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ABSTRACT

We discuss how Whittle’s (Whittle, 1990) approach to risk-sensitive optimal control

problems can be applied in economics and finance. We show how his analysis of the class

of Linear Exponential Quadratic Gaussian problems can be extended to accommodate time-

discounting, while preserving its simple and general recursive solutions. We apply Whittle’s

methodology investigating two specific problems in financial economics and monetary pol-

icy.
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Introduction

Risk-aversion is an important aspect of agents’ preferences, which heavily influences their

actions, in particular when the economic environment is complex and uncertain, and agents

need to consider the long-run implications of their decisions.

Under risk-neutrality optimal control problems can be easily solved employing well-established

results. Thus, in solving a linear quadratic problem straightforward recursive formulae immedi-

ately yield the optimal control rule, while applying the certainty equivalence principle unknown

variables can be replaced by their maximum likelihood estimates.

Whittle’s (Whittle, 1990) shows how a modified (or risk-sensitive) certainty equivalence

principle and recursive formulae can be derived when risk-aversion is introduced in the standard

linear quadratic set-up. We present his formulation of the linear exponential quadratic Gaussian

optimal control problem which allows to achieve such a goal. We show how his methodology

can be easily employed in economics and finance discussing two specific problems.1

Whittle’s methodology is derived within a finite horizon framework and does not consider

time-discounting. Both are common features of many economic problems. Risk-sensitive op-

timal control problems with time-discounting have however been discussed by Hansen and

Sargent (Hansen and Sargent, 1994, 2005). They propose a recursive minimization criterion

à la Epstein and Zin which allows to combine risk-aversion and time-discounting. We modify

their minimization criterion and show how the recursive solution method proposed by Whittle

can be extended to risk-sensitive optimal control problems with time-discounting and infinite

horizon. We are then able to reformulate Whittle’s risk-sensitive certainty equivalence prin-

ciple and recursive formulae for the optimal control rule to accommodate time-discounting

and infinite horizon. Following Whittle’s lead, we are also able to analyze risk-sensitive opti-

mal control problems with time-discounting under imperfect state observation, a scenario that

Hansen and Sargent do not explicitly consider and that their recursive minimization criterion

cannot accommodate.

This paper is organized as follows. In Section 1 we present Whittle’s linear exponential

quadratic Gaussian problem. This is an extension of the standard linear quadratic problem

that allows to accommodate risk-aversion. The risk-sensitive certainty equivalence principle is

discussed, alongside the risk-sensitive Riccati equation, which yields the optimal control rule

1Mamaysky and Spiegel (2002), Van der Ploeg (2003,2007), and Zhang (2004) employ Whittle’s methodology
to investigate specific problems in economics and finance.
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for the class of Markovian linear exponential quadratic Gaussian problems. The risk-sensitive

separation principle is also presented: this allows to separate control and estimation in the case

of imperfect state observation. In the case of imperfect observation a Risk-sensitive Kalman

filter applies.

In Section 2 we apply Whittle’s methodology to an important problem from financial eco-

nomics. Specifically we extend Kyle’s (Kyle, 1985) analysis of a sequential auction market to

the case in which the insider is risk-averse and private information pertains to a collection of

risky assets. This allows to see how Whittle’s methodology can be employed within a game

setting to derive a perfect Bayesian equilibrium. With our multi-asset formulation, we confirm

Holden and Subrahmanyam’s (Holden and Subrahmanyam, 1994) apparently counter-intuitive

result that risk-aversion induces informed agents to consume more rapidly their long-lived

private information vis-a-vis their risk-neutral counter-parts, so that with risk-averse insiders

securities markets are more efficient. In addition, we extend to a multi-period formulation Ca-

ballè and Krishnan’s (Caballè and Krishnan, 1994) conclusion that in equilibrium the insider

operates in such a way that the price impact of signed volume (order flow) is symmetric across

all risky assets.

In the following Section we introduce time-discounting to the class of linear exponential

quadratic Gaussian problems, proposing a recursive minimization criterion which differs from

that put forward by Hansen and Sargent. The suggested recursive criterion allows: i) to apply,

with simple adjustments, Whittle’s methodology and derive recursive solution formulae for

the optimal control rule; and ii) to solve LEQG problems with time-discounting when only

noisy signals on the state variables are observed, a scenario which cannot be investigated using

Hansen and Sargent’s recursive criterion.

In Section 4 we apply the linear exponential quadratic Gaussian framework with time-

discounting to the problem of output and inflation stabilization on the part of an independent

central bank investigated by Svensson (Svennson, 1997). We extend his analysis to the case

in which the central bank is risk-averse.2 Because of risk-aversion the standard certainty

equivalence principle cannot be applied and hence: i) the inflation forecast is not longer an

explicit intermediate target when inflation targeting is the exclusive mission of the central

bank; and ii) the monetary authorities do not necessarily expect the inflation rate to mean

revert to its target level when the monetary policy is also aimed at output stabilization. We

2van der Ploeg (2004) investigates a similar extension of Svensson’s analysis. However, he introduces neither
time-discount nor a recursive minimization criterion.

2



actually see that even without output stabilization, a scenario in which the inflation forecast

is always equal to its target level under risk-neutrality, if the central bank is risk-averse it may

well be that the monetary authorities expect the inflation rate to wander away from the target

level. In addition, we find that under risk-aversion the central bank follows a more aggressive

Taylor rule. Finally, we investigate the possibility that the central bank observes the state

variables with a time lag so as to employ within this context Whittle’s risk-sensitive separation

principle.

1 Linear Exponential Quadratic Optimal Control Problem

Let us define a specific class of optimal control problems, generally referred as Linear Expo-

nential Quadratic Gaussian, in the formulation proposed by Whittle (Whittle, 1990).3

Definition 1 (LEQG) An optimal control problem is said to be Linear Exponential Quadratic

Gaussian if the following criterion

ln

(
E

[
exp

(
ρ
C
2

)])
, (1.1)

where ρ > 0, is minimized over T (with T finite) periods with respect to the control variables

ut (t = 1, . . . , T − 1), under the following conditions:

(i) in any period t, ut can take any value in some finite-dimensional vector space;

(ii) C is a scalar-valued cost function that can be expressed in the following form

C = Q(UT−1, ξ) ,

where UT−1 = (u1,u2, . . . ,uT−1) is the complete control-path and ξ is a vector-valued noise

term;

(iii) Q is quadratic in all the arguments and positive definite in UT−1;

(iv) the unconditional distribution of ξ is multi-normal with vector of means 0 and covariance

matrix Υ independent of the control vector;

(v) the observable vector, wt, is reducible to linear functions of ξ.

3As we only allow for positive values of the risk-sensitive coefficient ρ we restrict our discussion to the risk-
averse specification. See Whittle (1990) for the analysis of the complementary risk-seeking specification (with
ρ < 0).
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Imposing the condition that the optimal problem is solved over a finite horizon T ensures

that the criterion is well defined. In Section 3 we will discuss how, introducing time-discounting,

an infinite horizon can be accommodated. Condition (iii) that the quadratic function Q is

positive definite in the control vector guaranties that the minimum of the criterion is determined

via first order conditions. However, as shown in the examples we will discuss in Sections 2 and

4, while sufficient such condition is not necessary. Similarly, condition (ii) that the control

vector is free-valued, and hence not subject to any constraint, is not required for the existence

of a minimum of the criterion and it could be disposed of. Nevertheless, it is extremely useful

in characterizing the optimal control path, in that it allows to derive recursive solutions for

the Markovian version of the LEGQ problem.

Expressing the cost function C in reduced-form simplifies the derivation of the risk-sensitive

certainty equivalence and separation principles obtained by Whittle. Such reduced-form is

however perfectly consistent with the standard (extensive-form) formulation where the cost

function depends on the state and control path (respectively ZT = (z1, z2, . . . , zT ) and UT−1)

we will consider when analyzing the Markovian LEQG problem. Similarly, while in condition

(v) the vector wt is expressed in reduced-form, in the Markovian LEQG problem it will be

written in the standard formulation as a function of the state variable zt.

Under the conditions of Definition 1, let S denote the total stress function. This is defined

as follows

S = C − 1

ρ
D ,

where D = ξ
′
Υ−1ξ is referred to as the discrepancy function. Such function appears in the

calculation of the expectation in the risk-sensitive optimizazion criterion, ln(E[exp(ρC/2)]).
Then, one can obtain the following Theorem, that defines a modified Risk-sensitive Certainty

Equivalence Principle (Risk-sensitive CEP) for the class of LEQG problems.

Theorem 1 - (Risk-sensitive Certainty Equivalence Principle). The optimal value of the vec-

tor ut is determined by simultaneously minimizing S with respect to ut,ut+1, . . . ,uT and max-

imizing it with respect to the unobservable wt+1,wt+2, . . . ,wT . In other words, an optimal

current decision is obtained by minimizing with respect to all decision currently unmade (fu-

ture values of the control vector ut) and maximizing with respect to all the quantity currently

unobservable (future values of the observable vector wt).
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While details of the proof of this and the following three Theorems are given in Whittle (1990),

we can discuss the main intuition. The result is based on the properties of the integral of the

exponential of a quadratic form. In fact, if Q(z,u) is a quadratic form which is positive definite

in z and negative definite in u the following holds

min
u

∫
exp

[
− 1

2
Q(z,u) dz

]
∝ exp

[
− 1

2
max
u

min
z

Q(z,u)

]
,

where the proportionality constant does not depend on u. Then, in the context of the mini-

mization of the risk-sensitive criterion, it is shown that the following holds

min
u

E

[
exp

(
ρ
C
2

)]
∝ min

u

∫
exp

(
1

2
(ρC − D)

)
dξ = min

u

∫
exp

(
ρ
S
2

)
dξ .

Applying the aforementioned result, we find that the following holds

min
u

E

[
exp

(
ρ
C
2

)]
∝ exp

(
ρ

2
min
u

max
ξ

S
)

.

This shows that to minimize the optimization criterion is sufficient to satisfy a saddle-point

condition defined on the total stress function: S is first maximized with respect to the noise

vector ξ and then minimized with respect to the control vector u.4 Using this result recursively

the Theorem is proved.

This Theorem extends the Certainty Equivalence Principle of the Linear Quadratic Gaussian

(LQG) problem: the normally distributed unobservable variables are no longer replaced by

their estimates, but by those that maximize the total stress in order to compensate for risk-

aversion. In other words, in the LQG optimal control problem the separation principle between

optimization of the control vector and estimation of the unknown values applies, in that the

control vector is chosen by minimizing the criterion as it would be in the perfect information

case, with the unobservable values replaced by their maximum likelihood (ML) estimates. On

the contrary, in the risk-sensitive case the derivation of the optimal control vector and the

optimal estimation of the unknown values are intertwined, as the optimal control and optimal

estimates are chosen in order to extremize the total stress function. Indeed, differently from the

LQG problem, uncertainty over the noise vector conditions the optimal choice of the control

vector. Specifically, the statistical characteristics of ξ, and hence its covariance matrix Υ,

influence the optimal value of the vector ut. Viceversa, the shape of the cost function affects

4Maximizing S with respect to ξ and minimizing it with respect to u is referred to as the extremization of
the total stress function.
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the optimal estimate of the unknown values, which no longer corresponds to ML estimate but

it is given by the maximum total stress estimate (MTSE).

Theorem 1 indicates that closed-loop control rules can be determined through the saddle

point condition for the total stress function. This defines the optimal control vector whatever

values previous variables may have taken (ut(Ht) where Ht = {h0,Ut−1,Wt} is observation

history, with Wt = (w1,w2, . . . ,wt), and h0 is initial information). This Risk-sensitive CEP is

particularly useful when we consider a Markovian LEQG problem. For this sub-class of LEQG

problems it is possible to operate by backward induction and derive a Risk-sensitive Separation

Principle (Risk-sensitive SP) between estimation and control. Applying this Risk-sensitive SP

is then possible to define straightforward recursive control rules and estimation formulae.

Definition 2 A LEQG problem is Markovian if it satisfies the following conditions:

(i) the vector of state variables, zt, is governed by the following liner plant equation

zt = Azt−1 + But−1 + εt ;

(ii) the vector of observable variables is given by

wt = Czt−1 + ηt ,

with ψt =

(
εt

ηt

)
∼ N

[(
0

0

)
,

(
N L

L′ M

)]
;

(iii) the cost function C is decomposable in the following way

C =
T−1∑

t=1

ct + CT

where ct is a quadratic function in the control and the state variables (ut, zt), with

ct =
(
z′t u

′
t

)
(

R S′

S Q

) (
zt

ut

)
and CT = z′T Π zT ,

In Definition 2 the LEQG problem is time-homogeneous, in that neither the plant equation

nor the cost function explicitly depends on time t. However, this Definition can be adjusted to

accommodate a non-homogenous plant equation and/or cost function, by making any of the

matrices A, B, C, L, M, N, Q, R and S time-dependent. Definition 2 also entails imperfect
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observation of the state vector zt, in that at time t only a vector of noisy signals on time t− 1

state vector is observed, wt = Czt−1+ηt. Even this hypothesis can be modified or relaxed, so

that in the perfect state observation case the current state vector is always observable wt = zt.

Given Definition 2 the discrepancy component of the total stress is equal to

D = D0 +
T∑

t=1

dt ,

where dt is a quadratic form in ψt and D0 is a quadratic form in the vector z0 and its

expectation (conditional on the initial information h0) ẑ0, with

dt =
(
ε′t η

′
t

)
(

N L′

L M

)−1 (
εt

ηt

)
, D0 = (z0 − ẑ0)

′Ω−1 (z0 − ẑ0)

and Ω the covariance matrix for z0 conditional on h0. Hence, the total stress function can be

written as

S =
T−1∑

t=1

ct + CT − 1

ρ

(
D0 +

T∑

t=1

dt

)
,

an expression which under perfect state observation collapses to

S =
T−1∑

t=1

ct + CT − 1

ρ

(
D0 +

T∑

t=1

ε′tN
−1εt

)
.

These expressions clearly indicate that the total stress function is time-separable. Then, in

applying the Risk-sensitive CEP at time t, the etremization of the total stress function can be

achieved by splitting S into two components, denoted as past stress and future stress, which

contain terms allocated respectively to past and future. Then, the following Definition applies.

Definition 3 At time t the extremized past stress and future stress, Pt(zt,Ht) and Ft(zt), are

given by the following expressions

Pt(zt,Ht) = max
z0,...,zt−1

[
t−1∑

h=1

ch − 1

ρ

(
D0 +

t∑

h=1

dh

)]
,

Ft(zt) = min
ut,...,uT−1





max

zt+1,...,zT
wt+1,...,wT

[
T−1∑

h=t

ch + CT − 1

ρ

T∑

h=t+1

dh

]


.
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According to this Definition the extremized past stress and future stress are obtained by

minimizing with respect to the future values of the control vector and maximizing with respect

to the past and future values of the state variables. Only the current state vector zt appears

in both expressions and it is left undetermined. By holding zt free at any time t, it is possible

to separate the problem of the stress extremization between past and future. The following

Theorem, which suggests a simple method to find the optimal control at any time t and

introduces a Risk-sensitive Separation Principle (Risk-sensitive SP) for the Markovian LEQG

problem.

Theorem 2 - (Risk-sensitive Separation Principle). The evaluation of the extremized past

stress and future stress can be decoupled if these calculations are made conditional on the

current vector, zt. These partially extremized stress functions, Pt(zt,Ht) and Ft(zt), relate

to estimation and control respectively. In fact, the evaluation of Pt summarizes the effect of

past observations, while the evaluation of Ft implies the calculation of the control ut(zt), which

would be optimal if zt were known. The calculations of Pt(zt,Ht) and Ft(zt) are then recoupled,

maximizing Pt(zt,Ht)+Ft(zt) with respect to zt; this yields the maximum total stress estimate

(MTSE) z̆t.

- (Risk-sensitive Certainty Equivalence Principle). The optimal value of the control vector at

time t is then given by ut(z̆t).

Thanks to the recursive structure of the Markovian LEQG problem, the extremized past

and future stress respect the following recursions

Pt(zt,Ht) = max
zt−1

[
ct−1 − 1

ρ
dt + Pt−1(zt−1,Ht−1)

]
, (1.2)

Ft(zt) = min
ut

{
max

zt+1,wt+1

[
ct −

1

ρ
dt+1 + Ft+1(zt+1)

]}
, (1.3)

with boundary conditions

P0(z0,h0) = − 1

ρ
D0 ,

FT (zT ) = CT .

These past and future stress recursions are particularly useful in the evaluation of Pt and

Ft and in the implementation of Theorem 2. Furthermore, as a corollary of this Theorem,

8



we note that under perfect state observation only the future stress recursion must be solved

and therefore the calculation of the optimal control path is much easier. Considering the

plant equation for the state vector, zt+1 can be substituted with εt+1 so that the future stress

recursion is now as follows

Ft(zt) = min
ut

{
max
εt+1

[
ct −

1

ρ
dt+1 + Ft+1(zt+1)

]}
. (1.4)

In conclusion, a recursion similar to the Bellman equation for the value function of dynamic

programming is obtained: given the extremized future stress at time t+1, the optimal control at

time t is obtained by solving the future stress recursion. Thus, first maximization is undertaken

with respect to εt+1 and then the resulting value is minimized with respect to ut. Similarly to

the Markovian LQG problem, the extremized future stress function is quadratic in the state

vector, Ft(zt) = z′tΠtzt, while the optimal control rule is linear in the state vector, ut = Ktzt,

where Πt and Kt respect recursions which correspond to modified versions of the Riccati

recursions for the Markovian LQG problem. The following Theorem reveals the nexus with

the common solutions to the standard Markovian LQG problem.

Theorem 3 - (Risk-sensitive Riccati Equation). If the matrix Πt+1 − (1/ρ)N−1 is negative

definite, the solution to the extremization of the future stress exists and it is given by

Ft(zt) = z′tΠt zt and ut = Kt zt where

Πt = R + A′Π̃t+1A − (S′ + A′Π̃t+1B)(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) ,

Kt = − (Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) and

Π̃t+1 = (Π−1
t+1 − ρN)−1 .

It is worth noticing that with respect to the standard Riccati equation which applies to the

standard Markovian LQG problem with perfect state observation, the matrix Πt+1 is now

replaced by the modified matrix Π̃t+1. In other words, in the risk-sensitive case the optimal

control retains a specification which is very similar to the one that would prevail in a risk-

neutral environment (with ρ = 0), in that only a correction for the impact of uncertainty and

risk-aversion must be inserted in the expressions for the recursions of Πt and Kt.5

5The requirement that the matrix Π̃t+1 being negative definite derives from a second order condition which
must hold for the total stress function to satisfy the saddle point condition imposed by Theorem 1. As noted
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When the state vector is not perfectly observed the past stress recursion must also be solved.

In this respect the following result holds.

Theorem 4 - (Past Stress Maximization). Let ẑ0 and Ω0 denote the mean vector and covari-

ance matrix for z0 conditional on the initial information h0, then the extremized past stress

is

Pt(zt,Ht) = − 1

ρ
(zt − ẑt)

′Ω−1
t (zt − ẑt) + · · · ,

where + · · · denotes terms independent of the state vector, while ẑt denotes the maximum past

stress estimate (MPSE) of the state vector at time t.

- (Risk-sensitive Kalman Filter). The matrix Ωt and the MPSE for the state vector zt respect

the following recursions,

Ωt = N + A Ω̃t−1A
′ − (L + AΩ̃t−1C

′)(M + C Ω̃t−1C
′)−1 (L′ + C Ω̃t−1A

′) ,

ẑt = Az̃t−1 + But−1 + (L + AΩ̃t−1C
′)(M + C Ω̃t−1C

′)−1 (wt − z̃t−1) ,

where, under the condition that Ω−1
t−1 − ρR is positive definite,

Ω̃t−1 = (Ω−1
t−1 − ρR)−1 ,

z̃t−1 = (Ω−1
t−1 − ρR)−1 (Ω−1

t−1 ẑt−1 + ρS′ ut−1) .

Theorem 4 reinforces the nexus with the risk-neutral case. In fact, the MPSE for the Markovian

LEQG problem respects a recursion which is similar to that obtained applying the Kalman

filter in the standard Markovian LQG problem. Indeed, with respect to the Kalman filter

which allows to derive the MLE for the state vector (and the corresponding Riccati equation

for the matrixΩt) a straightforward correction must be introduced to accommodate the impact

of risk-aversion. This is achieved by simply replacing zt−1 and Ωt−1 in the standard Kalman

filter and Riccati equation of the risk-neutral case with respectively z̃t−1 and Ω̃t−1. It is

however important to notice that ẑt is not longer a conditional expectation and consequently

Ωt is not longer a covariance matrix in the standard sense which applies under risk-neutrality.

To re-couple the extremization of past and future stress, we apply Theorem 2, so that the

current value of the state vector is replaced with its MPSE in Pt(zt,Ht)+Ft(zt). The resulting

function is then maximized with respect to state vector zt to obtain the maximum total stress

by Whittle, whenever the cost function ct is non-negative such condition fails for ρ large enough.
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estimate (MTSE), z̆t. This is given by the following expression

z̆t = (I − ρΩtΠt)
−1 ẑt.

Finally, the optimal control in the imperfect state observation case is given by Theorem 3

where z̆t replaces zt.

We now propose a couple of specific examples in finance and economics. This allows to adapt

the linear exponential quadratic Gaussian problem to the specificities of economic investigation.

We start from a classic example in finance, that of the optimal trading strategy on the part

of a risk-averse agent who possesses private information on the liquidation value of a group of

risky assets. We investigate her behavior within the trading protocol of the sequential auction

market described by Kyle (Kyle, 1985).

2 Risk-averse Insider Trading in Sequential Auction Markets

In this Section we concentrate on an extension of a very important contribution to financial

economics due to Kyle (1985). The main innovation in his model is that of providing a very

useful analytical framework which has been widely used in the recent market micro structure

literature to analyze the link between market organization, strategic behavior and the infor-

mational role of prices in securities markets. This analytical framework is particularly elegant

and powerful. It is elegant as simple to interpret equilibria are obtained. Furthermore, a series

of characteristics of securities markets, such as their efficiency and liquidity, are endogenously

defined. It is also powerful because it preserves the linearity of the equilibria.

Kyle investigates the behavior of an informed trader (insider) in a securities market. Such

an agent presents an incentive to act strategically and exploit her informational advantage to

gain speculative profits from her trading activity. She acts strategically because in choosing

the timing and size of her transactions she takes into account the impact that her trades will

have on the equilibrium price and hence on her profits. In studying the optimal behavior of

the insider, Kyle assumes such an agent is risk-neutral. Subrahmanyam (1991) and Holden

and Subrahmanyam (1994) have instead considered the scenario with risk-averse insiders. We

recast their analysis within the risk-sensitive optimal control framework, extending it to a

multi-security version of Kyle’s model as in Caballè and Krishnan (1994).6

6Vitale (Vitale, 1995) applies Whittle’s methodology to Kyle’s model with a risky asset and a single risk-
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2.1 Strategic Informed Trading

In a securities market a market maker trades with a group of customers a risk-free bond (or

numeraire), which pays a certain rate of return (normalized to 0), for a group of m risky assets

with uncertain liquidation values. Clients include an insider, who knows the liquidation value

of the m risky assets, and a group of liquidity (noise) traders, who trade purely for liquidity

reasons. The liquidation vector ṽ, i.e. the vector of liquidation values of the m risky assets,

is determined at time 0, before trading in the market starts, and is publicly announced at

time 1, when no more trading is possible. Apart from the insider, no one knows the actual

realization of ṽ at time 0. However, unconditionally ṽ ∼ N (µv,Σ). This information is

common knowledge.

Between the instant the liquidation vector is realized and that in which it is announced N

rounds of trading, in the form of call auctions, are conducted by the market maker. Any call

auction is identified by the subscript n and takes place at time tn, with 0 < t1 < . . . < tN < 1.

When auction n is called at time tn, the market maker’s clients, the liquidity traders and the

insider, select their market orders, that is the amount of the m risky assets they desire to

purchase or sell. We indicate with the vectors ∆x̃l
n and ∆x̃i

n the market orders of respectively

the liquidity traders and the insider.7 These orders are batched together and the overall market

order, ∆x̃n = ∆x̃i
n+∆x̃l

n, is passed to the market maker. He then fixes a vector of transaction

prices, p̃n, at which, using his own inventories, he executes all the individual orders.

Notice that the market maker cannot observe either the individual orders or the identity of

his clients. This will permit the insider to exploit over time her informational advantage. The

market maker is risk-neutral. Bertrand competition in the market making industry will force

him to set the transaction prices, relative to the numeraire, for the m risky assets according to

a semi-strong form efficiency condition. Since he just observes the flow of total market orders

he receives along the sequence of auctions and since these market orders may contain some

information, due to the presence of the insider, we can state that at any round of trading, n,

the vector of transaction prices, p̃n, is

p̃n = E[ṽ | ∆x̃1, . . . ,∆x̃n−1,∆x̃n] . (2.1)

averse insider.
7A market order is an order to purchase or sell a given quantity of an asset. Such an order does not indicate

an explicit price at which the transaction must be executed. However, it must be executed at the best available
ask or bid price. By convention when ∆x̃s

j (with 1 ≤ j ≤ m and s = i, l) is positive (negative) agent s purchases
(sells) risky security j.

12



The liquidity traders are supposed to place unpredictable market orders. Thus, in any round

n, their vector of market orders is supposed to be distributed as a multi-normal, ∆x̃l
n ∼

N (0,Σl∆n), where ∆n = tn − tn−1 and the covariance matrix Σl is diagonal. The random

vectors {∆x̃l
n}Nn=1 are independent among each other and of the liquidation vector ṽ. Because

of these assumptions the market orders of the liquidity traders follow a multi-dimensional white

noise process.8

Differently from Kyle, we assume the insider is risk-averse. Since she does not have any

initial endowment of the risky assets, she maximizes the expected utility she will receive from

the final value of her trading profits. Since the prices charged by the market maker are function

of the unpredictable orders of the liquidity traders, the profits of the insider are not certain.

They are given by the following expression π̃i =
∑N

n=1(ṽ− p̃n)
′∆x̃i

n. Assuming she is endowed

with a CARA utility function with coefficient ρ, when auction n is called she solves the following

program

∆x̃i
n = argmax E[− exp(−ρ π̃i) | p̃1, p̃2, . . . , p̃n−1, ṽ] . (2.2)

Consider that the insider needs to solve an optimal control problem characterized by a clear

trade-off. In fact, a larger market order today generates larger profits now at the expense

of future ones, since a more informative order is passed to the market maker reducing his

uncertainty on the liquidation vector. On the other hand, the market maker needs to solve a

filtering problem. He uses the signal contained in the flow of orders to up-date his expectation

of the liquidation vector. This will induce a process of convergence of the vector of transaction

prices to the vector of actual liquidation values.

To solve simultaneously and consistently these two problems Kyle introduces a special notion

of sequential equilibrium. We adapt it to the scenario in which the insider is risk-averse. First,

we need to define the strategies that characterize an equilibrium. These are two collections of

functions, X and P, that indicate the trading strategy of the insider and the pricing rule of

the market maker for any round of trading n,

X = 〈X1,X2, . . . ,Xn, . . . ,XN 〉 , P = 〈P1,P2, . . . ,Pn, . . . ,PN 〉 , where (2.3)

∆x̃i
n = Xn(p̃1, . . . , p̃n−1, ṽ), p̃n = Pn(∆x̃1, . . . ,∆x̃n) . (2.4)

The insider’s profits, π̃i, is function of these two strategies, π̃i = Π̃i(X,P). We can now define

8Our analytical solution also works when the covariance matrix Σl is not diagonal. However, given the
nature of liquidity trading it is more reasonable to assume that it is segmented across the m risky assets.
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a sequential auction equilibrium.

Definition 4 A sequential auction equilibrium is a couple (X,P) such that the following two

conditions hold:

(1) For all n = 1, . . . , N the insider maximizes her expected utility as in the program (2.2).

That is, ∀n = 1, . . . , N and for any alternative trading strategy X
′
such that X′

1 = X1, X′
2 =

X2, . . ., X′
n−1 = Xn−1,

E[− exp(−ρ Π̃i(X,P)) | p̃1, . . . , p̃n−1, ṽ ] ≥ E[− exp(−ρ Π̃i(X′,P)) | p̃1, . . . , p̃n−1, ṽ ] . (2.5)

(2) For all n = 1, . . . , N , the market maker sets the vector of transaction prices according to

the efficiency condition (2.1). That is ∀n = 1, . . . , N

p̃n = E[ṽ | ∆x̃1, . . . ,∆x̃n−1,∆x̃n] . (2.6)

We can then define a Markovian linear equilibrium as follows.9

Definition 5 A sequential auction equilibrium is linear if the component functions of strategies

X and P are linear. A linear sequential auction equilibrium is Markovian if there exist matrices

of constants Λ1, Λ2, . . ., ΛN , such that for any n = 1, . . . , N

p̃n = p̃n−1 + Λn∆x̃n . (2.7)

2.2 A Markovian Linear Equilibrium

To find a Markovian linear equilibrium for the multi-asset version of Kyle’s model with a risk-

averse insider, let us concentrate on the insider’s trading strategy. Let us assume the market

maker sets the vector of transaction prices according to equation (2.7). Then, we can easily

recast the optimization exercise of the insider within the LEGQ framework. In fact, let us

define the state vector zn ≡ pn−1 − v, the control variable un ≡ ∆xi
n and the noise vector

εn ≡ Λn−1∆xl
n−1, for n = 1, . . . , N . Then, under equation (2.7) we can write the plant

equation as follows

zn+1 = zn + Λn un + εn+1 . (2.8)

9For completeness we should specify the beliefs of the market maker and insider. They are based on the
true unconditional distributions and on the application of Bayes’ theorem. Furthermore, we do not need to
define out-of-equilibrium beliefs for our agents. In fact, because of the normality assumption, there cannot be
out-of-equilibrium observations.
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In addition, we can define the cost function cn ≡ 2(zn + Λn un + εn+1)′un. It is immediate

to notice that πi = −(1/2)
∑N

n=1 cn. This implies that we can solve the insider optimization

problem by minimizing the criterion (1.1) under the plant equation (2.8) for C =
∑N

n=1 cn. In

other words, the insider needs solving a LEQG optimal control problem, even if this is not in

its standard Markovian format, in that the cost function component cn is not just a quadratic

form of current state and control vectors, zn and un. The extra term ε′n+1un means that we

cannot exploit the recursive risk-sensitive equations in Theorem 3 to obtain automatically the

vector of optimal market orders of the insider at call auction n. However, we can apply the

risk-sensitive SP in Theorem 2. Furthermore, noticing that there is perfect state observation

on the part of the insider, we need solving only the future stress recursion,

Fn(zn) = min
un

{
max
εn+1

[
cn − 1

ρ
dn+1 + Fn+1(zn+1)

]}
,

where dn+1 = ε′n+1N
−1
n+1εn+1 and Nn+1 ≡ ΛnΣl∆nΛ

′
n. We can assume that the extremized

future stress function is quadratic in the state vector, so that Fn+1(zn+1) ≡ z′n+1Πn+1zn+1,

where Πn+1 is a negative definite matrix and ΠN+1 = 0.

Solving the maximization problem with respect to εn+1 in the recursion it is found that,

for Π̃n+1 = Π−1
n+1 − ρNn+1 negative definite and assuming that Λn is symmetric, a maximum

is reached for10

ε̂n+1 = ρNn+1Π̃
−1
n+1

(
zn + Λ̃n un

)
,

where Λ̃n = Λn +Π−1
n+1. Inserting ε̂n+1 into the future stress recursion and minimizing with

respect to un we find, for −Π−1
n+1 + Λ̃n Π̃

−1
n+1 Λ̃

′
n positive definite, a minimum for

ûn = −Bn zn , where Bn =
(
−Π−1

n+1 + Λ̃n Π̃
−1
n+1 Λ̃

′
n

)−1
Λ̃n Π̃

−1
n+1 . (2.9)

Inserting ûn into the future stress recursion we find that Fn(zn) = z′nΠnzn, where

Πn = Π̃
−1
n+1 − Π̃

−1
n+1 Λ̃

′
n

(
−Π−1

n+1 + Λ̃n Π̃
−1
n+1 Λ̃

′
n

)−1
Λ̃n Π̃

−1
n+1 . (2.10)

Notice that this solution implies that

∆x̃i
n = Bn (ṽ − p̃n−1) , (2.11)

so that the optimal trading strategy of the insider entails that her market orders are linear in

10In the Appendix we spell out these and other calculations.
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the subjective mis-pricing of the risky assets, ṽ− p̃n−1. Interestingly, this extends to the multi-

asset formulation a result Kyle originally establishes under risk-neutrality for the formulation

with only one risky asset. Turning to the filtering problem of the market maker, assuming

that the market orders of the insider are given by this linear rule, by applying the projection

Theorem for normally distributed random variables, we find that

p̃n = p̃n−1 + Λn∆x̃n , (2.12)

where

Λn = Σn−1B′
n

(
BnΣn−1B′

n + Σl∆n
)−1

(2.13)

and p̃0 = µv. Here p̃n corresponds to the vector of expected liquidation values of the m risky

assets given the information the market maker possesses at the end of round of trading n,

while Σn is the corresponding conditional covariance matrix. From the projection Theorem

we know that this is equal to

Σn = Σn−1 − Σn−1B′
n

(
BnΣn−1B′

n + Σl∆n
)−1BnΣn−1 . (2.14)

2.3 The Equilibrium Properties

The condition that −Π−1
n+1+ Λ̃n Π̃

−1
n+1 Λ̃

′
n being positive definite guarantees that the expected

profits of the insider are bounded and that a maximum for her expected utility exists. Intu-

itively, such condition rules out situations in which the informed trader destabilizes the asset

prices in the initial call auctions with large unprofitable market orders and then gains huge

benefits in the following periods. In fact, when Λn is “large” and Πn+1 is “small”, small orders

are sufficient and relatively “inexpensive” in terms of forgone utility to destabilize the asset

prices in auction n. In this case the destabilization can take place. Instead, if Πn+1 is “large”

with respect to Λn it is not convenient for the insider to move the asset prices away from their

liquidation value, because the cost-opportunity of doing so, measured by Πn+1, is too large.

The second order condition simply places an upper limit to the admissible value of Λn ruling

out these destabilizing schemes.

In characterizing the equilibrium we impose the condition that Λn is symmetric. This

symmetry can be established. Consider in fact the last round of tradingN . We see immediately
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that BN = (2ΛN + ρNN+1)−1, from which we conclude that

ΛN = ΣN−1 (2ΛN + ρNN+1)
′−1

(
(2ΛN + ρNN+1)

−1ΣN−1(2ΛN + ρNN+1)
′−1 + Σl∆N

)−1
.

With some manipulations we can write this as follows

M′
N Λ′

N ΣN−1ΛN MN = Σ−1
l ∆−1

N (MN − Im) ,

where MN ≡ 2Im + ρΣl∆NΛ′
N . As the left hand side is symmetric, so is the right hand side.

This can be written as Σ−1
l ∆−1

N + ρΛ′
N , so that ΛN must be symmetric. A similar argument

holds for n < N . This symmetry implies that whatever the characteristics of the m assets, the

sensitiveness (or liquidity coefficient), λj,h
n , of the price of asset j, p̃j,n, to asset h-order flow,

∆x̃h,n, is always equal to the sensitiveness, λh,j
n , of the price of asset h, p̃h,n, to asset j-order

flow, ∆x̃j,n.

In a static risk-neutral set-up Caballè and Krishnan (Caballè and Krishnan, 1994) reach the

same result and suggest that this shows how in equilibrium the insider finds it optimal to make

all market orders equivalently informative.11 In other words, if the liquidity traders are more

active in the market for asset j then that for asset h, the insider can better camouflage her

trading in the former market and consequently will trade more aggressively. In equilibrium,

she will trade in such a way that the information content of the two order flows is the same.

This means that order flow ∆x̃j,n is as useful in predicting the liquidation value ṽh as order flow

∆x̃h,n in predicting the liquidation value ṽj . Given semi-strong efficiency condition transaction

prices correspond to regression functions and hence the matrix Λn of the liquidity coefficients

is equivalent to the ratio between prior-to-posterior precisions. Then, as the prior covariance

matrix, ΣN−1, is symmetric, given the same degree of improvement in the precisions from the

individual order flows, this symmetry is preserved in the pricing rule.

For m = 1, it is easier to interpret the market equilibrium described in equations (2.11) to

(2.14). In this case, the state vector collapses to the scalar zn = pn−1−v so thatΠn corresponds

to a coefficient that we write as −2αn−1. This means that Fn(zn) = −2αn−1(pn−1−v)2. Then,

from equations (2.9), (2.10), (2.13) and (2.14), we conclude that ∆x̃in = βn(ṽ − p̃n−1) and

11It can be shown that for ρ = 0 ΛN collapses to the expression derived by Caballè and Krishnan for the
scenario with one insider, ΛN = (1/2)(Σl∆N )−1/2((Σl∆N )1/2ΣN−1(Σl∆N )1/2)1/2(Σl∆N )−1/2.
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Figure 1: The Dynamics of efficiency and liquidity for m = 1, σ2
l = Σ = 1.

p̃n = p̃n−1 + λn∆x̃n, where

βn =
1− 2αnλn

2λn(1− αnλn) + λ2
nρσ

2
l ∆n

,

αn−1 =
1

2[2λn(1− αnλn) + λ2
nρσ

2
l ∆n]

,

λn =
βnΣn−1

β2
nΣn−1 + σ2

l ∆n
,

Σn = (1 − βn λn)Σn−1 .

Reassuringly, this is equivalent to the solution proposed by Holden and Subrahmanyam (1994)

for the scenario with one insider. Moreover, it subsumes that proposed by Kyle for ρ = 0.

From the expression for βn we see that risk-aversion makes the insider care about the variance

of her profits. The uncertainty the insider faces results from the randomness of the liquidity

traders’ orders. Given her information set at the onset of call auction n, the expected price

is E[p̃n | Ii
n] = p̃n−1 + λn∆xin and consequently the conditional variance of this value is

Var [p̃n | Ii
n] = λ2

nσ
2
l ∆n. This conditional variance and the insider’s risk-aversion enter into

the specification of the coefficient βn, which defines the optimal trading rule of the insider, and

hence affect the sequential auction equilibrium.

The expression for Σn indicates that the conditional variance of the liquidation value given

the information set of the market maker is monotonically decreasing with n. This shows that
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information is gradually incorporated into the asset price as it is disclosed through time by

order flow. How quickly the transaction price converges to the true liquidation value depends

on the insider’s trading strategy. For ρ = 0, i.e. in Kyle’s original formulation, information

is disclosed at a constant speed (the derivative of Σn with respect to n is constant). This is

because the insider finds it optimal to trade with constant intensity and maintain overtime

a stable news-to-noise ratio in order flow. Consequently the price sensitiveness, or liquidity

coefficient, λn is constant throughout most of the auctions.

Figure 1 shows that in the risk-averse case, instead, the informed trader places larger market

orders in the initial auctions, as βn is larger than for ρ = 0 and so is the liquidity coefficient,

λn.12 This is because the inter-temporal substitution between present and future profits is

reduced by risk-aversion and, therefore, the insider prefers exploiting her information advantage

earlier. Consequently, for ρ > 0 she trades more aggressively, order flow is more informative

and the market maker learns at a higher speed the liquidation value of the asset. This implies

that the conditional variance, Σn, declines more rapidly.

As the market maker progressively learns the liquidation value, price volatility and the

uncertainty over future profits fall and consequently the inter-temporal substitution between

present and future profits dissipates. Hence, as the last call auction approaches the impact

of risk-aversion on the trading activity of the insider resembles that of the static version of

Kyle’s model studied by Subrahmanyam (1991): risk-aversion induces the insider to be more

cautious and trade less aggressively. This means that as time elapses the informational content

of order flow decreases (λn declines through time) and hence the reduction in the value of Σn

is smaller. In the end, in the risk-averse case the information gain from order flow becomes

smaller than that of the risk-neutral one while market liquidity is larger (λn is now smaller for

ρ > 0). Anyway, despite the reduction in the information gain, the informativeness of prices

is always larger in the risk-averse case as Σn is always smaller for ρ larger than 0.

Similar results are obtained withm > 1. In particular, in Figure 2 we consider a formulation

with two risky assets whose liquidation values are positively correlated (the correlation coeffi-

12The algorithm we implement to find the solution of the non-linear difference equations for the parameters
of the equilibrium is simple. Given αn and Σn, there is a unique positive value of λn satisfying the condition
λn(1 − αnλn) + 1

2ρσ
2
l ∆nλ

2
n > 0 that the optimization problem of the insider must satisfy. This value is given

by the appropriate root of the the following equation 2(1 − αnλn)(Σn − σ2
l ∆nλ

2
n) = Σn + ρσ4

l ∆
2
nλ

3
n, which is

obtained by substituting out the expression for βn into λn. It is then immediate to obtain βn and, through
backward iteration, Σn−1 and αn−1. Since we have the final value αN = 0, we can define a numerical function
of ΣN , G, that gives the initial variance of the liquidation value Σ

′
= G(ΣN ). Given that G(ΣN ) is increasing

in ΣN it is easy to find via the Newton-Raphson method the root of the numerical equation Σ = G(ΣN ) that
gives the unique value of ΣN consistent with the boundary value Σ. A similar procedure is followed for m > 1.
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Figure 2: The Dynamics of efficiency and liquidity for m = 2, Σl =

(
1 0

0 1

)
, Σ =

(
2 0.3

√
2

0.3
√
2 1

)
.

cient is equal to 0.3). In the left panel we plot the conditional variance of the two risky assets,

Σ1,1
n and Σ2,2

n . These values correspond to the elements in main diagonal of the covariance ma-

trix Σn. In the right panel we plot the corresponding liquidity coefficients λ1,1
n and λ2,2

n , given

by the elements in main diagonal of the matrix Λn. The most notable conclusion that we draw

from the two plots is that efficiency and liquidity conditions in the two markets resemble those

observed in the scalar case. Thus, even in the multi-asset formulation a risk-neutral insider

consumes her informational advantage at a constant pace, while a risk-averse one consumes

her informational advantage at a faster pace to reduce the uncertainty over her future profits.

As a consequence, while liquidity conditions are stable with a risk-neutral insider, when she

is risk-averse liquidity conditions improve overtime as the pace at which her private informa-

tion is revealed diminishes. In addition, transaction costs are larger in the market where the

informational advantage of the insider is more pronounced, in that in such a market adverse

selection is more severe.

A second important result pertains to the information spill-over among the two markets.

As the liquidation values of the two risky-assets are correlated an informative signal on asset 1

(2) is also informative on asset 2 (1). The insider takes into account this information spill-over,
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in that for m = 2 she chooses her market orders according to the following specification

x̃i1,n = β1,1
n (ṽ1 − p1,n−1) + β1,2

n (ṽ2 − p2,n−1) ,

x̃i2,n = β2,1
n (ṽ1 − p1,n−1) + β2,2

n (ṽ2 − p2,n−1) .

For a positive correlation between the two assets, the insider chooses negative values for the

coefficients β1,2
n and β2,1

n reducing the information spill-over between the two markets.

In this respect it is useful to compare the properties of the equilibrium with those which

prevail when the the liquidation values of the two assets are independent. In this case, there is

perfect segmentation between the two markets and the insider can choose her optimal trading

strategy for asset 1 irrespective of what takes place in the market for asset 2 and viceversa.

Numerical analysis shows that the two markets turn out to be slightly more efficient when

the two liquidation values are correlated than when the two markets are perfectly segmented.

This suggests that the insider is capable of reducing the information spill-over between the two

markets to the minimum.

3 LEQG Problems with Time-Discounting

Economic agents typically maximize time-separable utility functions with time-discounting.

Then, one might want to see how discounting can be introduced properly in LEQG optimal

control problems. Hansen and Sargent (Hansen and Sargent, 1994, 2005) have shown how

discounted LEQG problems can be formulated and how recursive linear optimal control rules

can be derived. In this Section we see how the recursive criterion à la Epstein Zin proposed

by Hansen and Sargent can be modified in such a way that Whittle’s recursive methodology

can be salvaged nearly unchanged to accommodate time-discounting.

3.1 A Recursive Minimization Criterion Under Perfect State Observation

Consider an agent minimizing the following recursive criterion over the periods t = 1, 2, . . . , T

V t = min
ut

{ρ

2
ct + ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
. (3.1)
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The coefficient δ is the discount factor such that 0 < δ < 1, the cost function, ct, is quadratic

in the control vector and the state vector, ct = u′
tQut + z′tRzt + 2u′

tSzt, and the criterion

respects the terminal condition, VT = 0. As in the Markovian LEQG problem ut and zt

respect a linear Markovian plant equation with a normally distributed error vector, εt. Under

perfect state observation, zt is observable at time t and hence ct is deterministic. This implies

that the recursive minimization criterion is well defined.

With respect to the formulation of the criterion proposed by Hansen and Sargent we move

the discount factor inside the exponential function (so that rather than using δ ln(E[exp(X )])

we employ ln(E[exp(δX )])). By doing this we can easily transform the criterion V t into a

formulation which resembles that presented in Section 1. In fact, with some manipulations we

can write that

V t = ln

(
min
ut

{
Et

[
exp

(ρ
2
(ct + δV t+1)

)]})
. (3.2)

Since the criterion is a quadratic function of the state vector there exists a positive definite

quadratic form Qt(zt,ut, εt+1) such that Qt(zt,ut, εt+1) = ct + δV t+1.13 Then, we can intro-

duce a modified (or discounted) stress function which is equal to St ≡ ct − 1
ρ dt+1 + δV t+1.

This differs from stress function proposed by Whittle in two respects: firstly, it covers only

periods t and t+ 1; secondly, period t+ 1 criterion is pre-multiplied by the discount factor δ.

This formulation for the discounted stress function is appropriate because, under perfect state

observation, we can write

min
ut

Et

[
exp

(ρ
2
(ct + δV t+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δV t+1)−

1

2
ε′t+1N

−1εt+1

)
dεt+1

= min
ut

∫
exp

(
ρ
St

2

)
dεt+1 .

Because the discounted stress function is positive definite in ut and negative definite in εt,

restating the properties of the exponential function we find that

min
ut

Et

[
exp

(ρ
2
(ct + δV t+1)

)]
∝ exp

(
ρ

2
min
ut

max
εt+1

St

)
.

This indicates that a simplified version of the Risk-sensitive CEP formulated in Theorem 1

applies: to determine the optimal control rule the discounted stress function is now minimized

13Under these assumptions the criterion Vt is a function of the state vector zt. Following Hansen and Sargent
(1994), it can be shown that this function is monotonically increasing and convex in zt.
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with respect to ut and maximized with respect to εt+1. In other words, in the perfect state

observation scenario the stress function is extremized only with respect to the current con-

trol vector, ut, and next period unobservable, εt+1. Indeed, we can simply solve a modified

(discounted) future stress recursion

Ft(zt) = min
ut

{
max
εt+1

[
ct −

1

ρ
dt+1 + δFt+1(zt+1)

]}
, (3.3)

where Ft+1(zt+1) = z′t+1Πt+1zt+1, which differs from the standard recursion only for the pres-

ence of the discount factor, δ, in front of the period t + 1 extremized future stress function,

Ft+1(zt+1).14 Straightforward calculations show that, given the Markovian linear plant equa-

tion and the quadratic cost function in the control and state vectors, Theorem 3 must be

revised, in that: i) the second order condition for the extremization of the discounted future

stress function requires that δΠt+1 − (1/ρ)N−1 is negative definite; and ii) in the modified

Riccati equation Π̃t+1 = ((δΠt+1)−1 − ρN)−1.

Because of time-discounting it is possible to consider the limit case for T ↑ ∞, that is

a LEQG problem with time-discounting and infinite horizon. As indicated by Hansen and

Sargent (1994) there is no certainty that for T ↑ ∞ the criterion V t is finite and hence the

LEQG may be not well defined. However, when a minimum is reached we can identify a

stationary solution, in that in the limit Πt → Π and Kt → K, where the limit matrices are

determined by the fixed point in the risk-sensitive Riccati equation,

Π = R + A′Π̃A − (S′ + A′Π̃B)(Q + B′Π̃B)−1(S + B′Π̃A) ,

with Π̃ ≡ ((δΠ)−1 − ρN)−1 .

3.2 The Recursive Criterion Under Imperfect State Observation

Hansen and Sargent do not consider the scenario in which only a noisy signal on the state

vector zt is observed at time t.15 In such a scenario the initial recursive criterion proposed in

equation (3.1) is not well defined, as the cost function ct is no longer deterministic. However,

we can employ the recursive criterion in equation (3.2). Under imperfect state observation,

while no longer equivalent to the former one, this criterion is well defined.

14Then, the criterion Vt is such that exp(Vt) = exp( 12ρ[κt + Ft(zt)]), with κt independent of zt.
15Hansen and Sargent, in deriving recursive linear control rules for their minimization criterion, rely on results

developed by Jacobson (Jacobson, 1973, 1977) to analyze LEQG problems under perfect state observation.
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As now zt−1, zt and zt+1 are unobservable vectors, the discounted stress function takes a

new formulation. For ψ′
t denoting the vector (εt ηt)

′, Ωt−1 the conditional covariance matrix

for zt−1 given the information contained in observation history Ht−1 and

P =

(
N L′

L M

)
,

the discounted stress function is St ≡ ct − 1
ρ (Dt−1 + dt + dt+1) + δV t+1, where dt and dt+1

are quadratic forms in ψ′
t and ψ′

t+1 (dt = ψ′
tP

−1ψt and dt+1 = ψ′
t+1P

−1ψt+1), while Dt−1

is a quadratic form in the vector zt−1 and its conditional expectation ẑt−1 (Dt−1 = (zt−1 −
ẑt−1)′Ω

−1
t−1 (zt−1 − ẑt−1)). In fact, let Υt−1 denote the covariance matrix, conditional on

observation history Ht−1, for ξt, where ξ′t ≡ (z′t−1 − ẑ′t−1 ψ′
t ψ

′
t+1). We immediately notice

that

min
ut

Et

[
exp

(ρ
2
(ct + δV t+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δV t+1)−

1

2
ξ′tΥ

−1
t−1ξt

)
dξt .

Considering that (zt−1 − ẑt−1)′ ⊥ ψ′
t ⊥ ψ′

t+1, we can write

min
ut

Et

[
exp

(ρ
2
(ct + δV t+1)

)]
∝ min

ut

∫
exp

(
ρ

2
(ct + δV t+1)−

1

2

(
ψ′

t+1P
−1ψt+1 +

ψ′
tP

−1ψt + (zt−1 − ẑt−1)
′Ω−1

t−1 (zt−1 − ẑt−1)

))
dξt

= min
ut

∫
exp

(
ρ
St

2

)
dξt .

Because the discounted stress function is positive definite in ut and negative definite in ξt, we

find that exploiting the properties of the exponential function

min
ut

Et

[
exp

(ρ
2
(ct + δV t+1)

)]
∝ exp

(
ρ

2
min
ut

max
ξt

St

)
.

This implies that the simplified version of the Risk-sensitive CEP which holds with time-

discounting must be reformulated under imperfect state observation: St is now minimized

with respect to ut and maximized with respect to the noise vector ξt.

Once again, the extremization of the discounted stress can be achieved by splitting St into

two components related to past and future. In particular, re-formulating the risk-sensitive SP

stated in Theorem 2, the extremization of the discounted stress function can be achieved by:
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i) solving the discounted future stress recursion and the past stress recursion, now given by

Ft(zt) = min
ut

{
max

zt+1,wt+1

[
ct −

1

ρ
dt+1 + δ Ft+1(zt+1)

]}
, (3.4)

Pt(zt,Ht) = max
zt−1

[
−1

ρ
dt + Dt−1

]
, (3.5)

and; ii) maximizing Pt(zt,Ht) + Ft(zt) with respect to zt.

4 Monetary Policy for a Risk-averse Central Bank

We now apply this new formulation of the LEQG problem with time-discounting to the issue

of output and inflation stabilization for monetary policy. In particular, we refer to a simple

analytical framework developed by Svensson (Svennson, 1997) which describes the optimal

monetary policy of a central bank with infinite horizon, time-separable quadratic cost function

of inflation and output gap. We investigate an extension of Svensson’s analysis to the scenario

where monetary authorities: i) face a risk-sensitive minimization criterion; and ii) observe

imperfectly inflation and output.16 This allows to see what happens when the CEP cannot

be applied as in the LQG problem investigated by Svensson and the actual values of the state

variables cannot be replaced by their expectations when they are imperfectly observed.

Svensson studies the optimal policy of a central bank which controls the short-term real

interest rate to minimize the expected value of the risk-neutral criterion Lt ≡
∑∞

i=0 δ
ict+i,

where the cost ct is quadratic in the inflation rate, πt, and the output gap yt, ct ≡ π2
t +λy2t .

17,18

The dynamics of the state variables, πt and yt, is given by the following system of linear

equations

πt = πt−1 + αyt−1 + επt ,

yt = βyt−1 − γrt−1 + εyt ,

where rt is a short-term interest rate and the coefficients α, β, γ and λ are non-negative

16van der Ploeg (2004) also analyzes such an extension. However, he does not allow for time-discounting and
hence does not rely on a recursive criterion as the one presented in equation (3.2).

17The long-run natural output level is normalized to zero so that yt corresponds to output gap.
18The cost function should depend on the deviation of the inflation rate from a target level π∗. To accommo-

date this constant term into the cost function see the adjustment to the recursive solution derived by Whittle
(See Section 7.5, Whittle, 1990). We abstract from such complication.

25



constants. The variation in the inflation rate is increasing in lagged output, while the latter

is serially correlated and decreasing in the lagged real interest rate. As noted by Svensson the

short-term interest rate affects output with one lag and the inflation rate with two lags, this

discrepancy being an important feature of this model which is however consistent with ample

empirical evidence.

As in the plant equation the error terms επt and εyt follow independent white noise processes,

Svensson investigates a standard LQG optimization problem, which we can recast into the

LEQG framework with time-discounting by introducing the criterion V t and by defining the

vector of state variables zt ≡ (πt yt)′, the vector of error terms εt ≡ (επt εyt )
′ and the scalar

control variable ut ≡ rt. We then have that

A ≡
(

1 α

0 β

)
, B ≡

(
0

− γ

)
, R ≡

(
1 0

0 λ

)
, Q ≡ S ≡ 0 , N ≡

(
σ2
π 0

0 σ2
y

)
.

As the optimization horizon is infinite we concentrate on the steady-state solution: by solving

the fixed point for the modified Riccati equation we find that exp(V t) = exp(12ρ[κ + z′tΠzt])

and ût = K′zt, where κ is a constant independent of zt,

Π =




1 + δW αδW

αδW λ+ α2δW



 ,

W is a positive root of the following quadratic equation

δ

(
α2 − δ(α2 + λ)ρσ2

π

)
W 2 −

(
δ(α2 + λ) − λ(1 − δρσ2

π)

)
W − λ = 0

and

K =
1

γ

(
αδW

α2δW + λ− θρσ2
π

β +
α2δW

α2δW + λ− θρσ2
π

)
,

where θ = δ(λ + δ(α2 + λ)W ).This implies that the optimal monetary policy is reached by

setting the short-term interest rate equal to

rt =
1

γ

αδW

α2δW + λ− θρσ2
π
πt +

1

γ

(
β +

α2δW

α2δW + λ− θρσ2
π

)
yt , (4.1)

a Taylor’s rule which clearly subsumes that derived by Svensson for ρ = 0, in that under
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risk-neutrality,

W =
1

2



1 − (1− δ)λ

α2δ
+

√(
1 +

(1− δ)

α2δ

)2

+
4λ

α2





and

rt =
1

γ

αδW

α2δW + λ
πt +

1

γ

(
β +

α2δW

α2δW + λ

)
yt .

It is interesting to see that the similarities with Svensson’s solution do not exhaust here. In

particular, denoting with πt+1|t the expectation at time t of the inflation rate in period t+ 1,

we have that πt+1|t = πt + αyt. It is immediate to verify that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π
πt+1|t

)

and that

exp(V t) = exp

(
1

2
ρ[κ + π2

t + λ y2t + δWπ2
t+1|t]

)
,

so that the control path and the minimization criterion can be defined in terms of the inflation

forecast. In addition, denoting with πt+2|t the expectation at time t of the inflation rate in

period t+ 2, we find that at the optimum

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t ,

where yt+1|t denotes the expectation at time t of period t+1 output gap. This condition implies

that the two-period ahead inflation forecast is equal to its target level insofar the one-period

ahead expected output gap is null, confirming Svensson’s result that with output stabilization

the inflation forecast adjusts slowly to the target level.

However, significant differences also emerge between the risk-neutral and risk-averse sce-

narios. When λ = 0 and hence only inflation targeting motivates the monetary authorities,

the expectation of the inflation rate πt+2 in period t is always null for ρ = 0. As suggested by

Svensson, in the risk-neutral scenario the inflation forecast becomes an explicit intermediate

target, in that the monetary policy is optimal insofar πt+2|t = 0. On the other hand, for ρ > 0

at the optimum πt+2|t = αδρσ2
π yt+1|t. Because of risk-aversion, the standard CEP cannot be

applied as in the LQG problem investigated by Svensson and hence the inflation forecast is
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Figure 3: The values of the state variable coefficients kπ and ky for α = 1.5, β = 0.9, δ = 0.95, γ = 2, λ = 1

and σ2
π = σ2

π = 0.05 against the risk-aversion coefficient ρ.

not longer an explicit intermediate target when inflation targeting is the mission of the central

bank.

In addition, even when the monetary policy is also aimed at output stabilization (λ > 0),

in the risk-neutral scenario we see that inflation forecasts dampen out, in that for ρ = 0

πt+2|t =
λ

α2δW+λ πt+1|t. This indicates that the central bank expects the inflation rate to reach

the target level in the long-run. This is not necessarily the case for ρ > 0. Strikingly, the

central bank may actually expect the inflation rate to wander away from the target level even

if λ is small or null, that is even if output stabilization is not the main objective of its monetary

policy. In fact, for λ = 0 we see that πt+2|t =
−δρσ2

π
1−δρσ2

π
πt+1|t, and hence for 1/2 < δρσ2

π < 1

abs(πt+2|t) > abs(πt+1|t).

Finally, risk-aversion conditions deeply the Taylor rule selected by the monetary autorithies.

Figure 3 plots the inflation, kπ, and output gap, ky, coefficients in the optimal Taylor rule

described in equation (4.1), against the risk-aversion coefficient for values of ρ ranging from

0 to 10.19 As ρ = 0 corresponds to risk-neutrality we see that a risk-averse central bank

19These coefficients are determined by: solving for the positive root of the quadratic equation which pins
down W ; and ii) inserting the resulting value in the vector K.
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follows a more aggressive Taylor rule, in that the real short-term interest rate is more sensitive

to: i) departures of the inflation rate from its target level; and ii) swings in output from

full employment. While Figure 3 is obtained for a specific choice of parameters, numerical

analysis shows that such a result holds for all the parametric constellations for which an

optimal monetary policy exists.

4.1 Imperfect State Observation

It is interesting to see what happens in the case the central bank observes imperfectly the

state variables. In the LQG case we know that thanks to the CEP it is sufficient to replace the

state vector with its ML estimate. This is not the case when the central bank is risk-averse as

the unobservable variables are replaced by those values which maximize the discounted stress

function.

With respect to the monetary policy of the central bank, a realistic scenario is that in

which the monetary authorities observe the state variables with one lag. In this scenario the

formulation of the discounted stress function is simplified, in that dt = ε′tN
−1εt. Then, the

solution of the past stress recursion is straightforward in that a maximum in (3.5) is reached

for zt−1 = ẑt−1 and is given by Pt(zt,Ht) = −1
ρ ε

′
tN

−1εt + · · · , where once again + · · · denotes
terms independent of zt. Since Ft(zt) = z′tΠtzt, in re-coupling past and future extemization

we solve

max
zt

{
−1

ρ
ε′tN

−1εt + z′tΠtzt

}
.

Considering that if ẑt is the conditional expectation of the state vector at time t,20 we can

write εt = zt − ẑt, so that we need to solve

max
zt

{
−1

ρ
(zt − ẑt)

′N−1(zt − ẑt) + z′tΠtzt

}
.

We immediately conclude that the maximum total stress estimate (MTSE) žt is given by

z̆t = (I − ρNΠt)
−1ẑt .

As indicated in Theorem 2, the optimal control is obtained by inserting the MTSE, z̆t, into

the control rule which would prevail under perfect state observation. Within the monetary

policy example we find that in equation (4.1) the actual values of the inflation rate and output

20Given that the observable vector is now wt = zt−1, ẑt = Azt−1 +But−1.
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gap are not replaced by their ML estimates, but by the following values which correct for the

impact of risk-aversion

π̆t = π̂t +

(
π1 − det(Π)ρσ2

y

det(I2 − δρΠ)
π̂t +

π1,2

det(I2 − δρΠ)
ŷt

)
ρ σ2

π

y̆t = ŷt +

(
π1,2

det(I2 − δρΠ)
π̂t +

π2 − det(Π)ρσ2
π

det(I2 − δρΠ)
ŷt

)
ρ σ2

y ,

where π1, π1,2 and π2 are the elements of matrix Π.
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Appendix: Detailed Calculations

Future Stress Recursion. Consider the solution of the future stress recursion. First we need to solve

max
εn+1

[
cn − 1

ρ
dn+1 + Fn+1(zn+1)

]
,

where dn+1 ≡ ε′n+1N
−1
n+1εn+1, cn ≡ 2(zn +Λn un + εn+1)′un and Fn+1(zn+1) ≡ z′n+1Πn+1zn+1. The

first order condition is

2un − 2

ρ
N−1

n+1 εn+1 + 2Πn+1 (zn + Λn un + εn+1) = 0 ,

so that

ε̂n+1 = −
(
Πn+1 −

1

ρ
N−1

n+1

)−1
(
un +Πn+1(zn + Λn un)

)

= −
(
Πn+1 −

1

ρ
N−1

n+1

)−1

Πn+1

(
zn + Λ̃n un

)

= ρNn+1Π̃
−1

n+1

(
zn + Λ̃n un

)
,

as (Πn+1 − 1
ρN

−1
n+1)

−1 = −ρNn+1(Π
−1
n+1 − ρNn+1)−1Π−1

n+1.
21 Inserting this expression into the future

stress recursion we minimize with respect to un

2u′
nzn + 2u′

nΛnun + 2ρu′
nNn+1Π̃

−1

n+1

(
zn + Λ̃nun

)
+

−ρ
(
zn + Λ̃nun

)′
Π̃

−1

n+1Nn+1Π̃
−1

n+1

(
zn + Λ̃nun

)
+

(
(Im + ρNn+1Π̃

−1

n+1)
(
zn + Λ̃nun

)
−Π−1

n+1un

)′
Πn+1

(
(Im + ρNn+1Π̃

−1

n+1)
(
zn + Λ̃nun

)
−Π−1

n+1un

)
,

where we have used the fact that zn + Λnun + ε̂n+1 = (Im + ρNn+1Π̃
−1

n+1)(zn + Λ̃nun) − Π−1
n+1un.

Rearranging this is equivalent to minimize with respect to un the following expression

−u′
nΠ

−1
n+1un + (zn + Λ̃nun)

′

(
(Im + ρNn+1Π̃

−1

n+1)
′Πn+1(Im + ρNn+1Π̃

−1

n+1)− ρΠ̃
−1

n+1Nn+1Π̃
−1

n+1

)
(zn + Λ̃nun) .

21This holds because if A and B are invertible matrices, then (A + B)−1 = A−1(A−1 + B−1)−1B−1 =
B−1(A−1 +B−1)−1A−1.
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Now it can be shown that (Im + ρNn+1Π̃
−1

n+1) is equal to Π−1
n+1Π̃

−1

n+1. In fact, multiplying by Π̃n+1 on

both sides, we find that Π̃n+1 + ρNn+1 = Π−1
n+1, which corresponds to the definition of Π̃n+1. Then,

(
(Im + ρNn+1Π̃

−1

n+1)
′Πn+1(Im + ρNn+1Π̃

−1

n+1)− ρΠ̃
−1

n+1Nn+1Π̃
−1

n+1

)
= Π̃

−1

n+1 .

Hence, we need to minimize with respect to un

−u′
nΠ

−1
n+1un + (zn + Λ̃nun)

′ Π̃
−1

n+1 (zn + Λ̃nun) .

The first order condition is then

−2Π−1
n+1un + 2 Λ̃

′
n Π̃

−1

n+1 Λ̃n un + 2 Λ̃n Π̃
−1

n+1 zn = 0 ,

from which equation (2.9) immediately ensues that, under the second order condition −Π−1
n+1 +

Λ̃nΠ̃
−1

n+1Λ̃
′
n > 0, the optimal control is given by

ûn = −Bn zn , where Bn =
(
−Π−1

n+1 + Λ̃n Π̃
−1

n+1 Λ̃
′
n

)−1

Λ̃n Π̃
−1

n+1 .

This implies that zn + Λ̃nûn = (Im − Λ̃nBn) zn. Therefore, the extremized future stress in auction n

is equal to

Fn(zn) = − z′n B′
nΠ

−1
n+1Bnzn + z′n(Im − Λ̃nBn)

′ Π̃
−1

n+1 (Im − Λ̃nBn) zn .

This means that Fn(zn) = z′nΠnzn, where, defining Φn = (−Π−1
n+1 + Λ̃n Π̃

−1

n+1 Λ̃
′
n)

−1,

Πn = − Π̃
−1

n+1 Λ̃
′
n Φ

′
nΠ

−1
n+1ΦnΛ̃nΠ̃

−1

n+1 +
(
Im − Λ̃

′
n ΦnΛ̃nΠ̃

−1

n+1

)′
Π̃

−1

n+1

(
Im − Λ̃

′
n ΦnΛ̃nΠ̃

−1

n+1

)

= − Π̃
−1

n+1 Λ̃
′
n Φ

′
nΠ

−1
n+1ΦnΛ̃nΠ̃

−1

n+1 + Π̃
−1

n+1 − 2 Π̃
−1

n+1Λ̃
′
n ΦnΛ̃nΠ̃

−1

n+1

+ Π̃
−1

n+1Λ̃
′
n Φ

′
nΛ̃nΠ̃

−1

n+1Λ̃
′
n ΦnΛ̃nΠ̃

−1

n+1

= Π̃
−1

n+1 − 2 Π̃
−1

n+1Λ̃
′
n ΦnΛ̃nΠ̃

−1

n+1 + Π̃
−1

n+1 Λ̃
′
n Φ

′
n

(
Λ̃nΠ̃

−1

n+1Λ̃
′
n − Π−1

n+1

)

︸ ︷︷ ︸
−Φ

′−1
n

ΦnΛ̃nΠ̃
−1

n+1

= Π̃
−1

n+1 − Π̃
−1

n+1Λ̃
′
n Φn Λ̃nΠ̃

−1

n+1

as indicated in equation (2.10).

Single Risky Asset Scenario. For m = 1 assuming that Πn+1 is written as −2αn we find that

Π̃
−1

n+1 = − 2αn

1 + 2αnλ2
nρσ

2
l
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while

Λ̃n = − 1− 2αnλn

2αn

so that

Λ̃nΠ̃
−1

n+1 =
1− 2αnλn

1 + 2αnλ2
nρσ

2
l

and Λ̃nΠ̃
−1

n+1Λ̃
′
n = − 1

2αn

(1− 2αnλn)2

1 + 2αnλ2
nρσ

2
l

.

This means that

−Π−1
n+1 + Λ̃nΠ̃

−1

n+1Λ̃
′
n =

2λn(1− αnλn) + λ2
nρσ

2
n

1 + 2αnλ2
nρσ

2
n

so that: i) the condition −Π−1
n+1+ Λ̃nΠ̃

−1

n+1Λ̃
′
n > 0 corresponds to 2λn(1−αnλn) + λ2

nρσ
2
n > 0; and ii)

βn =
1− 2αnλn

2λn(1− αnλn) + λ2
nρσ

2
n

.

Finally,

−2αn−1 = − 2αn

1 + 2αnλ2
nρσ

2
l

− (1− 2αnλn)2

(1 + 2αnλ2
nρσ

2
l ) (2λn(1− αnλn) + λ2

nρσ
2
n)

= − 1

(1 + 2αnλ2
nρσ

2
l ) (2λn(1− αnλn) + λ2

nρσ
2
n)

(
1− 4αnλn + 4α2

nλ
2
n + 2αnλ

2
nρσ

2
l + 4αnλn − 4α2

nλ
2
n

)

= − 1

2λn(1− αnλn) + λ2
nρσ

2
n

.

Recursive Solution of the System of Difference Equations. Consider that

λn =
βnΣn−1

β2
nΣn−1 + σ2

l ∆n
,

while Σn = (1− λnβn)Σn−1. Substituting the former in the latter we see that

Σn =
σ2
l ∆n

β2
nΣn−1 + σ2

l ∆n
Σn−1 ,

so that

λn =
βn

σ2
l ∆n

σ2
l ∆n

β2
nΣn−1 + σ2

l ∆n
Σn−1 =

βnΣn

σ2
l ∆n

.

Replacing the expression for βn into λn we find that

σ2
l ∆nλn =

(1− 2αλn)Σn

2λn(1− αλn) + ρσ2
l ∆nλ2

n

,

which is equivalent to

Σn + ρσ2
l ∆

2
nλ

2
n = 2(1− αnλn)(Σn − σ2

l ∆nλ
2
n) .

This equation possesses three roots, one negative and two positive. Both the negative root and the
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larger of the two positive roots do not respect the condition 2λn(1− αnλn) + λ2
nρσ

2
n > 0. Thus, given

Σn and αn, λn is uniquely determined. From this βn, Σn−1 and αn−1 are then derived. Hence, given

a starting value for ΣN and the terminal condition αN = 0, the numerical function Σ′ = G(ΣN ) is

established.

Symmetry of Liquidity Matrix, ΛN . Consider that for n = N BN = (2ΛN + ρNN+1)−1. Inserting

this expression into (2.13) we find that

ΛN = ΣN−1 (2ΛN + ρNN+1)
′−1

(
(2ΛN + ρNN+1)

−1ΣN−1(2ΛN + ρNN+1)
′−1 + Σl∆N

)−1
.

This can be written as

ΛN = ΣN−1 (2ΛN + ρNN+1)
′−1 (2ΛN + ρNN+1)

′Σ−1
N−1(2ΛN + ρNN+1)×

(
(2ΛN + ρNN+1)

′Σ−1
N−1(2ΛN + ρNN+1) + Σ−1

l ∆−1
N

)−1
Σ−1

l ∆−1
N ,

so that

ΛNΣl∆N

(
(2ΛN + ρNN+1)

′Σ−1
N−1(2ΛN + ρNN+1) + Σ−1

l ∆−1
N

)
= 2ΛN + ρNN+1 .

This is equivalent to

ΛNΣl∆N (2ΛN + ρNN+1)
′Σ−1

N−1(2ΛN + ρNN+1) = ΛN + ρNN+1 , i.e.

(2ΛN + ρNN+1)
′Σ−1

N−1(2ΛN + ρNN+1) = Σ−1
l ∆−1

N (Im + ρΛ−1
N NN+1) .

Since NN+1 = ΛNΣl∆NΛ′
N we conclude that

(2Im + ρΛNΣl∆N )Λ′
NΣ−1

N−1ΛN (2Im + ρΣl∆NΛ′
N ) = Σ−1

l ∆−1
N (Im + ρΣl∆NΛ′

N ) , that is

M′
NΛ′

NΣ−1
N−1 ΛN MN = Σ−1

l ∆−1
N (MN − Im) ,

where MN ≡ 2Im + ρΣl∆NΛ′
N .
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Minimization Criterion with Time-Discounting. Under perfect state observation we can write

that

exp (Vt) = exp

(
min
ut

{ρ

2
ct + ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)])})

= min
ut

{
exp

(ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
Vt+1

)]))}

= min
ut

{
exp

(ρ
2
ct
)
· exp

(
ln
(
Et

[
exp

(
δ
ρ

2
Vt+1

)]))}

= min
ut

{
exp

(ρ
2
ct
)
·
(
Et

[
exp

(
δ
ρ

2
Vt+1

)])}

= min
ut

{
Et

[
exp

(ρ
2
(ct + δVt+1)

)]}
,

so that

Vt = ln

(
min
ut

{
Et

[
exp

(ρ
2
(ct + δVt+1)

)]})
.

Modified Stress Function Recursion. Recall that if Q(u, ε) is a quadratic form which is positive

definite in ε and negative definite in u then the following holds

min
u

∫
exp

[
− 1

2
Q(u, ε) dε

]
∝ exp

[
− 1

2
max
u

min
ε

Q(u, ε)

]
.

Hence, consider that under perfect state observation

min
ut

∫
exp

(
ρ
St

2

)
dεt+1 = min

ut

∫
exp

(
−1

2
(−ρSt)︸ ︷︷ ︸

Q(ut,εt+1)

)
dεt+1

∝ exp

(
−1

2
max
ut

min
εt+1

(−ρSt)

)
= exp

(
ρ

2
min
ut

max
εt+1

St

)
,

where we have made use of the fact that St is positive definite in ut and negative definite in εt+1 so

that the opposite holds for −St. With a similar argument, replacing εt+1 with ξt, we show that under

imperfect state observation

min
ut

∫
exp

(
ρ
St

2

)
dξt ∝ exp

(
ρ

2
min
ut

max
ξt

St

)
.

Future Stress Recursion with Time-Discounting. Both in the standard LEQG problem and in

the LEQG problem with time-discounting the future stress function Ft(zt) respects the recursion

Ft = LL̃Ft+1 ,
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based on the following two operators

Lφ(z) = min
u

[c(z,u) + φ(Az+Bu)] and L̃φ(z) = max
ε

[φ(z+ ε) − 1

ρ
ε′N−1ε] .

In the future stress recursion for the standard LEQG formulation φ(z) = z′Πz, so that

L̃φ(z) = max
ε

[(z+ ε)′Π(z+ ε) − 1

ρ
ε′N−1ε] .

Taking first derivatives, we find that

ε̂ = −(Π − 1

ρ
N−1)−1Π z = −Π̆

−1
Π z .

Replacing this expression we conclude that L̃φ(z) = z′(Π−1 − ρN)−1z = z′ Π̃ z. The second order

condition entais that to have a maximum matrix Π̆ must be negative definite. For L̃φ(z) = z′Π̃ z,

solution of the operator L yields the standard recursive formulae from the LQG problem where Π̃ =

(Π−1 − ρN)−1 replaces Π.

In the future stress recursion for the LEQG problem with time-discounting φ(z) is equal to δz′Πz =

z′δΠz, so that δΠ simply replacesΠ. This means that L̃φ(z) = z′Π̃z, where now Π̃ = (δΠ−1 − ρN)−1

and Π̆ = δΠ− 1
ρN

−1. Solution of the operatorL is unaffected by time-discounting, in that the standard

recursive formulae from the LQG problem now apply with Π̃ = (δΠ−1 − ρN)−1 replacing Π.

Optimal Monetary Policy. In the stationary solution,

Π̃ = (δΠ−1 − ρN)−1 = δΠ (I2 − δ ρNΠ)−1

= δΠ




1− δρσ2

ππ1 −δρσ2
ππ1,2

−δρσ2
yπ1,2 1− δρσ2

yπ2




−1

=
δ

det(I2 − δ ρNΠ)




π1 π1,2

π1,2 π2








1− δρσ2

yπ2 δρσ2
ππ1,2

δρσ2
yπ1,2 1− δρσ2

ππ1





=
δ

det(I2 − δ ρNΠ)

(
(1− δρσ2

yπ2)π1 + δρσ2
yπ

2
1,2 π1,2

π1,2 (1− δρσ2
ππ1)π2 + δρσ2

ππ
2
1,2

)

=
δ

det(I2 − δ ρNΠ)
Π̂ .

where

det(I2 − δ ρNΠ) = 1− δρ(σ2
ππ1 + σ2

yπ2) + δ2 ρ2 det(Π)σ2
πσ

2
y .
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It is immediate to check that B′Π̂B = γ2 π̂2, so that

(B′Π̃B)−1 =
1

δ

1

γ2

1

π̂2
det(I2 − δ ρNΠ) , B(B′Π̃B)−1B′ = det(I2 − δ ρNΠ)




0 0

0 1
δ

1
π̂2



 .

Hence,

B(B′Π̃B)−1B′ Π̃ =




0 0

1
δ

π̂1,2

π̂2
1



 , I2 − B(B′Π̃B)−1B′ Π̃ =




1 0

− 1
δ

π̂1,2

π̂2
0



 .

In the modified Riccati equation we have

Π = R +A′Π̃
(
I2 − B(B′Π̃B)−1B′ Π̃

)
A

=




1 0

0 λ



 +
δ

det(I2 − δ ρNΠ)




1 0

α β








π̂1 π̂1,2

π̂1,2 π̂2








1 0

− π̂1,2

π̂2
0








1 α

0 β





=




1 0

0 λ



 +
δ

det(I2 − δ ρNΠ)




1 0

α β








det(Π̂)

π̂2
0

0 0








1 α

0 β





=




1 0

0 λ



 + δ
det(Π̂)

det(I2 − δ ρNΠ)

1

π̂2

(
1 α

α α2

)
.

Then we can define W = 1
det(I2−δ ρNΠ)

(
π̂1 −

π̂2
1,2

π̂2

)
and conclude that

π1 = 1 + δW , π1,2 = α δW , π2 = λ + α2 δW .

Now,

π̂1 −
π̂2

1,2

π̂2
= π1 − δ ρ det(Π)σ2

y −
π2

1,2

π2 − δ ρdet(Π)σ2
π

=
(π1 − δ ρ det(Π)σ2

y) (π2 − δ ρdet(Π)σ2
π)− π2

1,2

π2 − δ ρdet(Π)σ2
π

=
det(Π)

[
1− δρ(σ2

ππ1 + σ2
yπ2) + δ2 ρ2 det(Π)σ2

πσ
2
y

]

π2 − δ ρdet(Π)σ2
π

=
det(Π) det(I2 − δ ρNΠ)

π2 − δ ρdet(Π)σ2
π

,

so that W = det(Π)

π2−δ ρdet(Π)σ2
π

. Given the expressions for π1, π1,2 and π2, we have that det(Π) =
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λ+ δ(α2 + λ)W , so that

W =
λ + δ (α2 + λ)W

λ (1− δρσ2
π) + δ

(
α2 − δ (α2 + λ) ρ σ2

π

)
W

.

Rearranging we find that

δ

(
α2 − δ(α2 + λ)ρσ2

π

)
W 2 −

(
δ(α2 + λ) − λ + δλρσ2

π)

)
W − λ = 0

whose roots are

W± =
δ(α2 + λ) − λ (1− δρσ2

π) ± ∆1/2

2 δ

(
α2 − δ(α2 + λ)ρσ2

π

) where

∆ =

(
δ(α2+λ)−λ(1−δρσ2

π)

)2

+4δλ(α2−δ(α2+λ)ρσ2
π

)
. For ρ = 0, ∆ =

(
δα2−(1−δ)λ)

)2

+4α2δλ,

while

W± =
1

2

(
1 − (1− δ)λ±∆1/2

α2δ

)
= =

1

2



1 − (1− δ)λ

α2δ
±

√(
1 +

(1− δ)

α2δ

)2

+
4λ

α2



 .

To determine K consider that

B′Π̃A =
δ

det(I2 − δ ρNΠ)
(0 − γ)




π̂1 π̂1,2

π̂1,2 π̂2








1 α

0 β





= − δ γ

det(I2 − δ ρNΠ)
(π̂1,2 απ̂1,2 + βπ̂2) .

Given that K = −(B′Π̃B)−1B′Π̃A, we find that

K =
1

γ

(
π̂1,2

π̂2
α
π̂1,2

π̂2
+ β

)
.

Finally, since π̂1,2 = π1,2 = αδW and π̂2 = π2 − δdet(Π)ρσ2
π = λ + α2δW − δ(λ + δ(α2 + λ)W )ρσ2

π,

we find that

K =
1

γ

(
αδW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

β +
α2δW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

)
.

To reach a minimum δΠt+1 − (1/ρ)N−1 must be negative definite. This corresponds to the double
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condition that

δπ1 −
1

ρ

1

σ2
π

< 0 , (δπ1 −
1

ρ

1

σ2
π

) (δπ2 −
1

ρ

1

σ2
y

) − δ2 π1,2 > 0 .

The Value Function and the Inflation Forecast. Given the plant equation for πt we immediately

see that πt+1|t = πt + αyt. Then, consider that

z′tΠzt = (πt yt)




1 + δW αδW

α+ δW λ+ α2δW








πt

yt





= (πt yt)




1 0

0 λ








πt

yt



 + (πt yt)




δW αδW

αδW α2δW








πt

yt





= π2
t + λy2t + δ W (πt yt)




1

α




(
1 α

) 


πt

yt





= π2
t + λy2t + δW (πt + αyt)

2 .

Immediately it follows that

exp(Vt) = exp

(
1

2
ρ[κ + π2

t + λ y2t + δWπ2
t+1|t]

)
.

Inflation and Output Gap Forecast. Since πt+1|t = πt + αyt we find that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π

πt+1|t

)

Inserting this into the plant equation for output gap, we find that

yt+1|t = − α δ W

α2δW + λ− θρσ2
π

πt+1|t .

Since πt+2|t = πt+1|t + αyt+1|t and πt+1|t = −α2δW+λ−θρσ2
π

αδW yt+1|t, we conclude that

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t .

Optimal Monetary Policy with Imperfect State Observation. In the stationary solution, we

find that

z̆t = (I2 − ρNΠ)−1ẑt, where
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(I2 − ρNΠ)−1 =
1

det(I2 − δ ρNΠ)

(
1− ρσ2

yπ2 ρσ2
ππ1,2

ρσ2
yπ1,2 1− ρσ2

ππ1

)
,

so that

π̆t =

(
1− ρσ2

yπ2

det(I2 − δρΠ)
π̂t +

ρ σ2
ππ1,2

det(I2 − δρΠ)
ŷt

)
,

y̆t =

(
ρ σ2

yπ1,2

det(I2 − δρΠ)
π̂t +

1− ρσ2
ππ1

det(I2 − δρΠ)
ŷt

)
.

Given that

1− ρσ2
yπ2

det(I2 − δρΠ)
= 1 +

π1 − det(Π)ρσ2
y

det(I2 − δρΠ)
ρ σ2

π ,

1− ρσ2
ππ1

det(I2 − δρΠ)
= 1 +

π2 − det(Π)ρσ2
π

det(I2 − δρΠ)
ρ σ2

y ,

we conclude that the MTSE is

π̆t = π̂t +

(
π1 − det(Π)ρσ2

y

det(I2 − δρΠ)
π̂t +

π1,2

det(I2 − δρΠ)
ŷt

)
ρ σ2

π ,

y̆t = ŷt +

(
π1,2

det(I2 − δρΠ)
π̂t +

π2 − det(Π)ρσ2
π

det(I2 − δρΠ)
ŷt

)
ρ σ2

y .
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