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Optimal Monetary Policy for a Pessimistic Central Bank

ABSTRACT

We extend Svensson’s (Svensson, 1997) model of optimal monetary policy to the case
in which the monetary authorities are pessimistic. With respect to his formulation we show
that: i) the inflation forecast is no longer an explicit intermediate target; ii) the monetary
authorities move their instruments to hedge against the worst economic shocks, do not
expect the inflation rate to mean revert to its first-best level and apply a more aggressive
Taylor rule; and iii) the inflation rate is less volatile. Our conclusions also hold when the
monetary authorities observe inflation and output gap with a time lag. Our analysis extends
the analysis of van der Ploeg (van der Ploeg, 2009), as we allow for time-discounting of
future social welfare losses due to deviations of output and inflation from first-best values.

JEL Classification Numbers: C61, E52, E58.
Keywords: Monetary Policy, Pessimism, Discounted Linear Exponential Quadratic Gaus-
sian.



[..] a slide down a debt-deflation spiral could [..]

create an existential crisis. In these circumstances

patience is imprudent: the ECB should get a move on

The Economist, August 2nd 2014

Introduction

A common feature of models of monetary policy (Gaĺı (2008)) is that social preferences are

represented by time-separable quadratic loss functions (see Rotemberg and Woodford (1999)

and Woodford (2001)). As the economic environment is described by Markovian linear laws

of motion, the optimal monetary policy is obtained exploiting standard results which apply to

the linear-quadratic regulator (LQR) framework (Whittle (1982)). Specifically, it is possible

to rely on the certainty equivalence principle (CEP) and replace unknown values with their

maximum likelihood (ML) estimates. While convenient such a property is also problematic as

it entails that uncertainty does not play a significant role in determining the optimal policy

and that the quadratic loss function of models of monetary policy represents risk-aversion in

an unsatisfactory manner. In fact, the prescribed optimal policy does not change when the

environmental uncertainty varies, while risk-averse agents ought to care for the degree of

uncertainty they face.

van der Ploeg (van der Pleog, 2009) corrects for these shortcomings by introducing a risk-

adjustment in the loss function of the monetary authorities. He modifies the standard formula-

tion of models of monetary policy (see Svensson, 1997), moving from a linear-quadratic frame-

work to the linear-exponential-quadratic framework proposed by Whittle (Whittle, 1990). In

doing so, he increases the convexity of the monetary authorities’ loss function and derives an

optimal policy which is influenced by the environmental uncertainty. In addition, he shows

that the optimal policy is identified via a min-max choice mechanism, according to which the

monetary authorities set their optimal policy in order to hedge against the worst economic

conditions. This implies that first the worst economic outcomes are identified and then the

optimal policy is chosen in order to minimize the social welfare loss such outcomes entail. In

other words, according to the min-max mechanism described by van der Ploeg the monetary

policy is set in order to hedge against the worst shocks to the economy.

A problem with Whittle’s linear exponential quadratic Gaussian (LEQG) framework is that
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it is not best suited to accommodate time-discounting. In fact, when a time-discounting factor

is introduced into his LEQG framework, no stationary solutions exist, the impact of the risk-

adjustment dissipates overtime and the optimal policy in the limit converges to the linear-

quadratic Gaussian (LQG) counter-part.1 van der Ploeg overcomes such problem by getting

rid of time-discounting, or equivalently assuming a null discount rate. While this allows to

obtain stationary solutions it poses two difficulties: the assumption that no discount factor is

applied to losses to social welfare which accrue in the future is not economically sound and it

is therefore not typically shared by models of monetary policy, such as Svensson’s. This makes

comparison with the existing literature on monetary policy arduous.

We extend van der Ploeg’s analysis by introducing a different risk-adjustment to the loss

function of the monetary authorities. We employ the recursive optimization criterion of Hansen

and Sargent (Hansen and Sargent, 1994, 1995, 2013), which combines time-discounting with

Whittle’s risk-adjustment to the LQG formulation. Adopting Hansen and Sargent’s discounted

LEQG framework (DLEQG) we achieve several goals. Firstly, we are able to introduce a risk-

adjustment into the loss function of the monetary authorities without the special assumption on

the aggregation of social welfare losses across periods van der Ploeg employs. Secondly, we are

able to exploit, with minor adjustments, a number of results proposed Whittle for the LEQG

framework. Thirdly, we characterize the optimal monetary policy via a choice mechanism

similar to that described by van der Ploeg. Fourthly, since we do not do away with time-

discounting, our analysis of monetary policy is directly comparable with that of others and in

particular with that of Svensson.

This manuscript is organized as follows. In Section 1 we extend Svensson’s (Svensson,

1997) analysis of optimal monetary policy to the case in which the central bank is endowed

with recursive preferences as in Hansen and Sargent’s DLEQG framework. Because of the

risk-adjustment introduced to the loss function of the discounted LQG formulation employed

by Svensson, the central bank selects its monetary policy via a revised version of Whittle’s

pessimistic choice mechanism employed by van der Ploeg. As the CEP cannot be applied,

in Section 2 we establish that: the inflation forecast is no longer an explicit intermediate

target when inflation targeting is the exclusive mission of the central bank; and the monetary

authorities do not necessarily expect the inflation rate to mean revert to its first-best level when

the monetary policy is also aimed at output stabilization. We actually see that if the central

bank is pessimistic it may expect the inflation rate to wander away from the first-best level

even when it does not care for output stabilization. In comparison with Svensson’s analysis,
1See Bouakiz and Sobel (1984) and Whittle (1990).
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we also find that the central bank follows a more aggressive Taylor rule when it is pessimistic.

This results in a smaller volatility for the inflation rate, while the volatility of the output gap

and the short-term interest rate is unaffected by the risk-adjustment we have introduced. This

is interesting, because it means that empirically the impact of pessimism only appears in a

reduced variability for the inflation rate.

In Section 3, we investigate the possibility that the central bank observes the state variables

with a time lag and employ within this context the modified version of Whittle’s risk-sensitive

separation principle (SP), confirming the empirical implications derived under perfect state

observation. In Section 4, we show that the normalization for the first-best level of the inflation

rate employed in the previous Sections is inconsequential for the economic implications of our

analysis. A final Section offers some concluding remarks, while a separate Appendix contains

proofs all the results proposed in the main body of the manuscript.

1 A Post-Keynesian Model of Monetary Policy

In our analysis of optimal monetary policy we refer to the analytical model developed by Svens-

son (Svensson, 1997), which describes the optimal monetary policy of a central bank with an

infinite-horizon, time-separable quadratic loss function of inflation and output gap. Svensson

considers a Post-Keynesian formulation with backward looking expectations and persistence in

the dynamics of output and inflation. We employ it for several reasons. Firstly, it is genuinely

dynamic, in that the monetary instrument and the economic shocks influence output and infla-

tion across several periods. Its analysis is particularly interesting as it clearly reveals the impact

of pessimism on monetary policy. This is not the case for the New-Keynesian formulation with

forward looking expectations, in that, as expectations of future variables are supposed given

when the monetary instrument is set, the corresponding analysis is static.2 Secondly, Svens-

son’s formulation makes full use of the CEP, which breaks down in the presence of pessimistic

monetary authorities. Thirdly, his formulation fits relatively well data from the US economy.

In Svensson’s formulation, the central bank controls the short-term (real) interest rate to

minimize the expected value of the loss function Lt ≡
∑∞

i=0 δ
ict+i, where ct is a quadratic cost

function in the inflation rate, πt, and the output gap yt, ct ≡ π2
t + λy2t , with λ ≥ 0. The cost ct

captures the loss in welfare the economy incurs at time t when inflation and output deviates
2Van der Ploeg’s (van der Ploeg, 2009) analysis of a New-Keynesian formulation with a forward-looking Phillips

curve and a dynamic IS curve bears this out.
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from first-best values.3 As shown by Rotember and Woodford (1999) and Woodford (2001),

Lt can be derived as a second-order Taylor approximation of a representative agent’s utility

function and hence it represents social welfare loss.4

The dynamics of the state variables, πt and yt, is given by the following system of equations

πt = πt−1 + αyt−1 + επt , (1.1)

yt = βyt−1 − γrt−1 + εyt , (1.2)

where rt is a short-term (real) interest rate and the coefficients α, β and γ are non-negative

constants. The variation in the inflation rate is increasing in lagged output, while the latter

is serially correlated and decreasing in the lagged (real) interest rate. As noted by Svensson

the short-term interest rate affects output with one lag and the inflation rate with two lags,

this discrepancy being an important feature of this model which is however consistent with

ample empirical evidence. Since in the plant equation the innovation terms επt and εyt follow

independent white noise processes, Svensson investigates a standard Markovian discounted

linear quadratic Gaussian (DLQG) problem.

An unpleasant aspect of the quadratic loss function considered by Svensson, as stressed inter

alia by Clarida, Gaĺı, and Gertler (1999), is that it does not capture the impact of uncertainty

on monetary policy. In fact, as mentioned before, in the LQR framework the optimal policy is

independent of the variance of the shocks to the state variables. This implies that the convexity

of the loss function in the DLQG problem studied by Svensson cannot represent crucial facets

of monetary policy and that Svensson’s analysis cannot shed light on how a central bank reacts

to uncertainty and unpredictable shocks.

It can be argued that uncertainty heavily affects monetary policy and that monetary au-

thorities are mostly concerned with adverse shocks, such as those associated with a strong

deflation, which possess a large negative impact on social welfare. Therefore, it is important

to determine within Svensson’s formulation the optimal monetary policy of a central bank

which seeks to hedge against the most adverse economic conditions.

To achieve this goal, van der Ploeg (2009) introduces a risk-adjustment into the central

bank’s loss function, by assuming that in t it minimizes the function ln(Et[exp(
ρ
2

∑∞
i=0 ct+i)]),

3The long-run natural output level is normalized to zero so that yt corresponds to output gap.
4The cost function, ct, should depend on the deviation of the inflation rate from a positive first-best level π∗.

We postpone the discussion of this more involving formulation to Section 4, where we show how the normalization
introduced ( π∗ = 0) here is inconsequential.
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where ρ (with ρ > 0) is a risk-enhancement coefficient. In this way he recasts Svensson’s

model within Whittle’s LEQG framework. Importantly, no time-discounting is applied when

social welfare losses are aggregated across periods in the definition of this loss function. This

is because, as shown by Bouakiz and Sobel (1984), employing the time-discounting factor in

the time-separable argument of the exponential function is problematic, as it leads to non-

stationary solutions, where the impact of the risk-enhancement coefficient ρ dissipates over-

time and in the limit (for t → ∞) the optimal policy converges to that of the DLQG framework.

To ensure that the optimal monetary policy is described by a stationary rule which depends

on the variance of the shocks to the inflation rate and the output gap van der Ploeg simply sets

the discount factor, δ, equal to 1. As already mentioned this assumption contradicts economic

reasoning and is inconsistent with standard models of monetary policy.5

While van der Ploeg’s assumption on the discount factor is problematic, it is also unnec-

essary. This is because Svensson’s model can be recast into the DLEQG framework proposed

by Hansen and Sargent (Hansen and Sargent, 1994, 1995, 2013), which allows to combine

properly Whittle’s risk-adjustment and time-discounting.

We now present the general framework for the class of DLEQG problems, discussing some

key results which illustrate its nexus with those of the LEQG and DLQG problems. Thus, The-

orem 1 revises the min-max choice mechanism derived by Whittle to determine the optimal

policy for the class of LEQG problems and employed by van der Ploeg in his analysis of mone-

tary policy, while Theorem 2 shows the recursive equations which describe the optimal policy

within the DLEQG framework and their close link with those which apply to the DLQG frame-

work. In Section 2 we apply this framework and its associated Theorems to the analysis of

optimal monetary policy.

1.1 A Discounted Linear Exponential Quadratic Gaussian Problem

DLEQG problems are characterized by: i) a Markovian linear dynamic structure for a vector

of state variables, zt; ii) a multi-normal distribution for an innovation vector εt; and iii) a
5An alternative solution van der Ploeg pursues is to assume that the shocks to inflation and output are non-

stationary and possess variances which augment geometrically overtime (Var[επt ] = (1/δ)Var[επt−1] and Var[εyt ] =
(1/δ)Var[εyt−1], where (1/δ) > 1). This is an ingenious way to get rid of the impact of time-discounting and
obtain stationary solutions, but it is also unsatisfactory because as time elapses the volatility of shocks explode. In
addition, while van der Ploeg defends this assumption on the ground that monetary authorities will typically be
more uncertain about future shocks to the economic environment, it can be argued that even if the volatility of
these shocks were constant overtime the central bank would be more uncertain about the more distant values of
inflation and output. It is then unsurprising that van der Ploeg’s assumption is not common in the literature.
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recursive optimization criterion à la Epstein and Zin. The following Definition applies:

Definition 1 An optimal control problem is said to be Markovian linear exponential quadratic

Gaussian with time-discounting if the following recursive optimization

V t = min
ut

{
ct +

2

ρ
ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
, (1.3)

where ρ (with ρ > 0) is the risk-enhancement coefficient, δ (with 0 < δ < 1) is the time-

discounting factor, ct is the (per-period) scalar-valued cost function and V t is the value function

(with terminal condition VT+1 = 0), is solved at times t = 1, 2, . . . , T with respect to the free-

valued control vector ut under the conditions that:

(i) the cost function, ct, is a quadratic form in the control vector, ut, and the state vector, zt,

ct = u′
tQut + z′tRzt + 2u′

tSzt ,

(ii) the vector of state variables, zt, is governed by the following linear plant equation

zt = Azt−1 + But−1 + εt , where εt ∼ N [0,N] and εt ⊥ εt′ .

Imposing the condition that the recursive optimization is solved over a finite horizon T ensures

that the value function V t is well defined. However, thanks to time-discounting an infinite

horizon can be accommodated. That is what we will achieve in the next Section.

The parameter ρ represents a risk-enhancement coefficient, in that it introduces extra con-

vexity vis-a-vis that of the loss function of the Markovian DLQG problem. Indeed, the convex-

ity of ct + ρ
2 ln

(
Et

[
exp

(
δ ρ

2 V t+1
)])

is increasing in ρ, while limρ↓0
2
ρ ln

(
Et

[
exp

(
δ ρ

2V t+1
)])

=
1
2δEt[V t+1]. This indicates that in the limit, for ρ ↓ 0, the solution of the recursive optimization

in Definition 1 converges to that of the standard dynamic programming recursion of a dis-

counted Markovian optimal control problem, i.e. V t = minut{ct + δEt[V t+1]}, such as the one

which applies to Svensson’s version of the DLQG framework for his monetary policy model.6

By increasing the degree of risk-aversion of the optimizing agent, the DLEQG problem is

better suited to capture the impact of risk-aversion on agents’ decisions than the standard

DLQG framework. In particular, the optimal policy is no longer independent of the agents’

uncertainty (i.e. differently from what happens in the DLQG framework, the optimal control
6The proof of these and other results are available on request. See also Vitale (2013).
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will depend on the covariance matrix of the innovation vector, N).

The optimization criterion (1.3) is not a special characterization of preferences, as it is

employed in the analysis of several economic issues (Hansen and Sargent, 2005; Hansen, Sar-

gent, and Tallarini, 1999; Luo, 2004; Luo and Young, 2010). Moreover, as shown by Tallarini

(Tallarini , 2000), it corresponds to the recursive preferences of Epstain and Zin (Epstein and

Zin, 1991) when the elasticity of inter-temporal substitution is 1, ρ is the coefficient of relative

risk-aversion and log consumption is approximated by a quadratic form of the state and control

vectors.

The DLEQG framework subsumes Whittle’s LEQG framework. In fact, for δ ↑ 1 the optimal

policy for the optimization criterion (1.3) converges to that for Whittle’s Markovian LEQG

problem.7 This is important because it entails that our formulation of the monetary policy’s

model encompasses that of van der Ploeg (for δ ↑ 1), alongside that of Svensson (for ρ ↓ 0).

Furthermore, the DLEQG framework allows to introduce time-discounting in a satisfactory way

while preserving most of Whittle’s insights and results with some minor adjustments.

Following Whittle’s lead we then introduce the concept of (discounted) stress:

Definition 2 In t the discounted stress is St ≡ ct − 1
ρ dt+1 + δV t+1, where dt is a per-period

discrepancy function equal to ε′tN
−1εt for t = 1, 2, . . . , T and 0 for t = T + 1.

The (discounted) stress in t, St, is said to respect a saddle-point condition if it admits the

following min-max, or extremized, value minut maxεt+1 St. The (discounted) stress is useful in

that we can rely on the following Theorem, which adapts a result firstly outlined by Whittle

for the LEQG problems:

7In Whittle’s LEQG framework the function ln(Et [exp(
ρ
2

∑T
t=1 ct)]) is minimized in t with respect to the control

ut. For δ ↑ 1 in the optimization criterion (1.3) Vt does not converge to Whittle’s function, since the minimization
argument does not contain the past cost components, ch with h < t. However, the optimal policy for the DLEQG
framework converges to that for LEQG framework in that in t ch, with h < t, is deterministic and constant with
respect to ut.
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Theorem 1 - (Risk-sensitive Certainty Equivalence Principle). In a Markovian DLEQG problem, if

the saddle point condition for the stress is respected at all future dates, i.e. minut+j maxεt+j+1 St+j

exists for j = 0, 1, . . . , T −t, the optimal value of the vector ut is determined at time t by maximiz-

ing St with respect to εt+1 and minimizing it with respect to ut. The value function is proportional

to the extremized stress, V t ∝ minut maxεt+1 St.

Proof. See the Appendix.

Theorem 1 is particularly useful in that it suggests that, when the stress is well-behaved so

that the saddle points exist and the DLEQG problem admits a meaningful solution, to pin down

the optimal policy it is sufficient to extremize recursively the stress. The recursion starts at time

T and proceeds backward. Therefore, if the saddle point condition is met at times T , T −1, . . .,

t + 1, in t the optimal policy is derived by first maximizing St with respect to the innovation

vector εt+1 and then by minimizing the resulting expression with respect to the control vector

ut.

An economic interpretation of such extremization is that a risk-averse agent whose prefer-

ences are represented by the optimization criterion (1.3) attempts to hedge against the worst

possible values for the vector εt+1, by following a min-max strategy according to which she

selects ut to minimize her welfare loss (i.e. the stress) against the most unfavorable innovation

vector εt+1. Such an agent acts as if she were pessimistic, considering these worst-case realiza-

tions very likely. Consequently she tunes her actions on their impact on her welfare, applying

what we term, borrowing Whittle’s terminology, a pessimistic choice mechanism.

Theorem 1 revises the certainty equivalence principle (CEP) of the Markovian DLQG prob-

lem: the normally distributed unobservable variables are no longer replaced by their maximum

likelihood (ML) estimates, but by those that maximize the stress in order to compensate for

risk-aversion. Therefore, while it is well known that in the Markovian DLQG problem the

separation principle (SP) between optimization of the control vector and estimation of the

unknown values applies, in that the control vector is chosen as it would be in the perfect in-

formation case with the unobservable values replaced by their ML estimates, in the DLEQG

problem the derivation of the optimal control and the optimal estimation of the unknown

values are intertwined, as the optimal control and optimal estimates are chosen in order to

extremize the stress. Indeed, differently from the Markovian DLQG problem, uncertainty over

the innovation vector εt+1 conditions the optimal choice of the control vector ut. Specifically,

the statistical characteristics of εt+1, and hence its covariance matrix N, influence the optimal
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value of the vector ut. Viceversa, the cost function and the degree of risk-aversion affect the

optimal estimate of εt+1, which no longer corresponds to the ML estimate.

The following Theorem describes the optimal policy for the DLEQG problem and the nexus

with the common recursive solution which applies to the Markovian DLEQG problems:

Theorem 2 If the matrix (δΠt+1)−1 − ρN is positive definite, at time t the optimal control is

ut = Kt zt , where (1.4)

Kt = − (Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) , (1.5)

Π̃t+1 = ((δΠt+1)
−1 − ρN)−1 and (1.6)

Πt = R + A′Π̃t+1A − (S′ + A′Π̃t+1B)(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) .(1.7)

Proof. See the Appendix.

It is worth noticing that (1.7) represents a modified (risk-sensitive) version of the standard

Riccati equation which applies to the Markovian DLQG problem. Indeed, the matrix δΠt+1

is now replaced by the modified matrix Π̃t+1. This shows that in the DLEQG framework the

optimal policy retains a specification which is similar to the one that would prevail in the DLQG

one. Indeed, as for ρ = 0 we obtain the standard Riccati equation of the DLQG problem, it is

confirmed that the DLEQG problem encompasses the DLQG one. For ρ > 0 a straightforward

correction for the impact of uncertainty and risk-aversion must however be inserted in the

expressions for the recursions of Πt and Kt, as the optimal policy depends on the agent’s

risk-enhancement coefficient, ρ, and her uncertainty over future shocks, N.

The requirement that the matrix (δΠt+1)−1 − ρN being positive definite derives from a

second order condition which must hold in t for the stress, St, to satisfy the saddle point

condition imposed by Theorem 1. As noted by Whittle, whenever the cost function ct is non-

negative such condition fails for ρ large enough, indicating that the value function V t is infinite.

This means that for a sufficiently large degree of risk-aversion the DLEQG problem is not

well-behaved and does not admit an optimizing solution. An economic interpretation of the

failure of the optimization problem is that in these extreme circumstances the optimizing agent

becomes so pessimistic as to consider her control ineffective and hence useless.
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Because of time-discounting it is possible to consider the limit case for T ↑ ∞, i.e. a DLEQG

problem with infinite horizon. As indicated by Hansen and Sargent (Hansen and Sargent,

2004) there is no certainty that for T ↑ ∞ the value function V t is finite and as a consequence

the DLEQG problem may be not well-defined. However, when a minimum is reached we can

identify a stationary solution, in that in the limit Πt → Π and Kt → K, where the limit

matrices are determined by the fixed point in the risk-sensitive Riccati equation,

Π = R + A′Π̃A − (S′ + A′Π̃B)(Q + B′Π̃B)−1(S + B′Π̃A) , (1.8)

with Π̃ ≡ ((δΠ)−1 − ρN)−1 . (1.9)

This clearly confirms our claim that the optimization criterion (1.3) accommodates time-

discounting in a satisfactory manner. In fact, the steady-state identified by the fixed point

in (1.8) shows that stationary solutions where the impact of the risk-enhancement coefficient

does not dissipate overtime are possible. This feature indicates that Hansen and Sargent’s

DLEQG framework is better suited than Whittle’s framework employed by van der Ploeg to

analyze the impact of risk-aversion on monetary policy.

2 Optimal Monetary Policy

Suppose that the function ct introduced in Section 1 genuinely represents the welfare loss

brought about by deviations of inflation and output from socially optimal levels, but that sup-

plementary curvature must be imposed to capture the monetary authorities’ attitude towards

risk. We can achieve this by recasting Svensson’s formulation into the DLEQG framework

presented in Section 1.1. In this way the exponential transformation corresponds to a risk-

adjustment imposed by the monetary authorities, while the risk-enhancement coefficient ρ

measures their degree of risk-aversion.

According to Theorem 1, given the recursive optimization criterion (1.3), the monetary

authorities will act as though they were pessimistic, choosing their monetary policy in order

to minimize the social welfare loss against the worst possible economic shocks.8 To see how

this new attitude affects the monetary policy and the dynamics of inflation and output gap,

let us introduce the value function V t, the vector of state variables zt ≡ (πt yt)′, the vector of

innovation terms εt ≡ (επt εyt )
′ and the scalar control variable ut ≡ rt. Given the dynamics of

8Because of this result we henceforth use the terms pessimistic and risk-averse interchangeably.
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inflation and output in equations (1.1) and (1.2), and the determinants of the welfare loss in

Svensson’s formulation, ct = π2
t + λy2t , we have that in our version of the DLEQG problem

A ≡
(

1 α

0 β

)
, B ≡

(
0

− γ

)
, R ≡

(
1 0

0 λ

)
, Q ≡ S ≡ 0 , N ≡

(
σ2
π 0

0 σ2
y

)
.

As the optimization horizon of the monetary authorities is infinite we concentrate on the

steady-state solution by solving the fixed point for the modified Riccati equation (1.8). Im-

portantly, to identify such steady-state solution we do not need to assume that the shocks to

output and inflation are non-stationary. This means that our steady-state solution is directly

comparable with that of Svensson, as our formulation is a straightforward extension of his

model. Applying Theorem 2 we can establish the following result, which posits that a unique

optimal policy exists in steady state:

Proposition 1 With a pessimistic central bank the optimal monetary policy is

rt = κπ πt + κy yt , (2.1)

where
κπ =

1

γ

αδW

α2δW + λ− θρσ2
π
, κy =

1

γ

(
β +

α2δW

α2δW + λ− θρσ2
π

)
yt ,

with θ = δ(λ+ δ(α2 + λ)W ) and W the positive root of the quadratic equation

(
1 −

(
1 +

λ

α2

)
σ2
π ρ

)
W 2 −

[(
1− (1− δ)λ

α2δ

)
+

λ

α2
σ2
π ρ

]
W − λ

α2δ
= 0 . (2.2)

Proof. See the Appendix.

Unsurprisingly, the Taylor rule in Proposition 1 subsumes that derived by Svensson for

ρ = 0. In fact, in his formulation the corresponding Taylor rule’s coefficients are

κπ =
1

γ

αδW

α2δW + λ
and κy =

1

γ

(
β +

α2δW

α2δW + λ

)
yt ,

where

W =
1

2



1 − (1− δ)λ

α2δ
+

√(
1 +

(1− δ)λ

α2δ

)2

+
4λ

α2



 ,

which corresponds to the positive root of equation (2.2) for ρ = 0.
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It is interesting to emphasize that similarities with Svensson’s solution appear. In particular,

denoting with πt+1|t time t expectation of inflation rate in t+1, we have that πt+1|t = πt+αyt.

It is immediate to verify that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π
πt+1|t

)

and that

V t = ν + π2
t + λ y2t + δWπ2

t+1|t ,

so that the control path and the value function can be defined in terms of the inflation forecast.9

In addition, denoting with πt+2|t time t expectation of inflation rate in t+2, we find that at the

optimum

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t ,

where yt+1|t denotes time t expectation of output gap in t + 1. This condition implies that

the two-period ahead inflation forecast is equal to its first-best level (πt+2|t = 0) insofar the

one-period ahead expected output gap is null.

However, significant differences also emerge between Svensson’s analysis and ours. When

λ = 0, and hence only inflation targeting motivates the monetary authorities, time t expecta-

tion of the inflation rate πt+2 is always null for ρ = 0. In other words, in Svensson’s formula-

tion, for λ = 0 the inflation forecast becomes an explicit intermediate target, in that exploiting

the CEP one can see that the monetary policy is optimal insofar πt+2|t = 0. On the other

hand, for ρ > 0, that is in the DLEQG formulation we consider, when λ = 0 at the optimum

πt+2|t = αδρσ2
π yt+1|t += 0 (since θ = α2δ2W for λ = 0). This is because within our formulation

the CEP cannot be applied and consequently the inflation forecast is not longer an explicit

intermediate target when inflation targeting is the only mission of the central bank.

In addition, even when the monetary policy is also aimed at output stabilization (λ > 0)

with a risk-neutral central bank the inflation forecasts dampen out, in that for ρ = 0 πt+2|t =
λ

α2δW+λ πt+1|t. This indicates that within Svensson’s formulation with output stabilization, as

the inflation forecasts slowly converge to zero, the central bank expects the inflation rate to

reach the first-best level in the long-run. This does not necessarily hold with a pessimistic
9Details of this and other derivations are available on request.
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Figure 1: The values of the state variable coefficients kπ and ky for α = 1.5, β = 0.9, δ = 0.95, γ = 2, λ = 1 and
σ2
π = σ2

y = 0.05 are plotted against the coefficient ρ.

central bank, as for ρ > 0 πt+2|t = ( λ−θρσ2
π

α2δW+λ−θρσ2
π
)πt+1|t. Strikingly, the central bank may

actually expect the inflation rate to wander away from the first-best level even if λ is small

or null, that is even when output stabilization is not a goal of its monetary policy. In fact,

for λ = 0 and ρ > 0 πt+2|t = −δρσ2
π

1−δρσ2
π
πt+1|t and hence for 1/2 < δρσ2

π < 1 we see that

abs(πt+2|t) > abs(πt+1|t). This implies that even for λ = 0, a situation in which a risk-neutral

central bank would employ πt+2|t as an intermediate target and set its value equal to the

optimal level zero, a pessimistic central bank may expect the inflation forecast to wander away

from zero.

Finally, the curvature of the optimization criterion (1.3) conditions heavily the Taylor rule

selected by the monetary authorities. Figure 1 plots the inflation, kπ, and output gap, ky, co-

efficients in the optimal Taylor rule described in equation (2.1) against the risk-enhancement

coefficient, ρ. Figure 1 shows that the larger ρ, the more aggressive is the Taylor rule followed

by the central bank, in that the short-term (real) interest rate is more sensitive to departures:

i) of the inflation rate from its optimal level (κπ is larger); and ii) of output from full employ-

ment (κy is larger). While Figure 1 is obtained for a specific choice of parameters, the same

conclusion is reached for all parametric constellations for which an optimal monetary policy

exists. This result is established in the following Proposition:

13



Proposition 2 For σ2
π small enough, the coefficients on inflation, κπ, and output gap, κy, in the

optimal Taylor rule are increasing in the risk-enhancement coefficient, ρ.

Proof. See the Appendix.

This result may appear counter-intuitive, in that one may conjecture that a pessimistic agent

will necessarily act more cautiously, selecting a more conservative policy rule (ie. smaller val-

ues for the Taylor’s coefficients κπ and κy). However, a pessimistic central bank cares for the

uncertainty over the inflation rate and the output gap and attempts to reduce it by reacting

more aggressively to monetary and real shocks. With respect to Svensson’s formulation, the

risk-adjustment introduced in the optimization criterion (1.3) favors early resolution of un-

certainty and leads to optimal control rules which reduce the volatility of state variables and

agents’ uncertainty.10 This is a facet of risk-aversion which is shared by other multi-period

models.11 In addition, as our formulation subsumes that of van der Ploeg for δ ↑ 1 it is un-

surprising that an analogous conclusion is drawn in his analysis of monetary policy within his

formulation.

Despite the monetary authorities select a more aggressive Taylor rule for ρ > 0, it may

be difficult to detect empirically the impact of risk-aversion on the optimal monetary policy.

In fact, if the monetary policy is analyzed on the basis of the moments of the short-term

interest rate, that of a pessimistic central bank (ρ > 0) is observationally equivalent to that

of a risk-neutral central bank (ρ = 0). To see this result consider that in steady state for

K ≡ (κπ κy) zt = Γzt−1 + εt, where Γ = A + BK, so that zt = (I2 − ΓL)−1εt. Then, we

find that Var[zt] = ΛNΛ′, where Λ = (I2 − Γ)−1. In addition, since rt = Kzt we see that

Var[rt] = KΛNΛ′K′. Some tedious but straightforward algebra then shows that

Var[zt] =




(1+αγκπ)2

α2γ2κ2
π

σ2
π + 1

γ2κ2
π
σ2
y − γ (1+αγκπ)κπ

α2γ2κ2
π

σ2
π

− γ (1+αγκπ)κπ

α2γ2κ2
π

σ2
π

1
α2 σ2

π



 (2.3)

10As shown by Tallarini (Tallarini, 2000), in the recursive optimization (1.3) the elasticity of inter-temporal
substitution is one. For ρ > 0 the objective function of the recursive optimization (1.3) presents a coefficient of
relative risk-aversion that is larger than one and hence it is greater than the inverse of the inter-temporal elasticity
of substitution, the condition under which, according to Kreps and Porteus (Kreps and Porteus, 1978), the monetary
authorities will prefer early resolution of uncertainty. See also Epstein and Zin (1991).

11For instance, in Holden and Subrahmanyam (1994) and Vitale (2012) risk-aversion induces agents to act more
aggressively to reduce volatility and uncertainty.
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and that

Var[rt] =
1

γ2

[(
1− β

α

)2

σ2
π + σ2

y

]
. (2.4)

Considering that κπ is increasing in ρ and that (1+αγκπ)2

α2γ2κ2
π

and 1
γ2κ2

π
are both decreasing in κπ,

the following result is established:

Proposition 3 The unconditional variances of the output gap, Var[yt], and the short-term (real)

interest rate, Var[rt], are unaffected by the risk-enhancement coefficient, ρ, and will coincide with

the values which prevail under risk-neutrality. The unconditional variance of the inflation rate,

Var[πt], is decreasing in ρ.

Proposition 3 indicates that the unconditional variance of the short-term (real) interest rate

is independent of ρ and that the monetary policy of a pessimistic central bank shows the same

level of volatility which occurs within Svensson’s formulation. The unconditional variances for

the inflation rate, πt, and the output gap, yt, explains how this is possible. The variance of the

latter, Var[yt], is also independent of the risk-enhancement coefficient, while that of the former,

Var[πt], is decreasing in ρ. One can see that for ρ > 0 the reduced variability of the inflation

rate exactly compensates the augmented aggressiveness of the monetary authorities, so that,

even if κπ and κy are larger than for ρ = 0, the unconditional variance of the short-term (real)

interest rate remains the same.

The values of the unconditional variances Var[πt] and Var[yt] indicate that empirically Svens-

son’s formulation and ours only differ in the variability of the inflation rate. While the uncon-

ditional variance of the output gap is unaffected by risk-aversion, that of the inflation rate is

smaller for ρ > 0, suggesting that a pessimistic central bank will appear to be particularly

concerned with the inflation rate volatility. This is because, given the specific lag structure in

the law of motion for the state variables, zt, the variability of the inflation rate represents the

key factor in determining the loss of social welfare and it is therefore the main driver of the

pessimistic central bank’s monetary policy.

Finally, we should recall that for ρ large enough the condition, reported in Theorem 2,

that (δΠ)−1 − ρN being positive definite is violated, indicating that no optimal monetary

policy exists for an extremely risk-averse central bank. In other words, an important non-

linearity emerges in the relation between the central bank’s pessimism and monetary policy:

as ρ augments the monetary authorities become more aggressive, but eventually their attempt
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to minimize the loss of social welfare completely fails and no optimal monetary policy can be

undertaken.

In Section 1 we explained why we prefer to analyze the monetary policy of a pessimistic cen-

tral bank relying on a Post-Keynesian formulation rather than a New-Keynesian one. However,

it is interesting to discuss briefly what changes would be required to consider a formulation

with forward looking expectations. In this case the past inflation rate, πt−1, in the supply

schedule (1.1) is replaced by the expectation in t of the next period inflation rate, πt+1|t.

Since the dynamic system in any period is described by the inflation rate and the output

gap, it is safe to conjecture that the expected inflation is a linear function of these two state

variables. Hence, applying the method of undetermined coefficients, firstly a fixed point should

be found in equation (1.8) to determine an optimal policy for a given conjecture on the infla-

tion expectations; secondly, the rationality condition on the inflation expectations should be

imposed. This leads to two different fixed points that should hold to determine the optimal

policy and a set of consistent conjectures on the inflation forecasts.

Analyzing this alternative formulation should give qualitatively similar results to those de-

rived within the Post-Keynesian formulation we employ. Indeed, results derived by van der

Ploeg within the LEQG framework indicate that the optimal monetary present similar char-

acteristics in the Post-Keynesian and New-Keynesian formulations, so that conclusions drawn

from the analysis of the former should carry forward in that of the latter.

We now wonder what happens when the monetary authorities observe only noisy signals

of the output gap and the inflation rate or observe these state variables with a time lag. This

is important in that in the DLEQG framework, the SP between estimation and control does

not hold and hence it is not possible, as in the standard LQR framework, to replace unknown

values with the ML estimates. In addition, it would be interesting to see whether pessimistic

monetary authorities would be led to act more or less aggressively when observing imperfectly

the economic environment. To investigate this scenario we need to discuss the properties of

the class of DLEQG problems when state variables are imperfectly observed.
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3 DLEQG Problems Under Imperfect State Observation

To allow for imperfect state observation we introduce the following modified Definition for the

class of Markovian DLEQG problems, where the optimization criterion (1.3) must be amended

in that the cost function ct is no longer deterministic:12

Definition 3 An optimal control problem is said to be Markovian linear exponential quadratic

Gaussian with time-discounting and imperfect state observation if the following recursive opti-

mization

Et

[
exp

(ρ
2
V t

)]
= min

ut
Et

[
exp

(ρ
2
(ct + δV t+1)

)]
(3.1)

is solved at times t = 1, 2, . . . , T with respect to the free-valued control vector ut under the condi-

tions that:

(i) for t = 1, 2, . . . T , the cost function, ct, is a positive-definite quadratic form in the control

vector, ut, and the state vector, zt, ct = u′
tQut + z′tRzt + 2u′

tSzt;

(ii) the vector of state variables, zt, follows a linear plant equation zt = Azt−1 +But−1 + εt;

(iii) in t the vector of observable variables is given by

wt = Czt−1 + ηt ,

with ψt ≡
(

εt

ηt

)
∼ N

[(
0

0

)
,

(
N L

L′ M

)]
and ψt ⊥ ψt′ .

As zt is now unobservable the (discounted) stress takes a new formulation. In particular, let

ẑt−1 denote the expectation of the state vector zt−1 conditional on the information contained

in observation history, with Ωt−1 the corresponding conditional covariance matrix and

P =

(
N L′

L M

)
.

Definition 4 Under imperfect state observation, in t the discounted stress is St ≡ ct − 1
ρ (Dt−1 +

dt + dt+1) + δV t+1, where dt is equal to ψ′
tP

−1ψt for t = 1, 2, . . . T and 0 for t = T + 1, while

Dt−1 = (zt−1 − ẑt−1)′Ω
−1
t−1 (zt−1 − ẑt−1).

12It can be shown that under perfect state observation the optimization criterion (3.1) is equivalent to the one
employed in Definition 1.
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Let ξt ≡ (z′t−1 − ẑ′t−1 ψ
′
t ψ

′
t+1). A revised version of Theorem 1 holds:

Theorem 3 - (Risk-sensitive Certainty Equivalence Principle). In a Markovian DLEQG problem,

under imperfect state observation, if the discounted stress, St+j , respects the saddle point condition

in all future dates, so that minut+j maxξt+j St+j exists for j = 0, 1, . . . , T − t, the optimal value of

the vector ut is determined at time t by maximizing St with respect to ξt and minimizing it with

respect to ut. The value function is proportional to the extremized stress, V t ∝ minut maxξt St.

Proof. See the Appendix.

The saddle point condition minut maxξt St can be satisfied proceeding in two stages: in

stage i), conditionally on the current zt, the stress, St, is extremized with respect to the other

elements of the vector ξt and ut; in stage ii) the resulting function is extremized with respect

to zt. This allows a partial separation between estimation and control as illustrated by the

following Theorem:

Theorem 4 - (Risk-sensitive Separation Principle). Under imperfect state observation, condition-

ally on zt the stress in t is extremized for the optimal control, ut(zt) = Ktzt, in Theorem 2.

(Risk-sensitive Certainty Equivalence Principle). Under imperfect state observation, the optimal

policy in t is recouped by replacing zt in ut(zt) with the maximum stress estimate (MSE),

z̆t = (I − ρΩtΠt)
−1 ẑt, (3.2)

where Πt is the modified Riccati matrix defined in Theorem 2.

Proof. See the Appendix.

Interestingly, as the matrix Πt depends on the components of ct, the MSE z̆t is affected

by the shape of the cost function alongside the risk-enhancement coefficient ρ confirming the

close nexus between control and estimation for the class of DLEQG problems.

3.1 Optimal Monetary Policy with Imperfect Observation of Inflation and Output

Reliable data on inflation and output are typically available with some delay. Consequently,

within our analysis of monetary policy it is interesting to see what happens in the case the
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central bank observes the output gap and the inflation rate with one time lag.13

Exploiting Theorem 4, it is possible to prove the following Proposition which identifies the

unique optimal policy in steady state:

Proposition 4 When output and inflation are observed with one time lag, the optimal policy of a

pessimistic central bank is
rt = κπ π̆t + κy y̆t , (3.3)

where the Taylor rule’s coefficients, κπ and κy, are as in Proposition 1, while the maximum stress

estimates for the inflation rate and the output gap are




π̆t

y̆t



 =




π̂t

ŷt



 + ρG




π̂t

ŷt



 , with G =





π1 −det(Π)ρσ2
y

det(I2−ρNΠ)
σ2
π

π1,2

det(I2−ρNΠ)
σ2
π

π1,2

det(I2−ρNΠ)
σ2
y

π2 −det(Π)ρσ2
π

det(I2−ρNΠ)
σ2
y



 ,

π1, π1,2 and π2 the elements of modified Riccati matrix Π in Proposition 1, and π̂t and ŷt the

maximum likelihood estimates of πt and yt in t, π̂t = πt−1 + αyt−1 and ŷt = βyt−1 − γrt−1.

Proof See the Appendix.

Proposition 4 implies that the optimal Taylor rule is given by a modified expression,

rt = κIπ π̂t + κIy ŷt , (3.4)

where KI ≡ (κIπ κIy) = K(I+ ρG). The vector ρKG contains adjustments to the Taylor rule’s

coefficients induced by the correction for risk-aversion to the ML estimate of zt. Imperfect

state observation may entail a more (or less) aggressive Taylor rule, in so far the adjusted

coefficients for inflation and output gap, κIπ and κIy, are larger (smaller) than those which

prevail under perfect state observation, κπ and κy.

In Figure 2 we plot the differences between the adjusted coefficients, κIπ and κIy, and the

unadjusted ones, κπ and κy, against ρ, using the same choice of parameters as in Figure 1.

Once again, this plot proposes an apparently counter-intuitive result. In fact, we see that,

as the difference is positive for both coefficients, the monetary authorities become even more

aggressive when they observe with a time lag inflation and output. That is, when facing a more
13van der Ploeg considers instead the case in which inflation is perfectly observed, while only a noisy signal on

the output gap is observed by the monetary authorities. While this means that these two scenarios are not directly
comparable.
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Figure 2: The adjustments to the Taylor rule coefficients kπ and ky (ie. the differences κI
π − κπ and κI

y − κy) are
plotted against ρ for α = 1.5, β = 0.9, δ = 0.95, γ = 2, λ = 1 and σ2

π = σ2
π = 0.05.

uncertain environment the activism of the monetary authorities increases. As the adjustment

to the Taylor rule’s coefficients increases with ρ we also observe that such activism augments

with the central bank’s degree of risk-aversion.

While we do not have a result equivalent to Proposition 2, our numerical analysis shows that

similar conclusions are drawn by other parametric choices. However, the increased activism

manifest in Figure 2 is difficult to detect as the analysis of the unconditional variance of the

inflation rate, πt, the output gap, yt, and the short-term (real) interest rate, rt, reveals.

In fact, even under imperfect state observation the unconditional variance of the short-term

interest rate is independent of the coefficient ρ, confirming that empirically it may be hard to

appreciate the impact of pessimism on the monetary policy. To show this result consider that

under imperfect state observation zt = Azt−1 +Ψẑt−1 + εt, where Ψ = BKI and, as the state

vector is observed with a lag, ẑt = Azt−1 +Ψẑt−1. This implies that ẑt = Φzt−1, where Φ =

(I2 −Ψ)−1A. Replacing this expression in that for zt we find that zt = Azt−1 +ΨΦ zt−2 + εt,

which we can also write as zt = (I2 − AL − ΨΦL2)−1εt. It follows that Var[zt] = ΛINΛ′
I ,

where ΛI = (I2 − A − ΨΦ)−1, while Var[ẑt] = ΦΛINΛ′
IΦ

′. Finally, since under imperfect

state observation ut = KI ẑt, we have that Var[rt] = KIΦΛINΛ′
IΦ

′K′
I .
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Figure 3: The ratio (in percentage terms) between the unconditional variance of the inflation ratio Var[πt] and
its base value for ρ = 0 is plotted against ρ, under perfect and imperfect state observation, for α = 1.5, β = 0.9,
δ = 0.95, γ = 2, λ = 1 and σ2

π = σ2
π = 0.05.

Once again some long but straightforward algebra shows that

VarI [zt] =





(
1 +

1+ γκI
y −β

αγκI
π

)2
σ2
π +

(
1−γκI

y

γκI
π

)2
σ2
y − 1

α

(
1 +

1+ γκI
y −β

αγκI
π

)
σ2
π

− 1
α

(
1 +

1+ γκI
y −β

αγκI
π

)
σ2
π

1
α2 σ2

π



(3.5)

and that

VarI [rt] =
1

γ2

[(
1− β

α

)2

σ2
π + σ2

y

]
. (3.6)

This proves a result analogous to Proposition 3:

Proposition 5 With lagged observation of inflation and output, the unconditional variances of

the output gap, Var[yt], and the short-term (real) interest rate, Var[rt], are unaffected by the risk-

enhancement coefficient, ρ, and coincide with the values which prevail under risk-neutrality. The

unconditional variance of the inflation rate, Var[πt], is instead influenced by the risk-enhancement

coefficient in so far this affects the central bank’s optimal Taylor rule.

Proposition 5 indicates that the unconditional variances of the short-term interest rate and

the output gap are equal to those which prevail under perfect state observation for ρ = 0
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(VarI [rt] = Var[rt] and VarI [yt] = Var[yt]), while the unconditional variance of the inflation

rate is function of the Taylor rule’s coefficients κIπ and κIy. As these coefficients depend on the

central bank’s risk-aversion, VarI [πt] varies with the risk-enhancement coefficient and indeed

numerical analysis shows that such value decreases with ρ, explaining why it is possible that

for a larger ρ (and hence with a more aggressive Taylor-rule) the variability of the short-term

interest remains unchanged.

Figure 3 plots in both the perfect state and imperfect state scenarios the ratio (in percent-

age terms) between the inflation rate’s unconditional variance, Var[πt], and its base value for

ρ = 0 (respectively Varρ=0[πt] and VarIρ=0[πt]) against the risk-enhancement coefficient.14 The

plot clearly illustrates the reduction in the volatility of the inflation rate in the presence of a

pessimistic central bank in both scenarios. As the volatility of the inflation rate is smaller with

pessimistic monetary authorities, and decreasing in ρ, a more aggressive Taylor rule will not

result in a more volatile short-term interest rate. We therefore conclude that in both scenarios

the impact of pessimism on the central bank’s optimal monetary policy only manifests via a

reduced volatility in the inflation rate, as the variability of both the output gap and short-term

interest rate is unaffected by ρ.

4 A Positive First-best Inflation Rate

In Section 2 we have assumed that the first-best value for the inflation rate is zero. We wonder

what happens when we introduce the realistic assumption that such value is some positive

constant π∗. Assuming, as in Svensson’s original formulation, that at time t the cost function

is ct = (πt − π∗)2 + λy2t implies that we should modify the DLEQG problem we investigated in

Section 2. In particular, define ςt = πt − π∗ and rewrite the linear equations (1.1) and (1.2)

governing the dynamics of the inflation rate and the output gap as follows

ςt = ςt−1 + αyt−1 + επt , (4.1)

yt = βyt−1 − γ(ιt−1 − π∗) + εyt , (4.2)
14It should be noted that the base values for this unconditional variance differ between the two scenarios. In

correspondence with the parametric choice of Figure 1, the unconditional variance of the inflation rate for ρ = 0
in the imperfect state scenario is about 4 times bigger than the corresponding value for the perfect state scenario,
VarIρ=0[πt] ≈ 4Varρ=0[πt].
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where now the control variable is the adjusted short-term real interest rate ιt ≡ rt+π∗ = it−ςt.

For z′t ≡ (ςt yt) we can rewrite the plant equation as

zt = Azt−1 + But−1 + µ + εt ,

with A, B and εt as in Section 2 and µ ≡
(

0

γπ∗

)
.

This is a generalization of the DLEQG problem where the law of motion for the state vector

is subject to predetermined disturbances. In fact, the vector µ contains deterministic values.

The analysis of the DLEQG problem with pre-determined disturbances is involving. We deal

with it in the next Section.

4.1 DLEQG Problems with Pre-determined Disturbances

Let assume the state vector respects the following law of motion

zt = Azt−1 + But−1 + µt + εt ,

where the vector µt contains pre-determined values. These values are known in advance

and represent anticipated disturbances which modify the original plant equation introduced in

Definition 1.

Under perfect state observation, with a pre-determined disturbance term µt in the law of

motion for the state vector Theorem 1 holds, as the total stress in t, St, is still a quadratic form

in ut, εt+1 and zt. However, because of the pre-determined disturbance term µt Theorem 2

must be extended as follows:

Theorem 5 Under perfect state observation, if the matrix (δΠt+1)−1−ρN is positive definite and

the state vector respects the linear plant equation with pre-determined disturbances, the optimal

policy in t is

ut = Kt zt + (Q + B′Π̃t+1B)−1B′Π̃t+1 (Π
−1
t+1 ϑt+1 − µt+1) , (4.3)

where Πt, Kt and Π̃t+1 respect the recursive formulae presented in Theorem 2 and

ϑt = Γ′
tΠ̃t+1(Π

−1
t+1 ϑt+1 − µt+1) , with Γt = A + BKt . (4.4)

Proof. See the Appendix.
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Theorem 5 indicates that in the presence of pre-determined disturbances the optimal policy

contains a risk-adjusted correction, the second component in the right hand side of equation

(4.3), which takes into account their anticipated values.

A second adjustment must be introduced under imperfect state observation, when pre-

determined disturbances enter into the plant equation for the state vector, to Theorem 4:

Theorem 6 - (Risk-sensitive Separation Principle). Under imperfect state observation, condi-

tionally on zt the stress in t is extremized for the optimal control, ut(zt) = Ktzt + (Q +

B′Π̃t+1B)−1B′Π̃t+1(Π
−1
t+1ϑt+1 − µt+1), in Theorem 5.

(Risk-sensitive Certainty Equivalence Principle). Under imperfect state observation, the optimal

policy in t is recouped by replacing zt in ut(zt) with the maximum stress estimate (MSE),

z̆t = (I − ρΩtΠt)
−1 (ẑt − ρΩt ϑt) . (4.5)

Proof. See the Appendix.

4.2 Optimal Monetary Policy with a Positive First-best Inflation Rate

Let us apply Theorem 5 to our analysis of monetary policy with a positive first-best inflation

rate. We can still concentrate on a steady state solution because the pre-determined distur-

bance terms, µ, are time-invariant. To pin down the steady state solution we just notice that

the recursive expression for the vector ϑt must yield a fixed point, ϑ = Γ′Π̃(Π−1ϑ−µ), which

implies that

ϑ = −Π (Π−1 − Γ′Π̃)−1 Γ′Π̃µ .

Given the expressions for Γ Π̃ and µ it can be checked that ϑ = 0. Inserting this vector in

the expression for the optimal control in Theorem 5 we find after some manipulation that the

optimal adjusted short-term interest rate is ιt = κπςt + κyyt + π∗, where κπ and κy respect

the expressions in Section 2. Given the definitions of ιt and ςt we conclude that the following

Proposition holds:

Proposition 6 With a positive first-best inflation rate, π∗, the optimal policy of a pessimistic

central bank is
rt = κπ(πt − π∗) + κyyt , (4.6)

where the coefficients κπ and κy respect the formulae in Proposition 1.
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In brief, the optimal short-term real interest rate corresponds to that obtained in Section 2 for

the inflation rate, πt, replaced by its deviation from the first-best level, πt−π∗. Bar this adjust-

ment, the optimal Taylor rule is identical to that derived for a normalized first-best inflation

rate. This is also true under imperfect state observation. In fact, the following Proposition

holds:

Proposition 7 With a positive first-best inflation rate, when output and inflation are observed

with one time lag, the optimal policy of a pessimistic central bank is

rt = κIπ(π̆t − π∗) + κIyy̆t , (4.7)

where the coefficients κIπ and κIy and the MSE for the inflation rate, π̆t, and the output gap, y̆t,

respect the formulae in Proposition 4.

Proof. See the Appendix.

5 Concluding Remarks

Uncertainty plays a crucial role in determining the optimal actions of policymakers. The pre-

cautionary principle is often invoked in the conduct of monetary policy. It requires that mone-

tary instruments should be set to counter-balance the effects of negative shocks to the economy.

Surprisingly, such principle is usually ignored in the literature on optimal monetary policy. An

exception is var der Ploeg (2009)), who seeks to investigate the impact of the precautionary

principle within standard models of optimal monetary policy introducing a risk-adjustment to

the preferences of the monetary authorities.

A problem with his analysis is that for tractability issues, in aggregating across periods the

loss in social welfare induced by deviations of output and inflation from first-best values, he

does away with time-discounting. While special this assumption also limits the possibility to

compare van der Ploeg’s analysis with that conducted within traditional models of monetary

policy.

We overcome this limitation by relying on a recursive representation of the monetary au-

thorities’s preferences, which allows to investigate their precautionary behavior under the as-

sumption that a time-discounting factor is applied to future losses in social welfare. Exploiting

recent advances within the optimal control literature (Whittle, 1990; Hansen and Sargent,
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1994, 1995, 2013), we show that the optimal monetary policy is set applying a pessimistic

choice mechanism, according to which monetary instruments are chosen in order to edge

against the worst economic shocks. We also find, within Svensson’s post-Keynesian monetary

policy formulation, that such pessimism induces the monetary authorities to act more aggres-

sively, contradicting the prevailing wisdom that amid an uncertain environment risk-aversion

should lead policymakers to more conservative choices.

The policy implications of our analysis are relevant to the current debate on the conduct of

monetary policy on the part of the ECB. In fact, given the large risks, i.e. the potential large

economic costs, associated with a deflationary spiral in the euro area our analysis suggests

that the ECB should not be hesitant and it should immediately embrace an aggressive expan-

sionary monetary stance. This is because, as argued by The Economist’s commentary cited in

the preamble, any hesitance would contradict the precautionary principle which should guide

monetary policy.

Importantly, we see that empirically it may be difficult to detect the impact of pessimism

on monetary policy. In fact, a more aggressive Taylor rule is matched by reduced volatility in

inflation, so that the volatility of the short-term monetary instrument is independent of the

degree of pessimism on the part of the monetary authorities. Finally, our conclusions are valid

both when the monetary authorities immediately observe inflation and output and when they

do it with a time lag, a non-trivial result considering that with the recursive preferences we

employ the certainty equivalence principle does not hold.
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Appendix

• Derivation of Theorem 1.
To prove this Theorem we first need to establish three preliminary Lemmas:

Lemma 1 The recursive optimization criterion (1.3) can be equivalently formulated as follows

Vt =
2

ρ
ln

(
min
ut

{
Et

[
exp

(ρ
2
(ct + δVt+1)

)]})
.

Proof. We can write

exp
(ρ
2
Vt

)
= exp

(
min
ut

{ρ

2
ct + ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])})

= min
ut

{
exp

[ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])]}

= min
ut

{
exp

[
ln

(
exp

(ρ
2
ct
))

+ ln
(
Et

[
exp

(
δ
ρ

2
Vt+1

)])]}

= min
ut

{
exp

[
ln

(
exp

(ρ
2
ct

)
Et

[
exp

(
δ
ρ

2
Vt+1

)])]}

= min
ut

{
exp

(ρ
2
ct
)
Et

[
exp

(
δ
ρ

2
Vt+1

)]}

= min
ut

{
Et

[
exp

(ρ
2
(ct + δVt+1)

)]}
, so that

ρ

2
Vt = ln

(
min
ut

{
Et

[
exp

(ρ
2
(ct + δVt+1)

)]})
.!

Lemma 2 If Q(u, ε) is a quadratic form in the vectors u and ε which admits the saddle point maxu minε Q(u, ε),
then the following holds

min
u

∫
exp

[
− 1

2
Q(u, ε)

]
dε ∝ exp

[
− 1

2
max
u

min
ε

Q(u, ε)

]
.
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Proof. Consider the quadratic form Q(u, ε), where Q(u, ε) = u′Quuu+ 2u′Qu εε+ ε′Qε εε. Assume Q

admits a minimum in ε in that Qε ε is positive definite. The following holds

∫
exp

[
− 1

2
Q(u, ε)

]
d ε ∝ exp

[
− 1

2
min
ε

Q(u, ε)

]
.

This is because, for ε̂ = argminQ, we can write Q(u, ε) = Q(u, ε̂) + (ε− ε̂)′Qε ε(ε− ε̂). In fact, as Qε ε

is positive definite and invertible, the minimum of Q with respect to ε is obtained for ε̂ = −Q−1
ε ε Qεu u

and is equal to Q(u, ε̂) = u′[Quu − Qu ε Q−1
ε ε Qεu]u. Then,

Q(u, ε)−Q(u, ε̂) = ε′Qε ε ε + ε′Qεu u + u′Qu ε ε + u′Qu ε Q
−1
ε ε Qεuu

= ε′Qε ε ε − ε′Qε ε ε̂ − ε̂′Qε ε ε + ε̂′Qε ε ε̂ = (ε − ε̂)′Qε ε (ε − ε̂) .

As Q(u, ε̂) = minε Q(u, ε) is a constant in the integration,

∫
exp

[
− 1

2
Q(u, ε)

]
d ε = exp

[
− 1

2
min
ε

Q(u, ε)

]
×

∫
exp[− 1

2
(ε− ε̂)′Qε ε(ε− ε̂)] d ε .

Let ∆ denote (ε−ε̂). Because Qε ε is positive definite, for ∆ integrated over Rn where n is the dimension
of ε, we find that

∫
exp(− 1

2 ∆
′Qε ε∆) d∆ = (2π)n/2det(Qε ε)−1/2. It follows

∫
exp

[
− 1

2
Q(u, ε)

]
d ε = (2π)n/2det(Qε ε)

−1/2 × exp

[
− 1

2
min
ε

Q(u, ε)

]
,

where the constant (2π)n/2det(Qε ε)−1/2 is independent of u.

Suppose that we solve the program minu
∫

exp
[
− 1

2 Q(u, ε)
]
. Assume that Q admits a saddle point

with respect to ε and u, so that maxu minε Q(u, ε) exists. This is the case if Qε ε > 0 and Quu −
Qu εQ−1

ε εQεu < 0 hold. As a corollary of the former result we have

min
u

∫
exp

[
−1

2
Q(u, ε)

]
d ε ∝ min

u
exp

[
−1

2
min
ε

Q(u, ε)

]
= exp

[
−1

2
max
u

min
ε

Q(u, ε)

]
.!

Lemma 3 In a Markovian DLEQG problem if the value function in t+ 1, Vt+1, is a quadratic form in the
state vector zt+1 and the (discounted) stress, St, satisfies a saddle point condition with respect to εt+1 and
ut, so that minut maxεt+1 St exists, the following proportionality condition holds

min
ut

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
∝ exp

(
ρ

2
min
ut

max
εt+1

St

)
,

where the proportionality constant is independent of the state vector zt, while the value function Vt is a
quadratic form in zt equal to the extremized stress, minut maxεt+1 St, plus a constant independent of zt.
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Proof. Consider that if Vt+1 is a quadratic form in zt+1, as the latter is linearly dependent on εt+1,

min
ut

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δVt+1)−

1

2
ε′t+1N

−1εt+1

)
dεt+1

= min
ut

∫
exp

(
ρ
St

2

)
dεt+1 .

Since Vt+1 is as a quadratic form in εt+1, ut and zt, so is St. If the discounted stress in t admits the
saddle point minut maxεt+1 St, then −St admits the saddle point maxut minεt+1 {−St}. We can apply
Lemma 2 for Q(ut, εt+1) = −ρSt, so that

min
ut

∫
exp

(
ρ
St

2

)
dεt+1 ∝ exp

(
−1

2
max
ut

min
εt+1

(−ρSt)

)
= exp

(
ρ

2
min
ut

max
εt+1

St

)
,

where the constant of proportionality depends on the covariance matrix of the vector εt+1 and it is
independent of both ut and zt. As St is a quadratic form in εt+1, ut and zt, from the saddle point
condition we conclude that the extremized value of the total stress (minut maxεt+1 St) is a quadratic
form in zt, while Vt in the statement of Lemma 1 is equal to the extremized value of St plus a constant
independent of zt. !

Proof of Theorem 1. From Lemma 1 we see that in any t, ut is chosen minimizing Et

[
exp

(ρ
2 (ct + δVt+1)

)]
.

Let us solve this minimization starting in T . We see that in T cT is a quadratic form in uT , while
VT+1 = dT+1 = 0. This implies that ST is a quadratic form in uT and εT+1 and hence that the con-
ditions to apply Lemma 3 are met, so that the saddle point condition for ST yields the optimal control
uT , with the extremized total stress, minuT maxεT+1 ST , and the value function, VT , both quadratic
forms in zT . Then, by backward induction the statement is established. !

• Derivation of Theorem 2.
First, we need to adapt to the Markovian DLEQG problem a result originally derived by Whittle.

Lemma 4 The saddle point conditions for the discounted total stress, St, with t = 1, 2, . . . , T , can be
satisfied by solving the following discounted future stress backward recursion

Ft(zt) = min
ut

{
max
εt+1

[
ct − 1

ρ
dt+1 + δFt+1(zt+1)

]}
,

with t = T, T − 1, . . . , 1, where Ft(zt), denoted as the extremized discounted future stress, is a quadratic
form in the state vector zt, Ft(zt) ≡ z′tΠtzt with ΠT+1 ≡ 0. The value function in t is Vt = νt + Ft(zt),
where νt is independent of zt.

Proof. Let us start from t = T . By definition VT+1 = 0 and dT+1 = 0. Given that cT is a quadratic
form in uT and zT , we immediately see that: i) imposing the saddle point condition for the total stress
in T , ST , is equivalent to solving the discounted future stress backward recursion; and ii) there exist a
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matrix ΠT such that the extremized (discounted) future stress is FT (zT ) ≡ z′TΠT zT and a constant νT
independent of zT such that exp(ρVT /2) = exp( 12ρ[νT + FT (zT )]). Proceeding backward, the optimal
control vector at time T − 1 is obtained by imposing the following saddle point condition

min
uT−1

max
εT

ST−1 = min
uT−1

{
max
εT

[
cT−1 −

1

ρ
dT + δVT

]}

Since VT = νT + FT (zT ) and νT is independent of zT , this is equivalent to the saddle point condition

min
uT−1

{
max
εT

[
cT−1 − 1

ρ
dT + δFT (zT )

]}
.

Given that cT−1 is a quadratic function in uT−1 and zT−1, dT is a quadratic form in εT and FT (zT )

is a quadratic form in zT while this is linear in uT−1, zT−1 and εT , we find that the result of this
extremization is given by a quadratic form of zT−1, so that there exists a matrix ΠT−1 such that
FT−1(zT−1) = z′T−1ΠT zT−1 and exp(ρVT−1/2) = exp( 12ρ[νT−1 + FT−1(zT−1)]). Since the same argu-
ment applies at any other date t as long as Ft+1 is a quadratic form in zt+1, by backward induction the
statement is proved. !

Proof of Theorem 2. In the Markovian DLEQG problem the extremized future stress Ft(zt) respects
the double recursion Ft = LL̃Ft+1, based on the following two operators

Lφ(z) = min
u

[c(z,u) + φ(Az+Bu)] and L̃φ(z) = max
ε

[φ(z+ ε) − 1

ρ
ε′N−1ε] ,

where φ(z) = δz′Πz, so that L̃φ(z) = maxε [(z + ε)′δΠ(z + ε) − 1
ρε

′N−1ε]. Taking first derivatives,
we find that

ε̃ = − (δΠ − 1

ρ
N−1)−1δΠ z = − Π̆

−1
δΠ z ,

which pins down a maximum if Π̆ is negative definite, or equivalently if (δΠ)−1 − ρN is positive
definite. Replacing this expression we conclude that L̃φ(z) = z′((δΠ)−1 − ρN)−1z = z′Π̃ z. For
L̃φ(z) = z′Π̃ z, solution of the operator L yields the standard recursive formulae for Π and K from the
Markovian LQG problem where Π̃ = ((δΠ)−1 − ρN)−1 replaces Π. Applying the two operators at time
t we obtain the recursive formulae for Πt and Kt, with the terminal condition ΠT+1 = 0, presented
in the statement. Importantly, as the cost function ct is positive definite in ut and zt, Q + B′Π̃t+1B is
positive definite, so that the second order condition for minimization in the operator L holds and Πt is
positive semidefinite. !

• Proof of Proposition 1.
Solving for the fixed point in the modified Riccati equation (1.8), we find after some long but straight-
forward algebra that Vt = ν + z′tΠzt, where ν is a constant independent of zt and

Π =




1 + δW αδW

αδW λ+ α2δW



 ,
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W is a positive root of the equation δ(α2−δ(α2+λ)ρσ2
π)W

2−(δ(α2+λ)−λ(1−δρσ2
π))W−λ = 0, which

re-arranged can be written in the form employed in the statement of the Proposition, while ut = Kzt

with K = 1
γ

(
αδW

α2δW+λ−θρσ2
π

β + α2δW
α2δW+λ−θρσ2

π

)
and θ = δ(λ+ δ(α2 + λ)W ). !

• Proof of Proposition 2.
We notice that κπ and κy can be written as functions of ρ and W , κπ = Kπ(W, ρ) and κy = Ky(W, ρ).
Then, we show that W is increasing in ρ and hence that Kπ(., .) and Ky(., .) are increasing in both
arguments, W and ρ. To see that W rises with ρ, notice that the equation solved by W can be rewritten
as follows

(A+Aρρ)W
2 = λ+ (B +Bρρ)W ,

where A = δα2 > 0, Aρ = −δ(α2 + δ) < 0, B = δα2 − (1 − δ)λ and Bρ = δλσ2
π > 0. Graphical

inspection shows that this equation admits only one positive solution W+. As ρ increases, A + Aρρ

diminishes, so that in the Cartesian space the parabola on the left hand side moves downward, while
(B+Bρρ) increases, so that the straight line on the right hand side rotates counter-clockwise. Graphical
inspection, as represented in the following diagram, shows that W+ augments.

λ+ (B +Bρρ)W

λ+ (B +Bρρ′)W

(A+Aρρ′)W 2(A+Aρρ)W 2

W+ W
′

+ W

λ

The functions Kπ(., .) and Ky(., .) depend on W and ρ through the ratio α2δW
α2δW+λ−θσ2

πρ
, with θ =

δλ+ δ2(α2 + λ)W . Kπ(., .) and Ky(., .) rise with this ratio, which is positive for σ2
π small. For σ2

π small,
so that λ > θσ2

πρ, this ratio is increasing in W . In addition, this ratio is clearly increasing in ρ. !

• Derivation of Theorem 3.

First we establish a preliminary result, which reformulates Lemma 3 under imperfect state observation:

Lemma 5 In a Markovian DLEQG problem, under imperfect state observation, if the value function Vt+1 is
a quadratic form in the state vector zt+1 and the stress St satisfies a saddle point condition with respect to
ξt (with ξ′t ≡ (z′t−1 − ẑ′t−1 ψ′

t ψ
′
t+1)) and ut, so that minut maxξt

St exists, the following proportionality
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condition holds

min
ut

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
∝ exp

(
ρ

2
min
ut

max
ξt

St

)
,

where the proportionality constant is independent of zt, while the value function Vt is a quadratic form in
zt equal to the extremized discounted stress minut maxξt

St plus a constant independent of zt.

Proof. Under imperfect state observation Vt+1 is a function of zt+1, while ct is function of zt. Since
under imperfect state information zt and zt+1 can be expressed in terms of the vector ξt, we have

min
ut

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δVt+1)−

1

2
ξ′tΥ

−1
t−1ξt

)
dξt ,

where Υt−1 denotes the covariance matrix of ξt conditional on observation history. In addition, since
(zt−1 − ẑt−1)′ ⊥ ψ′

t ⊥ ψ′
t+1, we can write

min
ut

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δVt+1)−

1

2

(
ψ′

t+1P
−1ψt+1 +

ψ′
tP

−1ψt + (zt−1 − ẑt−1)
′Ω−1

t−1 (zt−1 − ẑt−1)

))
dξt

= min
ut

∫
exp

(
ρ
St

2

)
dξt .

We proceed as in the Proof of Lemma 3. Since Vt+1 is a quadratic function of zt+1 and the latter is
linearly dependent on ξt and ut, St is a quadratic form in ξt and ut. If St respects the aforementioned
saddle point condition, exploiting Lemma 2, we conclude that

min
ut

∫
exp

(
ρ
St

2

)
dξt = min

ut

∫
exp

(
−1

2
(−ρSt)︸ ︷︷ ︸
Q(ut,ξt)

)
dξt

∝ exp

(
−1

2
max
ut

min
ξt

(−ρSt)

)
= exp

(
ρ

2
min
ut

max
ξt

St

)
,

where we have made use of the fact that −St admits a saddle point in ut and in ξt. As St respects the
saddle point condition, its extremized value will be a quadratic form in zt and so will be Vt. !

Proof of Theorem 3. It is as that of Theorem 1 with ξt replacing εt+1 throughout. !

• Derivation of Theorem 4.
Let Pt(zt) denote the extremized discounted past stress defined as

Pt(zt) = max
zt−1

{
− 1

ρ

(
dt + Dt−1

)}
.
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The following Lemma adapts to the Markovian DLEQG problem a result originally derived by Whittle:

Lemma 6 Under imperfect state observation, the extremization of the discounted stress at time t, with
t = 1, 2, . . . , T , is obtained operating into two stages. In the first stage, the extremized discounted past and
future stresses, Pt(zt) and Ft(zt), are calculated conditionally on zt. Pt and Ft, relate to estimation and
control respectively: the former identifies the estimate for zt conditional on past observations; the latter
pins down the control ut(zt) which would be optimal if zt were known. In the second stage, the saddle
point for the discounted stress St is achieved by maximizing Pt(zt) + Ft(zt) with respect to zt. This yields
the maximum stress estimate (MSE), z̆t, for zt and the optimal control, ut(z̆t).

Proof. To establish this result notice that ξt contains zt−1 − ẑt−1, εt, ηt, εt+1 and ηt+1. They can
be expressed as linear functions of the unobservable (at time t) vectors zt−1, zt, zt+1 and wt+1. The
saddle-point condition for the stress in t in Theorem 3 can be equivalently written as

min
ut

max
zt−1,zt,zt+1,wt+1

St .

It can be satisfied proceeding in two stages: in stage i), conditionally on zt, St is extremized with
respect to ut, zt−1, zt+1 and wt+1; in stage ii) the resulting function is extremized with respect to zt:

min
ut

max
zt−1,zt,zt+1,wt+1

St ⇔ max
zt

{
min
ut

max
zt−1,zt+1,wt+1

St

}
.

In stage i), conditionally on zt, the extremization of the stress is achieved by isolating terms in St

pertaining to past and future, − 1
ρ (dt +Dt−1) and ct − 1

ρdt+1 + δVt+1, and solving the programs

max
zt−1

{
− 1

ρ

(
dt + Dt−1

)}
and min

ut

max
zt+1,wt+1

{
ct − 1

ρ
dt+1 + δVt+1

}
.

As zt+1 and wt+1 are linearly dependent on εt+1 and ηt+1, the latter program can be written as follows

min
ut

max
εt+1,ηt+1

{
ct − 1

ρ
dt+1 + δVt+1

}
.

The maximization of ct − (1/ρ)dt+1 + Vt+1 with respect to ηt+1 reduces to maxηt+1
{−(1/ρ)dt+1} =

− 1
ρε

′
t+1N

−1εt+1. This means that under imperfect state information the extremization, conditionally on
zt, of St with respect to ut, zt+1 and wt+1 is equivalent to the extremization of the stress under perfect
state information with respect to ut and εt+1. Lemma 4 shows that this corresponds to calculating the
extremized future stress, Ft(zt), which yields the optimal policy, u(zt), conditional on zt. The former
program instead corresponds to calculating the extremized past stress in t, Pt(zt). As the maximand in
the definition of the extremized past stress is proportional to the log of the conditional density function
of zt, its arg max yields the ML estimate of zt. In stage ii) estimation and control are recoupled by
maximizing the sum Pt(zt) + Ft(zt) with respect to the current state vector zt. !
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Proof of Theorem 4. We can apply Theorem 3 and Lemma 6. Conditionally on zt the extremized
future stress, Ft, respects the backward-looking recursion in Lemma 4 and it is therefore a quadratic
form in zt, Ft(zt) = z′tΠtzt. Theorem 2 provides the modified Riccati equation for the matrix Πt

and the conditional optimal policy, ut(zt). As for the extremized past stress consider that given the
definition of Dt−1 we see that maxzt−1 − 1

ρ {dt + Dt−1} is equivalent to maxzt−1
1
ρ2 ln f(zt) where f(.)

is the conditional density function of zt. The maximum corresponds to Pt(zt) = − 1
ρDt + · · · , where · · ·

indicates terms independent of zt.

Re-coupling the extremization of the past and future stresses requires maximizing the sum Pt(zt) +

Ft(zt) with respect to zt to obtain the MSE, z̆t. Given that Pt(zt) + Ft(zt) = −(1/ρ)(zt − ẑt)′Ω
−1
t (zt −

ẑt) + z′tΠtzt plus terms independent of zt, from the first derivative of this sum with respect to zt it is
immediate to see that, for Ω−1

t − ρΠt positive definite, z̆t is given by the following expression

z̆t = (I − ρΩt Πt)
−1 ẑt .

Finally, the optimal control vector under imperfect state observation is given by Theorem 2 where z̆t

replaces zt, i.e. ut = Ktz̆t, and Kt is the matrix of optimal coefficients presented in Theorem 2. !

• Proof of Proposition 4.
When the lag of the state vector is observed in t the stress is simplified, in that dt = ε′tN

−1εt for
t = 1, 2, . . . , T . It follows that the extremization of the past stress is reached for zt−1 = ẑt−1 and is
given by Pt(zt) = − 1

ρ ε
′
tN

−1εt + · · · , where once again + · · · denotes terms independent of zt. Since
in steady state Ft(zt) = z′tΠzt, in re-coupling past and future extremization we solve

max
zt

{
−1

ρ
ε′tN

−1εt + z′tΠzt

}
.

Given that at time t the observable vector is wt = zt−1, the conditional expectation of zt is ẑt =

Azt−1 +But−1. As we can write εt = zt − ẑt, we need to solve

max
zt

{
−1

ρ
(zt − ẑt)

′N−1(zt − ẑt) + z′tΠzt

}
.

We immediately conclude that, for N−1 − ρΠ positive definite, the maximum stress estimate (MSE) z̆t

is given by
z̆t = (I − ρNΠ)−1ẑt .

Simple algebraic transformations show that z̆t = (I + ρG)ẑt. As indicated in Theorem 4, the optimal
control is then obtained by inserting the MSE, z̆t, in lieu of zt into the control rule which would prevail
under perfect state observation. !

• Proof of Theorem 5

Lemma 3 and Theorem 1 hold, as the total stress in t, St, is still a quadratic form in ut, εt+1 and
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zt. However, this quadratic form is no longer homogeneous in zt. This implies that Lemma 4 must
be amended, in that the extremized future stress is now a non-homogenous quadratic form, Ft(zt) =

z′tΠtzt − 2ϑ′
tzt · · · (with ϑt a vector of coefficients for the components of zt and · · · indicating terms

independent of zt). Given that in T + 1 FT+1 ≡ 0, the terminal conditions ΠT+1 = 0 and ϑT+1 = 0

apply. Therefore, we just repeat the steps followed in the proof of Theorem 2. Recall that the extremized
future stress respects the double recursion Ft = LL̃Ft+1 based on the two operators

Lφ(z) = min
u

[c(z,u) + φ(Az+Bu+ µ)] and L̃φ(z) = max
ε

[φ(z+ ε) − 1

ρ
ε′N−1ε] .

Assume that φ(z) = δz′Π z − 2δϑ′z+ · · · , so that L̃φ(z) = maxε [(z+ ε)′δΠ(z+ ε) − 2δϑ′(z+ ε) −
1
ρε

′N−1ε + · · · ]. Taking first derivatives, we find that

ε̃ = − (δΠ − 1

ρ
N−1)−1δΠ z + (δΠ − 1

ρ
N−1)−1δϑ ,

which pins down a maximum if (δΠ)−1−ρN is positive definite. Replacing this expression we conclude
that L̃φ(z) = z′Π̃ z − 2ϑ̃

′
z + · · · , where Π̃ = ((δΠ)−1 − ρN)−1, ϑ̃ = Π̃Π−1ϑ and · · · denotes

terms independent of z. For L̃φ(z) = z′Π̃ z − 2ϑ̃
′
z + · · · , the solution of the operator L yields the

standard recursive formulae for Π, K and ϑ from the Markovian LQG problem with pre-determined
disturbances, where Π̃ = ((δΠ)−1 − ρN)−1 and ϑ̃ replace respectively Π and ϑ. Specifically applying
the double recursion Ft = LL̃Ft+1, we find that F (zt) = z′tΠtzt − 2ϑ̃

′
t+1zt + · · · for ut = Ktzt +

(Q +B′Π̃t+1B)−1B′(ϑ̃t+1 − Π̃t+1µt+1), where Kt = −(Q +B′Π̃t+1B)−1(S +B′Π̃t+1A). Replacing
ϑ̃t+1 with Π̃t+1Π

−1
t+1ϑt+1 we find the recursive formulae presented in the statement. !

• Proof of Theorem 6

Lemma 6 still applies. In recoupling the extremized past and future stresses, the sum Pt(zt,Ht)+Ft(zt)

is maximized with respect to zt to obtain the MSE, z̆t. Given that Pt(zt,Ht) + Ft(zt) = −(1/ρ)(zt −
ẑt)′Ω

−1
t (zt − ẑt) + z′tΠtzt − 2ϑ′

tzt plus terms independent of zt, taking the first derivative of this sum
with respect to zt we see that, for Ω−1

t − ρΠt positive definite,

z̆t = (I − ρΩt Πt)
−1 (ẑt − ρΩt ϑt) ,

where ẑt is still the ML estimate of zt. !

• Proof of Proposition 6.
Since ϑ = 0, Ft(zt) = z′tΠtzt. In addition in the proof of Proposition 4 we have seen that Pt(zt) =

− 1
ρ ε

′
tN

−1εt + · · · Then, applying Lemma 6 we find that

z̆t = (I − ρNΠ)−1ẑt ,
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where now the ML estimate for zt is ẑt = Azt−1 +But−1 + µ. Given the expressions for A, B and µ,
and the definitions of zt and ιt, we have that this ML estimate can be written as in Section 2,

π̂t = πt−1 + α yt ,

ŷt = β yt−1 − γ rt−1 . !
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Technical Appendix: Detailed Calculations

A.1. Monotonicity and Convexity of the Optimization Criterion (1.3).
Let R(V) ≡ ln

(
E

[
exp

(
δ ρ
2 V

)])
. Then assume V1 ≥ V2 ≥ 0. Consider that

R(V1)−R(V2) = ln
(
E

[
exp

(
δ
ρ

2
V1

)])
− ln

(
E

[
exp

(
δ
ρ

2
V2

)])
= ln

(
E

[
exp

(
δ ρ
2 V1

)]

E
[
exp

(
δ ρ
2 V2

)]
)

≥ 0 .

This means that R(V) is monotone increasing in V . So, consider the convex combination θV1 + (1 −
θ)V2, with 0 < θ < 1.

R(θV1 + (1− θ)V2) = ln
(
E

[
exp

(
δ
ρ

2
[θV1 + (1− θ)V2]

)])
= ln

(
E

[
exp

(
δ
ρ

2
V1

)θ
exp

(
δ
ρ

2
V2

)1−θ
])

≤ ln

({
E

[
exp

(
δ
ρ

2
V1

)]}θ
·
{
E

[
exp

(
δ
ρ

2
V2

)]}1−θ
)

= ln(θ) ln
(
E

[
exp

(
δ
ρ

2
V1

)])
+ ln(1− θ)

(
E

[
exp

(
δ
ρ

2
V2

)])

= ln(θ)R(V1) + ln(1− θ)R(V2) ,

where the inequality follows from Hölder’s inequality. In fact, Hölder’s inequality states that for p and
q such that 1 < p, q, with 1/p + 1/q = 1, E[| X · Y |] ≤ (E[| X |p])1/p · (E[| Y |q])1/q. We can
apply Hölder’s inequality setting X ≡ exp

(
δ ρ
2 V1

)θ and Y ≡ exp
(
δ ρ
2 V2

)1−θ, choosing p = 1/θ and
q = 1/(1− θ) and noticing that the exponential function is non-negative. This means that R is convex
in V . Define Γ(u, z,V) ≡ Q(u, z) +R(V), where Q is positive definite in u and z. From the properties
of the function R, it follows that Γ(u, z,V) is monotone increasing in V and convex in u, z and V ,
so that the recursive optimization criterion captures risk-aversion. In fact, the larger ρ the larger the
convexity of the function Γ.

A.2. Limit Properties of the Optimization Criterion (1.3).
For ρ > 0 we have that

ρVt = min
ut

{
ρ ct + ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}
= ρ min

ut

{
ct +

2

ρ
ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}
,

i.e. Vt = min
ut

{
ct +

2

ρ
ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}
.

We proceed by backward induction. Assume that Vt+1 is independent of ρ (this is certaintly true for in
N + 1. Then,

lim
ρ↓0

1

ρ
ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])
= lim

ρ↓0
δ
1

2

Et

[
exp

(
δ ρ

2 Vt+1

)
· Vt+1

]

Et

[
exp

(
δ ρ

2 Vt+1

)] =
1

2
δEt [Vt+1] ,
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where we have used the Hôpital’s rule and moved the derivative operator inside the expectation op-
erator. This implies that for ρ ↓ 0 we have Vt = minut {ct + δEt [Vt+1]}, with Vt independent of
ρ. Because by definition VT+1 is independent of ρ, by backward induction the argmin of the Marko-
vian DLEQG problem converges to that of the corresponding Markovian DLQG problem for ρ ↓ 0. This
implies that the Markovian DLEQG problem encompasses the Markovian DLQG problem and it can be
considered an extension of the latter.

A.3. The Optimization Criterion (1.3) and Epstein and Zin’s Preferences.
Suppose U t solves Epstein and Zin’s recursion

U t = max

{
(1− δ)C1−η

t + δEt

[
U1−γ

t+1

]( 1−η
1−γ )

}( 1
1−η )

,

where 1/η is the elasticity of inter-temporal substitution. Let η = 1. Tallarini (2000) shows that

U t = max

{
C1−δ

t

(
Et

[
U1−γ

t+1

] )( δ
1−γ )

}
.

Taking logs,

lnU t = max

{
(1− δ) lnCt +

δ

1− γ
lnEt

[
U1−γ

t+1

]}
,

or equivalently
lnU t

1− δ
= max

{
lnCt +

δ

(1− δ)(1− γ)
lnEt

[
U1−γ

t+1

]}
.

We can re-write this as

− lnU t

1− δ
= min

{
− lnCt − δ

(1− δ)(1− γ)
lnEt

[
U1−γ

t+1

]}
.

For Vt = − lnUt
1−δ , we have that −(1− δ)Vt = lnU t, so that U t+1 = exp(−(1− δ)Vt+1) and

U1−γ
t+1 = (exp(−(1− δ)Vt+1))

1−γ = exp(−(1− δ)(1− γ)Vt+1) .

Setting ρ′ = −2(1− δ)(1− γ), we can write

Vt = min

{
− lnCt + δ

2

ρ′
lnEt

[
exp

(
ρ′

2
Vt+1

)]}
,

which corresponds to the optimization criterion (1.3) for ρ = ρ′

δ and − lnCt equal to a quadratic form
in the control and state vectors, ut and zt.
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A.4. The Discounted Future Stress Recursion.
From Lemma 3 we know that if Vt+1 is a quadratic form in zt+1

exp

(
ρ

2
Vt

)
= constant × exp

(
ρ

2
min
ut

max
εt+1

St

)
= exp

(
ρ

2

[
γt +min

ut

max
εt+1

St

])
,

for γt a constant independent of zt. This implies that Vt = γt +minut maxεt+1 St. Then, assume that
Vt+1 = νt+1 + z′t+1Πt+1zt+1, St = ct − 1

ρdt+1 + δVt+1, it follows that

min
ut

max
εt+1

St = min
ut

{
max
εt+1

[
ct − 1

ρ
dt+1 + δνt+1 + δ z′t+1Πt+1zt+1

]}

= δνt+1 + min
ut

{
max
εt+1

[
ct − 1

ρ
dt+1 + δ z′t+1Πt+1zt+1

]}

= δνt+1 + z′tΠtzt = δνt+1 + Ft(zt) ,

so that Vt = γt +minut maxεt+1 St = νt + Ft(zt), with νt = γt + δνt+1 and Ft(zt) = z′tΠtzt.

A.5. The Value Function.
Consider that (for n the dimension of the vector εt+1)

Et

[
exp

(ρ
2
(ct + δVt+1)

)]
= (2π)−n/2det(N)−1/2

∫
exp

(
ρ

2
(ct + δVt+1)−

1

2
ε′t+1N

−1εt+1

)
dεt+1

= (2π)−n/2det(N)−1/2

∫
exp

(
ρ
St

2

)
dεt+1 , so that

exp

(
ρ

2
Vt

)
= (2π)−n/2det(N)−1/2 min

ut

∫
exp

(
ρ
St

2

)
dεt+1 .

The function −ρSt is a quadratic form in ut and εt+1, which we can write as u′
tSuuut + 2u′

tSuεεt+1 +

ε′t+1Sεεεt+1, with Sεε = N−1 − δρΠt+1. We can apply Lemma 2. From its proof we know that

min
ut

∫
exp

(
ρ
St

2

)
dεt+1 = (2π)n/2 det(N−1 − δρΠt+1)

−1/2 × exp

(
ρ

2
min
ut

max
εt+1

St

)
.

Notice that N−1−δρΠt+1 = N−1(I−δρNΠt+1), so that det(N−1−δρΠt+1) = det(I−δρNΠt+1)/det(N).
Therefore,

exp

(
ρ

2
Vt

)
= det(I − δ ρNΠt+1)

−1/2 min
ut

∫
exp

(
ρ
St

2

)
dεt+1 .

This implies that in A.4. γt = 2
ρ ln(det(I − δ ρNΠt+1)−1/2) = − 1

ρ ln(det(I − δ ρNΠt+1)), while νt =

γt + δνt+1. In steady state Vt = F (zt) + ν, where F (zt) = z′tΠzt, while

ν = − 1

1− δ

(
1

ρ
ln(det(I − δ ρNΠ))

)
.
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For ρ ↓ 0 we can show that γt → δTr(NΠt+1). This also implies that in steady state ρ ↓ 0 ν →
δ

1−δTr(NΠ). To prove this result consider that to calculate the limit for ρ ↓ 0 of γt we need to apply
Hôpital’s rule. Then, we should use the following results which apply to any invertible matrix Ξ

d ln(det(Ξ))

d y
=

1

det(Ξ)

ddet(Ξ)

d y
and

ddet(Ξ)

d y
= det(Ξ)Tr

(
Ξ−1 dΞ

d y

)
.

Then,

d ln (det (I − δρNΠt+1))

d ρ
= − δ Tr

(
(I − δρNΠt+1)

−1 NΠt+1

)
.

For ρ ↓ 0 this converges to −δTr(NΠt+1). Applying Hôpital’s rule we conclude that γt → δTr(NΠt+1),
so that in steady state ν → δ

1−δTr(NΠ).

A.6. The L̃-Recursion.
Suppose φ(z) = δz′Πz, so that L̃φ(z) = maxε [(z+ ε)′δΠ(z+ ε) − 1

ρε
′N−1ε]. Taking first derivatives,

we find that

2

(
δΠ − 1

ρ
N−1

)
ε + 2δΠ z = 0 ⇔ ε̃ = −

(
δΠ − 1

ρ
N−1

)−1

δΠ z = − Π̌
−1

δΠ z ,

which identifies a maximum for Π̌ negative definite. Plugging this formula in the expression for L̃φ(z),
we find that

L̃φ(z) = − 1

ρ
ε̃′ N−1 ε̃ + (z + ε̃)′δΠ (z + ε̃)

= − 1

ρ
z′δΠΠ̌

−1
N−1 Π̌

−1
δΠ z + z′(I − Π̌

−1
δΠ)′δΠ (I − Π̌

−1
δΠ) z .

Now,

− 1

ρ
δΠΠ̌

−1
N−1 Π̌

−1
δΠ + (I − Π̌

−1
δΠ)′δΠ (I − Π̌

−1
δΠ) =

− 1

ρ
δΠΠ̌

−1
N−1 Π̌

−1
δΠ + δΠ − 2 δΠΠ̌

−1
δΠ + δΠΠ̌

−1
δΠΠ̌

−1
δΠ =

δΠ − 2 δΠΠ̌
−1

δΠ + δΠΠ̌
−1

[
Π − 1

ρ
N−1

]
Π̌

−1
δΠ =

δΠ − 2 δΠΠ̌
−1

δΠ + δΠΠ̌
−1

δΠ = δΠ − δΠΠ̌
−1

δΠ = δΠ [I − Π̌
−1

δΠ] .
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Consider that

δΠ − 1

ρ
N−1 = δ

1

ρ
N−1 ρNΠ − 1

ρ
N−1 , so that

(
δΠ − 1

ρ
N−1

)−1

= (δρNΠ − I)−1 ρN . Hence,

I −
(
δΠ − 1

ρ
N−1

)−1

δΠ = I + (I − δρNΠ)−1 δρNΠ .

Since for I+A invertible (I+A)−1 = I − (I+A)−1A, we find that

I −
(
δΠ − 1

ρ
N−1

)−1

δΠ = (I − δρNΠ)−1 and hence

δΠ

[
I −

(
δΠ − 1

ρ
N−1

)−1

δΠ

]
= δΠ (I − δρNΠ)−1 .

Then,
L̃φ(z) = z′δΠ [I − (I − (ρNδΠ)−1)−1] z = z′δΠ (I − δρNΠ)−1 z .

For Π invertible,

δΠ (I − ρNδΠ)−1 = δΠ [((δΠ)−1 − ρN) δΠ]−1 = ((δΠ)−1 − ρN)−1.

We conclude that L̃φ(z) = z′Π̃ z, where Π̃ = ((δΠ)−1 − ρN)−1 if Π is invertible and δΠ (I − δρNΠ)−1

otherwise.

A.7. Second Order Conditions for the L̃-Recursion.
Consider that the second order condition for the maximization in the L̃-recursion is that δΠ − 1

ρN
−1

being negative definite. Now, as this is a symmetric matrix, there exists a coordinate transformation
which diagonalizes it. This matrix will be negative definite iff all its eigenvalues are negative, or equiv-
alently iff its elements on the main diagonal are negative, suggesting that is possible to proceed as in
the scalar case. Hence, suppose that Π is invertible. The condition δΠ − 1

ρN
−1 < 0 is equivalent to

(δΠ)−1 − ρN > 0, as the elements on the main diagonal of the former matrix will be negative iff those
on the latter are positive, or equivalently the former matrix is negative definite iff the latter is positive
definite. We therefore establish that a solution to the L̃-recursion exists if an only if Π̃, the inverse of
(δΠ)−1 − ρN, is positive definite.

A.8. Second Order Conditions for the L-Recursion.
Suppose that Π is positive semi-definite and Q and R are positive definite. This will be true if the cost
function c is positive definite in u and z (that Q and R are positive definite when the cost function is
a positive definite quadratic form is obvious; that in this case Π is also positive semi-definite will be
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shown below). Assume also that the condition in Theorem 2 for the DLEQG problem to have a proper
solution holds, so that Π̃ is positive definite.

In solving the L-recursion, standard result shows that the control is u = (Q + B′Π̃B)−1 (S +

B′Π̃A ). As Q and Π̃ are positive definite a minimum is certainly reached since the denominator in the
expression for the optimal control is also positive definite.

Suppose that in t+1Πt+1 is positive semi-definite, while Π̃t+1 is positive definite. At time t, plugging
the optimal control vector into the L-recursion, standard algebra shows that Lφ(zt) = z′tΠtzt, where

Πt = R + A′Π̃t+1 A −
(
S′ + A′Π̃t+1 B

) (
Q + B′Π̃t+1 B

)−1 (
S + B′Π̃t+1 A

)
.

Now, consider that

Lφ(zt) = minut [c(zt,ut) + (Azt + But)
′Π̃t+1 (Azt + But)] .

Since the cost function c is a positive definite quadratic form in ut and zt and Π̃t+1 is positive definite,
Lφ(zt) is non-negative and therefore Πt must be positive semi-definite. As in T ΠT is equal to 0, by
induction we prove that at any time t the L-recursion has the solution discussed in the proof of Theorem
2, as the second order condition of the minimization is always respected, while the matrix Πt is positive
semi-definite.

That the cost function c is a positive definite quadratic form in ut and zt is a sufficient condition for
the DLEQG problem to have the recursive solution presented in Theorem 2, but it is not necessary. If
this assumption is abandoned, it will be necessary to verify that the matrix Q + B′Π̃t+1 B is positive
definite at any t.

A.9. The Coefficient ρ and the Relative Risk-aversion.
Using results from Tallarini (Tallarini, 2000), we have seen (A.3) that the risk-enhancement coefficient
is

ρ = 2

(
1

δ
− 1

)
(γ − 1) .

This value is larger than zero if γ > 1 = 1/η, i.e. if the coefficient of relative risk-aversion is larger than
the inverse of the inter-temporal elasticity of substitution in Epstein and Zin’s recursive preferences. In
other words, a positive risk-enhancement coefficient is equivalent to the condition that the coefficient
of relative risk-aversion is larger than the inverse of the inter-temporal elasticity of substitution.

A.10. The Coefficient ρ and Early Resolution of Uncertainty.
Kreps and Porteus (Kreps and Porteus, 1978) note that when the relative-risk aversion is greater than the
inverse of the inter-temporal elasticity of substitution, i.e. for γ > 1/η, preferences favor early resolution
of uncertainty. In fact, for γ = 1/η (or equivalently ρ = 0) Epstein and Zin’s recursive preferences be-
come linear, so that the utility function assumes the familiar time-separable form, while the value func-
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tion solves the standard Bellman’s equation from dynamic programming, Vt = minut {ct + δEt [Vt+1]}.
We have seen (A.5) that in our specification for ρ > 0 γ > 1, while 1 = 1/η. This means that, apply-
ing Kreps and Porteus’s argument, our recursive optimization induces earlier resolution of uncertainty
vis-a-vis the case of the time-separable quadratic form.

A.11. The Recursive Optimization with Deterministic Disturbances to the Plant Equation.

Assume that Vt+1 = z′t+1Πt+1z′t+1 − 2ϑ′
t+1zt+1 + νt+1. Then, consider

exp
(ρ
2
Vt

)
= min

ut

E
[
exp

(ρ
2
(ct + δVt+1)

)]
.

Given that zt+1 is a linear function of εt+1, this expression is equal to

exp
(ρ
2
Vt

)
= min

ut

{
(2π)−n/2

det(N)1/2

∫ [
exp

(
ρ

2
(ct + δVt+1) − 1

2
ε′t+1N

−1εt+1

)]
d εt+1

}
.

Given the expression for Vt+1, the argument inside the exponential can be written as ρ
2κt + Q(εt+1),

where κt contains terms independent of εt+1, while Q(εt+1) = − 1
2ε

′
t+1Qε,ε εt+1 +Q′

εεt+1 with

Qε,ε = (I− δρΠt+1N)N−1 and Qε = δ ρΠt+1(Azt +But) − δ ρϑt+1 .

For εt+1 = ε̂t+1 = Q−1
ε,εQε, Q(εt+1) has a maximum equal to Q(ε̂t+1) = 1

2Q
′
εQ

−1
ε,εQε. Moreover, and

more importantly, even if Q is not an homogeneous quadratic form, it is immediate to see that

Q(εt+1) = max
εt+1

Q(εt+1) − 1

2
(εt+1 − ε̂t+1)

′Qε,ε (εt+1 − ε̂t+1) .

In fact, − 1
2 (εt+1−ε̂t+1)′Qε,ε(εt+1−ε̂t+1) = − 1

2ε
′
t+1Qε,εεt+1− 1

2 ε̂
′
t+1Qε,εε̂t+1+ε̂′t+1Qε,εεt+1. Substituting

ε̂t+1 with Q−1
ε,εQε, we find − 1

2ε
′
t+1Qε,εεt+1+Q′

εεt+1− 1
2Q

′
εQ

−1
ε,εQε = Q(εt+1)−maxεt+1 Q(εt+1). Then,

exp
(ρ
2
Vt

)
=

(2π)−n/2

det(N)1/2
min
ut

{∫ [
exp

(
ρ

2
κt + max

εt+1

Q(εt+1) − 1

2
(εt+1 − ε̂t+1)

′Qε,ε (εt+1 − ε̂t+1)

)]
d εt+1

}

=
(2π)−n/2

det(N)1/2
min
ut

{
exp

(
ρ

2
κt + max

εt+1

Q(εt+1)

) ∫ [
exp

(
− 1

2
∆′Qε,ε ∆

)]
d∆

}
,

where ∆ = εt+1 − ε̂t+1. This implies that

exp
(ρ
2
Vt

)
=

(2π)−n/2

det(N)1/2
(2π)n/2

det(Qε,ε)1/2
min
ut

{
exp

(
ρ

2
κt + max

εt+1

Q(εt+1)

)}

Considering that det(Qε,ε) = det(I− δρΠt+1N)/det(N), we find that

exp
(ρ
2
Vt

)
= det(I− δρΠt+1N)−1/2 exp

(
min
ut

(
ρ

2
κt + max

εt+1

Q(εt+1)

))

= det(I− δρΠt+1N)−1/2 exp

(
min
ut

max
εt+1

(ρ
2
κt + Q(εt+1)

))
.
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It is immediate to see that, given the definitions of Q(εt+1) and St,

ρ

2
κt + Q(εt+1) =

ρ

2

(
ct + δ z′t+1Πt+1 z

′
t+1 − 2δϑ′

t+1zt+1 − 1

ρ
ε′t+1N

−1εt+1 + δ νt+1

)

=
ρ

2
(St + δ νt+1) and hence even in this case

exp
(ρ
2
Vt

)
= det(I− δρΠt+1N)−1/2 exp

(
ρ

2

(
min
ut

max
εt+1

St + δ νt+1

))
.

This implies that as in the homogenous case (see A.4 and A.5)

Vt = γt + δ νt+1 + min
ut

max
εt+1

St , where γt = − 1

ρ
log(det(I− δρΠt+1N)) .

A.12. The L̃-Recursion with Deterministic Disturbances to the Plant Equation.
Suppose φ(z) = δz′Πz− 2δϑ′z+ δν, so that L̃φ(z) = maxε [(z+ ε)′δΠ(z+ ε) − 2δϑ′(z+ ε) + δ ν −
1
ρε

′N−1ε]. Taking first derivatives, we find that

2

(
δΠ − 1

ρ
N−1

)
ε+2δ (Π z− ϑ) = 0 ⇔ ε̃ = −

(
δΠ − 1

ρ
N−1

)−1

δΠ z+

(
δΠ − 1

ρ
N−1

)−1

δϑ ,

ie. ε̃ = ε̃o + ε̃e, with ε̃o = −Π̌
−1

δΠz and ε̃e = Π̌
−1

δϑ. Plugging this formula in the expression for
L̃φ(z), we find that

L̃φ(z) = − 1

ρ
(ε̃o + ε̃e)

′ N−1 (ε̃o + ε̃e) + (z + ε̃o + ε̃e)
′δΠ (z + ε̃o + ε̃e) + −2 δϑ′(z + ε̃o + ε̃e) + δ ν

= − 1

ρ
ε̃′o N

−1 ε̃o + (z + ε̃o)
′δΠ (z + ε̃o)

︸ ︷︷ ︸
z′Π̃ z

− 1

ρ
ε̃′e N

−1 ε̃e + ε̃′eδΠ ε̃e − 2 δϑ′ε̃e + δ ν
︸ ︷︷ ︸

independent of z

− 2

ρ
ε̃′e N

−1 ε̃o + 2 ε̃′eδΠ (z + ε̃o) − 2 δϑ′(z + ε̃o)
︸ ︷︷ ︸

linear in z

.

The terms tagged as “z′Π̃ z” correspond to the function L̃φ(z) of the homogenous formulation (See
A.6), so that we concentrate on those tagged as “independent of z” and “linear z”. Thus, starting from
the terms “independent of z”, consider that, as ε̃e = Π̌

−1
δϑ, the sum of the first three can be written as

δ2 ϑ′
(
− 1

ρ
Π̌

−1
N−1 Π̌

−1
+ δ Π̌

−1
ΠΠ̌

−1 − 2 Π̌
−1

)
ϑ =

δ2 ϑ′
(
Π̌

−1
(
δΠ − 1

ρ
N−1

)
Π̌

−1 − 2 Π̌
−1

)
ϑ = − δ2 ϑ′Π̌

−1
ϑ .
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This implies that sum of the terms “independent of z” is equal to a constant ν̃, where

ν̃ = δ ν − δ2 ϑ′
(
δΠ − 1

ρ
N−1

)−1

ϑ = δ ν + δ2 ρϑ′N (I − δ ρΠN)−1 ϑ .

The terms “linear in z” can be re-written as follows

−2

[
1

ρ
ε̃′e N

−1 − ε̃′eδΠ + δϑ′
]
(z + ε̃o) +

2

ρ
ε̃′e N

−1 z .

Given the expression for ε̃e we find that the sum in the squared brackets is equal to

−2

[
1

ρ
δϑ′Π̌

−1
N−1 − δϑ′Π̌

−1
δΠ + δϑ′

]
(z + ε̃o)

= −2 δϑ′




I − Π̌

−1
(
δΠ − 1

ρ
N−1

)

︸ ︷︷ ︸
Π̌




(z + ε̃o) = 0 , while

2

ρ
ε̃′e N

−1 z = 2 δϑ′Π̌
−1

(ρN)−1 z .

which we can write as −2ϑ̃
′
z, with −ϑ̃ = δ (− ρN)−1Π̌

−1
(−ϑ). Now,

(− ρN)−1 Π̌
−1

= δ (− ρN)−1 (δΠ − (ρN)−1)−1

= (− ρN)−1 [(I + δΠ(− ρN))(−ρN)−1)]−1

= (I − δ ρΠN)−1 .

Then, we conclude that Lφ(z) = z′Π̃z − 2 ϑ̃
′
z + ν̃, with ϑ̃ = δ (− ρN)−1 Π̌

−1
ϑ = δ(I − δρΠN)−1 ϑ

and ν̃ = δν + δ2ρϑ′N (I− δρΠN)−1 ϑ. Notice that for Π invertible we can also write

ϑ̃ = δ ((δΠ)−1 − ρN)−1 (δΠ)−1 ϑ

= ((δΠ)−1 − ρN)−1 Π−1 ϑ = Π̃Π−1 ϑ .

A.13. The L-Recursion with Deterministic Disturbances to the Plant Equation.
Suppose that φ(z) = z′Πz− 2ϑ′z+ ν. Then, consider that

Lφ(z) = min
u

[c(z,u) + (Az + Bu + µ)′Π (Az + Bu + µ)− 2ϑ′(Az + Bu + µ) + ν] where

c(z,u) = u′Qu + 2u′Sz + zRz .
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The first order condition is

(Q + B′ΠB)u + (S + BΠA) z + B′(Πµ − ϑ) = 0 ,

so that the optimal control is uo + ue where

uo = Ko z = − (Q + B′ΠB)−1(S + BΠA) z ,

ue = Ke (Πµ − ϑ) = − (Q + B′ΠB)−1B′(Πµ − ϑ) .

Plugging the expressions for uo and ue into Lφ(z), we find that

z′Π−1 z − 2ϑ′
−1z + ν−1 = z′Rz + (uo + ue)

′Q (uo + ue) + 2 z′S′ (uo + ue)+

[Az + B(uo + ue) + µ]′Π [Az + B(uo + ue) + µ] − 2ϑ′[Az + B(uo + ue) + µ] + ν =

z′Rz + u′
oQuo + 2 z′S′ uo + (Az + Buo)

′Π (Az + Buo)︸ ︷︷ ︸
quadratic in z

+

2u′
e [(Q + B′ΠB)uo + 2 (S + B′ ΠA) z ] + 2 (Πµ − ϑ)′(Az + B uo)︸ ︷︷ ︸

linear in z

+

u′
eQue + (Bue + µ)′ Π (Bue + µ) − 2ϑ′(Bue + µ) + ν︸ ︷︷ ︸

independent of z

.

The terms in the right hand side of this equation tagged as “quadratic in z” will correspond to z′Π−1 z”,
the terms tagged as “linear in z” to will correspond to −2ϑ′

−1z, while those tagged “independent of z
will correspond to ν−1. In particular, as

z′Π−1 z = z′Rz + u′
oQuo + 2 z′S′ uo + [Az + Buo]

′Π [Az + Buo]

corresponds to the Riccati recursion of the homogenous LQG framework, standard results indicate that

Π−1 = R+A′ΠA− (S′ +A′ΠB)(Q+B′ΠB)−1(S+B′ΠA) .

Consider hence the sum of the terms “linear in z”, corresponding to −2ϑ′
−1z. Given that uo = Kz and

that K = (Q+B′ΠB)−1(S+B′ΠA), we see that the first term in parentheses is null so that

−2ϑ′
−1z = 2 (Πµ − ϑ)′Γ z , i.e. ϑ−1 = Γ′(ϑ − Πµ) with Γ = A + BK .

Consider hence the sum of the terms “independent of z”, corresponding to ν−1. We can write ue =

Kµµ + Kϑϑ, where Kµ = −(Q + B′ΠB)−1B′Π and Kϑ = (Q + B′ΠB)−1B′, and Bue + µ =
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(I+BKµ)µ+BKϑϑ. Substituting out ue and Bue + µ and regrouping terms, one finds that

ν−1 = µ′

(
K′

µ(Q+B′ΠB)Kµ +Π+ 2K′
µB

′Π

)
µ +

ϑ′

(
K′

ϑ(Q+B′ΠB)Kϑ − 2K′
ϑB

′

)
ϑ +

2ϑ′

(
K′

ϑ(Q+B′ΠB)Kµ +K′
ϑB

′Π− I−BKµ

)
µ + ν .

Substituting out Kµ and Kθ, we can show that the three terms in parentheses are equal respectively to
(I−BJ−1B′)Π, −BJ−1B′ and −(I−BJ−1B′Π), where J = (Q+B′ΠB). This implies that

ν−1 = µ′(I−BJ−1B′)Πµ − 2ϑ′(I−BJ−1B′Π)µ − ϑ′BJ−1B′ϑ + ν .

A.14. The Value Function with Deterministic Disturbances to the Plant Equation.

We just combine results in A.11, A.12 and A.13. From A.11 we know that if Vt+1 = z′t+1Πt+1z′t+1 −
2ϑ′

t+1zt+1 + νt+1. Then

Vt = γt + min
ut

max
εt+1

(
ct + δ z′t+1Πt+1 z

′
t+1 − 2δϑ′

t+1zt+1 − 1

ρ
ε′t+1N

−1εt+1 + δ νt+1

)
,

with γt = − 1
ρ log(det(I− δρΠt+1N)). From A.12 we know that

max
εt+1

(
ct + δz′t+1Πt+1z

′
t+1 − 2δϑ′

t+1zt+1 −
1

ρ
ε′t+1N

−1εt+1 + δνt+1

)
= z′t+1Π̃t+1z

′
t+1 − 2ϑ̃

′
t+1zt+1 + ν̃t+1 ,

where

Π̃t+1 = ((δΠt+1)
−1 − ρN)−1 ,

ϑ̃t+1 = ((δΠt+1)
−1 − ρN)−1 Π−1

t+1 ϑt+1 = δ (I − δρΠt+1N)−1 ϑt+1 ,

ν̃t+1 = δ νt+1 + δ2t+1 ρϑ
′
t+1N (I − δ ρΠt+1 N)−1 ϑt+1 .

Then, from A.13 we find that Vt = z′tΠtz′t − 2ϑ′
tzt + νt, where

Πt = R + A′Π̃t+1A − (S′ + A′Π̃t+1B)(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) ,

ϑt = Γ′
t(ϑ̃t+1 − Π̃t+1 µt+1) ,

νt = γt + ν̃t+1 + µ′
t+1(I−BJ̃−1

t+1B
′)Π̃t+1µt+1 − 2 ϑ̃

′
t+1(I−BJ̃−1

t+1B
′Π̃t+1)µt+1 − ϑ̃

′
t+1BJ̃−1

t+1B
′ϑ̃t+1

and J̃t+1 = (Q+B′Π̃t+1B).
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B. The Optimal Monetary Policy for a Pessimistic Central Bank

B.1. Optimal Monetary Policy.
In the stationary solution,

Π̃ = ((δΠ)−1 − ρN)−1 = δΠ (I2 − δ ρNΠ)−1

= δΠ




1− δρσ2

ππ1 −δρσ2
ππ1,2

−δρσ2
yπ1,2 1− δρσ2

yπ2




−1

=
δ

det(I2 − δ ρNΠ)




π1 π1,2

π1,2 π2








1− δρσ2

yπ2 δρσ2
ππ1,2

δρσ2
yπ1,2 1− δρσ2

ππ1





=
δ

det(I2 − δ ρNΠ)

(
(1− δρσ2

yπ2)π1 + δρσ2
yπ

2
1,2 π1,2

π1,2 (1− δρσ2
ππ1)π2 + δρσ2

ππ
2
1,2

)

=
δ

det(I2 − δ ρNΠ)
Π̂ .

where

det(I2 − δ ρNΠ) = 1− δρ(σ2
ππ1 + σ2

yπ2) + δ2 ρ2 det(Π)σ2
πσ

2
y .

It is immediate to check that B′Π̂B = γ2 π̂2, so that

(B′Π̃B)−1 =
1

δ

1

γ2

1

π̂2
det(I2 − δ ρNΠ) , B(B′Π̃B)−1B′ = det(I2 − δ ρNΠ)




0 0

0 1
δ

1
π̂2



 .

So,

B(B′Π̃B)−1B′Π̃ =




0 0

1
δ

π̂1,2

π̂2
1



 , I2 − B(B′Π̃B)−1B′Π̃ =




1 0

− 1
δ

π̂1,2

π̂2
0



 .
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In the modified Riccati equation we have

Π = R +A′Π̃
(
I2 − B(B′Π̃B)−1B′Π̃

)
A

=




1 0

0 λ



 +
δ

det(I2 − δ ρNΠ)




1 0

α β








π̂1 π̂1,2

π̂1,2 π̂2








1 0

− π̂1,2

π̂2
0








1 α

0 β





=




1 0

0 λ



 +
δ

det(I2 − δ ρNΠ)




1 0

α β








det(Π̂)

π̂2
0

0 0








1 α

0 β





=




1 0

0 λ



 + δ
det(Π̂)

det(I2 − δ ρNΠ)

1

π̂2

(
1 α

α α2

)
.

We can define W = 1

det(I2−δ ρNΠ)

(
π̂1 −

π̂2
1,2

π̂2

)
and conclude that

π1 = 1 + δW , π1,2 = α δW , π2 = λ + α2 δW .

Now,

π̂1 −
π̂2

1,2

π̂2
= π1 − δ ρdet(Π)σ2

y −
π2

1,2

π2 − δ ρdet(Π)σ2
π

=
(π1 − δ ρdet(Π)σ2

y) (π2 − δ ρdet(Π)σ2
π)− π2

1,2

π2 − δ ρdet(Π)σ2
π

=
det(Π)

[
1− δρ(σ2

ππ1 + σ2
yπ2) + δ2 ρ2 det(Π)σ2

πσ
2
y

]

π2 − δ ρdet(Π)σ2
π

=
det(Π)det(I2 − δ ρNΠ)

π2 − δ ρdet(Π)σ2
π

,

so that W = det(Π)

π2−δ ρdet(Π)σ2
π

. Given the expressions for π1, π1,2 and π2, we have that det(Π) =

λ+ δ(α2 + λ)W , so that

W =
λ + δ (α2 + λ)W

λ (1− δρσ2
π) + δ

(
α2 − δ (α2 + λ) ρ σ2

π

)
W

.

Rearranging we find that

δ

(
α2 − δ(α2 + λ)ρσ2

π

)
W 2 −

(
δ(α2 + λ) − λ + δλρσ2

π)

)
W − λ = 0
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whose roots are

W± =
δ(α2 + λ) − λ (1− δρσ2

π) ± ∆1/2

2 δ

(
α2 − δ(α2 + λ)ρσ2

π

) , where

∆ =

(
δ(α2+λ)−λ(1−δρσ2

π)

)2

+4δλ(α2−δ(α2+λ)ρσ2
π

)
. For ρ = 0, ∆ =

(
δα2−(1−δ)λ)

)2

+4α2δλ,

while

W± =
1

2

(
1 − (1− δ)λ±∆1/2

α2δ

)
= =

1

2



1 − (1− δ)λ

α2δ
±

√(
1 +

(1− δ)

α2δ

)2

+
4λ

α2



 .

Only the positive root will be coherent with the conditions that the matrix Π̃ is positive definite. This
means that there is no indeterminacy in the stationary solution. To determine K consider that

B′Π̃A =
δ

det(I2 − δ ρNΠ)
(0 − γ)




π̂1 π̂1,2

π̂1,2 π̂2








1 α

0 β





= − δ γ

det(I2 − δ ρNΠ)
(π̂1,2 απ̂1,2 + βπ̂2) .

Given that K = −(B′Π̃B)−1B′Π̃A, we find that

K =
1

γ

(
π̂1,2

π̂2
α
π̂1,2

π̂2
+ β

)
.

Finally, since π̂1,2 = π1,2 = αδW and π̂2 = π2 − δdet(Π)ρσ2
π = λ+α2δW − δ(λ+ δ(α2 +λ)W )ρσ2

π, we
find that

K =
1

γ

(
αδW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

β +
α2δW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

)
.

To reach a minimum δΠt+1 − (1/ρ)N−1 must be negative definite. This corresponds to the double
condition that

δπ1 −
1

ρ

1

σ2
π

< 0 , (δπ1 −
1

ρ

1

σ2
π

) (δπ2 −
1

ρ

1

σ2
y

) − δ2 π1,2 > 0 .
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B.2. The Value Function and the Inflation Forecast.
Given the plant equation for πt we immediately see that πt+1|t = πt + αyt. Then, consider that

z′tΠzt = (πt yt)




1 + δW αδW

α+ δW λ+ α2δW








πt

yt





= (πt yt)




1 0

0 λ








πt

yt



 + (πt yt)




δW αδW

αδW α2δW








πt

yt





= π2
t + λy2t + δ W (πt yt)




1

α




(
1 α

) 


πt

yt





= π2
t + λy2t + δW (πt + αyt)

2 .

Immediately it follows that

exp
(ρ
2
Vt

)
= exp

(
ρ

2
[ν + π2

t + λ y2t + δWπ2
t+1|t]

)
.

B.3. Inflation and Output Gap Forecast.
Since πt+1|t = πt + αyt, we find that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π

πt+1|t

)

Inserting this into the plant equation for output gap, we find that

yt+1|t = − α δ W

α2δW + λ− θρσ2
π

πt+1|t .

Since πt+2|t = πt+1|t + αyt+1|t and πt+1|t = −α2δW+λ−θρσ2
π

αδW yt+1|t, we conclude that

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t =

(
λ − θ ρ σ2

π

α2δW + λ− θρσ2
π

)
πt+1|t .
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B.4. Unconditional Variance of Inflation, Output Gap and Short-term Interest Rate.
By definition, considering that κy = β/γ + ακπ,

Γ = A+BK =




1 α

0 β



 +




0

− γ




(

κπ
β
γ + ακπ

)

=




1 α

0 β



 +




0 0

− γκπ −β − αγκπ



 =




1 α

− γκπ −αγκπ



 .

So,

I2 − Γ =




0 −α

γκπ 1 + αγκπ



 so that Λ = (I2 − Γ)−1 =
1

αγκπ




1 + αγκπ α

− γκπ 0



 .

Now, Var[zt] = ΛNΛ′. Consider that

ΛN =
1

αγκπ




1 + αγκπ α

− γκπ 0








σ2
π 0

0 σ2
y



 =
1

αγκπ




(1 + αγκπ)σ2

π ασ2
y

− γκπ σ2
π 0





so that

ΛNΛ′ =
1

(αγκπ)2




(1 + αγκπ)σ2

π ασ2
y

− γκπ σ2
π 0








1 + αγκπ − γκπ

α 0





=
1

(αγκπ)2




(1 + αγκπ)2 σ2

π + α2σ2
y − γκπ(1 + αγκπ)σ2

π

− γκπ(1 + αγκπ)σ2
π γ2κ2

πσ
2
π



 ,

ie.
Var[πt] =

(1 + αγκπ)2

(αγκπ)2
σ2
π +

1

(γκπ)2
σ2
y , Var[yt] =

1

α2
σ2
π .

Finally, Var[rt] = KVar[zt]K′. Consider that

Var[zt]K′ =
1

(αγκπ)2




(1 + αγκπ)2 σ2

π + α2σ2
y − γκπ(1 + αγκπ)σ2

π

− γκπ(1 + αγκπ)σ2
π γ2κ2

πσ
2
π








κπ

β
γ + ακπ





=
1

(αγκπ)2




(1 + αγκπ)2 κπ σ2

π + α2 κπσ2
y − γκπ(1 + αγκπ)

(
β
γ + ακπ

)
σ2
π

− γκ2
π(1 + αγκπ)σ2

π + γ2κ2
π

(
β
γ + ακπ

)
σ2
π




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while

KVar[zt]K′ =
1

(αγκπ)2

(
κπ

β
γ + ακπ

)
×




(1 + αγκπ)2 κπ σ2

π + α2 κπσ2
y − γκπ(1 + αγκπ)

(
β
γ + ακπ

)
σ2
π

− γκ2
π(1 + αγκπ)σ2

π + γ2κ2
π

(
β
γ + ακπ

)
σ2
π





=
1

(αγκπ)2

(
α2κ2

πσ
2
y +

[
(1 + αγκπ)

2κ2
π − 2 (1 + αγκπ)γκ

2
π

(
β

γ
+ ακπ

)

+ γ2κ2
π

(
β

γ
+ ακπ

)2
]
σ2
π

)

=
1

γ2
σ2
y +

1

(αγ)2

[
(1 + αγκπ) − γ

(
β

γ
+ ακπ

)]2
σ2
π

=
1

γ2

[
σ2
y +

(
1 − β

α

)2

σ2
π

]
.

B.5. Optimal Monetary Policy with Imperfect State Observation.
In the stationary solution, we find that

z̆t = (I2 − ρNΠ)−1ẑt, where

(I2 − ρNΠ)−1 =
1

det(I2 − ρNΠ)

(
1− ρσ2

yπ2 ρσ2
ππ1,2

ρσ2
yπ1,2 1− ρσ2

ππ1

)
,

so that

π̆t =

(
1− ρσ2

yπ2

det(I2 − ρNΠ)
π̂t +

ρ σ2
ππ1,2

det(I2 − ρNΠ)
ŷt

)
,

y̆t =

(
ρ σ2

yπ1,2

det(I2 − ρNΠ)
π̂t +

1− ρσ2
ππ1

det(I2 − ρNΠ)
ŷt

)
.

Given that

1− ρσ2
yπ2

det(I2 − ρNΠ)
= 1 +

π1 − det(Π)ρσ2
y

det(I2 − ρΠ)
ρ σ2

π ,

1− ρσ2
ππ1

det(I2 − ρNΠ)
= 1 +

π2 − det(Π)ρσ2
π

det(I2 − ρNΠ)
ρ σ2

y ,
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we conclude that the MSE is

π̆t = π̂t +

(
π1 − det(Π)ρσ2

y

det(I2 − ρNΠ)
π̂t +

π1,2

det(I2 − ρNΠ)
ŷt

)
ρ σ2

π ,

y̆t = ŷt +

(
π1,2

det(I2 − ρNΠ)
π̂t +

π2 − det(Π)ρσ2
π

det(I2 − ρNΠ)
ŷt

)
ρ σ2

y .

B.6. Unconditional Variance of Inflation, Output Gap and Short-term Interest Rate Under Imperfect

State Observation.
By definition Ψ = BKI . As B = (0,−γ), we can write

Ψ =




0 0

−γκI
π −γκI

y



 .

This implies that

I2 − Ψ =




1 0

γκI
π 1 + γκI

y



 and (I2 − Ψ)−1 =
1

1 + γκI
y




1 + γκI

y 0

−γκI
π 1



 ,

while

Φ = (I2 − Ψ)−1 A =
1

1 + γκI
y




1 + γκI

y 0

− γκI
π 1








1 α

0 β



 =




1 α

− γκI
π

1+ γκI
y

β−αγκI
π

1+ γκI
y



 .

Consider that ΨΦ = Ψ(I2 −Ψ)−1A and that

A − ΨΦ = [I2 + Ψ(I2 − Ψ)−1]A .

For any square matrix M,
I − M (I + M)−1 = I + M .

Taking M = −Ψ,
I2 + Ψ(I2 − Ψ)−1 = (I2 − Ψ)−1 .

This implies that
I2 − A−ΨΦ = I2 − (I2 −Ψ)−1A = I2 − Φ .

It follows that

I2 − A−ΨΦ =
1

1 + γκI
y




0 −α(1 + γκI

y)

γκI
π 1 − β + αγκI

π + γκI
y




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and

ΛI = (I2 − A−ΨΦ)−1 =



 1 +
1+ γκI

y−β

αγκI
π

1+ γκI
y

γκI
π

− 1
α 0



 .

We have that

ΛI N =



 1 +
1+ γκI

y − β

αγκI
π

1+ γκI
y

γκI
π

− 1
α 0








σ2
π 0

0 σ2
y



 =





(
1 +

1+ γκI
y − β

αγκI
π

)
σ2
π

1+ γκI
y

γκI
π

σ2
y

− 1
α σ2

π 0





and that

VarI [zt] = ΛI NΛ′
I =





(
1 +

1+ γκI
y − β

αγκI
π

)
σ2
π

1+ γκI
y

γκI
π

σ2
y

− 1
α σ2

π 0








1 +

1+ γκI
y − β

αγκI
π

− 1
α

1+ γκI
y

γκI
π

0





=





(
1 +

1+ γκI
y − β

αγκI
π

)2

σ2
π +

(
1+ γκI

y

γκI
π

)2

σ2
y − 1

α

(
1 +

1+ γκI
y − β

αγκI
π

)
σ2
π

− 1
α

(
1 +

1+ γκI
y − β

αγκI
π

)
σ2
π

1
α2 σ2

π



 ,

from which we immediately conclude that VarI [yt] = Var[yt] = (1/α2)σ2
π. For the unconditional vari-

ance of the short-term interest rate, consider first that

ΦΛI =




1 α

− γκI
π

1+ γκI
y

β−αγκI
π

1+ γκI
y







 1 +
1+ γκI

y − β

αγκI
π

1+ γκI
y

γκI
π

− 1
α 0





=





(
1+ γκI

y − β

αγκI
π

)
1+ γκI

y

γκI
π

− 1
α − 1



 .

Then,

KI ΦΛI =
(

κI
π κI

y

)




(
1+ γκI

y − β

αγκI
π

)
1+ γκI

y

γκI
π

− 1
α − 1





=
(

1
αγ (1 − β) 1

γ

)
.

It follows that

KI ΦΛI N =
(

1
αγ (1 − β) 1

γ

)



σ2
π 0

0 σ2
y





=
(

1
αγ (1 − β) σ2

π
1
γ σ2

y

)
and that
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VarI [rt] = KI ΦΛI NΛ′
I Φ

′KI

=
(

1
αγ (1 − β) σ2

π
1
γ σ2

y

)



1
αγ (1 − β)

1
γ





=
1

(αγ)2
(1 − β)2 σ2

π +
1

γ2
σ2
y ,

so that VarI [rt] = Var[rt].

B.7. Optimal Monetary Policy with a Positive First-best Inflation Rate.
For µt = µ,

ϑt = Γ′
tΠ̃t+1 (Π

−1
t+1 ϑt+1 − µ) .

In steady state,

ϑ = Γ′Π̃ (Π−1 ϑ − µ)

= Γ′Π̃Π−1 ϑ − Γ′Π̃µ , so that

= − (I − Γ′Π̃Π−1)−1 Γ′Π̃µ

= − [(Π − Γ′Π̃)Π−1 ]−1 Γ′Π̃µ

= −Π (Π − Γ′Π̃)−1 Γ′Π̃µ .

For Q = 0, ut = Kzt + (B′Π̃B)−1B′Π̃(Π−1ϑ− µ), where

Π−1 ϑ − µ = − (Π − Γ′Π̃)−1 Γ′Π̃µ − µ

= − [I − (Π − Γ′Π̃)−1 Γ′Π̃ ]µ ,

so that ut = Kzt + ue, where ue = −(B′Π̃B)−1B′Π̃µ− (B′Π̃B)−1B′Π̃(Π − Γ′Π̃)−1Γ′Π̃µ. Now,

(B′Π̃B)−1 =
1

δ

1

γ2

1

π̂2
det(I2 − δ ρNΠ) ,

while

B′Π̃ = (0 − γ)
δ

det(I2 − δ ρNΠ)




π̂1 π̂1,2

π̂1,2 π̂2





=
δ

det(I2 − δ ρNΠ)

(
−γπ̂1,2 −γπ̂2

)
,
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so that

− (B′Π̃B)−1 B′Π̃ =
1

γ

(
π̂1,2

π̂2
1

)
=

(
κπ

1

γ

)
,

in that κπ = π̂1,2/(γπ̂2). So, for µ =

(
0

γπ∗

)
, −(B′Π̃B)−1B′Π̃µ = π∗. In addition, consider that

Γ′Π̃ =
δ

det(I2 − δ ρNΠ)




1 − γ κπ

α −αγ κπ








π̂1 π̂1,2

π̂1,2 π̂2





=
δ

det(I2 − δ ρNΠ)




π̂1 − γ κπ π̂1,2 π̂1,2 − γ κπ π̂2

α (π̂1 − γ κππ̂1,2) α (π̂1,2 − γ κπ π̂2)



 .

Since κπ = π̂1,2/(γπ̂2), Γ′Π̃ =

(
a 0

b 0

)
. Then,

Γ′Π̃µ =




0

0



 and hence

−(B′Π̃B)−1B′Π̃(Π − Γ′Π̃)−1Γ′Π̃µ = 0. We conclude that ue = π∗ and that ϑ =

(
0

0

)
. This means

that
ιt = κπ ςt + κy yt + π∗ and F (zt) = z′tΠ zt .

B.8. ML Estimate for the State Vector zt with a Positive First-best Inflation Rate.
Given the plant equation, ẑt = Azt−1 +But−1 + µt, where z′t = (πt − π∗ yt) and µ′

t = (0 γπ∗). Given
A and B we have that

π̂t − π∗ = πt−1 − π∗ + α yt ,

ŷt = β yt−1 − γ ιt−1 + γ π∗ .

Since ιt = rt + π∗, we conclude that

π̂t = πt−1 + α yt ,

ŷt = β yt−1 − γ rt−1 .
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