator, which allows for the relationship
between car-km and external costs to differ with the treatment. For example, this would be
the case if people selectively substitute car trips during highly congested times. The fact
that there is a statistically significant direct effect despite this interaction term implies that
the effect is not only due to mode shift, but that other mechanisms (such as a shift in routes

or departure times) may also play a role. This is confirmed when using congestion costs as

26For this regression, we only included people for whom we observed at least one peak-hour trip during
the observation phase. We then computed the average trip departure time for trips before and after noon
and used this as the dependent variable in eq. (1).
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Figure 6: Mechanisms underlying the reduction in external costs
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Notes: The bars denote 95%-confidence intervals. In panels (a), (b), (d) and (e), the treatment effects are
computed using a Poisson pseudo-maximum likelihood (ppml) regression. Panel (c) shows the marginal
results (semi-elasticity) of a logit regression. In panel (f), a linear DiD-specification is chosen with the car
departure time (measured in minutes after midnight) as the dependent variable. The underlying regression
results are shown in Tables B.5, B.9 and B.10.
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the outcome variable of interest: the amount of driving does not explain the whole effect.
Last, we find a positive effect associated with the information treatment mediated via public

transport, suggesting that information may have contributed to the mode shift.

Table 6: Mediation analysis

Pricing Information

Coefficient  95%- percentile % of total Coefficient  95%- percentile % of total

(lower) (upper) (lower) (upper)

Direct effect on tot. ext. costs -0.048’ -0.097  -0.000 22.7 0.015 -0.030 0.059 17.3
Mediated effect via car-km -0.163* -0.286  -0.034 77.3 -0.101° -0.221 0.024 117.3
Direct effect on tot. ext. costs -0.054* -0.100 -0.011 25.7 -0.003 -0.048 0.039 3.9

Mediated effect via car-km -0.164* -0.289  -0.035 78.0 -0.102’ -0.223 0.024 117.7
Mediated effect via pt-km 0.008 -0.007 0.021 3.7 0.019** 0.006 0.032 21.6
Direct effect on congestion costs -0.041* -0.075  -0.007 70.6 -0.010 -0.048 0.024 49.0
Mediated effect via car-km -0.017* -0.031 -0.004 29.4 -0.011 -0.023 0.003 51.0

Notes: The lower and upper bounds show the 95%- percentile bootstrap confidence intervals, as
recommended by Tibbe and Montoya (2022). The total effect is defined as the sum of direct and
mediated effects.

5 Welfare implications

In this section, we compute the welfare effects associated with levying a Pigovian-inspired
transport pricing. The welfare change can be separated into three components. First, the
pricing reduces external costs; this is a welfare gain. Second, people experience a reduction
in utility from the introduction of taxes. A part of this reduction is due to the transport
tax payment itself; this is not lost but can be used to fund new expenditure, reduce existing
taxes and/or be returned to consumers. However, to the extent that consumers respond to
the pricing, the monetized utility loss has to exceed the tax payment, on aggregate.?” This
difference, which is the deadweight loss of taxation, contributes negatively to welfare. Third,
transport pricing reduces the volume of driving, especially during peak hours, which will
lead to increased speeds and thus to reduced travel times. Since our experiment included a
negligible share of people traveling in Switzerland, we abstract from this general equilibrium
effect and focus on the first two components.

To quantify the (partial-equilibrium) utility loss, we estimate a mode choice model on

27To see this, we can mentally separate the process into two steps. In the first step, people have to pay
the transport taxes but are held to their original transport choices. The monetized utility loss in this step
exactly equals the tax payment, by construction. In the second step, people are allowed to adjust their travel
choices. But they will do so only to the extent that the resulting decrease in travel utility is smaller than
their monetary savings. The fact that revenue shrinks faster than utility implies that the total tax revenue
will be insufficient to compensate people for their utility loss.
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the trip level. We complement each observed trip by a set of non-chosen alternatives and
compute the private and external costs associated with them; see section A.3 for more details.
Our experimental setting provides us with the opportunity to combine observational data
with an exogenous price change. We estimate a mixed logit model that allows the valuation
of travel time to vary across individuals and modes, and the valuation of costs to vary across
individuals. Because we do not allow for different departure times or routes for a given trip

nor include a “no travel” option,2®

our model only captures the effect of mode choice while
holding the amount, location and timing of travel constant. As we show above that mode
shift (and in particular a reduction in driving) is the main mediator, this method should
capture the main determinants of the change in external costs and utility.

We use the following utility function for the mixed logit models:

Uijt = Boj + Beost,i - Costije + Brime,ij - Time;j; + ngt(sj + 2775 + €ije (2)
= Vijt T €ijt, (3)

Uij+ is the utility for individual ¢ when choosing mode j for trip ¢, and consists of a
deterministic and a random component. We include mode-specific constants [y; to capture
the average utility for each mode and to control for unobserved heterogeneity between modes.
We allow for individual-specific, i.e. mized, preferences for travel costs (Beost,i), and for time
preferences that vary by both individual and mode (Bimeij). We further include a vector of
trip-specific variables w;;; including weather,?” distance, location and timing of the trip,*
and a vector of demographic controls z;. The corresponding preferences (J; and ;) are
allowed to vary across modes. Finally, the error term ¢;;; is assumed to be drawn from an
Extreme Value Type I distribution.

To estimate the monetized value of travel time (VTT) for each mode, we specify the model
in willingness to pay-space. This avoids having to separately calculate the distribution of
the ratio of the time parameter and the cost parameter and instead provides the mean and

standard deviation of this ratio directly. We thus we re-formulate (2) as follows:

Uijt = Beost,i - {56‘? + Costyji + Bt];/[me,ij - Time;;; + ngt(S;V[ + ZQVJM} + €ijt- (4)

28Including such an option is standard practice for stated preference surveys. In our setting based on
actual tracking data, however, there is an infinite number of non-taken trips, and it would not be clear how
to identify them in a meaningful way.

29Weather is included only at the day-level to avoid endogeneity due to individuals “selecting” the weather
conditions for a trip.

30We tested the inclusion of trip-specific purposes, as well as the first mode used on a given day, since
this may preclude certain other modes from being used later in the day. However, neither of these turned
out to be statistically significant.
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The superscript M indicates division by Bees; and Bt]yme’ij = Btime,ij/ Beosti represents
the individual and mode-specific VI'T. This is the amount individuals are willing to pay to
reduce travel time with mode j by one hour. Similarly, the parameter vectors (5JM and ’ij
capture the influence of the respective variables in monetary terms.

Estimating a mixed logit model for our full set of over 700,000 trips by maximum likeli-
hood poses a computational challenge. To obtain a more manageable number, we constrain
the analysis to the pricing group, and further restrict the data to a selection of 14 days before
and 14 days on either side of the treatment start for each person. The reduced-form effect of
this sample (relative to the control group) is a reduction in monetized external costs of 0.24
CHF per day, which is very close to the values reported in Table 4 and shows that the sample
selection procedure does not result in a systematically different sample as compared to the
experimental sample. Table B.11 in the appendix presents the estimated coefficients from
our preferred model. The cost and VT'T parameters are significant and have the expected
sign, and the model fit is very good (p* = 0.72).

The panel structure of our data allows us to calculate conditional distributions for the
random parameters in the mixed logit models, in the sense that we can approximate an
individual’s position within the unconditional distribution (see Section A.3 for more details).
Table 7 presents the estimates of the conditional VT'T for each mode, and Figure B.3 shows
their distribution. The VTTs are of the same order of magnitude as the official values for
Switzerland (Swiss Federal Office of Spatial Development, 2024). We find that car travel
is generally less price-elastic than PT travel, both in terms of own-price and cross-price
elasticities.

McFadden (1977) and Small and Rosen (1981) show that the expected consumer utility,

or surplus, can be calculated via the observed utility Vi

J
E[CSy = _51 ) -In (Z eXp(th)) + Cy (5)
cost,t j=1

The second expression is known as the logsum for individual ¢ and trip t. We simulate
these logsums for situations with and without transport pricing and subtract one from the
other. This procedure drops the unidentified constant Cj; and yields the monetized utility

loss in monetary terms due to transport pricing in our experiment:

AE[CS,] _61 - [ln (Z exp (V;imcmg>> —In (Z exp <‘/i§\£0137“icing)>] (6)

jedJ JjeJ

Our expression for the average monetized utility change per person and day due to
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Table 7: Value of travel time, choice probabilities, and elasticities

VTT (CHF/h) Mean Median SD  Min  Max
Car 15.05 13.57 6.42 3.54 63.82
PT 26.28 26.36  6.11 9.81 54.99
Bike 53.01 5391 16.89 10.20 136.76
Walk 17.80 1774 326 9.32 31.23
Choice probabilities  Car PT Bike Walk
Baseline 0.609 0.143 0.035 0.213

No pricing 0.593 0.160 0.041 0.206

Pricing 0.552  0.178 0.044 0.226

Price elasticities Choice prob. Distance

Car PT Car PT
Price for driving -0.46 0.82 -0.62  1.17
Price for PT 0.15 -0.60 0.17 -0.65

Notes: The VTT values are derived from the conditional distributions of willingness to pay to save
one hour of travel time with the respective mode. The choice probabilities are presented for the
baseline (actual mode shares) and the no pricing and pricing scenarios (model-predicted shares).
For the elasticities, the row refers to the mode for which the price has been increased by 1% and
the column refers to the percent change in choice probability or distance.

transport pricing is the sum of the change in consumer surplus over all ¢+ € [ participants
and t € T days, the tax revenue R (defined as the external cost charge from the model-
predicted mode choices j € J), and the reduction in external costs X,j; that are computed

equivalently:

AV — %Z [% Z (AE[CSZt] X Z RZ:icmg + Z (Xi]]\‘/toPricing _ le;):wmg)>] (7)

icl teT jeJ jeJ

Table 8 presents the results from the preferred model. We obtain an annual welfare gain
of CHF 72 per person. This is higher than, e.g., the welfare estimates computed by Almagro
et al. (2024) for an optimal transport policy in Chicago, but that analysis excludes some of
the external costs considered here.

The conceptual model that implicitly underlies this exercise is a social welfare function
that is utilitarian in WTP-space. This is why only averages matter in Table 8, whereas
the distribution of the gains and losses is irrelevant. But in an actual implementation of
externality-based transport taxation, distributional concerns would arguably matter. The
tax payment increases with income, but less than proportionally; Figure 7 shows that the
tax payment as a share of income decreases (left panel) such that the tax is overall regressive.

Redistributing all the tax revenue on a per capita basis removes the regressive nature of the
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Table 8: Welfare effects

Unit Sample Weighted

Monetized utility loss CHF /day -4.29 -4.06
Revenue CHF /day 4.22 4.00
External cost reduction CHF/day 0.26 0.27
Welfare gain per day CHF /day 0.20 0.21

per year CHF /year 71.62 76.59

Notes: All values are averages per person. The “Sample” column shows the unweighted results
for our sample, whereas the last column uses weights based on the Swiss Microcensus.

pricing (center panel). We find that returning CHF 3.90 per day would be sufficient to make
the average person in the poorest quintile indifferent in terms of transport-related utility
(right panel); due to the reduction in external costs, which are not included in this figure,
this person would be strictly better off due to the pricing. This procedure would retain 8%
of the total revenue. Moreover, more than 50% of individuals in all the other quintiles would
be better off under this redistribution approach, which is important for political acceptance.

We can use our model to compute the welfare implications of implementing different ver-
sions of second-best pricing. To obtain a meaningful comparison, we calibrate the alternative
policies such that the the resulting revenue, taking into account the behavioral responses, is
the same as with the the tax that underlies our experiment.?* This requires simulating the
model using a series of different tax levels, until the revenue is equal to the the target. The
first column in Table 9 contains the case of a simple fuel tax. This would achieve a welfare
gain of about CHF 50 per person and year, which is around 70% of the welfare gain from
our more general transport tax.

We also test a perimeter pricing approach in which, in addition to a fuel tax, a fee is
levied to private and public transport within urban areas during peak hours.3? We calibrate
the perimeter tax such that it is equal to the average total congestion externality per trip for
both car and PT trips and adjust the fuel tax in order to achieve the same total revenue as
from the Pigovian tax. This results in a welfare gain of CHF 56, which is 79% of the Pigovian
welfare gain. The fact that introducing congestion-related pricing only moderately increases
the welfare gain is consistent with our observation that congestion-related costs account for

a relatively small share of total transport externalities in Switzerland. And although our

31Tn this approach, the resulting change in external costs will differ across tax systems. Alternatively, we
could have conditioned on the reduction in external costs and allowed for different levels of revenue.

32The perimeters consist of areas defined as “urban” within medium to large agglomerations in Switzerland
by the Swiss Federal Statistical Office (i.e., the two most urban settings on the nine point scale of degree of
urbanity in Switzerland). The peak hours are 6:30 to 8:30 in the morning and 16:30 to 18:30 in the evening.
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Figure 7: Distributive effects of Pigovian pricing
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Notes: This figure presents the burden of our transport pricing as a percentage of per capita
income by income quintile. The dot is the mean, the line the median and the box represents the
inter-quartile range. Left: No redistribution; middle: equal per-capita redistribution of the entire
revenue; right: equal per-capita redistribution that makes the average of the poorest quintile
indifferent.

pricing is multi-modal and time-varying, the highest share of the external costs are due to
the sheer volume of driving with internal combustion engines (see Table B.1), which can
readily be addressed with a fuel tax. With a rising share of electric vehicles, of which there
are very few in our sample, the fuel tax would have to be complemented with a per-km fee
for EVs.

Throughout the paper we refer to our pricing as “Pigovian” in the sense that it is equal
to the external costs computed by the Swiss federal office ARE. However, these values are
subject to uncertainty, and other agencies in different countries have computed different
external costs for transport. Moreover, ARE updated their own numbers after we completed
our experiment, with the largest change being due to the introduction of a new methodology
to compute an “equity-weighted” social cost of carbon (SCC). When using this new SCC of
CHF 430/tCO; (Ecoplan / Infras, 2024) as opposed to CHF 136/tCO, in our base estimate,
the welfare gain from our pricing intervention increases by a factor of 1.5. More generally, we
can compute the implications for welfare if the true external costs were only half, or double,
of our base estimate. With the actual pricing held fixed, the welfare only changes due to
adjustments in X,j; in eq. (7). If the true external costs were only half of the magnitude

computed by ARE and implemented in our pricing, the welfare gain would still be reduced to
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Table 9: Welfare effects of alternative policies

Unit Fuel tax  Fuel tax & New Ext. costs Ext. costs
perimeter tax SCC halved doubled

Monetized utility loss CHF/d  -4.35 -4.33 -4.29 -4.29 -4.29
Revenue CHF/d 4.22 4.22 4.22 4.22 4.22
External cost reduction CHF/d 0.26 0.26 0.37 0.13 0.53
Welfare gain CHF/d 0.14 0.15 0.29 0.06 0.46
Welfare gain per year CHF/y 50 56 107 23 168
Share of baseline welfare gain % 70 79 150 33 235

Notes: The first two columns impose a different pricing but the same valuation of external costs
as in our setting. In contrast, the last three columns use the same pricing but different external
cost parameters. The new SCC is CHF 430/tCO;. In “Ext. costs halved” and “doubled”, the true
external costs are assumed to be 50% and 200%, respectively, of the baseline.

a third. In contrast, the welfare gain from our pricing more than doubles if the true external

costs are twice as high.

6 Internal and external validity

In this section, we discuss the main threats to identification and the extent to which we

believe that our results may hold also in other settings.

6.1 Strategic app manipulation

Participants were invited to use the validation interface to confirm the detected mode and
purpose of their trips and activities. And they made use of this function: On average, we
record 0.38 corrections per person-day, and at least one correction on 20% of the person-
days. As the mode is crucial in determining the external costs, the possibility of overwriting
the detected mode for a particular stage provided an opportunity for the participants in
the pricing group to “game” the experiment, e.g., by mis-assigning actual car trips to an-
other transport mode. On the other hand, manual mode adjustments could also be truthful
corrections of a mode mis-assigned by the app. The key question is whether we observe
systematically different mode correction behavior for the treatment groups relative to the
control group. To test for this, we use the mode corrections as the dependent variable in our
difference-in-differences regression. the first two columns in Table 10 show that there is no

difference in the number of corrections per day across groups, nor in the probability of at
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least one correction taking place per person-day.?3

Table 10: Mode corrections and spatial jumps

Dependent variable Nr. of corrections Correction (1/0) Nr. of jumps Jump (1/0)

Pricing -0.042 -0.006 0.059 0.003
(0.042) (0.009) (0.073) (0.004)
Information -0.056 0.012 -0.076 -0.004
(0.037) (0.008) (0.063) (0.004)
N 112,744 112,744 107,993 107,993

Notes: Standard errors (in parentheses) clustered at participant level. The dependent variable in
cols. (1) & (3) is the number of mode corrections and spatial jumps per day, respectively. The
coefficients are proportional effects, estimated using a ppml model. Cols. (2) & (4) display the
marginal effects from logit regressions on dummies denoting whether at least one correction or jump
was recorded on a given day. All regressions control for person, calendar and study day FE.

Another form of potential manipulation would consist in participants turning off the
app before departure and switching it back on once they have reached their destination.
To investigate this, we marked all instances in which we see "spatial jumps” in the data,
in the sense that a participant’s location at the end of one trip is not the same as the
starting location of the following trip. To abstract from small random jumps (due to, e.g.,
cellphone reception gaps or brief pauses in the GPS signal), we set a limit of 10km to identify
significant spatial jumps.?* We record an average of 0.04 jumps per person-day. The last two
columns in Table 10 show that there is no effect of the treatment indicator on the number
and probability of such spatial jumps.

To further test the robustness of our results, we re-run our base regression after removing
all observations (on the person-day-level) that contain at least one mode correction. The
resulting treatment effects are shown in column 2 of Table 11. The ATE is effectively
unchanged relative to the baseline. We can furthermore compare the distances by mode with
and without the correction (note that we did not compute the external costs associated with
the originally detected but later corrected trip stages). Tables B.6 and B.7 show that these
distances are very similar, and that the ATE on distance by model is essentially unchanged.
Taken together, these robustness tests imply that our results are unlikely to be driven by

strategic mode correction.

33Note that these tests are done only with people who recorded at least one correction, as the pure zeros
are perfectly identified by the person-FE. This is the reason for the smaller sample relative to the other
regressions. The same applies to the “spatial jump” regressions in the same table.

34The results do not change when we use a threshold of 5km or 20km instead.
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Table 11: Subsample analyses

Baseline w/o corrections w/o zeros w/o weeks 5-6 w/o weeks 7-8

Pricing -0.228%* -0.230%* -0.226%* -0.245%* -0.244**
(0.070) (0.077) (0.072) (0.080) (0.083)
Information  -0.097 -0.093 -0.094 -0.089 -0.102
(0.067) (0.074) (0.069) (0.079) (0.081)
Adj. R 0.234 0.238 0.239 0.237 0.233
Clusters 3,616 3,616 3,616 3,616 3,616
N 168,359 137,900 160,940 126,058 128,156

Notes: **: p < 0.01, *: p < 0.05, 2 p < 0.1. Standard errors in parentheses and clustered at
participant level. All regressions include fixed effects for person, day of study and day of calendar.
The proportional effect and the elasticity are computed using the averages of the control group
subject to the appropriate restrictions.

6.2 Missing tracking data

Although tracking discipline was overall very high in our sample, many participants did not
record positive distances on all days. To differentiate between true zeros (i.e., participants
not traveling) and missing data (participants disabling the app or traveling without their
mobile phone), we rely on imputed activities to link stages. Suppose that a participant
travels home on Friday evening and does not deliver another track until Monday. If the app
imputes an uninterrupted activity (in this case labeled as “at home”) lasting from Friday to
Monday, then we assign a travel distance of zero for Saturday and Sunday. However, there
is not always an uninterrupted activity between stages on different days. For example, if
a participant disables the app or leaves Switzerland during the study, there will not be a
continuous activity linking stages. We treat such person-days as missings rather than zeros.

However, the imputation of activities and locations is not always correct. To assess the
sensitivity of our results to the distinction between zeros vs. missing data, we re-estimate
the model using only data from days with positive travel distances. The resulting ATE is

shown in column 3 of Table 11 and is very similar to the baseline.

6.3 Attrition and observability

The assignment into groups was randomized, but people could drop out of the study or
switch off the app at any time. Our incentive payment of CHF 100 was paid only at the
end of the study and thus designed to keep attrition low. We excluded people from the
study who did not track on at least 11 days during the observation period, but this does
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not pose a challenge for internal validity as it occurred before the treatment assignment.
What we worry about, however, is nonrandom observability during the treatment phase. If
observability is correlated with the treatment assignment, or with factors that co-determine
the treatment effect, then our estimate of the ATE could be biased.

A bias due to observability cannot be directly tested, but we engage in two indirect tests
to examine this possibility. First, if attrition in the sense of participants permanently turning
off the app were influenced by the group assignment, any bias due nonrandom attrition should
increase over the course of the treatment phase. We therefore re-estimate our base model
using only the first two weeks or the last two weeks of the treatment period (columns 3-4 of
Table 11). The results remain largely unchanged.

Second, given our panel setting, people may not attrit completely but vary the degree to
which they are observed on any given study day. If observability is related to the treatment
effect, it could bias our results even if it is balanced across treatment groups. To investigate
this, we regress the number of observed tracking days (ranging from 0 to 27) on pre-treatment
external costs and the pre-determined characteristics over which we found the treatment
effect to vary (see subsection 4.2).3> The results show that observability correlates positively
with pre-treatment external costs (column 1 in Table B.13). However, when conditioning on
pre-treatment observability (as we do implicitly in our analysis by including person fixed-
effects), this effect vanishes (column 2). Furthermore, the ATE does not systematically vary
over pre-treatment observability (column 3). To summarize, conditional on pre-treatment
characteristics, participants’ observability during the treatment period is not systematically
related to variables that co-determine the treatment effect. Based on these findings, we

conclude that our results are not biased by nonrandom attrition / observability.

6.4 External validity

Every study is externally valid for some setting and no study is externally valid in all set-
tings. For a study to provide useful insights beyond its immediate setting, List (2020)
argues that the burden of proof for authors of empirical work consists of four transparency
conditions, namely selection, attrition, naturalness and scaling. As we argue above, attri-
tion/observability is not determined by variables that moderate the treatment effect. And
since our experiment did not introduce new tasks but simply observed people in their every-
day travel, the naturalness condition is arguably not a problem here. In the following, we

will therefore focus on selection and scaling.

35Because we removed study day 29, the maximum number of observed days during the treatment period
is 27. Note that for this analysis, we also include the 71 participants that did not deliver any observations
during the treatment phase; see section 3.1.
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Selection Our sample is quite similar to the general population living in Swiss urban
agglomerations in terms of socio-demographic characteristics (see section 2.1), such that
one may be tempted to conclude that the results generalize directly. However, due to self-
selection into the study itself, it is possible that our sample differs from the target population
in terms of unobservable characteristics that are related both to the decision to participate
and personal transport choices. For this reason, we cannot guarantee external validity given
our sample selection procedure even when conditioning on observables.

We were careful not to make any reference to transport pricing or external costs when
inviting people to participate in the study. In order for our results to mis-represent the re-
sponse of the general population, there would need to be a correlation between the propensity
to participate in a “tracking study” and the extent to which someone responds to information
and pricing associated with the external costs of transport. The fact that our treatment ef-
fects are homogeneous across most socio-economic characteristics suggests (but by no means
proves) that this may not be a large source of bias. One way to get more information
about the bias that arises from the self-selection problem would have been to randomize the
incentive payment. Unfortunately, this was not done here.

Self-selection into the study is clearly problematic if the goal is to predict the effects of
instituting Pigovian transport pricing as government policy. However, the implementation
could also take other forms. For example, if faced with political opposition due to privacy
concerns, transport pricing could be offered to volunteers who, in exchange, are exempt from
vehicle registration taxes (or receive some other compensation via the tax code). In such
an implementation, the target population could be quite similar to our sample, such that

self-selection in our study would become a feature rather than a source of bias.

Scaling We differentiate between horizontal scaling (application of our results to other
populations) and longitudinal scaling. Due to the richness of our data, we can compute
conditional average treatment effects and thus predict the likely response of target popu-
lations that have a different distribution of underlying characteristics than our sample, as
long as there is some common support. For example, even though our study focused on
urban agglomerations, there are nevertheless a significant number of participants that live in
municipalities that can be described as “rural”, such that expected treatment effects can be
computed also for areas outside of cities. This becomes more problematic for characteristics
for which there is no common support between our sample and the target population. For
example, our study did not include people outside the age range of 18-65, such that we
cannot make valid predictions about the response of pensioners or children.

The majority of the treatment effect is due to a mode shift away from driving. This
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requires that public transport be available, and it is obvious that that not all populations
have access to public transport that is comparable to the Swiss setting. However, our setting
is by no means unique. For example, the mode share for the city of Chicago (Almagro et al.,
2024) is very similar to that in our experiment. We would further expect general equilibrium
effects such as increased travel speeds during peak hours to materialize as transport pricing is
scaled to a larger portion of the population. This would increase the utility of those travelers
that are not willing or able to shift outside of peak time (which is currently not considered
in our partial-equilibrium welfare analysis). Conversely, these same equilibrium effects may
reduce some of the response as driving during the peak becomes more attractive.

Since the pricing scheme in the experiment consisted of taking money away from a given
budget, loss aversion may have increased the effect relative to a tax (Tversky and Kahneman,
1991). Conversely, Thaler and Johnson (1990) show that individuals tend to combine prior
gains with subsequent losses, which facilitates risk-seeking behavior until the prior gain is
completely depleted. Since our participants start with a gain in the form of a personal
budget, this would lead to an under-estimate of the effect relative to transport pricing that
would become part of households’ general expenditure.

Scaling also concerns the time frame of the experiment. The experiment took place in
the months of September to January in Switzerland. Although this includes a number of
weeks with relatively mild climate, the colder part of the year slightly dominates. To the
extent that cycling and walking (and, by extension, using public transport, which usually
requires some access on foot) are more attractive in the warmer months, our experiment may
under-estimate the effect over the whole year.

Most importantly, the treatment period in our experiment lasted only one month, such
that we can only measure short-term responses. With a permanent introduction of transport
pricing, additional margins of response will become available such as the choice of work and
home locations, changes in activity routines, vehicle/transit pass ownership or negotiations
with employers about work hours and location. Studies of fuel-price elasticities indicate that
the long-term response is about twice as high as the short-term response (Goodwin et al.,
2004). Future studies are needed to better understand the implications of externalities-based

transport pricing in the long run, and in different settings.

6.5 Social acceptance

For policymakers, other avenues of revenue generation for transport infrastructure are gain-
ing importance as the share of electric vehicles increases and revenue from fuel taxes and

surcharges decreases. Transport pricing on a larger scale may alleviate these concerns since
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congestion, noise, and emissions of local pollutants (through braking and tire wear) are
external costs of car travel, regardless of fuel type.

Even if transport pricing works, its implementation may be challenging not only in terms
of technology and data confidentiality, but also due to social acceptability (Eliasson, 2021).
To learn more about this, we asked the respondents in the final survey the extent to which
they agreed with the following statement: “The price for mobility should reflect the social
cost (e.g., health, environment, congestion).” Figure 8 shows the responses, separated by
treatment group in the RCT and also for the intro survey sample. A majority of the respon-
dents were either positive or neutral, with only 20% rejecting this statement.?® We do not

find a significant difference across the treatment groups.

Figure 8: Support for transport pricing

Strongly agree
Agree

Neither disagree nor agree

Disagree
Strongly disagree
0 10 20 30 40
Percent
B |ntro survey ™ Pricing Control

Notes: The figure shows participants’ responses in percent to the questions described in the main
text. Observations: 19,440 (intro survey),1,081 (control); 1,066 (pricing).

7 Conclusion

The MOBIS experiment implemented Pigou-inspired transport pricing based on sample
tracked by GPS. The short-term treatment effect consists in a reduction of transport-related
external costs by 4.6%. This is due to a combination of a shift away from driving towards

other modes, and towards less congested times and routes. The effect varies with age, degree

36We also tried two other formulations of this question. One version was worded using more technical
language, with a reference to the revenue-neutral introduction of transport pricing, and another asked about
the introduction of time-varying pricing but without any reference to social costs. The level of support varied
across these questions. For more information, see Axhausen et al. (2021).
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of urbanity, car ownership and language region. The elasticity of -0.24 that we recover is
in the same range as estimates of the short-run fuel elasticities (Goodwin et al., 2004) and
results based on toll pricing (Bain, 2019). Whereas the information-only treatment had a
statistically significant effect for a subsample that we identify as above-average “altruistic”,
there is no clear effect for the sample overall. Our results therefore imply that while the
information content of transport prices likely plays a role the overall response, information
campaigns will not be sufficient to induce significant behavioral change.

Our experiment shows that multi-modal transport pricing works in practice. The required
technology is available, and could be implemented in principle. Pigovian transport pricing is
an alternative funding mechanism that can also be implemented in the presence of a sizeable
electric vehicle fleet. However, a Pigovian pricing scheme thar relies on continuous tracking
would face a number of challenges for practical implementation due to privacy concerns,
limited social acceptability and the technical constraints of assessing the tax on a real-time
basis. However, even a simplified pricing scheme should be guided by the marginal external
costs of transport to increase the efficiency of the transport system. We find that a fuel tax
calibrated to capture the average per-km external costs of driving would achieve 70% of the
welfare gain of a pricing that varies by time and space. Considering the implementation
challenges and privacy considerations, increasing the fuel tax to incorporate (most of) the
external costs of transport may be preferable. To incorporate the expansion of the electric
fleet, fuel taxes would have to be accompanied by a volumetric tax on EVs.

However, the degree to which fuel taxes can capture the welfare benefits from a full set of
transport prices will depend on the setting. In Switzerland, congestion costs contribute only
around 20% of the transport externalities. In places where congestion accounts for a larger
share of the unpriced external costs (e.g., London or New York City), the benefits of pricing
that (also) targets congestion will arguably be greater. Exclusively focusing on congestion
is likely inefficient too due to the external costs that are unrelated to capacity constraints.

Independent of the exact shape of the pricing, a key challenge will be to agree on the
price level in the political process and to coordinate between different levels of government
(e.g., cities vs. regions; see Eliasson, 2021). Using a price that is very far from the Pigovian
rate may negate any welfare benefits from such intervention.

The transport pricing implemented in our experiment is regressive, a feature that it shares
with fuel taxes (West and Williams, 2004; Bento et al., 2009). In order to protect poorer
households and to win political acceptance, any efforts to advance transport pricing will
need to be complemented with re-distributive measures to counteract adverse distributional
implications. However, if implemented in an equitable way, transport pricing could become

a key pillar of sustainable transport policy.
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Online Appendix

A Analysis

A.1 Weather variables

Heaty; = max {t5;"" — 25, 0} (A1)
Cold;, = max {10 — ¢}, 0} (A.2)

The variables ¢7;** and t;’;‘m refer to the daily maximum and minimum temperature,
respectively, recorded in degrees Celsius. We compute the average of the heat, cold and
precipitation values across all trips taken by person ¢ on day ¢ and add them as linear

control variables to (1).

A.2 Mediation analysis

To learn about the mechanisms underlying our effect, we engage in a mediation analysis.
As we will see below, an important mediator of the treatment effect on the external costs of
transport is the quantity of driving (i.e., car-km per person-day).

Following Baron and Kenny (1986) and Kraemer et al. (2008), we estimate the following

equations:

My = o+ vrTy + yxXie + € (A.3)
Yie = Bo + BrTie + B Miy + Ay My Ty + Bx X + uiy (A4)

Here, M, refers to the mediator, Yj; is the outcome variable of interest, T}; is the treatment
indicator and Xj; is a vector of controls (in our case, this includes the person, calendar day
and study day FE and the weather controls). The identifying assumptions are that ¢; is
independent of the treatment status, and that u; is independent of Tj; and M;, (this is also
known as the “sequential ignorability assumption”; see Imai et al. (2010)). Given (A.3)-
(A.4), the Average Direct Effect (ADE) and the Average Indirect Effect (AIE) can then be

computed as follows:

ADE = 6y + )\M(a + ’VT) (A5)
AIE = 37 (B + Am) (A.6)



The AIE captures the causal effect of the treatment on the outcome variable via the two
mediators, whereas the ADE measures the “direct” effect (which is the sum of any truly
direct effect and the effect of all other mediators).

The interaction term between the mediator and the treatment indicator in (A.3) addresses
the possibility that the relationship between driving and external costs is altered by the
treatment (for a discussion, see Kraemer et al., 2008). This would be the case, for example,
if the driving trips that are reduced due to the pricing (either shifted to other modes or simply
omitted) are associated with different congestion externalities than the average driving trip,
which would lead to a different translation between driving-km and external costs.

It is possible that the effect is not only mediated by shifting away from driving, but that
people also change their departure times and/or routes conditional on driving. To investigate
this possibility, we include congestion per car-km as a second mediator (M2) besides driving

distance (M1) and estimate the following system of equations:

M1yt = ay + 7T + yx Xit + €it (A7)
M2, = co + 67T + Ox Xyt + Vit (A8)
Yie = Bo + BrTi + Bann MLy + BrraM 24 + At M 14Ty

+ oM 2Ty + Bx X + wir (A.9)

The direct effect and the indirect effects via the two mediators are then given by

ADE = Br + A (a1 + 7)) + Amz(oe + 07) (A.10)
AIE (M1) = v7(Ba1 + Aann) (A.11)
AIE (M2) = 67(Buz + Aur2) (A.12)

A.3 Discrete choice modeling

Here we provide details on the modeling approach for the welfare analysis in Section 5.

Non-chosen alternatives We augment the trip data with non-chosen alternatives using
the Bing API, accounting for the availability of the non-chosen modes. Since the travel times
for the non-chosen alternatives are based on free-flow traffic conditions, we adapt these in
the following way: We regress the travel time for each chosen mode and trip on distance,
speed, 20 minute time bins, a peak time indicator, day of the week, a weekend indicator,
start and end location (canton), start and end level of urbanity, mobility tool ownership, and

demographics. We then predict the travel times for the non-chosen modes using the results



from these mode-specific regressions. As a test for accuracy, we compare the predicted travel
times for the chosen modes to the actual times for the chosen modes and find that these are
very similar.

We apply a similar approach for the external costs, however, restrict the regressions to
only include distance for walking and cycling, and include the 20 minute time bins, peak
time indicator, day of the week, weekend indicator, start and end location, start and end

level of urbanity, and mobility tool ownership for car and public transport trips.

Sample selection Due to computing power constraints related to estimating a discrete
choice model with this number of choice situations, we restrict our sample to a selection
of 28 days (14 before and 14 after the start of the treatment period). The benchmark for
similarity to the main sample is the similarity in the reduced form reduction in external

costs.

Estimation We estimate the model in willingness to pay (WTP) space and assume a
lognormal distribution for the travel time parameters and a negative lognormal distribution
for the cost parameter. The model is estimated using the Apollo package in R using maximum
likelihood and the BHHH algorithm and MLHS draws (Hess and Palma, 2019a,b; R Core
Team, 2020; Berndt et al., 1974; Hess et al., 2006).

Post-estimation Due to panel nature of our data, we can calculate conditional distribu-
tions for the random parameters, which provide an indication of an individual’s position
within the overall, unconditional distribution of the random parameter.

Using Bayes’ rule, the conditional (or posterior) distribution for individual i for a given

random parameter (subscript suppressed for readability) takes the following form:

L(?/i \ Xi,ﬂi)f(ﬁi ’ 0)

f(Bi | yi, Xi,0) = P(y; | X4,0)

(A.13)

where L(y; | X;, ;) is the likelihood function, i.e., the probability of observed choices
given f3;, f(B; | 0) is the prior (or unconditional) distribution of f;, and P(y; | X;, ) is the

marginal likelihood after integrating over (;:

Ply; | X..0) = / Ly | X0, 8)£(6: | 6)dB. (A14)

The integral in (A.13) is generally intractable, so it is approximated with maximum
simulated likelihood.



The conditional distributions for the random parameters are calculated for the control
group across all 28 sample days and for the pricing group for the 14 days prior to treatment
using 1,250 draws.

Once the conditional distribution parameters are calculated, we calculate the logsums for
each choice situation under the scenarios described in the text (no pricing, pricing, a fuel
tax, a fuel & perimeter tax, a new SCC, and with doubled or halved externalities), replacing

the random population parameters with their conditional counterparts.



B Additional tables and figures

Figure B.1: Standardized mean differences for covariate balance
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Notes: This figure presents the standardized mean differences (SMD) between the treatment and
control groups for the covariates presented in Table 1, with the dashed lines showing the standard
+ 0.1 cut-off for adequate balance between groups.



Figure B.2: Variable importance in Causal Forest

Pricing and information Information
Age
Altruistic
Biospheric
Hedonic
Egoistic
Income
Rural| ——— —
Household size| ——— —
Random continuous| — —
Language| — e
Nationality| — —
Half-fare PT subscription| — —
Education| — —
Gender| — —
Urban| — —_—
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Random dummy| — —
Weekend | — —
Full PT subscription| - -
Intermediate| — —
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Relative variable importance

Notes: This figure shows the variable importance measure from the causal forest approach,
relative to the “most important” variable. The variable importance measures are shown for the
pricing and information treatment (left panel) as well as the information treatment (right panel).

Figure B.3: Value of travel time distributions
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Notes: This figure presents the distributions of the conditional VI'T estimates.



Table B.1: Contribution of modes to travel and external costs

Distance Duration | CO2 Pollution Accidents Phys. activ. Congestion Crowding| Total
Car 73.3% 53.9% [19.2% | 42.3% 15.9% 19.2% 96.6%
Train 13.5% 6.2% 0.0% 1.3% 0.1% 1.7% 3.1%
Light rail 6.1% 6.7% 0.0% 0.1% 0.8% 0.9% 1.8%
Bus 2.2% 4.3% 0.3% 0.9% 0.3% 0.3% 1.8%
Bicycle 1.3% 2.3% 3.7% -2.7% 1.0%
Walk 3.7% 26.5% 3.0% -7.3% -4.4%
Total 100.0% 100.0% |19.5% 44.6%  23.8%  -10.0% 19.2% 2.9% | 100.0%
Notes: This table shows the share of the main modes among distance and duration, as well as

the proportional contribution to the external costs (shaded area).



Table B.2: Sensitivity to inclusion of fixed effects

(1) (2) (3) (4) (5) (6)

Pricing -0.230%*  -0.236** -0.225** -0.535%*

(0.070)  (0.062)  (0.070)  (0.053)
Information -0.098 -0.103’ -0.090  -0.400**

(0.067)  (0.059)  (0.067)  (0.050)
Post -0.303**  -0.585**

(0.104)  (0.056)

Proportional effects -0.046** -0.047** -0.045** -0.107** -0.065** -0.125**

(0.014)  (0.013)  (0.014)  (0.010)  (0.021)  (0.011)
Elasticity -0.241%*%  -0.247%%  -0.236** -0.560** -0.319%* -0.614**

(0.075)  (0.066)  (0.075)  (0.054)  (0.106)  (0.055)
Person FE V ¥4 ¥4 ¥4 ¥ ¥4
Cal. day FE ¥4 v O O v O
Study day FE ¥4 O ¥4 O O O
Adj. R? 0.234 0.234 0.230 0.229 0.228 0.224
Clusters 3,616 3,616 3,616 3,616 1,176 1,176
N 168,359 168,359 168,359 168,359 54,624 54,625

Notes: **: p < 0.01, *: p < 0.05,: p < 0.1. Standard errors in parentheses and clustered at participant
level. The dummy variable takes the value of one during the treatment period and zero otherwise. All
regressions include weather controls.

Table B.3: Interaction-weighted estimator

ATE Dynamic

Weekly cohorts

Daily cohorts

Weekly cohorts

Daily cohorts

Coefficient S.E. Coeflficient S.E. Coefficient S.E. Coefficient S.E.
Post -0.231*%*  0.069 -0.231**  0.069
Week 5 -0.305%* 0.124 -0.302* 0.123
Week 6 -0.277* 0.116 -0.280* 0.115
Week 7 -0.273* 0.118 -0.268* 0.117
Week 8 -0.256* 0.123 -0.249* 0.122
Adj. R2 0.231 0.231 0.231 0.232
Clusters 2,396 2,396 2,396 2,396
N 111,224 111,224 111,224 111,224

Notes: **: p < 0.01, *: p < 0.05. This table shows the regression results from implementing the
IW estimator proposed by Sun and Abraham (2021), using only the pricing and the control groups.
Left: Average treatment effect over entire period; right: effect by treatment week. The cohorts are
defined by week (or day) on which a participant entered the study. The treatment effects are the
weighted sums of the effect from the involved cohorts.



Table B.4: Multivariate interactions

Total Costs Health Costs Climate Costs Congestion Costs

Pricing Info. Pricing Info Pricing Info. Pricing Info.

Base 0.326 0.059 0.097 -0.043 0.050 0.021  0.180** 0.081
(0.235)  (0.232)  (0.148) (0.146) (0.054) (0.054) (0.067)  (0.071)
Male -0.120  -0.146  -0.031  -0.015  -0.006  -0.019 -0.082** -0.111**

(0.104)  (0.097) (0.065) (0.061) (0.024) (0.022) (0.032)  (0.030)
Income>12k  -0.113  0.001  -0.006  0.004 -0.012  -0.023 -0.095*  0.019
(0.130)  (0.129) (0.078) (0.080) (0.031) (0.030) (0.044)  (0.041)
Income<8k  0.221'  -0.037  0.091  -0.071  0.045° -0.012  0.084*  0.047
(0.119)  (0.114)  (0.074) (0.070) (0.027) (0.027) (0.035)  (0.034)

Age>54 0171 -0.007  -0.108  -0.035 -0.06 -0.000  -0.002  0.028
(0.138)  (0.144)  (0.087) (0.089) (0.032) (0.034) (0.043)  (0.040)
Age<30 047TFF 0163 -0.244%F 0103 -0.107%%  0.034  -0.126"*  0.026

(0.147)  (0.115)  (0.090)  (0.073) (0.034) (0.027) (0.044)  (0.036)
Tertiary ed.  -0.112  -0.075  -0.103  -0.055 -0.023 -0.030  0.014  0.010
(0.111)  (0.108)  (0.068) (0.069) (0.025) (0.025) (0.036)  (0.030)
HH size>4  -0.222 0197  -0.151  0.121  -0.089* 0.037 0018  0.039
(0.173)  (0.188)  (0.109) (0.107) (0.040) (0.050) (0.045)  (0.055)
HH size<3  -0.128  0.013  -0.009  0.043  -0.029 -0.017 -0.090%*  -0.013
(0.116)  (0.111)  (0.072) (0.070) (0.027) (0.026) (0.036)  (0.032)
French sp.  0.336**  0.022  0.194**  -0.005 0.068** -0.002  0.073*  0.029
(0.115)  (0.110)  (0.074)  (0.071)  (0.026) (0.026) (0.034)  (0.031)
English sp.  0.426%  0.043  0.194° 0051  0.084°  0.005  0.148%  -0.014
(0.196) (0.221) (0.117) (0.141) (0.048) (0.052) (0.063)  (0.067)

Foreign 0235 0210  -0.107  0.095  -0.042  0.046  -0.087%  0.069’
(0.134)  (0.131)  (0.080) (0.082) (0.031) (0.030) (0.044)  (0.041)
Suburban 0015  0.276%*  0.000  0.148%  0.000  0.049°  0.014  0.079*
(0.118)  (0.107)  (0.074)  (0.068) (0.027) (0.025) (0.033)  (0.032)
Rural 0.436%  0.142  -0.270%*  0.073  -0.118%  0.020  -0.048  0.049

(0.208)  (0.174)  (0.131) (0.121)  (0.049) (0.041) (0.058)  (0.039)
Car owner  -0.291  -0.078  -0.083  0.010  -0.035  -0.005 -0.172%* -0.083’
(0.168)  (0.158)  (0.103)  (0.096) (0.038) (0.037) (0.050)  (0.050)

1/2 fare 0132 -0.058  -0.093  -0.021  -0.033  -0.006 -0.006  -0.031
(0.103)  (0.100)  (0.064) (0.063) (0.024) (0.023) (0.031)  (0.030)
Weekend 0147 020" 0076 0111 0044  0.026  0.027  0.063
(0.119)  (0.114)  (0.075) (0.072) (0.026) (0.025) (0.033)  (0.035)
Egoistic 0092 -0.087 0080 -0.071  0.035 -0.038 -0.023  0.022
(0.104)  (0.107)  (0.064) (0.067) (0.024) (0.025) (0.032)  (0.031)
Altruistic 0140 -0.242%  -0.085 -0.133*  -0.028 -0.048* -0.027  -0.060*
(0.115)  (0.105)  (0.072) (0.067) (0.026) (0.024) (0.036)  (0.031)
Hedonic 0112  -0.103 0050 -0.015 0.019  -0.005  0.044  -0.083**

(0.114)  (0.107)  (0.069) (0.067) (0.026) (0.025) (0.036)  (0.031)
Biospheric ~ -0.118 0120  -0.064  0.065 -0.027 0031  -0.028  0.025
(0.118)  (0.112)  (0.074) (0.072)  (0.027) (0.025) (0.036)  (0.032)

Adj. R? 0.245 0.243 0.283 0.252
Clusters 3,616 3,616 3,616 3,616
N 168,359 168,359 168,359 168,359

Notes: **: p < 0.01, *: p < 0.05, 2 p < 0.1. Standard errors in parentheses and clustered at the participant level. The
dependent variable is the external cost of transport aggregated to the person-day level. The “Pricing” and “Info.” columns
indicate the type of DiD term with which the interaction terms have been multiplied. All dimensions also include one omitted
category; the “Base” coefficient is thus associated with an observation that has a zero for all included dummies. Income refers
to monthly household income, in CHF. “French sp.” and “English sp.” denotes respondents who chose to answer the surveys in
French and English, respectively. “Non-urban” denotes municipalities that are not labeled as urban nor as rural by the Swiss
Federal Office of Statistics.



Table B.5: ATE on travel distance

(a) Overall margin

Total Car PT Bicycle Walking

Pricing 0980 0.954** 1046  1.101  1.040*
(0.014) (0.016) (0.041) (0.081)  (0.019)
Information ~ 1.003  0.972° 1.112%¥* 1044  1.009
(0.014)  (0.016) (0.044) (0.073)  (0.018)
Difference 0976 0982 0940 1.055  1.031’
(0.014) (0.017) (0.034) (0.081)  (0.018)

Heat 0.859%% 0.828%* 0.916°  0.905  0.953**
(0.017)  (0.021) (0.044) (0.053)  (0.017)
Cold LO47#F  1.061%%  1.000  1.041%  1.019%*

(0.004)  (0.005) (0.010) (0.016)  (0.004)
Precipitation  0.998%  1.000  0.992%% 0.978%*  (.994**
(0.001)  (0.001) (0.002) (0.006)  (0.001)

Adj. R? 0.270 0.297 0.413 0.469 0.266
Clusters 3,616 3,615 3,496 2,209 3,616
N 168,359 168,347 162,871 103,573 168,359

(b) Intensive and extensive margins

Distance conditional on traveling Probability of traveling
Total Car PT Bicycle Walking  Total Car PT Bicycle Walking
Pricing 0.981 0.972’ 1.017 0.971 1.043* 0.998  0.977** 1.038*  1.098* 1.004

(0.014)  (0.015) (0.036) (0.049) (0.017) (0.003) (0.007) (0.019) (0.050)  (0.006)
Information ~ 1.004  0.985  1.084* 1.005  1.012 0996 0.985* 1.025 0999  1.000
(0.014)  (0.015) (0.039) (0.046) (0.017)  (0.003) (0.007) (0.018) (0.044)  (0.006)
Difference 0977 0987 0938 0966  1.030°  1.002 0992  1.012  1.099%*  1.003
(0.013)  (0.015) (0.032) (0.053) (0.017) (0.003) (0.007) (0.018) (0.052)  (0.006)
Precipitation  0.999  1.000  0.997  1.001  0.995%* 0.999%* 1.001** 0.997%* 0.983** 0.998**
(0.001)  (0.001) (0.002) (0.004) (0.001) (0.000) (0.000) (0.001) (0.003)  (0.000)

Heat 0.857%% 0.839%% 0941  0.950 0.952%* 1.004 0987  1.002 0982  1.010

(0.016) (0.019) (0.038) (0.040) (0.016) (0.004) (0.010) (0.018) (0.030)  (0.006)
Cold LO48%F  1.065%F 1.022%% 1.022% 1.021%*  0.999%  1.000 0.975%* 1.012  0.995%*

(0.004)  (0.004) (0.008) (0.009) (0.004) (0.001) (0.002) (0.004) (0.010)  (0.001)
Adj. R 0277 0296 0483 0642 0260  0.002 0029 0142 0201  0.017
Clusters 3616 3,614 3337 1585 3615 3,616 3,615 3496 2209 3,616
N 160,047 131,047 56,423 13405 138,559 168,359 168,347 162,871 103,573 168,359

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. Dependent variable: Distance traveled by person-day
including zeroes (panel a), restricted to positive observations (panel b) and as a dummy denoting
a positive daily distance. Standard errors (in parentheses) are clustered at the participant level.
Estimation with PPML (panels a-b) and linear probability (panel ¢). The results show proportional
effects, with 1 indicating no effect. All regressions include person, calendar and study day fixed
effects plus weather controls.
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Table B.6: Distances by mode, with and without corrections

(a) Corrected data

Overall Intensive margin
. Mean Std. dev. Min. Max. . Mean Std. dev. Min. Max.
Mode Observations (km) (km) (k) (km) Observations (km) (km) (km)  (km)
Car 168,359 34.94 48.65 0 498.57 131,048 44.89 50.93 0 498.57
PT 168,359 10.04 32.41 0 499.22 56,584 29.86 50.33 0 499.22
Bicycle 168,359 0.61 3.60 0 128.57 14,034 7.37 10.26 0 128.57
Walking 168,359 1.72 2.27 0 20.00 138,560 2.09 2.34 0 20.00
Total dist. 168,359 47.31 55.38 0 618.00 160,947 49.49 55.68 0 618.00

(b) Uncorrected data

Overall Intensive margin
. Mean Std. dev. Min. Max. . Mean Std. dev. Min. Max.
Mode Observations (k) (km) (ki)  (km) Observations (km) (k) (k) (km)
Car 167,916 34.95 48.20 0 498.57 134,715 43.57 50.20 0 498.57
PT 167,916 10.16 31.87 0 499.22 65,360 26.11 46.83 0 499.22
Bicycle 167,916 0.62 3.54 0 127.81 14,720 7.02 9.90 0 127.81
Walking 167,916 1.71 2.25 0 20.00 138,146 2.07 2.32 0 20.00
Total dist. 167,916 47.44 55.37 0 618.00 160,581 49.60 55.67 0 618.00

Notes: The table shows the summary statistics by mode on the person-day level. The “uncor-
rected” data correspond to the data as imputed by the app, without considering any corrections
made by the users. The number of observations differs somewhat due to cleaning steps that remove
implausible data based on average speed; see Section 3.1 in the main text.
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Table B.7: ATE on imputed travel distance (no corrections)

(a) Overall margin

Total Car PT Bicycle Walking
Pricing 0.980  0.954*%*  1.046 1.101 1.040*
(0.014)  (0.016) (0.041) (0.081) (0.019)
Information  1.003 0.972" 1.112**  1.044 1.009
(0.014)  (0.016) (0.044) (0.073)  (0.018)
Difference 0.976’ 0.982 0.940° 1.055 1.031”
(0.014)  (0.017) (0.034) (0.081) (0.018)
Adj. R? 0.270 0.297 0.413 0.469 0.266
Clusters 3,616 3,615 3,496 2,209 3,616
N 168,359 168,347 162,871 103,573 168,359
(b) Intensive margin
Total Car PT Bicycle Walking
Pricing 0.981 0.972>  1.017  0.971 1.043*
(0.014)  (0.015) (0.036) (0.049) (0.017)
Information  1.004 0.985  1.084*  1.005 1.012
(0.014)  (0.015) (0.039) (0.046) (0.017)
Difference 0.977 0.987  0.938  0.966 1.030°
(0.013)  (0.015) (0.032) (0.053) (0.017)
Adj. R? 0.277 0.296 0.483  0.642 0.260
Clusters 3,616 3,614 3,337 1,585 3,615
N 160,947 131,047 56,423 13,405 138,559
(c) Extensive margin
Total Car PT Bicycle Walking
Pricing 0.998  0.977%% 1.038*  1.098* 1.004
(0.003)  (0.007) (0.019) (0.050)  (0.006)
Information  0.996  0.985*  1.025 0.999 1.000
(0.003)  (0.007) (0.018) (0.044)  (0.006)
Difference 1.002 0.992 1.012 1.099* 1.003
(0.003)  (0.007) (0.018) (0.052)  (0.006)
Adj. R? 0.002  0.029 0142 0201  0.017
Clusters 3,616 3,615 3,496 2,209 3,616
N 168,359 168,347 162,871 103,573 168,359

Notes: **: p < 0.01, *: p < 0.05, : p < 0.1. These are the same regressions as in table B.5, but
using the uncorrected data. For additional notes, see table B.5.
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Table B.8&: ATE on travel distance: Linear model

(a) Overall margin

Total Car PT Bicycle Walking
Pricing -1049.738 -1636.833**  470.129 56.428  60.538*
(694.707)  (598.924) (407.164)  (52.880)  (30.523)
Information 137.460 -1013.117"  1111.247**  29.162 10.167
(668.787)  (576.704) (382.001)  (44.962) (30.514)
Distance 45,534 34,497 8,884 515 1,638
Proportional effect
Pricing -0.023 -0.047%* 0.053 0.109 0.037*
Information 0.003 -0.029’ 0.125%* 0.057 0.006
N 168,359 168,359 168,359 168,359 168,359

(b) Intensive margin

Total Car PT Bicycle  Walking
Pricing -1032.768 -1313.359  413.993 -284.984  79.037*
(709.901) (699.821) (1092.082) (428.201) (34.588)
Information 158.202 -717.238  2451.413%* 35.927 21.256
(685.038)  (681.564) (1053.479) (337.615) (34.253)
Distance 47,443 43,865 27,317 6,752 1,998
Proportional effect
Pricing -0.022 -0.030° 0.015 -0.042 0.040*
Information 0.003 -0.016 0.090* 0.005 0.011
N 160,947 131,047 56,423 13,405 138,559

Notes: **: p < 0.01, *: p < 0.05, : p < 0.1. The dependent variable contains the distance
traveled aggregated to the person-day level either including zeroes (panel a) or restricted to positive
observations (panel b). Standard errors (in parentheses) are clustered at the participant level. To
derive the proportional effect as in Table B.5, we divided the absolute effects (in meters/day) by
the average distance of the control group during the treatment phase and add 1. All regressions
include individual, calendar day and day of study FE plus weather controls.
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Table B.9: ATE on departure time for car trips

Any time of day Only morning Only evening

Pricing 1.185 -4.449%* 1.655

(2.560) (1.967) (2.186)
Information -2.825 -2.152 -0.061

(2.514) (2.009) (2.215)
Difference 4.010 -2.297 1.716

(2.546) (2.103) (2.226)
Adj. R? 0.054 0.210 0.119
Clusters 2,960 2,953 2,958
N 279,752 100,562 179,183

Notes: **: p < 0.01, *: p < 0.05, : p < 0.1. Standard errors (in parentheses) clustered at
participant level. The regressions include observations from participants that travelled at least once
by car in the morning peak (departure between 6:30 and 8:30) and the evening peak (departure
between 16:30 and 18:30) during the observation period. In column 1, all trips were combined,
whereas columns 2 and 3 focus on departure before or after noon, respectively. All regressions
include day of calendar, day of study and person fixed effects.
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Table B.10: ATE on mode distance share and congestion per km

(a) Mode Distance Share

Car Public transport Bicycle Walking

Pricing 0.971** 1.0407 1.171* 1.057*
(0.008) (0.023) (0.077) (0.028)

Information 0.985* 1.041° 1.068 1.011
(0.007) (0.022) (0.066) (0.026)

Difference 0.985 1.000 1.096 1.046°
(0.008) (0.021) (0.074) (0.027)

Adj. R? 0.054 0.203 0.304 0.124
Clusters 3,615 3,496 2,209 3,616
N 160,935 155,892 99,637 160,947

(b) Congestion and crowding per km

Congestion (car) Crowding (PT)
Pricing 0.936%* 0.965
(0.020) (0.039)
Information 0.964’ 0.939
(0.021) (0.039)
Difference 0.971 1.027
(0.020) (0.041)
Adj. R? 0.028 0.038
Clusters 3,614 2,483
N 131,047 48,700

Notes: **: p < 0.01, *: p < 0.05, 2 p < 0.1. Standard errors in parentheses and clustered at
participant level. In panel (a), the dependent variable is the share of each mode per person and
day (between 0 and 1); in panel (b), the dependent variable are the external congestion costs per
km of either car or PT travel. Both models are estimated by PPML and include Person, day of
calendar and day of study FE and a set of weather controls.
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Table B.11: Mode choice model results

MNL MNL MXL MXL
Cost
Total cost (mean) -0.192FFF  _0.195%**  _(0.386***  -0.368***
(0.022)  (0.022)  (0.066)  (0.062)
Total cost (sd) -0.316%FF  -0.325%**

(0.040) (0.059)
Value of travel time (CHF/h)

Car (mean) 37.125%F%  36.169%FF  14.415%FF  13.992%F
(4.109) (3.875) (0.075) (0.338)
Car (sd) 1AGTFFF 1 478%%
(0.023) (0.108)
PT (mean) 52.510%F%  50.990%FF  24.212FFF 24 307
(6.835) (6.450) (0.100) (0.292)
PT (sd) 1.283%%%  1.294%%x
(0.043) (0.159)
Bike (mean) 9L.977%%%  90.815%%*  51.034%F* 45 928%**
(12.284)  (11.838)  (0.116) (0.150)
Bike (sd) 1.530%%%  1.550%%*
(0.099) (0.072)
Walk (mean) 52.270%%%  51.246%F% 18,190  18.092%**
(6.674) (6.360) (0.077) (0.140)
Walk (sd) 1.225%%%  1.250%%

(0.044) (0.092)
Distance (km)

Car 2.072FFF L2.03200% ] 43]RRE ] 4240
(0.142) (0.133) (0.040) (0.109)
PT SLT8ERE 1 73T 0.986% KK 0.974%H
(0.200) (0.188) (0.069) (0.150)
Bike 3,802 _3750FFF 1 ABGERRE 1 428%%
(0.492) (0.471) (0.120) (0.227)
Walk 4653 4 5EQRRR ] 49ERF 1 430%¢

(0.630)  (0.601)  (0.196)  (0.312)
Peak (share of travel time)

Car 0.334 0.346 0.078 0.067
(0.321) (0.317) (0.138) (0.175)
PT SL780FE 1 725FRE  _0.538%FF 0,518
(0.384) (0.379) (0.160) (0.709)
Bike 1.155* 1166 0.452%%  0.426%
(0.461) (0.435) (0.175) (0.202)
Walk 1.42200F  141I5%FF  0.524%%F  (.518%*

(0.367)  (0.360)  (0.148)  (0.184)
Departure urbanity (base: car and urban)

Intermediate PT 3.289%** 3.162%** 1.182%** 1.072%*
(0.637) (0.603) (0.261) (0.359)
Intermediate bike 1.232 1.024 0.315 0.056
(0.765) (0.680) (0.268) (0.277)
Intermediate walk 1.486%** 1.327%** 0.377** 0.322**
(0.377) (0.362) (0.131) (0.117)
Rural PT 5.947%** 5.494%** 2.855%** 2.744°
(1.397) (1.318) (0.591) (1.644)
Rural bike 4.074** 3.479%* 1.202* 0.997
(1.405) (1.313) (0.580) (0.641)
Rural walk -1.404* -1.631** -0.544* -0.538

(0.631) (0.602) (0.231) (0.477)

Table continues on the next page
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MNL MNL MXL MXL

Weather (base: car)

Cold PT -0.003 -0.031 -0.017 -0.012
(0.042) (0.042) (0.019) (0.088)
Cold bike 0.072 0.112’ -0.007 -0.009
(0.077) (0.065) (0.027) (0.043)
Cold walk 0.154%F%  0.136%%%  0.038%%*  (.037%*
(0.033) (0.031) (0.011) (0.013)
Rain PT 0.018 0.019 0.010 0.007
(0.017) (0.017) (0.009) (0.026)
Rain bike 0.149%%%  0.157F%%  0.062FFF  0.064%**
(0.035) (0.033) (0.011) (0.012)
Rain walk 0.050%%  0.051%%%  0.022FFF (022

(0.015) (0.015) (0.005) (0.006)
Alternative specific constants (base: car)

ASC PT -0.048*** .9 407*** 5. 750*F*  _6.061**
(1.391) (1.525) (0.675) (2.074)
ASC bike 1.995’ 4.520%* -0.281 -0.642
(1.036) (1.699) (0.353) (1.789)
ASC walk -6.163***  -5.550***  _2.080***  _2.358%**
(0.957) (1.026) (0.242) (0.650)
Demographics No Yes No Yes
N trips 103,098 103,098 103,098 103,098
N individuals 1,161 1,161 1,161 1,161
Inter-indiv. draws (MLHS) 1,250 1,250
Log-likelihood -39,253.17 -38,658.53 -28,275.54 -28,083.42
Rho? 0.61 0.62 0.72 0.72
AlIC 78,562.34  77,463.05  56,617.08  56,322.84
BIC 78,829.55  78,159.72  56,932.02  57,067.23

Notes: ***:. p < 0.001, **: p < 0.01, *: p < 0.05, ”: p < 0.1. All models estimated
in willingness-to-pay space. Negative parameter estimates (except Total cost) are
associated with increases in utility, while positive parameter estimates are associ-
ated with decreases in utility. Demographics include: income and dummies for age,
gender, language, education, household size, motorized vehicle and public transport
access, and values (altruistic, biospheric, egoistic, hedonic). See Section A.3 for more
details on the modelling approach.

Table B.12: Personal values by treatment group

Altruistic Biospheric Egoistic Hedonic

Pricing -0.016 -0.059* 0.009 -0.016
(0.026) (0.028) (0.027) (0.029)
Information 0.017 0.027 0.025 -0.003
(0.026) (0.028) (0.027) (0.029)
N 3,375 3,375 3,375 3,375

Notes: **: p < 0.01, *: p < 0.05, ’: p < 0.1. For the definition of the variables, see main text.
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Table B.13: Observability

Observed,,s: External costs

Observed,,.. 0.629**
(0.025)
External costsp,. 0.031
(0.034)
Pricing 0.066 -0.070
(0.228) (0.110)
Information -0.042 -0.034
(0.226) (0.101)
Male -0.158
(0.192)
Age>b4 -0.210
(0.244)
Age<30 -0.263
(0.243)
French sp. -0.265
(0.215)
Suburban -0.017
(0.213)
Rural 0.305
(0.353)
Car owner -0.218
(0.315)
Active x Pricing -0.202’
(0.116)
Active x Info -0.083
(0.105)
Adj. R? 0.147 0.234
Clusters 3,616
N 3,690 168,359

Notes:  **: p < 0.01, *: p < 0.05. In the first two columns, we regress the number of valid
observations during the treatment period (ranging from 0 to 27). Observed,,. is the number of
observations during the pre-treatment period. Active is a dummy denoting the 50 % of participants
that recorded more than 24 observations during the pre-treatment period.
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C The MOBIS study: Study design details

The study protocol is presented in detail in Molloy et al. (2023), including the invitation
protocol and survey methods. Here in the appendix we include additional information on

the calculation of the necessary sample size, compensation and participant support.

C.1 Determining the sample size

In order to determine the appropriate sample size of the experiment, we carried out a series of
power calculations by means of simulation. In panel data, autocorrelation is a design feature,
which we also observe in our data (i.e., a particular respondent makes similar travel choices
over time). The presence of autocorrelation implies that the standard formulae for power
calculations, e.g. as in Duflo et al. (2007), are biased (Burlig et al., 2020). Computing the
power of an experiment based on simulations addresses this problem as it uses the empirical
correlation structure in the data.

We based our power calculations on data from two earlier transport studies carried out
by ETH-IVT.3" We imposed a significance level of p=0.05, a power of 0.8 and an effect size
of 5%. Given these settings, the power calculations indicated that we needed a sample size
of around 1,100 for each group (treatment and control). Given that we have two treatment
groups, this led to a target sample size of 3,300 for our study. To ensure that this sample
size was attained even after removing respondents who did not participate on a sufficient
number of days or who had to be excluded for other reasons, we set a recruitment goal of

3,600 people. Once we attained this number, recruitment was stopped.

C.2 Compensation

All participants who completed the final survey received CHF 100 for their full participation,
except those who did not generate tracking data on more than 12 days during the treatment
phase, who instead received CHF 50 for partial participation (this partial compensation
was not discussed ex-ante). Participants who did not generate enough tracking data in the
observation phase were removed from the study, and thus did not receive any compensation.
In addition, participants in the pricing group received any positive amount remaining on
their virtual mobility budget.

Importantly, all participants were informed about the incentive of CHF 100 upon com-

pletion of the study. The possibility of a partial incentive was not mentioned and introduced

3TThe 6-weeks MOBIDrive (Axhausen et al., 2002) and the 6 week-Thurgau survey (Axhausen et al.,
2007).
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at the end mainly as a gesture of appreciation towards people that delivered some tracks
(but not enough to be included in the study). Likewise, the possibility of earning money
during the pricing treatment was only communicated to the pricing group, and only on day
29 of participation.

A form was provided at the end of the final survey in which the participants could enter
their bank account details, and all payments were processed by the ETH finance department.
Table C.1 shows a summary of the allocated virtual budgets, remaining balances paid out
to the participants as well as the incurred costs. Only the 1,147 participants who completed
the pricing treatment and received compensation are included. Remaining balances (i.e.,
exhausted budget) are capped to zero, as this is the amount that was actually paid out.

This was the case for 202 participants.

Table C.1: Virtual budgets, remaining balances and incurred costs (CHF).

Virtual budget Remaining balance Incurred costs

Mean 173.82 45.45 132.89
Std. dev. 101.63 48.53 81.66
Min 50.00 0.00 0.00
25% 100.00 7.00 75.72
50% 150.00 31.44 115.37
75% 230.00 68.53 172.72
Max 745.00 432.68 616.08

C.3 Study monitoring and user support

Two dashboards were developed for the monitoring of both the participants and the partic-
ipation rate (see Figures C.1 and C.2 respectively). The first dashboard was essential for
troubleshooting with participants, as it gave a visual overview of their participation by week,
including when they track abroad. The second gave an overall view of the response rate.
This helped identify that a second invitation wave was required to meet the target number
of participants. Figure C.3 shows the number of participants starting with the tracking, by
calendar week.

A project website was created to support people invited to the MOBIS study. The
website contained links to the introduction survey and the tracking study registration, a
project description, information for study participants (including a general information sheet,
instructions for the tracking app, data privacy policy and consent) as well an FAQ section.

The website was available in English, German and French.
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Figure C.1: Overview page of participants
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Notes: This screenshot was taken after the conclusion of the study, and the participants
counts do not reflect the real status during the study.

Figure C.2: Screenshot of the MOBIS response rates dashboard
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Figure C.3: Starting participants, by week
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Notes: This figure shows the number of people that started tracking, by calendar week of
2019.

Additionally, a help-desk service was set up to allow participants to ask questions and
communicate any issues they might have had during the study. The communication with the
help-desk was possible via phone call or email. The phone help-desk was open 10 hours per
week, from 17:00 to 19:00 from Monday to Friday and from 10:00 to 12:00 on Saturday. The
online help-desk received 5,218 emails during the study, of which nearly 50% came during

the on-boarding process.
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