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Abstract 

This paper investigates the effect of patenting uncertainty on innovations. Although the patent 
system was established to provide incentive and certainty to innovators, the patenting process 
itself contains elements of uncertainty, including pendency and variation in grant ratios. We use 
time series data on patent applications and patent grants from the United States and measure 
patent uncertainty in terms of variation in the grant ratio, i.e., the difference in the number of 
patent grants and the number of patent applications. Findings show that increasing patent 
uncertainty has a depressing effect on innovation rates. Moreover, our findings reveal important 
differences between the short-run and long-run effects and between overall patents and utility 
patents. We also consider the effects of the America Invents Act and find that the Act led to more 
patent applications. Besides adding to the literature, these findings underscore the point that 
transaction costs of patenting might be undermining the intent of innovation policy by reducing 
innovation. 
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1. Introduction 

Uncertainty is an inherent attribute of innovation, and it manifests itself in many stages of the 
process of innovation. For instance, there is the uncertainty associated with whether a new 
product or process will be successfully invented, whether the inventor (firms or individuals) will 
beat its competitors in inventing first, whether the firm will succeed in gaining regulatory 
protections for the invention (patents, environmental/health clearances, etc.), and what share of 
the potential market will the invention capture (and how fast).1  

Innovators face different sources of uncertainty (Goel (2007)). One kind of uncertainty relates to 
the very nature of the innovation process. The results of R&D are inherently uncertain, and “the 
output (information obtained) can never be predicted perfectly from the inputs” (Arrow (1962, p. 
616)). Hence R&D investments may fail or produce inventions which are not exactly the ones 
sought. Second, there is market uncertainty, i.e., it’s unclear how market demand for a newly 
created product will develop and how competitors will react. Moreover, the novelty of an 
invention may be contentious and its patentability insecure (Troy and Werle (2008)). This 
general uncertainty inherent in the patenting process may be aggravated by a high variability of 
patent grant ratios over time, which leads to a strong increase in patenting uncertainty. 

The key contribution of the current paper is that it considers the effect of patenting uncertainty 
on innovations.2 This is important because patenting uncertainty may have detrimental effects on 
innovation and turn the actual purpose of the patenting system – protecting and stimulating 
innovation – into its opposite.  If it turns out that patenting uncertainty diminishes inventive 
activity, that would undermine the intent of the patent system in fostering innovation over time. 
Yet, due diligence in the patent award process is important to reward true inventors and to 
adequately determine the scope of a patent (Goel (2002)). 

Not all patent applications are ultimately granted patents, with reasons for denials varying from a 
lack of originality, technical issues with filing paperwork (or the transaction cost of patenting), 
multiple, simultaneous filers of the same invention, etc. Consequently, some new inventors 
(nascent entrepreneurs or first-time inventors) might be dissuaded from filing patents or 
inventing by looking at the low success rate in patent grants. This possible effect has the 
potential to undermine the success of the patent process – whereas the intent of the patent 
process is to reward and encourage innovation by protecting the property rights of the inventors, 
the very process of due diligence to identify the true inventors and identify original contributions 
might have the opposite effect of dissuading innovation by some due to the uncertainty 
associated with patent grants. 

A historical look at the USPTO data from 2001 shows the patent grant rate to be about 70 percent 
(https://patentlyo.com/patent/2021/04/uspto-grant-rate.html). Obviously, there would be 

 
1 Not all inventions are, however, patented. The potential imitation chances (Mansfield et al. (1981)) and litigation 
hassles (Amir et al. (2014)) might decrease, for instance, the lure of patents for some inventors. Also see, Boldrin 
and Levine (2013). 
2 Sampath (2018) provides a useful recent review of the empirical literature on patents and innovation. 

https://patentlyo.com/patent/2021/04/uspto-grant-rate.html
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significant variation in patent grant rates across innovation types, and types of patents applied 
for. We control for this somewhat in the analysis below by considering utility patents separately. 

A significant institutional development during the time period under consideration was the Leahy-Smith 
America Invents Act (AIA) of 2011 (https://www.congress.gov/bill/112th-congress/house-bill/1249; 
https://en.wikipedia.org/wiki/Leahy%E2%80%93Smith_America_Invents_Act) that, among other 
changes, switched the patenting criterion from the “first-to-invent” to the “first-to-file”. This change 
could have impacted patent applications and we test for this effect in Section 5.4. 3 

To operationalize the analysis, we use time series data on patent applications and patent grants 
from the United States. The focus on the United States is due to the availability of a relatively 
long time period of data and the relatively good comparability of the data (although foreign 
inventors could be some of those applying for patents in the United States). We will also 
determine if the effect of uncertainty on utility patents is different than that on overall patents. 
Finally, we are able to compare the short-run and long-run effects of patenting uncertainty on 
innovation. 

To quantify the presence of uncertainty in patenting, we assess the variation in the difference 
between patent applications and patent grants. This helps us gauge the extent to which patent 
applications fail to materialize into actual patents. Subsequently, we compute the five-year 
moving standard deviation of this difference. The results, based on this measure of patenting 
uncertainty, show that our main hypothesis of greater patenting uncertainty leading to lower 
innovation rates is supported. Furthermore, we find some differences between the short-run and 
long-run effects and between overall patents and utility patents. Besides adding to the literature, 
these insights have useful implications for technology policy. Are the efforts to reward true 
inventive activity having adverse outcomes of innovation? Are the effects of patenting 
uncertainty alike in the short term and the long term? 

The large body of (mostly theoretical) economics and business research has recognized and 
modeled various dimensions of the innovation process and their effects on research spending, the 
pace of technological change, economic growth, etc. (see Kamien and Schwartz (1982) and 
Reinganum (1989) for overviews of the related literature and Goel (2007) for specific 
application). However, quantifying different aspects of uncertainty is a challenge, resulting in 
relatively few empirical studies accounting for innovation uncertainty (see Czarnitzki and Toole 
(2011) and Goel and Nelson (2021) for notable exceptions). 

The structure of the rest of the paper includes a short review of the related literature in Section 2 
and an exposition of the econometric model and the hypotheses in Section 3. This is followed by 
data and estimation (Section 4), results (Section 5), and conclusions (Section 6). 

 

2. Related literature 

 
3 We thank Al Link for bringing this to our attention. 

https://www.congress.gov/bill/112th-congress/house-bill/1249
https://en.wikipedia.org/wiki/Leahy%E2%80%93Smith_America_Invents_Act
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In this section, we provide a brief review of the related literature to set up the contribution of this 
work. Following the seminal work by Kenneth Arrow (1971), the role of uncertainty in economic 
decision-making has received widespread attention. According to the real options literature, 
investment decisions are negatively affected by uncertainty because the value of waiting to invest 
increases with uncertainty (Dixit and Pindyck (1994)). Firms are facing various uncertainties, 
including economic, political, and regulatory uncertainties (Goel (2007)).4  Empirical studies 
investigating the effect of economic uncertainty on investment decisions include Binding and 
Dibiasi (2017), Czarnitzki and Toole (2011), and Goel and Ram (2001), whereas An et al. (2016), 
Goel and Nelson (2021), Jens (2017), and Kang et al. (2014), focus on the effects of political 
uncertainty. Bloom (2007) provides a theoretical model of R&D dynamics under uncertainty, 
showing that greater uncertainty reduces the responsiveness of R&D spending to changes in 
demand conditions. 

Uncertainty is important with respect to innovation as it alters the expected costs and benefits of 
projects, and an increase in uncertainty might lead to a delay or even the abandonment of 
innovation projects (Goel and Nelson (2021)). Different responses to uncertainty across 
individuals and firms might occur according to different risk attitudes (Goel and Göktepe-Hultén 
(2019)).5 

A special and clearly under-researched area of regulatory uncertainty is patent uncertainty. 
Patenting practices may cause uncertainty with respect to pendency, granting, and changes of 
scope (Goel (2002), Yang (2008), Yang and Sonmez (2018)). Pendency is the time span from 
filing a patent application to receiving the respective patent grant.  Granting is usually measured 
as the grant ratio, i.e. the ratio of the number of grants against the number of applications. 
Changes of scope can lead to an unexpected reduction in the breadth of a patent, e.g. when 
applicants are asked to change their applications from invention to utility patents. 

A study of US patenting practices performed by Popp et al. (2003) showed that pendency 
depends, inter alia, on technology type, claim width, complexity and the length of the reference 
list. A similar study for Europe found complexity, originality, and backward citations to be the 
main determinants of pendency at the European Patent Office (Harhoff and Wagner (2006)) 

Several studies have analyzed national differences in patenting practices and whether national 
patent offices discriminate against foreigners in terms of grant ratios and pending duration. The 
pioneering work by Kotabe (1992) suggests that discrimination against foreigners exists but 
takes different forms in different national patenting systems. While the US, the UK, and the 
German systems discriminated against foreign applications in terms of lower grant ratios, the 
Japanese system discriminated in terms of longer pendency for foreign applications (Kotabe 
(1992)). A more recent study comparing pendency and grant ratios of foreign and domestic 

 
4 There may be other dimensions of regulatory approvals, not directly related to patents (e.g., in medical 
technologies (Stern (2017)). 
5 Another aspect might be credit market or borrowing uncertainty that could affect the innovation via financing 
constraints (Capasso and Mavrotas (2010)). 
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patent applications in the US and China does not confirm these results: It finds that the US in the 
period 1985 to 2002 provided equal treatment to residents and non-resident applicants in terms of 
pendency and grant ratios, whereas China in the same period provided equal (and shorter) 
pendency, but unequal grant ratios in favor of domestic applicants (Yang (2008)). While the 
above-mentioned studies have made important contributions to measuring patent uncertainty and 
to comparing it across countries there is – to the best of our knowledge – no study investigating 
the effects of patent uncertainty on innovation outcomes. This paper intends to fill this gap.  

 

3. The model 

Based on the above discussion, we formulate our main hypothesis: 

Hypothesis H1: Greater uncertainty of patent grants lowers innovation, ceteris paribus. 

Theoretically speaking, greater patenting uncertainty undermines the expected rewards from 
innovation, and this might dissuade some inventors from either not pursuing new inventions (or 
not bringing them to light via the patent process). 

The basic empirical model has the following general form: 

Innovationj = f(Patenting uncertaintyM, Z)       (1) 

j = Total patents, Utility patents 

M = 5-year moving standard deviation between patent applications and patent grants for total 
patents (LnPatentUncertain); 5-year moving standard deviation between patent applications and 
patent grants for utility patents (LnPatentUncertain (Utility)) 

Z = GDP, R&D, GovtSize, Inflation, and Education. 

The dependent variable is an indication of innovation, measured alternately via total patents 
granted and utility patents. Whereas total patents might include a range of innovations, the 
subclass of utility patents protects innovations related to the way an innovation is used or works.  

The main explanatory variable of interest is patenting uncertainty, measured as the 5-year 
moving standard deviation between patent applications and patent grants, for total and utility 
patents, respectively.6 As not all patent applications result in patent grants, the discrepancy 
represents the number of applications that do not materialize into actual grants. To capture the 
variability in this discrepancy between patent applications and grants, we calculate the 5-year 
standard deviation, effectively measuring the volatility in this relationship. 

Among the vector of Z controls, GDP denotes economic prosperity, R&D measures research 
spending as a percentage of GDP, the size of government proxies for the scale of institutions, and 
in some cases the government might be directly participating in research (Leyden and Link 

 
6 We also had information on design patents. However, due to their qualitatively different nature (e.g., many design 
patents are not resulting from R&D, and their overlap with trademarks) and their relatively few numbers, we do not 
include them in the analysis.  
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(2012)), inflation would proxy for economic uncertainty (Goel and Ram (2001)), and education 
denotes human capital, measured as the share of population 25 years and older that completed at 
least four years of college education. Research spending is the main input in innovation (Cohen 
(2010), Goel et al. (2023), Kamien and Schwartz (1982)), while economic prosperity accounts 
for the affordability and future expectations about innovation profits. 

Equation (2) below will describe in greater detail how the general equation (1) will be estimated 
to test Hypothesis H1 and to exploit the information in the underlying time series data. 

 

4. Data and estimation 

4.1 Data 

With the well-known difficulties associated with measuring the true extent of innovative activity, 
we take patents granted as a readily available indicator of innovation our outcome variable.  The 
data are time-series for the U.S. from 1971 to 2020. Table 1a includes the variable details and 
Table 1b reports the summary statistics.   

The average number of patent grants (applications) per 100,000 population in our sample is 
54.89 (102.73), with a high of 119.05 (203.77) and a low of 23.28 (47.81). Utility patent grants 
(applications) per 100,000 population show an average of 49.98 (96.01) with a high of 107.88 
(189.16) and a low of 21.70 (44.25).  

Figures 1 and 2 show the time series of (total and utility) patent grants, patent applications, and 
patenting uncertainty. These figures reveal steady innovation from the beginning of the sample 
period until the mid-1990’s innovation shows an increasing trend. Interestingly, patenting 
uncertainty was heightened during the period of the Great Recession (2007-2009).  

4.2 Estimation 

To examine the long-run relationship and short-run dynamics between patents (grants and 
applications) and patenting uncertainty we estimate a conditional error correction model using an 
autoregressive distributed lag model (ARDL)—see Natsiopoulos and Tzeremes (2020).  Because 
of the challenges related to identifying the order of integration of the variables that are 
potentially integrated to different orders, we employ the Bounds testing procedure originally 
developed by Pesaran et al. (2001), to test for the cointegration of variables with potentially 
different orders of integration. For this approach, no pre-testing of the variables is necessary 
except to ensure that the variables are not integrated to order 2 or higher. Therefore, we use the 
Phillips-Perron unit root test to test for stationarity of the variables (Phillips and Perron (1988)).  The 
results reported in Table 2 confirm that the dependent variables are integrated of order 1 and that the 
explanatory variables are not integrated of order 2. 

To start, we estimate the following error correction model for each dependent variable 
𝑦𝑦𝑡𝑡 (LnPatGrant, LnPatApp, LnPatGrant (Utility), or LnPatApp (Utility)): 
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∆𝑦𝑦𝑡𝑡 = 𝛼𝛼0 + 𝛼𝛼1𝑡𝑡 + 𝜋𝜋𝑦𝑦𝑦𝑦𝑡𝑡−1 + 𝜋𝜋𝑥𝑥𝑥𝑥𝑡𝑡−1 + �𝜓𝜓
𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦𝑡𝑡−𝑖𝑖 + �𝛾𝛾
𝑞𝑞−1

𝑖𝑖=0

𝑥𝑥𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 
(2) 

 

x is a vector of explanatory variables and includes the following variables: patenting uncertainty 
(LnPatentUncertain (Total, SD) when y is LnPatGrant or LnPatApp; LnPatentUncertain (Utility, 
SD) when y is LnPatGrant (Utility) or LnPatApp (Utility)), LnGDP, LnR&D, LnGovtSize, 
Inflation, and LnEducation. This equation is estimated using OLS where the long-run parameters 
are 𝜋𝜋𝑦𝑦 and 𝜋𝜋𝑥𝑥 and the short-run parameters are 𝜓𝜓 and 𝛾𝛾.   

The optimal lag lengths p and q are determined by the Akaike Information Criterion (AIC) with a 
maximum of 3 lags to conserve the degrees of freedom. The Bounds tests for cointegration is a 
two-step process (Pesaran et al. (2001)).  The first step is an F test of the null hypothesis of no 
cointegration (𝐻𝐻0: 𝜋𝜋𝑦𝑦 = 𝜋𝜋𝑥𝑥 = 0) against the alternative of cointegration (𝐻𝐻1: 𝜋𝜋𝑦𝑦 ≠ 0, 𝜋𝜋𝑥𝑥 ≠ 0).  If 
the F statistic exceeds the I(1) critical value we reject the null hypothesis in favor of 
cointegration; if the F statistic is below the I(0) critical value we fail to reject the null hypothesis, 
and if the F statistic falls between the two critical values, the test is inconclusive. If the F test 
favors cointegration, then to rule out degenerate cases we conduct a t-test under the null 
𝐻𝐻0: 𝜋𝜋𝑦𝑦 = 0 against the alternative  𝐻𝐻1: 𝜋𝜋𝑦𝑦 < 0. Like the F test, if the t statistic exceeds the I(1) 
critical value we reject the null in favor of cointegration; if the t statistic is below the I(0) critical 
values we fail to reject the null, and if the t statistic falls between the two critical values, the test 
is inconclusive.  

Because the asymptotic distribution of the F and t statistics are non-standard, we report critical 
values from Kripfganz and Schneider (2020) based on if all the variables are I(0) or I(1) for the 
case of unrestricted constant and restricted time trend.  

 

5. Results 

5.1 Testing for cointegration 

First, we test for the presence of cointegration, using four different models (two each for total 
patents and utility patents, respectively). The Bounds test results are reported in Table 3. The 
results show that the F test rejects no cointegration in all models except Model 3 and the F 
statistic is marginally insignificant. According to the t-test, cointegration is confirmed in Model 1 
given by the statistically significant t-statistic, while it is marginally insignificant for Models 2 
and 4. Consequently, evidence of cointegration is confirmed for Model 1 and is inconclusive for 
Models 2-4.    

5.2 Long-run effects of patenting uncertainty 
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Table 4 reports the long-run coefficients for all four models.7 Based on these results, we find that 
patenting uncertainty has a negative and statistically significant effect on patent grants (total and 
utility), but no statistical impact on patent applications. These findings support Hypothesis H1, 
especially for patent grants. It makes sense that patenting uncertainty would have a pronounced 
impact on patent grants and not applications. Many patent applications might either be spurious, 
not serious, or underdeveloped. Some new inventors might be naïve or firms might just be filing 
patent applications for strategic reasons. In such cases, heightened patenting uncertainty is 
unlikely to impact their patent applications. The coefficients suggest that a 10 percent increase in 
patenting uncertainty, on average, reduces total (utility) patent grants by 1.3 (1.4) percent.  

Turning to the control variables, we find that R&D spending (as a percent of GDP) promotes 
patents grants, but not patent applications, in the long run with the coefficient representing a 1 
(1.2) percent increase in total (utility) patent grants following a 10 percent increase in R&D. 
R&D is a prime input in the innovation process and our findings bear this out with regard to 
innovation as measured by patent grants. The insignificant impact on patent applications is 
consistent with the discussion in the previous paragraph. 

In contrast, a larger government has a deleterious effect on innovation with unitary elasticity for 
both total and utility patent grants.  This may be due to bureaucratic delays associated with larger 
governments. In contrast, we find that both GDP and inflation have positive effects on (total and 
utility) patent applications, but no statistical effect on patent grants. Specifically, we find that the 
effect of GDP on total and utility patent applications is economically significant with elasticities 
equal to 2.4 and 3.0, respectively. Greater economic prosperity makes the potential payoffs from 
innovation more attractive (also see Cohen (2010)). On the other hand, inflation, although 
statistically significant, has a rather negligible effect on total and utility patent applications with 
elasticities equal to roughly only 0.04. Interestingly, the effect of education on patent grants and 
applications is negative and statistically significant across all models, with an elasticity of 
approximately 2.8 Finally, the coefficient on the time trend is positive and statistically significant 
across all models showing that patent grants and applications are increasing over time. 

5.3 Short-run effects of patenting uncertainty 

Table 5 reports the results for the underlying short-run dynamics in the error correction model. 
The diagnostics tests at the bottom of Table 5 show that overall, the models satisfy the conditions 
for ARDL modeling.  In particular, we fail to reject no ARCH effects (ARCH LM test), 
homoskedasticity (Breusch-Pagan test), no serial correlation (Breusch-Godfrey LM test; with the 
exception of Model 4 the null is rejected at lag 3), no model misspecification (RESET test), and 
normality (Cameron & Trivedi (1990) IM test). In addition, we fail to reject model instability 
given by the CUSUM recursive and OLS residuals.  

 
7 The coefficients in Models 2-4 should be interpreted with caution given that the evidence for cointegration is 
inconclusive. 
8 Some caution is advised here. Some R&D expenditures might include spending on research personnel, who would 
already be included in the educated labor force. 
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The coefficient on the error correction term representing the (negative) speed of adjustment is 
negative, less than the absolute value of one revealing partial adjustment, and statistically 
significant across all models. The magnitude of the error correction term is greater (in absolute 
value) for patent grants relative to patent applications suggesting that following a shock, patent 
grants return to equilibrium faster. In particular, a shock to the long-run equilibrium is corrected 
by approximately 60% (55%) within a year for total (utility) patent grants, while for patent 
applications the long-run equilibrium is restored by 35% (45%) within a year. 

Interestingly, the short-run dynamics show that greater patenting uncertainty reduces patent 
grants contemporaneously, while it reduces patent applications with a lag. This difference may be 
due to inventors viewing patent applications as having relatively longer-term payoffs. 
Numerically speaking, a ten percent increase in patenting uncertainty reduces patent grants 
(applications) by roughly 2 (1) percent, ceteris paribus.  

Turning to the control variables, GDP has a statistically significant effect on only total patent 
applications.  Greater research and development spending has a negative and significant effect on 
(total and utility) patent applications in period t-1. Both government size and inflation are 
statistically insignificant across all models. Greater education has a negative and 
contemporaneous effect across all models except in Model 4 education has a positive and 
significant effect in period t-1. Thus, we see that there are some differences in the short-term and 
long-term effects, especially in comparison to the impacts on patent applications versus patent 
grants. This finding is potentially useful for policymaking – lawmakers need to be cognizant of 
the underlying measure of innovation (patent applications versus patent grants) and the time 
horizon in framing policies. Mitigation of patenting uncertainty will not necessarily promote 
innovation both in the short- and long term. 

5.4 Robustness check: Accounting for the impact of the America Invents Act 

In 2011, President Obama enacted the Leahy-Smith America Invents Act (AIA), introducing a 
noteworthy transformation to the patent system. This legislation replaced the traditional “first to 
invent” approach with a “first to file” system, where the individual who files a patent application 
first holds the right to the patent grant. The Act’s crucial provisions took effect on September 16, 
2012, marking a significant change in patent law. To account for this transformation in the patent 
system, we generate a dummy variable for the years the major provisions of the AIA went to 
effect from 2012 through 2020.9 To check the robustness of the main results to this significant 
change in the patent system, we add the dummy variable AIA to the model and re-run the 
analysis.  

The results for the long-run relationship are reported in Table 4A in the Appendix. The results 
show that patenting uncertainty maintains its negative and statistically significant impact on 
patent grants (total and utility); however, the effect is considerably larger. The effect of patenting 
uncertainty on patent application (total and utility) is now marginally statistically significant, 
though practically small. Interestingly, AIA has a positive (negative) and statistically significant 

 
9 This period also avoids any possible structural issues from the Great Recession of 2007-2009. 
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effect on patent applications (grants). This makes sense since the AIA, through the “first to file” 
change, lowers the transaction costs to patent applications. 

The control variables show some differences. GDP has a negative and statistically significant 
effect on total and utility grants, while inflation has a positive and highly statistically significant 
effect on total and utility grants.  

Turning to the short-run dynamics reported in Table 5A in the Appendix, the effect of patenting 
uncertainty maintains its negative and statistically significant and contemporaneous effect on 
patent grants; however, the coefficient on the first lag is now positive and statistically significant. 
The effect of patenting uncertainty on patent applications is consistent with the baseline results.  
That is, patenting uncertainty shows no contemporaneous effect on patent applications, but the 
effect is negative and statistically significant for the first two lags.   

The effect of AIA shows some interesting differential dynamics across patent grants and patent 
applications.  In particular, AIA has a contemporaneous and positive effect on patent 
applications, whereas, for patent grants, AIA shows no contemporaneous effect, and its first lag 
is negative and statistically significant. The remaining control variables are mostly in line with 
the main findings, with the one exception being that inflation is no longer significant. The 
concluding section follows. 

 

6. Conclusions 

This paper investigates the effect of patenting uncertainty on innovation rates. While other forms 
of regulatory uncertainty and their effects on R&D investment and innovation have received 
some attention in the literature this is not the case for patent uncertainty, i.e., the uncertainty of 
whether a developed idea or concept receives intellectual property protection and enables the 
patent holder to earn a temporary monopoly rent.  

Findings show that greater patenting uncertainty has a detrimental effect on innovation rates. 
This holds true for both overall and utility patents, and is consistent with the notion that greater 
patenting uncertainty would reduce the expected rewards from patenting. The long-run analysis 
reveals that increasing patent uncertainty is associated with a significant decrease in the number 
of patents granted, but not in the number of patent applications. Analysis of the short-run 
dynamics suggests that increasing patent uncertainty has an immediate effect on the number of 
patents granted, but affects the number of applications only with a time lag. 

Whereas different types of innovation uncertainties have been recognized in the related (mainly 
theoretical) literature (e.g., Lemley and Shapiro (2005), Goel (2007)), this paper provides 
empirical evidence on the influence of patenting uncertainty. The focus on total versus utility 
patents and on the short-run and long-run dynamics is another contribution of this work. We also 
consider the effects of the America Invents Act and find that the Act led to more patent 
applications. This finding provides evidence on the intent of the Act in bringing more inventions 
to light. 
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These findings have important implications for policy and for future research. The patent system 
is meant to create incentives for innovation by rewarding true innovative activity. However, a 
discretionary and volatile policy of the patent office leading to high patenting uncertainty may 
have the opposite effect. High patenting uncertainty imposes a negative externality on patenting 
firms and individuals and is associated with lower innovation rates. This implies that patent 
offices should be as consistent and reliable in their examination procedures and standards as 
possible, in order to not create unnecessary uncertainty that deters innovative activity,    

Governments should also be cognizant of the possible innovation-crowding-out effects of 
additional government spending. Finally, technology policies may need to be fine-tuned 
depending upon the innovation type. 

Possible extensions to this work might allow for other forms of patent uncertainty (e.g., 
increasing variance in pendency) and for different country and patenting system contexts. 
Moreover, it might be interesting to investigate which kinds of applicants (start-ups versus more 
established firms, frequent patentees versus first-time patentees) are most affected by increasing 
patenting uncertainty. Finally, future research could consider the impact of patenting uncertainty 
on entrepreneurship. 
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Table 1a: Variable definitions and data sources 

Variable Description   
 

Source 

LnPatentGrant The log of total patent grants per 100,000 population. uspto.gov* 
LnPatentApp The log of total patent applications per 100,000 population. uspto.gov* 
LnPatentGrant (Utility) The log of total utility patent grants per 100,000 population uspto.gov* 
LnPatentApp (Utility) The log of total utility patent applications per 100,000 population. uspto.gov* 

LnPatentUncertain 

Total patenting uncertainty: measured as the log of the 5-year 
moving standard deviation of the difference between total patent 
applications and total patent grants. 

uspto.gov* 

LnPatentUncertain 
(Utility) 

Total utility patenting uncertainty: measured as the log of the 5-year 
moving standard deviation of the difference between utility patent 
applications and utility patent grants. 

uspto.gov* 

LnGDP 
The log of real GDP per capita in constant 2012 dollars.   Johnston and 

Williamson (2023) 

LnGovtSize 
Government size measures as the log of government expenditures 
divided by nominal GDP.     

Jordà et al. (2017)* 

LnR&D 

The log of total U.S. R&D expenditures (millions of current US 
dollars) divided by nominal GDP (millions of current US dollars). 

National Science 
Foundation & 
Johnston and 
Williamson (2023)*  

Inflation 
Inflation rate: measured as the percentage change in the consumer 
price index.  

Jordà et al. (2017)* 

LnEducation 
Percentage of the population 25 years and older that completed four 
or more years of college (in logs). 

U.S. Census Bureau* 

AIA 
 
 
 

 
 
A dummy variable for the Leahy-Smith America Invents Act. The 
dummy variable equals one for years the AIA went into effect from 
2012 through 2020 and zero otherwise.  

https://www.uspto.gov
/patents/laws/america-
invents-act-
aia/america-invents-
act-aia-frequently-
asked  

 

Note: * denotes authors’ calculations.  

 

 

 

 

 

 

 

 

https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
https://www.uspto.gov/patents/laws/america-invents-act-aia/america-invents-act-aia-frequently-asked
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Table 1b: Summary statistics 

Variables mean 
Std. 
Dev. max min 

     
LnPatentGrant 3.903 0.446 4.780 3.148 
LnPatentApp 4.487 0.541 5.317 3.867 
LnPatentGrant (Utility) 3.813 0.435 4.681 3.077 
LnPatentApp (Utility) 4.418 0.542 5.243 3.790 
LnPatentUncertain 9.311 0.708 10.86 7.926 
LnPatentUncertain (Utility) 9.281 0.726 10.86 7.943 
LnGDP 10.56 0.278 10.96 10.08 
LnGovtSize -1.607 0.100 -1.160 -1.758 
LnR&D -3.683 0.101 -3.372 -3.877 
Inflation 3.612 2.345 10.07 -0.349 
LnEducation 3.077 0.348 3.625 2.351 
AIA 0.170 0.379 0 1 

 

Note: Data includes 50 observations from 1971 to 2020. 
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Table 2: Phillips-Perron unit root tests 

Variables Test statistic P-value 
LnPatentGrant 0.354 0.980 
ΔLnPatentGrant -9.543*** 0.000 
LnPatentApp 0.368 0.980 
ΔLnPatentApp -5.854*** 0.000 
LnPatentGrant (Utility) 0.248 0.975 
ΔLnPatentGrant (Utility) -9.254*** 0.000 
LnPatentApp (Utility) 0.309 0.978 
ΔLnPatentApp (Utility) -5.876*** 0.000 
LnPatentUncertain -1.608 0.480 
ΔLnPatentUncertain -6.709*** 0.000 
LnPatentUncertain (Utility) -1.563 0.502 
ΔLnPatentUncertain (Utility) -6.223*** 0.000 
LnGDP -1.636 0.464 
ΔLnGDP -4.854*** 0.000 
LnGovtSize -1.007 0.751 
ΔLnGovtSize -2.939** 0.041 
LnR&D -0.063 0.953 
ΔLnR&D -2.897** 0.046 
Inflation -1.952 0.308 
ΔInflation -6.696*** 0.000 
LnEducation -3.178 0.021 
ΔLnEducation -4.326*** 0.000 

 

Notes: The null hypothesis of each test is that the variable is a random walk.  

Three Newey-West lags are included in each test.  

Asterisks denote the following significance levels:  *** p<0.01 and ** p<0.05.   
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Table 3: Cointegration test using Pesaran et al. (2001) bounds testing procedure 

  10% critical values 5% critical values 1% critical values p-value 
Test statistics  I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 
Model 1 (LnPatentGrant)          
   F = 4.053*  2.539 3.665 2.973 4.232 3.986 5.548 0.009 0.062 
   t = -4.540*  -3.046 -4.316 -3.398 -4.739 -4.114 -5.591 0.004 0.070 
Model 2 (LnPatentApp)          
   F = 8.922***  2.499 3.707 2.937 4.297 3.970 5.676 0.000 0.000 
    t = -3.881  -2.991 -4.262 -3.353 -4.698 -4.090 -5.580 0.016 0.171 
Model 3 (LnPatentGrant 
(Utility))          
   F = 3.698  -3.046 -4.316 -3.398 -4.739 -4.114 -5.591 0.010 0.137 
   t = -4.102**  2.438 3.770 2.884 4.394 3.946 5.867 0.005 0.048 
Model 4 (LnPatentApp 
(Utility))          
   F = 4.431**  2.438 3.770 2.884 4.394 3.946 5.867 0.005 0.048 
   t = -4.146  -2.909 -4.180 -3.286 -4.637 -4.054 -5.564 0.008 0.105 

 

Notes: Critical values are from Kripfganz and Schneider (2020) for unrestricted constant 
and restricted time trend.   

Statistical significance is determined by the probability values in the last two columns, 
where the asterisks denote the following significance levels:  *** p<0.01, ** p<0.05, and 
* p<0.1.   
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Table 4: Long-run coefficients of patenting uncertainty 

Model:  (4.1) (4.2) (4.3) (4.4) 

Dependent variable:  LnPatentGrant LnPatentApp 
LnPatentGrant 

(Utility) 
LnPatentApp  

(Utility) 
LnPatentUncertain -0.134*** 0.0411   

 (0.0472) (0.0393)   
LnPatentUncertain (Utility)   -0.143*** 0.0342 

   (0.0516) (0.0391) 
LnGDP 0.322 2.403** 0.402 3.043*** 

 (1.005) (1.013) (1.178) (1.042) 
LnR&D 0.944* 0.446 1.262** 0.530 

 (0.499) (0.391) (0.595) (0.357) 
LnGovtSize -1.006** -0.120 -1.000** 0.0608 

 (0.403) (0.250) (0.474) (0.351) 
Inflation 0.0127 0.0361* 0.0165 0.0445*** 

 (0.0134) (0.0198) (0.0158) (0.0156) 
LnEducation -2.248*** -1.744*** -2.361*** -2.284*** 

 (0.668) (0.562) (0.779) (0.554) 
Time Trend 0.0729*** 0.0328** 0.0724*** 0.0340*** 

 (0.0105) (0.0145) (0.0126) (0.0116) 
     

Observations 50 50 50 50 
R-Squared 0.616 0.704 0.630 0.761 

 

Notes: Standard errors are in parentheses.  

Asterisks denote the following significance levels:  *** p<0.01, ** p<0.05, and * p<0.1.   
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Table 5: Error correction model and short-run dynamics of the impact of patenting 
uncertainty 

Model:  (5.1) (5.2) (5.3) (5.4) 

Dependent variable:  ΔLnPatentGrant t ΔLnPatentApp t 
ΔLnPatentGrant 

(Utility) t 
ΔLnPatentApp 

(Utility) t 
ΔLnPatentUncertaint -0.165*** 0.00401   

 (0.0468) (0.0183)   
ΔLnPatentUncertaint-1 0.0575 -0.0387**   
 (0.0422) (0.0169)   
ΔLnPatentUncertaint-2  -0.0487***   
  (0.0163)   
ΔLnPatentUncertain (Utility) t   -0.195*** 0.0108 

   (0.0500) (0.0244) 
ΔLnPatentUncertain (Utility)t-1   0.0756 -0.0464* 

   (0.0471) (0.0226) 
ΔLnPatentUncertain (Utility) t-2    -0.0647*** 

    (0.0215) 
ΔLnGDP t 0.205 0.844*** 0.224 0.578 

 (0.634) (0.305) (0.647) (0.437) 
ΔLnR&D t -0.204 0.100 -0.194 0.177 

 (0.544) (0.214) (0.559) (0.267) 
ΔLnR&D t-1  -0.469*  -0.790*** 

  (0.242)  (0.278) 
ΔLnR&D t-2    0.303 
    (0.288) 
ΔLnGovtSize t -0.0386 -0.0421 -0.0589 -0.179 

 (0.256) (0.0891) (0.260) (0.126) 
ΔLnGovtSize t-1    0.195 

    (0.167) 
ΔLnGovtSize t-2    -0.213 

    (0.154) 
ΔInflation t 0.00809 0.00459 0.00917 0.00319 

 (0.00842) (0.00418) (0.00867) (0.00550) 
ΔInflation t-1  -0.00553  -0.00981 

  (0.00504)  (0.00664) 
ΔInflation t-2  0.00666   
  (0.00446)   
ΔLnEducation t -1.431*** -0.613** -1.312** -0.790 
 (0.484) (0.283) (0.487) (0.509) 
ΔLnEducation t-1    1.203** 

    (0.564) 
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ECT t-1 -0.637*** -0.351*** -0.556*** -0.454*** 
 (0.140) (0.0905) (0.135) (0.110) 
     

Constant -85.88*** -28.09* -73.96*** -39.50** 
 (22.32) (14.48) (21.98) (15.55) 
     

Observations 50 50 50 50 
Adj. R-squared 0.616 0.704 0.630 0.761 
Diagnostic Tests     

ARCH LM test 1.01 
[0.315] 

0.204 
 [0.651] 

0.239  
[0.625] 

0.046 
[0.830] 

Breusch-Pagan test 0.01 
[0.912] 

0.94 
[0.332] 

0.45  
[0.503] 

0.02 
[0.884] 

RESET test 0.08 
[0.970] 

0.79 
[0.511] 

0.90 
[0.450] 

1.88 
[0.160] 

Breusch-Godfrey LM test     
1 lag 0.078 

[0.781] 
1.608 

[0.214] 
0.531 

[0.471] 
2.028 

[0.166] 
3 lags 1.624 

[0.202] 
1.375 

 [0.269] 
1.507 

[0.230] 
3.175** 
[0.042] 

Cameron & Trivedi IM-test 68.56 
[0.265] 

72.76 
[0.265] 

61.89 
[0.480] 

73.17 
[0.439] 

CUSUM Recursive Residuals 0.3918 0.5224 0.4300 0.4346 
CUSUM OLS Residuals 0.3539 0.3694 0.3601 0.3283 

 

Notes: The lag lengths are determined by the Akaike Information Criterion (AIC) for a maximum 
of 3 lags. ECT is the error correction term. Standard errors are in parentheses and probability values 
are in brackets. The 10% critical value for the CUSUM Recursive Residual (OLS Residuals) is 
0.8499 (1.2238)  

Asterisks denote the following significance levels:  *** p<0.01, ** p<0.05, and * p<0.1.   
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Figure 1: Patent grants and applications, and patenting uncertainty  

 
Notes: Variables are scaled by 100,000 population (also see Table 1a)  
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Figure 2: Utility patent grants and applications, and utility patenting uncertainty   

 
Notes: Variables are scaled by 100,000 population (also see Table 1a) 
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Appendix 

Table 4A: Long-run coefficients of patenting uncertainty (America Invents Act (AIA)) 

Model:  (4A.1) (4A.2) (4A.3) (4A.4) 

Dependent variable:  LnPatentGrant LnPatentApp 
LnPatentGrant 

(Utility) 
LnPatentApp  

(Utility) 
LnPatentUncertain -0.245*** 0.0801*   

 (0.0541) (0.0437)   
LnPatentUncertain (Utility)   -0.276*** 0.0850* 

   (0.0694) (0.0454) 
LnGDP -1.314* 3.184*** -2.704** 3.238*** 

 (0.724) (0.964) (1.231) (1.014) 
LnR&D 1.411*** 0.201 1.770*** 0.304 

 (0.332) (0.302) (0.412) (0.325) 
LnGovtSize -1.962*** 0.0916 -2.281*** 0.0529 

 (0.338) (0.302) (0.466) (0.322) 
Inflation 0.0535*** 0.0164 0.0625*** 0.0207* 

 (0.0159) (0.0107) (0.0189) (0.0113) 
LnEducation -2.056*** -1.821*** -1.950*** -1.966*** 

 (0.466) (0.532) (0.553) (0.546) 
AIA -0.388*** 0.203** -0.583*** 0.191* 
 (0.132) (0.0899) (0.198) (0.0955) 
Time Trend 0.111*** 0.0148 0.137*** 0.0169 

 (0.0159) (0.0151) (0.0247) (0.0154) 
     

Observations 50 50 50 50 
R-Squared 0.799 0.766 0.802 0.758 

 

Notes: See Table 4. Standard errors are in parentheses.  

Asterisks denote the following significance levels:  *** p<0.01, ** p<0.05, and * p<0.1.   
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Table 5A: Error correction model and short-run dynamics of the impact of patenting 
uncertainty (America Invents Act (AIA)) 

Model:  (5A.1) (5A.2) (5A.3) (5A.4) 

Dependent variable:  ΔLnPatentGrant t ΔLnPatentApp t 
ΔLnPatentGrant 

(Utility) t 
ΔLnPatentApp 

(Utility) t 
ΔLnPatentGrant t-1 0.366**    
 (0.168)    
ΔLnPatentGrant (Utility) t-1   0.344**  
   (0.164)  
ΔLnPatentUncertaint -0.194*** 0.0226   

 (0.0497) (0.0206)   
ΔLnPatentUncertaint-1 0.184*** -0.0408*   
 (0.0606) (0.0204)   
ΔLnPatentUncertaint-2  -0.0619***   
  (0.0176)   
ΔLnPatentUncertain (Utility) t   -0.208*** 0.0261 

   (0.0556) (0.0244) 
ΔLnPatentUncertain (Utility)t-1   0.213*** -0.0477** 

   (0.0679) (0.0224) 
ΔLnPatentUncertain (Utility) t-2    -0.0705*** 

    (0.0212) 
ΔLnGDP t -1.605* 0.659 -1.411 0.667 

 (0.905) (0.404) (1.056) (0.434) 
ΔLnR&D t -0.360 0.177 -0.682 0.214 

 (0.655) (0.239) (0.640) (0.257) 
ΔLnR&D t-1 -0.858 -0.789*** -0.645 -0.757*** 

 (0.663) (0.253) (0.622) (0.269) 
ΔLnR&D t-2 -1.601** 0.440* -1.883** 0.459* 
 (0.685) (0.241) (0.743) (0.258) 
ΔLnGovtSize t -0.426 -0.144 -0.278 -0.171 

 (0.280) (0.118) (0.297) (0.126) 
ΔLnGovtSize t-1 0.609 0.354**  0.378** 

 (0.522) (0.143)  (0.154) 
ΔInflation t 0.0301** -0.00240 0.0406*** -0.00129 

 (0.0111) (0.00438) (0.0133) (0.00481) 
ΔInflation t-1 -0.0613***  -0.0660***  

 (0.0188)  (0.0203)  
ΔInflation t-2 -0.0268*  -0.0131  
 (0.0149)  (0.0123)  
ΔLnEducation t -3.232** -0.461 -3.675** -0.614 
 (1.270) (0.426) (1.370) (0.461) 
ΔLnEducation t-1 0.869 0.954* 0.110 1.122** 
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 (1.000) (0.508) (1.246) (0.544) 
ΔLnEducation t-2 1.759  2.114*  

 (1.082)  (1.101)  
ΔAIA t -0.0537 0.0941** -0.102 0.0901* 
 (0.119) (0.0422) (0.114) (0.0455) 
ΔAIA t-1 0.332***  0.367***  
 (0.107)  (0.116)  
ECT t-1 -1.221*** -0.464*** -1.047*** -0.472*** 

 (0.227) (0.0979) (0.203) (0.0980) 
Constant -236.6*** -24.62* -239.8*** -26.99* 

 (45.60) (14.39) (49.30) (14.95) 
     

Observations 50 50 50 50 
Adj. R-squared 0.799 0.766 0.802 0.758 

 

Notes: See Table 5. The lag lengths are determined by the Akaike Information Criterion (AIC) for 
a maximum of 3 lags. ECT is the error correction term. Standard errors are in parentheses and 
probability values are in brackets.   

Asterisks denote the following significance levels:  *** p<0.01, ** p<0.05, and * p<0.1.   

 

 

 

 

 

 

 

 




