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Abstract

Purpose – To achieve sustainable development in shipping, accurately identifying the impact of artificial
intelligence on shipping carbon emissions and predicting these emissions is of utmost importance.
Design/methodology/approach – A multivariable discrete grey prediction model (WFTDGM) based on
weakening buffering operator is established. Furthermore, the optimal nonlinear parameters are determined by
Grey Wolf optimization algorithm to improve the prediction performance, enhancing the model’s predictive
performance. Subsequently, global data on artificial intelligence and shipping carbon emissions are employed
to validate the effectiveness of our new model and chosen algorithm.
Findings – To demonstrate the applicability and robustness of the new model in predicting marine shipping
carbon emissions, the new model is used to forecast global marine shipping carbon emissions. Additionally, a
comparative analysis is conducted with five other models. The empirical findings indicate that the WFTDGM
(1, N) model outperforms other comparative models in overall efficacy, with MAPE for both the training and
test sets being less than 4%, specifically at 0.299% and 3.489% respectively. Furthermore, the out-of-sample
forecasting results suggest an upward trajectory in global shipping carbon emissions over the subsequent four
years. Currently, the application of artificial intelligence in mitigating shipping-related carbon emissions has
not achieved the desired inhibitory impact.
Practical implications – This research not only deepens understanding of the mechanisms through which
artificial intelligence influences shipping carbon emissions but also provides a scientific basis for developing
effective emission reduction strategies in the shipping industry, thereby contributing significantly to green
shipping and global carbon reduction efforts.
Originality/value – The multi-variable discrete grey prediction model developed in this paper effectively
mitigates abnormal fluctuations in time series, serving as a valuable reference for promoting global green and
low-carbon transitions and sustainable economic development. Furthermore, based on the findings of this
paper, a grey prediction model with even higher predictive performance can be constructed by integrating it
with other algorithms.
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1. Introduction
1.1 Background and motivation
Carbon emission management has emerged as a critical aspect in the development of an
ecological civilization and in participating in international climate regulation. The
transportation sector is a significant contributor to carbon emissions, with marine shipping
being a substantial component. Over the past half-century, seaborne trade has expanded at an
approximate annual rate of 3%, representing roughly 80–85%of the global total trade volume
(Chen and Lv, 2015). Despite its vital role in enabling global commerce, marine shipping has
attracted considerable public criticism (Zhu et al., 2023). On March 14, 2020, the European
Environment Agency (EEA) issued a report stating that the maritime sector is “currently one
of themost unregulated sources of air pollution.”This is primarily due to its heavy reliance on
fossil fuel combustion, which results in the release of copious amounts of carbon dioxide. Due
to the continued growth of global shipping trade, emissions from international shipping are
likely to increase by 40% from 2008 levels by 2050 (Liu et al., 2019a). The maritime industry
must also embrace the responsibility of emission reduction and has made commendable
strides under the guidance of the International Maritime Organization.

Studies have demonstrated that artificial intelligence technology exerts a complex dual
impact on carbon emissions. On one hand, the development and application of AI technology
could escalate potential energy demand (Wang et al., 2023), leading to substantial carbon
emissions. The development and operation of AI necessitate considerable computing
resources and power support, which predominantly originate from fossil-fuel power stations,
thereby contributing to overall carbon emissions. Conversely, the integration of AI
technology with low-carbon technology can alter production and consumption patterns,
consequently mitigating carbon emissions (Chen et al., 2022; Liu et al., 2019b). The
deployment of AI enables the planning of more rational shipping routes and enhances
shipping efficiency, ultimately diminishing shipping-related carbon emissions. Moreover,
industrial intelligence facilitates the precise detection and prediction of shipping carbon
emissions. The establishment of a carbon emission trading platform grounded in digital
information technology can curtail total carbon emissions, fostering reductions in carbon
footprints.

Based on this, under the influence of artificial intelligence technology, the development
trend of marine shipping carbon emission belts needs to be verified. However, traditional time
series forecastingmethods are often inadequate for achieving accurate predictions of shipping
carbon emissions due to constraints related to large sample sizes and stringent distribution
requirements. The advantage of grey prediction models in processing small samples and
managing poor information systems aligns with the characteristics of shipping carbon
emission data. Given this compatibility, it is necessary to propose a more extensive, practical,
and stable grey prediction model to comprehensively examine the impact of artificial
intelligence development on carbon emissions frommarine shipping. This would enable more
accurate predictions of global shipping carbon emissions and provide a scientific basis for
formulating effective emission reduction policies. This not only has important implications for
reducing carbon emissions from marine shipping and creating a low-carbon world, but also
offers research support for policies aimed at promoting intelligent manufacturing.

1.2 Literature review
1.2.1 Research on carbon emission of marine shipping.As the largest ecosystem on Earth, the
ocean serves as a reservoir for carbon dioxide and plays a pivotal role in the global carbon
cycle. Nevertheless, current measures and policies aimed at mitigating climate change
predominantly focus on terrestrial environments, overlooking the significant potential of
ocean-based solutions in curtailing CO2 emissions (Cooley et al., 2019). Evidence suggests
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that marine ecosystems possess the capacity to sequester carbon (Serrano et al., 2019; Wang
et al., 2019). The decarbonization of marine shipping essentially entails the adoption of clean
energy sources. With the advancement of low-carbon marine shipping and the anticipated
increase in global marine trade, clean energy is poised to make an increasingly substantial
contribution to diminishing carbon emissions (Feng et al., 2021).

In September 2020, the European Parliament resolved to incorporate marine shipping
emissions into the EU ETS (Cariou et al., 2021). Recent studies have addressed CO2
emissions from shipping, focusing on the implications of these emissions (Wang et al.,
2015), their mitigation efficacy (Gu et al., 2019), and the repercussions for other sectors
(Cariou et al., 2021). Many scholars have conducted in-depth research on strategies and
models for reducing carbon emissions from ships. Psaraftis et al. (2021) evaluated various
smoke reduction models for ships to diminish greenhouse gas emissions. Lagouvardou
et al. (2022) examined a fuel tax’s potential for prompting CO2 emission reductions and
devised a model to optimize ship load and speed. The ramifications of integrating marine
affairs into the EU ETS were discussed by Lagouvardou and Psaraftis (2022), considering
CO2 emissions and the costs incurred by shipping companies both within and beyond the
European Economic Area (EEA). From an economic standpoint, Wang et al. (2015)
appraised the ETS’s impact on international shipping. Gritsenko (2017) reviewed literature
on the shipping industry’s response to global ETS, regional ETS, and local policies,
advocating a multicentric regulatory approach. Wu et al. (2022) scrutinized research on
ETS in transportation and analyzed the drivers, challenges, and outcomes ofMarket-Based
Measures (MBMs) within this framework. Chen et al. (2014) determined that governmental
measures, encompassing environmental policies and financial incentives, could
substantially curtail carbon emissions from shipping. In the realm of marine shipping
carbon emission measurement, various scholars have developed distinct Emission
Assessment Models, such as the Ship Emission Inventory Model (SEIM) to gauge ocean-
going vessel emissions’ impact on East Asia (Liu et al., 2016). This model was further
refined by Chinese researchers (Wang et al., 2021). Li et al. (2023a) proposed a
Geographically-based Emission Estimation Model (GEEM) to estimate carbon emissions
across the global high seas. In terms of the prediction of marine shipping carbon emissions,
different scholars have used different models for prediction analysis, such as activity
weighting method (Mou et al., 2024), improved integrated scheduling model for multiple
heterogeneous coded genetic algorithms (Wang et al., 2020), and the construction of a
carbon reduction assessment model from multiple dimensions (Feng et al., 2021). These
models are adapted to different scenarios and requirements.

1.2.2 Research on relationship between carbon emission of marine shipping and artificial
intelligence. With the ongoing technological advancements, escalating market investments,
and augmented government support, the role of artificial intelligence as a pivotal factor of
production has been unequivocally established. As a vanguard technology in the current
technological revolution, AI has significantly enhanced the intelligence and applicability of
industrial robots. It has emerged as an essential tool for global economies to alleviate labor
shortages in production and to augment productivity. Data from the International Federation
of Robotics (IFR) indicates that the global annual installation of industrial robots reached
514,700 units in 2021, marking a 31% increase from the previous year. Experts forecast that
there is a 90% likelihood that AI will possess greater human work capabilities within this
century, with the potential for AI technology to be integrated into over 70% of enterprises by
2030 (Bughin et al., 2018).

Marine shipping constitutes a significant contributor to carbon emissions. However, the
advent of digital technology within the industrial sector presents a potential solution to
mitigate these high emissions from marine shipping. The amalgamation of cutting-edge
technologies such as Industry 4.0 and artificial intelligence with economic and social
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activities has emerged as a crucial catalyst for sustainable societal development (Vinuesa
et al., 2020). In China, industrial robots, being a pivotal component of Industry 4.0 and
artificial intelligence, have experienced rapid advancements. The extensive integration of
new energy sources, novel materials, and industrial robotics fosters industrial technological
evolution, augmenting the environmental advantages conferred by industrial robots and
facilitating the transition towards a low-carbon economy. The substitution and augmentation
of human labor with intelligent processes is likely to influence the distribution of factors and
marginal output between capital and labor (Acemoglu and Restrepo, 2019). Existing research
has predominantly concentrated on the repercussions of industrial robots on the labormarket
(Graetz and Michaels, 2018; Acemoglu and Restrepo, 2020). Moreover, Kromann et al. (2020)
examined the implications of industrial robots on economic growth and the disparity in
residents’ income.

As general-purpose technologies advance, a limited body of literature has begun to
examine the influence of Information and Communication Technologies (ICT) on carbon
emissions and energy intensity (Zhou et al., 2019; Lange et al., 2020; Sun and Kim, 2021).
However, there remains a paucity of research exploring the impact of artificial intelligence on
carbon emissions within the shipping industry. Empirical studies by Li et al., 2022 andWang
et al. (2022), utilizing cross-national data, have identified that the carbon emission reduction
attributable to industrial robots is subject to industry and country heterogeneity. Zhao et al.
(2024) employed the generalized moment estimation model and discovered that artificial
intelligence can significantly mitigate disparities in carbon emissions. Furthermore, under
the regulatory influence of green innovation, the carbon reduction efficacy of artificial
intelligence has been augmented (Chen et al., 2022). There is a lack of research on how
artificial intelligence affects marine shipping carbon emissions, and little attention is paid to
the prediction of carbon emissions from global shipping.

1.2.3 Research on multivariate grey prediction models. The grey prediction model is
characterized by its simplicity in operation, ease of verification, and minimal data
requirements, making it extensively applicable across various forecasting domains.
Notably, it has been employed in areas such as wind power generation (Li et al., 2023c),
fishery carbon sinks (Li et al., 2024a), and marine economic resilience (Li et al., 2023a, b, c).
Building upon the foundational grey model, numerous scholars have contributed
enhancements addressing diverse facets.

In the realm of data preprocessing, various scholars have employed optimized buffer
operators to forecast sales volumes for new energy vehicles (He et al., 2020), mobile
communication service income (Qu, 2014), and renewable energy sources (Wang et al., 2023).
Concerning background value optimization, Wei et al. (2018) incorporated an adjusted
background value coefficient into the grey polynomial model and developed an algorithmic
framework for polynomial order selection, background coefficient search, and parameter
estimation. Ye et al. (2018) enhanced the traditional grey model by applying the central point
triangle whitening weight function to the state division, objectively reflecting the degree of
preference under different states, and calculated the possibility of study value under each
state, achieving a superior fitting effect. Li et al. (2020) introduced the TPBVGM(1,1) model,
which increases the number of parameters in the background value, proving the
unreasonableness of the two-parameter background value assignment, thus enhancing
the smoothness of the background value andmitigating the influence of extreme values in the
original sequence. Regarding initial value optimization, Wang et al. (2018) devised a matrix-
based algorithm to delineate the relationship between initial conditions and development
coefficients and to estimate the matrix representation of these two parameters using the least
square method, based on the nonlinear algebraic relation between the two parameters,
thereby obtaining the parameter relation and error properties between two sequences with
multiple relations.
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In terms of model application, Ding et al. (2018) proposed a new initial condition with
variable weighting coefficient according to the principle of “new information priority”,
combined with new initial conditions and rolling mechanism, and used this model to forecast
China’s total electricity consumption and industrial electricity consumption from 2012 to
2014. Wu et al. (2019) proposed a new nonlinear grey Bernoulli model with fractional order
accumulation using fractional order cumulative generation matrix and Bernoulli equation to
predict China’s short-term renewable energy consumption during the 13th Five-Year Plan
period (2016–2020). Li et al. (2023b) proposed a novel self-adaptive fractional order grey
generalized Verhulst model (SAFGGVM) which was used in energy carbon intensity
forecasting for five countries (China, USA, India, Russia and Japan).Wu et al. (2018) used grey
convex correlation analysis to describe the relationship between power consumption and
related factors. A multivariable grey forecasting model considering the total population is
proposed for the forecast of electricity consumption in Shandong Province.

1.3 Contributions and organization
In this study, to address the challenge posed by the original data series exhibiting significant
fluctuations and its associated influencing factor sequences, we employ a weakening buffer
operator in the preprocessing stage for the related sequences. Subsequently, taking into
account the fractional order accumulation process and time trend term, we develop a
multivariable discrete grey prediction model that incorporates the weakening buffering
operator. The potential marginal contribution is as follows:

(1) By incorporating a fractional order accumulation process and a time trend term, a
multivariate discrete grey prediction model (WFTDGM) with a weakening buffering
operator is formulated. The optimal fractional order effectively mitigates fluctuation
range issues within the model segment to a certain extent.

(2) The Grey Wolf algorithm is utilized to optimize the nonlinear parameters of the
WFTDGM (1,N) model, thereby enhancing the model’s predictive accuracy.
Consequently, optimizing the nonlinear parameter not only improves the model’s
predictive performance but also broadens its applicability.

(3) The WFTDGM model is employed to forecast global marine shipping carbon
emissions from 2023 to 2026, followed by an analysis of the forecast results.
Subsequently, relevant policy recommendations are derived based on the analytical
outcomes. The conclusion offers insights into how artificial intelligence can facilitate
the transformation of shipping and reduce its carbon emissions.

The subsequent structure of this paper is organized as follows: Section 2 presents the
suggested model along with the algorithm employed in this investigation. Section 3
substantiates the efficacy of theWavelet-based Forecasting Time Series Decomposition Grey
Model (WFTDGM) by utilizing artificial intelligence and marine shipping carbon emission
data, and forecasts global marine shipping carbon emissions from 2023 to 2026. Section 4
encompasses the principal conclusions and future outlooks of the research.

2. Methodology
2.1 Defects of traditional DGM(1,N) model

Definition 1. Let X
ð0Þ
i ¼ ðxð0Þi ð1Þ; xð0Þi ð2Þ; � � � ; xð0Þi ðmÞÞ, i ¼ 1; 2; � � � ;N represent the

original sequence. The first cumulative sequence is denoted as
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X
ð1Þ
i ¼ ðxð1Þi ð1Þ; xð1Þi ð2Þ; � � � ; xð1Þi ðmÞÞ, i ¼ 1; 2; � � � ;N, followed by

x
1ð Þ
i kð Þ ¼Pk

j¼1

x
0ð Þ
i jð Þ, i ¼ 1; 2; � � � ;N. Subsequently,

x
ð1Þ
1 ðkþ 1Þ þ α1x

ð1Þ
1 ðkÞ ¼

XN
i¼2

αix
ð1Þ
i ðkþ 1Þ þ αNþ1; k ¼ 1; 2; � � � ;m� 1 (1)

is referred to as the DGM(1,N) model (Ma et al., 2019), where Q ¼ ðα1; α2; � � � ; αN ; αNþ1ÞT is
the structural parameter.
The predicting formula of the DGM(1,N) model is:

bxð1Þ1 ðkþ 1Þ ¼ −α1x
ð1Þ
1 ðkÞ þ

XN
i¼2

αix
ð1Þ
i ðkþ 1Þ þ αNþ1 (2)

The parameter vectorQ ¼ ðα1; α2; � � � ; αN ; αNþ1ÞT can be estimated by ordinary least square
method (OLS):

Q ¼ �K TK
�
−1
K TY 1 (3)

whereK ¼

266666664

�x
ð1Þ
1 ð1Þ x

ð1Þ
2 ð2Þ x

ð1Þ
3 ð2Þ � � � x

ð1Þ
N ð2Þ 1

�x
ð1Þ
1 ð2Þ x

ð1Þ
2 ð3Þ x

ð1Þ
3 ð3Þ � � � x

ð1Þ
N ð3Þ 1

..

. ..
. ..

. ..
. ..

. ..
.

�x
ð1Þ
1 ðm� 1Þ x

ð1Þ
2 ðmÞ x

ð1Þ
3 ðmÞ � � � x

ð1Þ
N ðmÞ 1

37777777775
;Y ¼

26666666664

x
ð1Þ
1 ð2Þ

x
ð1Þ
1 ð3Þ

..

.

x
ð1Þ
1 ðmÞ

377777777775
:

In contrast to the conventional multivariable grey prediction model, the discrete
multivariable grey model (DGM(1,N)) offers a unified framework that integrates both
difference and differential forms of the model, thereby mitigating potential errors during
operation and transformation. Nonetheless, DGM(1,N) model still holds considerable
potential for further enhancement and optimization.

(1) The conventional DGM(1,N) model demonstrates a commendable simulation effect
when applied to original data series characterized by multiple influencing factors.
However, its efficacy diminishes when confronted with data series exhibiting
pronounced fluctuations and oscillations. Particularly concerning are series with
significant volatility, where inadequacies in data preprocessing culminate in
suboptimal predictive outcomes.

(2) The model overlooks the complete incorporation of lag and time-varying effects of
pertinent influencing factors on the behavior sequence of the original data. It posits a
simultaneous relationship between the original data behavior sequence and the
impact factor sequence, neglecting any lagged associations.

(3) While the model partially captures the evolution and patterns of the original data
series and its influencing factors, it struggles to prioritize new information effectively
and leverage the full potential of fresh data. Therefore, there is a need to explore
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transitioning the accumulation process from integer to fractional values, thereby
enhancing the weighting assigned to novel information.

2.2 Establishment of WFTDGM(1,N) model
2.2.1 The proposed WFTDGM(1,N) model. To address the challenges posed by original data
series exhibiting pronounced fluctuation characteristics and their associated influencing
factor series, preprocessing involves applying a weakening buffering operator to the
correlation sequence. Subsequently, a multivariable discrete grey prediction model with an
incorporated weakening buffering operator is developed, taking into account the fractional-
order accumulation process and the time trend term.

Definition 2. To enhance the handling of data fluctuations within the original data series,
we employ the classical weakening buffer operator B1 for data
preprocessing:

B1 ¼

1

m
0 0 0 0

1

m

1

m� 1
0 � � � 0

1

m

1

m� 1

1

m� 2
� � � ..

.

..

. ..
. ..

. � � � 0

1

m

1

m� 1

1

m� 2
� � � 1

3777777777777777777775
m3m

2666666666666666666664

(4)

The buffered sequence is X
ðwÞ
i ¼ ðxðwÞi ð1Þ; xðwÞi ð2Þ; � � � ; xðwÞi ðmÞÞ, where i ¼ 1; 2; � � � ;N.

To enhance the efficacy of identifying dynamic changes in the data series, we employ the
r-order cumulative generating operator, denoted as r-AGO, to accumulate the buffered

sequence X
ðwÞ
i , i ¼ 1; 2; � � � ;N. This approach enables the derivation of solutions with

heightened model robustness.

Definition 3. The r-AGO accumulation process of sequence X
ðwÞ
i is:

X
ðrÞ
i ¼ ðxðrÞi ð1Þ; xðrÞi ð2Þ; � � � ; xðrÞi ðmÞÞ, where

x
ðrÞ
i ðsÞ ¼

Xs
j¼1

Γðsþ r � jÞ
ΓðrÞΓðs� jþ 1Þx

ðwÞ
i ðjÞ; s ¼ 1; 2; � � � ;m (5)

and Γð1Þ ¼ 1, x
ðrÞ
i ð1Þ ¼ x

ðwÞ
i ð1Þ.

In contrast, the r-IAGO process gives the inverse sequence X
ðrÞ
i ¼ ðxðrÞi ð1Þ; x

ðrÞ
i ð2Þ;

� � � ; xðrÞi ðmÞÞ, where
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x
ð−rÞ
i ðsÞ ¼

Xs−1
j¼0

ð−1Þj Γðr þ 1Þ
Γðjþ 1ÞΓðr � jþ 1Þx

ð0Þ
i ðs� jÞ s ¼ 1; 2; � � � ;m (6)

Definition 4. Let the original sequence X
ð0Þ
i ¼ ðxð0Þi ð1Þ; xð0Þi ð2Þ; � � � ; xð0Þi ðmÞÞ, i ¼ 1; 2;

� � � ;N. X ðrÞ
1 is its r-AGO, called

x
ðrÞ
1 ðkþ 1Þ þ β1x

ðrÞ
1 ðkÞ ¼

XN
i¼2

βix
ðrÞ
i ðkþ 1Þ þ βNþ1ðkþ 1Þ þ βNþ2 (7)

asWeakening Fractional Time-varying Discrete Grey Model, abbreviated asWFTDGM(1,N)
model, where k ¼ 1; 2; � � � ;m− 1, r is the fractional order to be optimized, βi,
i ¼ 1; 2; � � � ;N ;N þ 1;N þ 2 indicates the parameter to be estimated.

Theorem 1. The structural parameter vector bβ ¼ ðbβ1;bβ2; � � � ;bβN ;bβNþ1;bβNþ2Þ
T
in the

model can be estimated by OLS, that is,bβ ¼ �BTB
�
−1
BTY (8)

whereB ¼

266666664

�x
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2 ð2Þ x
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N ð2Þ 2 1
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2 ð3Þ x
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3 ð3Þ � � � x

ðrÞ
N ð3Þ 3 1

..

. ..
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. ..
. ..

. ..
. ..

.

�x
ðrÞ
1 ðm� 1Þ x

ðrÞ
2 ðmÞ x

ðrÞ
3 ðmÞ � � � x

ðrÞ
N ðmÞ m 1

37777777775
;Y ¼

26666666664

x
ðrÞ
1 ð2Þ

x
ðrÞ
1 ð3Þ

..

.

x
ðrÞ
1 ðmÞ

377777777775
:

Proof
According to Equation (7), it can be obtained:

x
ðrÞ
1 ðkþ 1Þ ¼ −β1x

ðrÞ
1 ðkÞ þ

XN
i¼2

βix
ðrÞ
i ðkþ 1Þ þ βNþ1ðkþ 1Þ þ βNþ2 (9)

Let k ¼ 2; 3; � � � ;m in the above equation respectively, the following equations can be
obtained:8>>>>>>><>>>>>>>:

x
ðrÞ
1 ð2Þ ¼ −β1x

ðrÞ
1 ð1Þ þ β2x

ðrÞ
2 ð2Þ þ � � � þ βNx

ðrÞ
N ð2Þ þ βNþ1 3 2þ βNþ2 3 1

x
ðrÞ
1 ð3Þ ¼ −β1x

ðrÞ
1 ð2Þ þ β2x

ðrÞ
2 ð3Þ þ � � � þ βNx

ðrÞ
N ð3Þ þ βNþ1 3 3þ βNþ2 3 1

..

.

x
ðrÞ
1 ðmÞ ¼ −β1x

ðrÞ
1 ðm� 1Þ þ β2x

ðrÞ
2 ðmÞ þ � � � þ βNx

ðrÞ
N ðmÞ þ βNþ1 3mþ βNþ2 3 1

(10)
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Then convert the above equations into matrix form, we can get:

Y ¼

266666664

x
ðrÞ
1 ð2Þ
x
ðrÞ
1 ð3Þ
..
.

x
ðrÞ
1 ðmÞ

37777777775
(11)

B ¼

266666664

�x
ðrÞ
1 ð1Þ x

ðrÞ
2 ð2Þ x

ðrÞ
3 ð2Þ � � � x

ðrÞ
N ð2Þ 2 1

�x
ðrÞ
1 ð2Þ x

ðrÞ
2 ð3Þ x

ðrÞ
3 ð3Þ � � � x

ðrÞ
N ð3Þ 3 1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

�x
ðrÞ
1 ðm� 1Þ x

ðrÞ
2 ðmÞ x

ðrÞ
3 ðmÞ � � � x

ðrÞ
N ðmÞ m 1

37777777775
(12)

bβ ¼ �bβ1;bβ2; � � � ;bβN ;bβNþ1;bβNþ2

�T
(13)

MakeY ¼ Bβ, andminimize the sum of squares of residuals obtained by theWFTDGM(1,N)
model, i.e.

E ¼ εTε ¼ ðY � BbβÞTðY � BbβÞ (14)

Based on the above unconstrained linear programming function, combined with the extreme
value solving method, it can be obtained

vE

vbβ ¼
v
h
ðY � BbβÞTðY � BbβÞi

vbβ ¼ 2
ðY � BbβÞvhðY � BbβÞTi

vbβ
¼ −2BTðY � BbβÞ ¼ −2BTY þ 2BTBbβ ¼ 0

(15)

Theorem 2. Assuming that the structural parameter bβ ¼ ðbβ1;bβ2; � � � ;bβN ;bβNþ1;bβNþ2Þ
T

and the fractional order parameter r are given, we can obtain:

(1) The initial value is x
ðrÞ
1 ð1Þ ¼ x

ð0Þ
1 ð1Þ, k ¼ 1; 2; � � � ;m− 1, and the simulation value of the

model is as follows:

bxðrÞ1 ðkþ 1Þ ¼ −β1x
ðrÞ
1 ðkÞ þ

XN
i¼2

βix
ðrÞ
i ðkþ 1Þ þ βNþ1ðkþ 1Þ þ βNþ2 (16)

(2) The reduction value of the model is:

MAEM
7,1

50



bx 0ð Þ
i kð Þ ¼

x
0ð Þ
i 1ð Þ; k ¼ 1

Xk�1

j¼0

�1ð Þj Γ r þ 1ð Þ
Γ jþ 1ð ÞΓ r � jþ 1ð Þbx rð Þ

1 kð Þ; k ¼ 2; 3; � � � ;m

8>>><>>>: (17)

Proof

(1) Using mathematical induction to prove:
When k ¼ 1,bxðrÞ1 ð2Þ ¼ −β1x

ðrÞ
1 ð1Þ þ

XN
i¼2

βi 3
X2
j¼1

Γð1þ r � jÞ
ΓðrÞΓð1� jþ 1Þx

ðwÞ
i ðjÞ þ βNþ1 3 2þ βNþ2

¼ −β1x
ðrÞ
1 ð1Þ þ

XN
i¼2

βix
ðrÞ
i ð2Þ þ βNþ1 3 2þ βNþ2

(18)

The conclusion is valid.
Assuming that the conclusion is valid when k ¼ l, we can obtain:

bxðrÞ1 ðl þ 1Þ ¼ −β1x
ðrÞ
1 ðlÞ þ

XN
i¼2

βix
ðrÞ
i ðl þ 1Þ þ βNþ1ðl þ 1Þ þ βNþ2 (19)

Then according to Eq.(7) in Definition 4, it can be obtained:

x
ðrÞ
1 ðl þ 2Þ þ β1x

ðrÞ
1 ðl þ 1Þ ¼

XN
i¼2

βix
ðrÞ
i ðl þ 2Þ þ βNþ1ðl þ 2Þ þ βNþ2 (20)

By bringing the value bxðrÞ1 ðl þ 1Þ of k ¼ l into the above equation, we can get:

x
ðrÞ
1 ðl þ 2Þ ¼ −β1

"
� β1x

ðrÞ
1 ðlÞ þ

XN
i¼2

βix
ðrÞ
i ðl þ 1Þ þ βNþ1ðl þ 1Þ þ βNþ2

#
þ
XN
i¼2

βix
ðrÞ
i ðl þ 2Þ

þβNþ1ðl þ 2Þ þ β

..

.

¼ −β1

"
� βl−1l

 
� β1x

ðrÞ
1 ð2Þ

XN
i¼2

βix
ðrÞ
i ð2Þ þ βNþ1$2þ βNþ2

!
þ
XN
i¼2

βix
ðrÞ
i ðl þ 1Þ

þβNþ1ðl þ 1Þ þ βNþ2

�þXN
i¼2

βix
ðrÞ
i ðl þ 2Þ þ βNþ1ðl þ 2Þ þ β

¼ −β1x
ðrÞ
1 ðl þ 1Þ þ

XN
i¼2

βix
ðrÞ
i ðl þ 2Þ þ βNþ1ðl þ 2Þ þ βNþ2

(21)

Therefore, when the conclusion is also true when k ¼ l þ 1, the theorem is proved.

(2) From the inverse process of r-AGO in Definition 3:
When k > 1,bxð0Þi ðkÞ ¼Pk−1

j¼0

ð−1Þj Γðrþ1Þ
Γðjþ1ÞΓðr− jþ1ÞbxðrÞ1 ðkÞ, where bxðrÞi ðkÞ is the simulation value of the model;
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When k ¼ 1, bxð0Þi ðkÞ ¼ x
ð0Þ
i ð1Þ.

To sum up:

bx 0ð Þ
i kð Þ ¼

x
0ð Þ
i 1ð Þ; k ¼ 1

Xk�1

j¼0

�1ð Þj Γ r þ 1ð Þ
Γ jþ 1ð ÞΓ r � jþ 1ð Þbx rð Þ

1 kð Þ; k ¼ 2; 3; � � � ;m

8>>><>>>: (22)

The theorem is proved.

2.2.2 Nonlinear parameter optimization based on GWO algorithm. Moreover, within the
WFTDGM(1,N) model, the optimal fractional order effectively addresses the issue of
fluctuation range within model segments to a certain extent. Thus, optimizing this nonlinear
parameter not only enhances the predictive performance of the model but also expands its
applicability.

Through the construction of the WFTDGM(1,N) model for estimating the optimal
fractional order parameters in the nonlinear constrained optimization model (Eq.(23)), a
solution can be effectively sought across various dynamic processes. Notably, the objective
function of the constraint focuses on minimizing the Mean Absolute Percentage Error
(MAPE) between the predicted and actual values of the model. To achieve this, the GreyWolf
Optimizer (GWO) (Mirjalili et al., 2014) is employed to determine the nonlinear parameters,
thereby enhancing the predictive accuracy of the model.

min
γ
MAPE ¼ 1

m

Xm
k¼1

�������
bx 0ð Þ
i kð Þ � x

0ð Þ
i kð Þ

x
0ð Þ
i kð Þ

�������3 100%

s:t:

bβ ¼ bβ1;bβ2; � � � ;bβN ;bβNþ1;bβNþ2

� �T
¼ BTB
� �

−1
BTY

B ¼

−x
rð Þ
1 1ð Þ x

rð Þ
2 2ð Þ x

rð Þ
3 2ð Þ � � � x

rð Þ
N 2ð Þ 2 1

−x
rð Þ
1 2ð Þ x

rð Þ
2 3ð Þ x

rð Þ
3 3ð Þ � � � x

rð Þ
N 3ð Þ 3 1

..

. ..
. ..

. ..
. ..

. ..
. ..

.

−x
rð Þ
1 m� 1ð Þ x

rð Þ
2 mð Þ x

rð Þ
3 mð Þ � � � x

rð Þ
N mð Þ m 1

266666666664

377777777775

Y ¼

x
rð Þ
1 2ð Þ

x
rð Þ
1 3ð Þ

..

.

x
rð Þ
1 mð Þ

266666666664

377777777775

bx rð Þ
1 kþ 1ð Þ ¼ −β1x

rð Þ
1 kð Þ þ

XN
i¼2

βix
rð Þ
i kþ 1ð Þ þ βNþ1 kþ 1ð Þ þ βNþ2

bx 0ð Þ
i kð Þ ¼

x
0ð Þ
i 1ð Þ; k ¼ 1

Xk�1

j¼0

−1ð Þj Γ r þ 1ð Þ
Γ jþ 1ð ÞΓ r � jþ 1ð Þbx rð Þ

1 kð Þ; k ¼ 2; 3; � � � ;m

8>>><>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(23)
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2.3 Measurement of prediction error
To assess the simulation and prediction performance of each model across different
scenarios, fundamental evaluation metrics should be employed. In evaluating the predictive
capability of the WFTDGM(1,N) model with buffer operators, we utilized the Absolute
Percent Error (APE), Mean Absolute Percent Error (MAPE), and Root Mean Squared Error
(RMSE) (Zhou et al., 2021) to gauge the accuracy of model simulation and prediction. The
specific calculation equations are as follows:

APEðtÞ ¼
����bxð0ÞðtÞ � xð0ÞðtÞ

xð0ÞðtÞ
����3 100%; t ¼ 1; 2; � � � ;m;mþ 1; � � � ;mþ T (24)

MAPE ¼ 1

m

Xm
t¼1

APEðtÞ (25)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm
t¼1

ðbxð0ÞðtÞ � xð0ÞðtÞÞ2
s

(26)

2.4 Modeling framework of WFTDGM(1,N) model
To elucidate the modeling process and optimization steps of the model effectively, we outline
the six modeling steps below, accompanied by the corresponding modeling flowchart
depicted in Figure 1.

Step 1: data acquisition. This step involves the collection and organization of relevant
original data series pertaining to the research object. Additionally, it entails assessing the
change trends and fluctuation characteristics of the original sequence through trend
graphs, in preparation for subsequent verification of the effectiveness and applicability of
the WFTDGM(1,N) model.

Step 2: data preprocessing. The original data sequence exhibiting significant fluctuation
characteristics undergoes preprocessing. This involves applying theweakening buffering
operator to derive the buffered sequence X

ðwÞ
i ¼ ðxðwÞi ð1Þ; xðwÞi ð2Þ; � � � ; xðwÞi ðmÞÞ, followed

by the fractional order accumulation process (r-AGO) to obtain the cumulative sequence

X
ðrÞ
i ¼ ðxðrÞi ð1Þ; xðrÞi ð2Þ; � � � ; xðrÞi ðmÞÞ;

Step 3: model parameter estimation and optimization. This step involves calculating the
structural parameter estimation matrix B and Y of the model, utilizing OLS to estimate

parameter bβ ¼ ðbβ1;bβ2; � � � ;bβN ;bβNþ1;bβNþ2Þ
T
. The objective function is defined as

minimizing the MAPE between the simulated data and the buffered data of the model.
To optimize the nonlinear parameter r, a nonlinear optimization constraint model is
integrated with the GWO;

Step 4: model construction and simulation. Following the acquisition of the parameters
outlined above, the WFTDGM(1,N) model is constructed to derive the corresponding
function, simulate, and predict the data series. Subsequently, the reduction value sequence
is obtained through the r-IAGO process;

Step 5: model prediction performance evaluation. The model’s accuracy is
comprehensively assessed using three evaluation indices. Relative prediction errors are
compared with those of other comparative models to validate the effectiveness and
applicability of the proposed model.
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Step 6: effective out-of-sample prediction. In this step, the proposed model is utilized to
conduct out-of-sample predictions. The performance of the model is evaluated based on
these predictions, enabling the provision of pertinent policy recommendations for real-
world scenarios.

3. Empirical analysis
3.1 Data collection and variable selection
In order to investigate the trend and developmental potential of carbon emissions from global
maritime shipping using artificial intelligence, our analysis focuses on two variables: Annual
installations of industrial robots and carbon emissions from maritime shipping. Notably, the
annual installations of industrial robots serve as a proxy for the development of artificial
intelligence (Acemoglu and Restrepo, 2020), allowing for an exploration of the impact of the
installed amount of industrial robots on the carbon emissions of maritime shipping.

This paper utilizes annual data from 2011 to 2022, with the annual installations of
industrial robots sourced from the International Federation of Robotics (IFR) and data on
carbon emissions from maritime shipping obtained from the US Energy Information
Administration (EIA) (https://www.iea.org/). Subsequently, the original data (Table 1) is
analyzed and amodel is constructed for empirical research purposes. The paper employs data
from 2011 to 2019 as the training set and data from 2020 to 2022 as the test set. As the data in

Figure 1.
Modeling flowchart of
WFTDGM(1,N) model
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Table 1 shows, annual installations of industrial robots show a trend of increasing year by
year with slight fluctuations in the middle, which is about the similar trend as carbon
emissions frommaritime shipping. This study will analyze the impact of annual installations
of industrial robots on the development of artificial intelligence as a relevant factor on carbon
emissions from maritime shipping.

3.2 Model comparison and analysis
The shipping industry serves as the lifeblood of global trade and transportation,
encompassing approximately 80% of these activities. Consequently, carbon emissions
from global shipping play a pivotal role in achieving global carbon neutrality or net zero
emissions. The advancement of artificial intelligence is fundamental to driving innovation
and ensuring the high-quality development of global shipping. Through our research, we aim
to establish a robust foundation for facilitating the low-carbon transition within the realm of
global maritime shipping.

In order to enhance our understanding of the carbon emission potential of global maritime
shipping within the framework of artificial intelligence, this section conducts an empirical
analysis on the influence of industrial robot installations on maritime shipping emissions.
Additionally, it involves predicting global maritime shipping emissions using the previously
developedmodel in conjunctionwith the original data. The study compares the simulated and
predicted values generated by theWFTDGM(1,N) model with five other models: GM(1,N) and
DGM(1,N) in the grey multivariate prediction model, ARIMA in econometrics, BPNN in
machine learning, and LSTM in deep learning. Table 2 presents the calculated carbon
emissions of global maritime shipping by each model, considering industrial robot
installations as a contributing factor, along with their respective error outcomes. Visual
comparisons of the results are illustrated in Figures 2–4.

Based on the modeling procedures outlined in Section 2 and the processes of structural
parameter estimation and nonlinear parameter optimization, this paper introduces the
WFTDGM(1,N) model. The structural parameters of the model, denoted as β1 ¼ −0:942,
β2 ¼ 0:232, β3 ¼ −5:817, β4 ¼ −6:278 are computed through a combination of structural
parameter estimation matrix calculation and OLS method. Subsequently, the GWO
intelligent optimization algorithm is applied to optimize the nonlinear parameters. This
optimization aims to minimize the MAPE between the predicted and actual values of the
model fitting, with the optimal fractional order parameter determined as r ¼ 0:013. This
optimized model is then constructed for subsequent simulation and prediction tasks.

Analyzing the APE of the simulated values for each model in Figure 2, it is evident that
when compared to the other models, the WFTDGM(1,N) model exhibits relatively stable

Year 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

Annual
installations of
industrial
robots
(Thousand)

166 159 178 221 254 304 400 423 387 390 526 553

Carbon
emissions
from maritime
shipping (Mt)

663 618 615 636 663 679 706 708 692 633 670 706

Source(s): International federation of robotics (IFR) and US energy information administration (EIA)
Table 1.

Original data
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Simulation values of
carbon emissions from
global maritime
shipping in 6 models
and related error
values
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errors around 0, with a maximum error of less than 8%, indicating a strong fitting
performance. TheARIMAmodel closely follows the performance of the proposedmodel, with
a maximumAPE also below 8%. However, the ARIMAmodel demonstrates more variability
around 2% in its errors, ranking second among the six models in terms of fitting
effectiveness. Otherwise, the BPNN and LSTM models display maximum errors exceeding
20%, with predominant errors fluctuating between 3% and 5%, showcasing relatively good
fitting effects but still falling short compared to the WFTDGM(1,N) model. The two grey
multivariate prediction models employed in this study yield contrasting results. DGM(1,N)
shows relatively strong fitting effects with error fluctuations of around 3% and a maximum
error below 15%. In contrast, GM(1,N) exhibits unsatisfactory forecasting effects, deviating
significantly from the original data’s development trends.

Figure 2.
APE(%) of simulated

values for 6 competing
models
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Furthermore, a conclusion akin to the preceding analysis can be drawn by evaluating the
MAPE for both the training and test sets separately. Figure 3 analysis reveals that the
WFTDGM(1,N) model proposed in this paper achieves MAPE values of 0.299% and

Figure 3.
MAPE(%) of 6
competing model
training sets and
test sets

Figure 4.
Comparison between
simulated values and
real values of 6
competitive models
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3.489% for the training and test sets, respectively, representing the lowest error rates
among all models and demonstrating superior fitting and predictive capabilities.
Following closely behind is the ARIMA model, showcasing commendable predictive
performance. The test set error for the ARIMA model stands at 4.634%, with a training
set MAPE of 2.879%, indicating a relatively strong fitting effect. In contrast, both
machine learning methods exhibit poor predictive matching characteristics. The
training set errors for BPNN and LSTM are 2.109% and 6.989%, respectively. However,
the test set errors escalate significantly to 17.803% and 21.653%, highlighting the need
for enhanced prediction performance. Among other multivariate grey prediction models,
the DGM(1,N) model secures the second-best position with a training set MAPE of
2.339% and a test set error of 7.983%. While slightly trailing the WFTDGM(1,N) model
in predictive performance, the DGM(1,N) model still outperforms the GM(1,N) model,
which exhibits severely distorted fitting and prediction effects, indicative of significant
data processing errors.

The comparison between simulated values and predicted values of the six models can be
observed in Figure 4. The WFTDGM(1,N) model, introduced in this paper, employs a novel
weakening buffering operator to preprocess the original data before modeling and analyzing
the buffered data sequence. Consequently, the fitting effect is best assessed concerning the
buffered sequence. Within the WFTDGM(1,N) framework, the training set section
emphasizes the comparison between simulated values and the buffered sequence, while
subsequent predictions involve fractional order restoration and additional steps, enabling
performance comparisons with real values akin to other models, as depicted in Figure 4.
Evidently, the simulated sequence generated by the WFTDGM(1,N) model showcases a
consistent trend with both the buffered sequence in the training set and the original data
sequence in the test set, underscoring its robust fitting and predictive capabilities. Similarly,
the ARIMAmodel’s simulated series generally aligns with the original data trend, albeit with
larger errors compared to the WFTDGM(1,N) model. Conversely, the DGM(1,N), LSTM, and
BPNN models exhibit training set trends similar to the original data but display divergent
trends in their test sets, leading to substantial errors. Particularly noteworthy is the GM(1,N)
model, demonstrating a continuous and significant decline in the simulation sequence,
resulting in awidening gap from the original data and poor fitting and prediction effects. This
is because due to the complex and changeable relationship between variables, the traditional
GM(1,N) does not have effective mitigation and discrimination ability, so it is prone to data
drift, resulting in high prediction errors. The comprehensive analysis of simulation and
prediction performance across the six models consistently validates the superior simulation
and prediction capabilities of theWFTDGM(1,N) model. Consequently, this model is selected
for predicting global maritime shipping carbon emissions and subsequent analysis of carbon
emission potential.

Combined with the above empirical results and the characteristics of each model, it can
be seen that although the traditional GM(1,N) model can predict the multi-variable small
sample data, it is prone to data drift, resulting in poor prediction effect. What’s more,
DGM(1,N) is difficult to show effective prediction for data with large fluctuation
characteristics. However, BPNN and LSTM in machine learning methods are more inclined
to deal with the prediction of large sample data, and it is difficult to show good prediction
effect for the prediction of small sample data, while the ARIMA model in econometric
methods will show a certain lag effect, which is difficult to cope with the time-varying effect
of data. Therefore, the WFTDGM(1,N) model proposed in this paper can show excellent
fitting and prediction effects in processing multivariate data with large fluctuation
characteristics and time-varying effects. Therefore, the WFTDGM(1,N) model will be
selected for subsequent prediction.
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3.3 Carbon emissions from global maritime shipping forecasts: 2023–2026
Utilizing the WFTDGM(1,N) model, predictions for global maritime shipping carbon
emissions from 2023 to 2026 were conducted leveraging artificial intelligence. To ensure
greater precision in forecasting, the model employed all annual data from 2011 to 2022. The
predicted results are presented in Table 3 and Figure 5. Over the upcoming years, amidst the
rapid advancement of artificial intelligence, global maritime shipping carbon emissions are
anticipated to experience a gradual increase, rising from 741.688 Mt to 783.777 Mt. The
forecast indicates growth rates of 0.679%, 0.700% and 4.233% over the subsequent four
years, signifying a progressive escalation in growth rates.

In the era of trade globalization, maritime shipping remains the primary mode of global
transportation and is expected to retain this position for the foreseeable future. However, the
sustainable development of maritime shipping unavoidably leads to increased carbon
emissions, exerting a negative impact on global environmental governance. Over the past
decade, as world science and technology have made continuous strides, artificial intelligence
has witnessed significant growth. During its early stages, artificial intelligence played a role
in facilitating the transformation of maritime shipping, resulting in a temporary reduction in
carbon emissions. This signifies that the development of artificial intelligence can contribute
to the mitigation of shipping-related carbon emissions. Nevertheless, based on the available
data and the projected results presented in this paper, it is evident that global maritime
shipping carbon emissions will continue to rise from 2020 onwards. Initially, theoretical
analysis suggested that the development of artificial intelligence could lead to a reduction in
carbon emissions or, at the very least, curb their growth rate. However, it appears that, at this

Year Shipping carbon emissions(Mt)

2023 722.785
2024 739.807
2025 759.601
2026 785.718

Source(s): Authors’ own creation

Figure 5.
Predicted carbon
emissions from global
maritime shipping in
2023–2026

Table 3.
Predicted carbon
emissions from global
maritime shipping in
2023–2026
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stage, the role of artificial intelligence in addressing shipping-related carbon emissions may
not be as impactful as anticipated. Therefore, it is crucial to engage in comprehensive
thinking and prioritize this issue in the future. By concurrently advancing artificial
intelligence and emphasizing its potential to effectively reduce shipping carbon emissions, we
can make substantial contributions towards achieving global carbon neutrality.

4. Conclusions and future discussion
4.1 Conclusions
The advent of artificial intelligence has influenced ship carbon emissions. Accurately
forecasting marine shipping carbon emissions is crucial as it serves as a key metric for port
production capacity and operational efficiency. Decision-makers rely on these predictions to
implement informed ocean management strategies. This study employs the WFTDGM (1,N)
model to project and examine the impact of artificial intelligence on shipping carbon
emissions, leading to the ensuing conclusions:

(1) A novel grey multivariate prediction model is introduced, which incorporates the
weakening buffer operator to enhance its adaptability and prediction performance.
This new model compensates for the deficiencies identified in the traditional
multivariate model. The use of the GWO (Grey Wolf Optimizer) intelligent
optimization algorithm facilitates the optimization of nonlinear parameters,
thereby augmenting the fitting accuracy of the WFTDGM (1,N) model.

(2) After simulating and forecasting global shipping carbon emissions from 2011 to 2022,
the outcomes indicate that the novel model’s curve aligns closely with the original
data curve. In comparison to GM(1,N), DGM(1,N), ARIMA, BPNN, and LSTMmodels,
the new model demonstrates superior performance, with a MAPE value of 0.299%
during the simulation phase and 3.489% during the prediction phase. This suggests
that the WFTDGM (1,N) model is suitable for predicting shipping carbon emissions.

(3) In the out-of-sample predictions for the period from 2023 to 2026, the results obtained
from theWFTDGM (1,N) model indicate a gradual increase in global marine shipping
carbon emissions. By 2026, these emissions are expected to reach 785.718million tons.
To foster the green development of marine shipping, it is essential that this issue
garners widespread global attention. A collective effort is required worldwide to
refine the transportation structure and mitigate the carbon footprint of marine
shipping. This can be achieved through the implementation of policy incentives and
the advancement of technology. Such measures will not only enhance the
competitiveness of the shipping industry but also contribute to the promotion of
global trade and economic growth. Strengthening international cooperation is crucial
for the construction of a sustainable and green marine future.

4.2 Policy suggestions
Based on the analysis results, this paper proposes the following policy recommendations:

(1) Establish a smart shipping supervision system. Establish a unified data platform to
realize the sharing of ship operation data, port operation data, cargo information, etc.,
to provide sufficient data support for AI algorithms. AI technology is used to monitor
the shipping process in real time, including the ship’s navigation trajectory,
emissions, etc., to ensure that the ship meets environmental standards.

(2) Encourage artificial intelligence innovation and application. The government could
establish a dedicated fund to bolster research and development in Artificial
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Intelligence (AI) aimed at reducing marine shipping emissions. This initiative could
encompass the optimization of shipping routes and enhancement of ship energy
efficiency. Furthermore, it is advisable for ship manufacturing entities to pursue the
development of intelligent vessels, integrating AI technology to streamline ship
design and augment operational efficiency.

(3) Optimize the marine shipping logistics system. Optimizing shipping logistics
networks through artificial intelligence can significantly reduce unnecessary
transportation links and lower overall carbon emissions. Encouraging enterprises
to adopt green packaging and transportation methods can further diminish carbon
emissions during the shipping process.

(4) Strengthen international cooperation and policy coordination. Engage proactively in
international marine shipping emission reduction agreements to foster a
collaborative response to climate change within the global shipping sector.
Intensify international dialogue and collaboration in the field of artificial
intelligence, exchanging insights and technologies related to AI-enabled marine
shipping emission abatement, thereby collectively advancing the sustainable growth
of the worldwide marine shipping industry.

(5) Develop an artificial intelligence regulatory plan. Develop technical standards and
operational norms for the reduction of carbon emissions from artificial intelligence in
shipping to ensure the safety and effectiveness of the technology. Establish a sound
regulatory mechanism, strengthen the supervision and evaluation of artificial
intelligence applications, and ensure that they meet environmental protection
requirements.

4.3 Limitations and future work
The WFTDGM (1, N) model proposed in this paper demonstrates superior adaptability
compared to the traditional grey prediction model, rendering it suitable for nonlinear and
intricate time series modeling. Future considerations may include integrating it with other
methodologies, such as machine learning algorithms, to enhance the performance of the new
models. Additionally, the incorporation of policy dummy variables into a greymodel could be
explored to augment the model’s predictive accuracy. Furthermore, the WFTDGM (1, N)
model can be employed to forecast various carbon emission data types, thereby offering a
dependable foundation for achieving a low-carbon transition.
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