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Abstract

This paper introduces the WebAI paradigm as a promising approach for innovation
studies, business analytics, and informed policymaking. By leveraging artificial intelli-
gence to systematically analyze organizational web data, WebAI techniques can extract
insights into organizational behavior, innovation activities, and inter-organizational
networks. We identify five key properties of organizational web data (vastness, com-
prehensiveness, timeliness, liveliness, and relationality) that distinguish it from tradi-
tional innovation metrics, yet necessitate careful AI-based processing to extract scien-
tific value. We propose methodological best practices for data collection, AI-driven text
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analysis, and hyperlink network modeling. Outlining several use cases, we demon-
strate how WebAI can be applied in research on innovation at the micro-level, tech-
nology diffusion, sustainability transitions, regional development, institutions and in-
novation systems. By discussing current methodological and conceptual challenges,
we offer several propositions to guide future research to better understand i) websites
as representations of organizations, ii) the systemic nature of digital relations, and iii)
how to integrate WebAI techniques with complementary data sources to capture inter-
actions between technological, economic, societal, and ecological systems.
Keywords: web data; artificial intelligence; innovation studies; research methods.
JEL Classification: C81; C45; B4; O3; R1.

1 The WebAI Paradigm of Innovation Research

Innovation research faces the challenge of rapidly changing technological, societal, and or-
ganizational developments. This affects how we can study drivers of innovation processes
as well as innovation-driven economic development at the level of entire economies, in-
dustries, regions, or individual organizations (Castellaci et al., 2005; Martin, 2016). For
understanding socio-technical change, it is key to analyze how innovations emerge and
spread across individual actors (Fagerberg, 2006; Geels, 2020). Organizations—ranging
from start-ups and small firms to large corporations, and from universities and research
institutes to government agencies and non-profit organizations—are the main entities that
develop, implement and use innovations. While organizational change captures these in-
novation processes, they are stable enough as units of analysis to serve as reference point
for this change. Tracking their innovative activities, development, and interactions with
other organizations, which manifest as complex economic systems (Foster, 2006), over time
and space is the central methodological challenge in innovation research.

Traditional approaches have relied on established indicators for innovation activities
such as patents, publications, and survey data (Archibugi & Planta, 1996; Fleming & Soren-
son, 2004). However, these sources generally provide only periodic snapshots of organiza-
tional development and offer incomplete information about innovation in them. They are
typically biased towards larger entities and formal innovation activities, with a particular
focus on technological innovations and the front-end of the innovation process (Bogers,
Garud, et al., 2022). They struggle to capture forms of ’soft innovations’ (Castaldi, 2018;
Stoneman, 2010) as well as the diffusion of innovations across organizations. This is also
due to the increasingly distributed nature of innovation processes, where organizational
boundaries become fluid and span multiple levels between individual organizations and
the regimes they are embedded in (Bogers et al., 2017). Traditional approaches of survey-
ing innovation often fail to document the inter-linkages between innovating organizations.

The growing abundance of web data offers a promising resource to address these lim-
itations, enabling researchers to study economic activities and change at unprecedented
granularity (Bogers, Garud, et al., 2022; Breithaupt et al., 2024; Rammer & Es-Sadki, 2023).
Web data describes the publicly available content of organizational websites (i.e., websites
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of companies, research institutions, government authorities, non-profit organizations, re-
gional planning organizations etc.). A website generally consists of a start page and nu-
merous subordinate webpages (Kinne & Axenbeck, 2020). This data commonly represents
textual content on organizational activities ranging from the strategic to the operational
level. It also comprises technical elements featured in the HyperText Markup Language
(HTML) code that can be used to source metadata about the organization, as well as rela-
tional data between organizations (e.g., hyperlinks between websites).

The inherent properties of organizational web data, however, can render its processing
and interpretation somewhat ’messy’ (Vaughan et al., 2007). The different data structures,
the breadth of information, as well as sheer scale and dynamic nature of web data pose
a central challenge to consistently separate signal from noise. It is, henceforth, crucial
to develop robust methodologies that can systematically process and interpret web data.
Current artificial intelligence (AI) models based on supervised and unsupervised machine
learning (ML) and natural language processing (NLP) techniques are useful instruments
to detect patterns within vast datasets. These models help to distill meaningful informa-
tion on organizational representation grounded in web data by distinguishing individual
organizational practices from broader industry tendencies and superficial rhetoric from
substantive organizational activities. In this way, AI technology helps to move beyond the
surface-level of what organizations present online and detect latent patterns that represent
substantial aspects of organizational activity.

The WebAI paradigm describes the application of AI models to large-scale organi-
zational web data (ISTARI.AI, 2025). It transcends basic web scraping and lexicometric
approaches by leveraging ML to systematically extract, validate, and interpret economic
indicators from unstructured web content across multiple dimensions of organizational
activity. This paper introduces this WebAI paradigm and provides theoretical and method-
ological foundations for employing WebAI techniques in innovation studies.

We structure this paper as follows: In Section 2, we discuss the fundamental properties
of web data and their value as a data source. In Section 3, we present the technical proce-
dures for deriving robust indicators from web data. In Section 4, we showcase the current
state of research applying WebAI techniques in different scientific use cases. In Section 5,
we discuss the limitations of WebAI and make propositions for future research. Finally,
Section 6 concludes.

2 Properties of Organizational Web Data

Big data is traditionally characterized by the core concepts of volume (sheer quantity), ve-
locity (rate of change), variety (heterogeneity of formats) (De Mauro et al., 2015; Laney,
2001), with additional dimensions bearing relevance (veracity, value, exhaustivity, rela-
tionality) (Kitchin & McArdle, 2016). While these concepts are technically accurate, they
remain abstract unless interpreted in the context of specific data environments. For de-
veloping appropriate processing approaches, it is essential to understand what these di-
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mensions entail in relation to organizational web data. The context of innovation, socio-
technical change necessitates the development of new terms that better capture the nature
of organizational web data. That is, to inform how it can be used and how it must be
processed to observe, model, and interpret organizational activity and transformation.

2.1 Vastness

The large volume of organizational web data entails an unprecedented number of observa-
tions. Beyond scale, the wide scope of observations captures organizations of diverse sizes
and types—from the local bakery to schools, hospitals, or multinational corporations. The
resulting vastness, which we understand as a large volume exhibiting a wide scope, of-
fers a more exhaustive depiction of entire socio-economic systems rather than sampling
a small fraction of the population of organizations (Kitchin & McArdle, 2016). This con-
trasts with traditional data sources on organizational activities. Annual reports primarily
cover large and publicly listed companies; patents are biased towards larger organizations
from sectors where patent protection is a viable strategy. Although business surveys can
be designed to be representative of the business population, they cover only a small part
of the total population, which makes them less suitable for certain research questions (e.g.,
network analysis). In addition, the results are often available only after a considerable time
lag and may suffer from response bias.

This vastness of web data is based on the assumption that most relevant organizations
maintain a website. However, the rationale behind describing organizational web data as
vast versus exhaustive is that it is still biased through self-selection. Previous studies of
the German company population have shown that around 50% of the organizations listed
in commercial registers maintain a website (Kinne & Axenbeck, 2020).1 The proportion
of companies with their own website varies depending on the type of company. Larger
(more than 5 employees) and older (older than 2 years) companies are much more likely
to operate their own website actively, especially if they belong to technology-related sec-
tors such as mechanical engineering or information and communications technology (ICT).
Conversely, non-operational entities without the need for public interaction with external
stakeholders, such as certain holding structures, rarely maintain a website. In particular,
some small Business-to-Consumer (B2C) companies rely solely on social media profiles.
However, over 95% of organizations with characteristics that are particularly relevant for
innovation studies (i.e., firms with employees, operating in manufacturing or knowledge-
intensive service sectors, economically active) have their own website (Kinne & Axenbeck,
2020).

2.2 Comprehensiveness

The second key property of organizational web data connects to the value dimension
of the data retrieved (Marr, 2015), which comes from the comprehensiveness that lies in

1Note that this population includes one-person businesses.
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the informational content of organizational websites. Fundamentally, websites are self-
curated representations of organizations. Although inherently self-reported, they are the
product of a multi-stakeholder engagement within organizations, involving contributions
from different departments and hierarchical levels (Oertel & Thommes, 2018). Further-
more, organizational websites are designed to present the respective entity to diverse
stakeholder groups—from investors and customers to potential employees and the gen-
eral public (Powell et al., 2016). Thus, websites serve as one of the most comprehensive
representations of organizational identity (Oertel & Thommes, 2018). They reflect both ex-
plicit economic activities (such as product offerings, market presence, partnerships) and
implicit signals about firm strategies, technological capabilities, and market positioning.
This dual perspective allows researchers to study co-evolving patterns in organizational
change, innovation systems, and market dynamics.

In the context of innovation research, organizational web data captures technologies
and innovations at various stages—ranging from pre-product concepts to early-stage and
mature products that have been successfully commercialized and integrated into business
models and organizational identities (Dahlke et al., 2024). For example, a newly founded
start-up may showcase a vision of a technology that it has yet to develop, while an estab-
lished company may report on the latest additions to its fully developed product portfolio.

2.3 Timeliness

The timeliness of organizational websites based on continuous data streams and updates
allows near real-time monitoring of organizations using WebAI techniques, which can cap-
ture socio-economic activities and interactions as they unfold. It leverages the velocity of
web data in its timely production and availability, which is enabled by the technical in-
frastructure of the modern web (Marres & Weltevrede, 2013). Providing fresh data flows
has become deeply embedded in contemporary web architecture, from instant updates on
social media platforms to search engines’ increasing prioritization of recent content. In the
context of innovation research, it means the capacity to reflect socio-economic activities
and discourses in near real-time. Compared to traditional data from surveys or patent
offices, it is not hampered by lags caused by procedures of collecting, processing, and
publishing relevant information. This is particularly interesting in the context of new and
emerging technologies but also during times requiring rapid-responses to crises (Buchanan
& Denyer, 2013).

2.4 Liveliness

Beyond this immediate temporal dimension lies a second, more complex property: the live-
liness of web data. Liveliness describes the capacity of web data to mirror the dynamic and
evolving landscape of societal issues and industrial engagement over time. Rather than
capturing what is happening currently, liveliness reveals how issues, topics, and engage-
ments evolve, fluctuate, and transform (Marres & Weltevrede, 2013). This property enables
researchers to observe meaningful patterns in how socio-economic activities develop, how
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networks of associations shift, and how engagement with particular topics varies over time
(Oberg et al., 2022). The technical architecture of the web, with its Uniform Resource Loca-
tors (URLs), hyperlinks, and timestamps paired with the richness of unstructured (textual)
data makes it possible to trace these evolutionary patterns and transformations.

Although both properties benefit from the strong incentive for organizations to keep
their websites constantly updated, the distinction between timeliness and liveliness is not
merely theoretical but has profound implications for how we apply WebAI techniques.
While timeliness demands technical capabilities for continuous data capture and process-
ing, liveliness requires methods to detect changes over time, track variations, and under-
stand long-term dynamics. In this respect, the development and maintenance of web
archives that store older versions of websites have become a critical tool for the analy-
sis of liveliness (Schafer & Winters, 2021). Together, these two properties make web data
a valuable resource for studying innovation and societal transitions, offering both imme-
diate insights into current developments, and deeper understanding of how issues and
engagements evolve over time.

2.5 Relationality

The capacity of web data to capture meaningful relationships at the individual level (e.g.
through social media data) has long been discussed (Boyd & Crawford, 2012). At the level
of organizations, relationality of web data can be understood through both direct and in-
direct dimensions. Direct relations between organizations can be captured by retrieving
hyperlink connections between websites as well as by detecting textual references to other
organizations. Hyperlinks have been shown to represent direct relations between organi-
zations (Vaughan et al., 2007) and to be economically relevant (Vaughan & Wu, 2004). In
the context of innovation studies, hyperlink networks have been shown to exhibit emer-
gent properties and scaling characteristics of innovation systems (Katz & Cothey, 2006),
suggesting their potential in capturing information flows between organizations.

Indirectly, organizational websites relate to one another through the comparability of
their content (i.e., their similarity). The inherent technical structures and socio-economic
functions of websites as communication channels offer the opportunity to source data on
various topics from various types of organizations (such as public and private ones) in a
consistent way (Oberg et al., 2022), which would otherwise be fragmented across different
data bases and formats. While the veracity of big data also applies to the raw informa-
tion scraped from (differently formatted and curated) websites, websites can offer a rather
consistent unit of observation across a vast population of organizations, especially when
processed adequately.
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3 Methodologies for Extracting and Processing Organizational Web
Data

Transforming the vast, unstructured, and dynamic nature of organizational web data into
reliable research insights necessitates a robust and carefully considered methodological
pipeline (Figure 1). This chapter presents an overview of the most important analysis
steps—from the identification of relevant organizations to data retrieval, processing through
AI and ML techniques, and validation.
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Figure 1: The WebAI pipeline: From organizational websites to validated insights.

7



3.1 Identification of organizational websites

The initial step in carrying out analyses according to the WebAI paradigm is to create a
comprehensive base dataset of organizations and their associated websites. The quality of
this foundation directly determines the scope and validity of subsequent analyses. One
approach is to use company databases (e.g. ORBIS, S&P, Infogroup), which often contain
not only classic information such as revenue, number of employees, and the address of
a company but also its URL (Kinne & Axenbeck, 2020). Other sources may include com-
mercial registries, member lists of industrial associations, databases with grant recipients,
or open source point of interest (POI) databases. Depending on the research question and
database content, the initial number of websites can be reduced by pre-filtering (e.g., based
on sector, size, or region), minimizing scraping effort and enhancing subsequent AI-based
information retrieval. However, researchers must be aware of potential limitations: cov-
erage gaps (especially for small and medium-sized enterprisess (SMEs) or newer firms),
outdated URLs, and potential biases inherent in how the database was compiled (Nathan
& Rosso, 2015; Rammer & Es-Sadki, 2023).

In the absence of available URLs for organizations of interest, automated searches us-
ing search engine Application Programming Interfaces (APIs) (e.g., Google Search API,
Bing API) can identify potential candidates based on organizational names and addresses.
This often requires sophisticated fuzzy matching or approximate string matching algo-
rithms (Navarro, 2001) to handle variations in naming conventions and address formats, a
process related to the broader field of record linkage (Fellegi & Sunter, 1969). The returned
candidates can be evaluated based on their contents, i.e. comparison against the known
information about the company at hand. For studies requiring high precision, particu-
larly those involving niche organizations or specific sectors, manual verification or even
curation of a URL list may be necessary. Often, a hybrid approach combining automated
URL discovery with targeted manual validation yields the best balance between scale and
accuracy, reflecting principles of human-in-the-loop system design (Mosqueira-Rey et al.,
2023).

3.2 Web scraping: Efficient data retrieval from organizational websites

Once the target organizational websites are identified, the next crucial step is to retrieve
their content through web scraping. This process involves retrieving the raw HTML source
code from a potentially large number of websites. A broad web scraping algorithm can
process diverse types of websites and website contents, unlike ’focus’ web scraping al-
gorithms which target specific information (e.g. prices and product names from a single
e-commerce website). An exemplary open-source solution is Automated Robot for Generic
Universal Scraping (ARGUS), a web scraping framework that offers customizable scraping
depth (i.e. the number of webpages that will be collected), automatic redirect detection,
and parallel processing capabilities for efficiency. Several established libraries for creating
custom web scraping solutions exist, e.g. Scrapy or Beautiful Soup.

While previous research suggests a scrape limit of 250 pages per website captures
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around 90% of corporate website content (Kinne & Axenbeck, 2020), researchers can signif-
icantly reduce this by implementing more resource-efficient, strategic scraping approaches
with targeted URL pattern matching (e.g., for subpages containing ’/products/’, ’/tech-
nology/’, ’/research/’), if properly informed by their empirical focus. Excluding subpages
with a legal focus, duplicates in other languages, or subpages dedicated to site function-
ality can be considered, since they generally provide little additional information (Haans
& Mertens, 2024). For websites heavily reliant on dynamic content loaded via JavaScript,
tools controlling headless browsers (e.g., Selenium, Puppeteer) may be necessary, though
often slower and more resource-intensive. A targeted scraping approach reduces com-
putational overhead while maintaining data quality, as innovation-relevant information
tends to be concentrated in specific website sections. To balance coverage and cost, we
thus recommend implementing an adaptive depth strategy, starting with a 25-50 page limit
augmented by targeted URL matching (Kinne & Axenbeck, 2020). Unlike traditional ap-
proaches, language preferences are less critical when using modern Large Language Mod-
els (LLMs) and embedding techniques, which can handle multilingual content effectively,
at least for high-resource languages (Li et al., 2024). However, considering language tags
in the HTML head of websites can still be useful as a potential filtering mechanism. Fur-
thermore, implementing comprehensive logging and proper error handling for timeouts,
connection issues, or redirects is essential, as some domains may be temporarily unreach-
able or inactive, which could disrupt data collection.

Another approach to acquire textual data from organizational websites is to extract in-
formation from pre-crawled webcorpora, such as Common Crawl (Kriesch, 2023). Since
CommonCrawl has archived a large number of historical websites, retrospective time se-
ries analyses of the same website are possible, which can be used e.g. to map trends in
relation to certain technologies or to identify domains associated with organizations. How-
ever, researchers must be prepared to handle potential data inconsistencies, archival gaps,
and varying coverage quality across time and sources (Thelwall & Vaughan, 2004).

3.3 Processing web text data

The results of web scraping are large volumes of raw HTML, i.e. relatively noisy and
unstructured text data, that requires automated processing. ML and AI methods lend
themselves very well to the extraction of meaningful, standardized information from such
data (Gentzkow et al., 2019). This involves several stages, from initial cleaning to applying
sophisticated analytical models. The most important methods for a WebAI analysis are
presented in the following subchapters.

3.3.1 Web text pre-processing

While state-of-the-art LLMs have demonstrated a remarkable ability to process raw or min-
imally processed HTML directly (Tan et al., 2025), careful pre-processing remains highly
valuable, particularly for reducing the amount of text to be process and thus optimizing
computational efficiency and lowering computational costs. Encoder-based models still
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benefit from structured pre-processing steps, including noise reduction, removal of boiler-
plate content and text chunking (Penedo et al., 2025; Wenzek et al., 2019). This is because
these models lack the extensive contextual reasoning capabilities of autoregressive LLMs
and rely more on clean, structured input for optimal performance (Devlin et al., 2019; Raf-
fel et al., 2020).

Effective pre-processing aims to reduce noise and structure the data without losing vi-
tal information, i.e. reduce the amount of data that contain no relevant information (e.g.
cookie or data privacy texts). Common steps include parsing the HTML to extract the
main textual content while potentially preserving structural tags (<p>, headings, lists) as
semantic cues. Identifying and removing boilerplate elements such as navigation menus,
headers, footers, and consent banners can also improve subsequent model performance.
For models with fixed input lengths, text chunking is necessary; techniques like semantic
chunking, which splits texts based on topical coherence using embeddings, are often su-
perior to fixed-size methods as they better preserve context (Qu et al., 2024). Further noise
reduction may include filtering out overly short texts through length thresholds. Consid-
ering the symbol-to-word ratio, specific stop words, filtering out documents in which a
predefined proportion of lines begin with a bullet point or end with an ellipsis, as well
as imposing a threshold requiring a minimum proportion of words to contain at least one
alphabetic character, can also enhance the quality of the text database (Rae et al., 2021).
However, there is always a trade-off between the level of quality of the pre-processing re-
sults of website data, i.e. formatting consistency, and the ability to generalize to a variety
of websites across industries, countries, and cultures.

Effective feature selection is a crucial step in the pre-processing of web texts, ensur-
ing that only the most relevant and informative content is retained for further analysis
(Thirumoorthy & Muneeswaran, 2022). Feature selection often involves keyword-based
methods to identify and filter content based on specific terms, such as domain-specific ter-
minology relevant to the research. Additionally, frequency-based keyword filtering can
ensure that only texts with a sufficient number of relevant terms are included, while dis-
tinct keyword-based filtering assesses the diversity of unique terms within a text to avoid
overly repetitive content (Z. Wang et al., 2021). A significant, emerging challenge is the in-
creasing prevalence of AI-generated content online. Future pre-processing pipelines must
incorporate methods to detect and handle such potentially low-substance text to maintain
data integrity.

3.3.2 Supervised approaches

When the research objective involves identifying specific, predefined concepts within the
web text (e.g., classifying firms by technology adoption), supervised learning offers a pow-
erful approach. Modern NLP models predominantly leverage fine-tuning models based on
the Transformer architecture, which was introduced by Vaswani et al. (2017). This archi-
tecture revolutionized the field by utilizing self-attention mechanisms, enabling models
to process sequences more efficiently and capture long-range dependencies in text (Cui
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et al., 2019). The Transformer architecture serves as the foundation for advanced models
such as Bidirectional encoder representations from Transformers (BERT)—including the
widely used modifications Sentence-BERT (Reimers & Gurevych, 2019), RoBERTa (Y. Liu
et al., 2019) and DistilBERT (Sanh et al., 2020) -, Generative Pre-trained Transformer (GPT)
(Radford et al., 2018), and T5 (Raffel et al., 2020), which are capable of various natural
language understanding and text generation tasks. To apply these models to organiza-
tional web data, the established procedure is to fine-tune pre-trained architectures. For
this purpose, training data must be created to provide the models with domain-specific
knowledge.

Selecting the appropriate models and training methodologies is critical for effectively
processing organizational website texts. Multilingual models are crucial for cross-language
applications, whereas language-specific models may yield more accurate results for tar-
geted analyses due to their tailored training data (Zhu et al., 2024). However, selecting the
appropriate model involves trade-offs, such as balancing computational efficiency with
accuracy and customizing models for domain-specific language. As the success of fine-
tuning is highly dependent on the quality of training data, it is important to follow general
best practices, ensuring that datasets are consistent, representative and relevant. To this
end, clear labeling guidelines should be developed and inter-annotator agreement consid-
ered. Implementing active learning strategies can further enhance efficiency by focusing
on the most uncertain or ambiguous samples, thereby reducing the overall labeling effort
(Mosqueira-Rey et al., 2023). Moreover, iterative model refinement ensures continuous
performance improvement through repeated evaluation and adjustment. If resources are
limited, adopting sample-efficient fine-tuning frameworks such as SetFit can significantly
reduce the need for large labeled datasets, making model adaptation more efficient and
scalable. This is achieved by fine-tuning a pre-trained Sentence Transformer on a small set
of text pairs in a contrastive manner, generating rich embeddings for a lightweight clas-
sification head, and enabling fast, prompt-free adaptation with far fewer parameters than
existing methods (Tunstall et al., 2022).

3.3.3 Unsupervised approaches

To explore underlying, coherent topics or themes from a web data corpus without rely-
ing on predefined categories, unsupervised ML methods are highly valuable (Churchill &
Singh, 2022). In the case of unstructured text data, this is often referred to as topic mod-
eling. Traditional probabilistic methods like Latent Dirichlet Allocation (LDA) (Blei et al.,
2003; Maier et al., 2018) remain useful, but more recent approaches such as BERTopic,
which leverage contextualized text embeddings for clustering, often capture semantic nu-
ances more effectively (Grootendorst, 2022). For more fine-grained analysis, hierarchical
topic modeling can be employed, i.e. the implementation of various subsequent topic
modeling steps, allowing for the exploration of broader topics and related subtopics (Xu
et al., 2018). Additionally, dynamic topic models can capture how topics evolve over time,
which makes them especially useful for tracking shifts in themes or trends across different
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time periods (Blei & Lafferty, 2006). Hierarchical topic modeling approaches applied to
web-scraped textual data have successfully linked firm-level content with established sci-
entific knowledge bases, showcasing the benefits of integrating NLP methodologies into
organizational research for detailed sectoral analysis (Hajikhani et al., 2022).

However, topic modeling faces some challenges such as selecting the optimal number
of topics, ensuring the interpretability of results, maintaining topic stability, and manag-
ing memory efficiency (Kherwa & Bansal, 2018). Another issue lies in the hard assignment
of document to a single dominant topic, which can introduce biases when constructing
quantitative indicators. Soft assignments or mixed-memberships (e.g., the topic propor-
tions from LDA (Blei et al., 2003)), which represent documents as distributions over topics,
might offer a more nuanced basis for such analyses. To address some of these challenges,
the integration of supervised and unsupervised learning offers a complementary approach
that enhances both model interpretability and performance. While unsupervised topic
models autonomously identify latent structures in text, they often require manual tuning
to determine the optimal number of topics. Supervised methods, on the other hand, can
guide topic modeling toward more stable and semantically meaningful outcomes but rely
on labeled data. Combining these approaches improves topic stability and memory effi-
ciency, leading to more robust and scalable solutions (Talukdar & Biswas, 2024).

3.3.4 Large Language Models (LLMs)

Recent advances in AI and ML research have enabled more personalized and interac-
tive analysis methods for text data. A key development in this field is the rise of LLMs,
which have gained significant attention, especially since the release of ChatGPT in Novem-
ber 2022. The term LLM encompasses a diverse range of large neural network models,
but current developments, particularly those gaining widespread attention (e.g., GPT-4,
Claude 3, Llama 3), are predominantly autoregressive, decoder-heavy models (Radford
et al., 2018). These models excel at generative tasks due to their architecture, making
them highly capable of complex question-answering requiring synthesis, summarization,
translation, creative text generation, and synthetic data generation (Singhal et al., 2025).
Their strength lies in few-shot or zero-shot learning via sophisticated prompt engineering
(P. Liu et al., 2023), allowing for flexible application without task-specific fine-tuning. In
this regard, careful prompt design (e.g., using techniques like chain-of-thought) and se-
lecting appropriate context window parameters are crucial, as they determine how much
of the surrounding text the model considers, which can significantly affect the coherence
and relevance of the generated response (Chen et al., 2023). Additionally, incorporating
Retrieval-augmented Generation (RAG) frameworks allows LLMs to access and integrate
external knowledge sources, which can improve the reliability of generated content (Wu
et al., 2025).

Despite their capabilities, LLMs are susceptible to so-called hallucinations, i.e. the fab-
rication of facts (H. Liu et al., 2024), and have been shown to exhibit various biases from
training data (Gallegos et al., 2024). Consequently, choosing between general-purpose and
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specialized language models requires careful consideration, as general-purpose models
such as GPT-4 or LLaMA may introduce biases or sensitivity issues that specialized models
mitigate more effectively, particularly in tasks requiring precise and accurate content in-
terpretation (Hajikhani & Cole, 2024). It should also be noted that generative AI solutions
for text classification are (still) quite expensive for use in research contexts. In contrast,
training a customized BERT model is much cheaper in terms of computation, time, and
emissions (Laurer, 2024). Another challenge is ensuring reproducibility of analyses based
on closed-source LLMs due to limited access to model parameters. This makes it difficult
to verify results, replicate experiments, or assess the impact of different training configu-
rations. These limitations mandate critical evaluation, extensive validation protocols, and
considerable caution when relying on LLMs for research.

3.4 Hyperlink extraction and network construction

Studying collaboration between organizations has long been a core interest in innova-
tion research (Belderbos et al., 2004; Hottenrott & Lopes-Bento, 2016). Studies using co-
inventions, co-publications, joint ventures, or R&D agreements consistently show a posi-
tive link to innovation performance (Caloghirou et al., 2003; Xie et al., 2023). A key limi-
tation of these approaches is their reliance on outcomes and largely formal collaborations.
Organizational web data, however, also allows capturing informal connections through
hyperlinks, which can serve as proxies for inter-organizational relationships.

To extract hyperlinks from organizational websites, we recommend a robust pipeline
to extract all outgoing links on each webpage, based on the HTML < a > tag and its
href attribute, and retain only those pointing to other relevant organizational domains,
e.g. excluding social media platforms, news sites, file downloads, or other non-company
destinations. Additionally, researchers should implement domain validation to ensure ex-
tracted hyperlinks lead to legitimate organizational websites, avoiding parked domains or
spam sites. Redirect chains require special attention, as outdated URLs can create mislead-
ing connections and should therefore be excluded from the analysis. To determine genuine
inter-firm connections, Abbasiharofteh, Krüger, et al. (2023) suggest a weighted approach
where reciprocal hyperlinks receive a higher weight than unidirectional hyperlinks, ac-
knowledging the stronger connection implied by mutual recognition. Link strength can
also be assessed by frequency, i.e. multiple links between the same organizations. Further-
more, analyzing the ambient text surrounding a hyperlink using NLP techniques can help
classify the nature of the connection. They generally fall into three categories: (1) busi-
ness relations (e.g., partnerships, suppliers, customers), (2) non-business relations (e.g.,
industry associations, regulatory bodies), and (3) purely informational links (e.g., news
references, general information).

The resulting hyperlink network—where organizations are nodes and hyperlinks are
edges—can be analyzed using established network science metrics. Important node-level
metrics include network centralities, such as the betweenness centrality, which measures
a firm’s influence on information flow, and the degree centrality, which reflects its poten-
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tial reach (Wasserman & Faust, 1994). Clustering coefficients reveal local network density
(Latapy et al., 2008), while path lengths, i.e. the distances between network nodes, help
assess overall structure and information flow potential. Community detection algorithms
can identify clusters of closely connected firms, potentially revealing industry structures,
regional business networks, or innovation ecosystems (Abbasiharofteh, Kogler, & Lengyel,
2023). Since firms are localized in geographic space, these analyses can also be interpreted
spatially, e.g. highlighting areas with a high concentration of key nodes. In addition to
the spatial dimension, a temporal resolution of network data enables tracking link stabil-
ity over time, where persistent connections might signal stronger relationships. Integrat-
ing this spatio-temporal dimension generates large datasets, requiring advanced methods
such as Graph ML. At the node level, Graph ML enables the identification of complex
spatio-temporal clusters (Y. Zhang & Cheng, 2020), offering insights into how firm con-
nections evolve over geographic space and time. A key application of Graph ML is link
prediction (M. Zhang & Chen, 2018), which estimates the likelihood of future or missing
connections between nodes based on network structure and attributes.

3.5 Validation of WebAI insights

Establishing the credibility and robustness of insights derived from the WebAI paradigm
is essential. This involves both internal assessment of model performance and external
comparison against independent benchmarks.

3.5.1 Internal validation

Internal validation focuses on the technical performance of the ML models used, partic-
ularly supervised classifiers. Established evaluation metrics such as precision, recall and
F1-score can also be applied for the analysis of organizational websites. To ensure the relia-
bility and robustness of ML models, cross-validation techniques are essential for assessing
their performance across different data splits. This helps mitigate overfitting and dataset
biases. Key methods include K-fold validation, which evaluates model stability by divid-
ing the dataset into multiple folds for training and testing, and out-of-sample validation
to verify the model’s performance on unseen data, providing an extra layer of robustness
(Montesinos López et al., 2022). Beyond quantitative metrics, qualitative error analysis, i.e.
systematically examining instances where the model makes mistakes, provides invaluable
insights into model weaknesses, potential biases in the data or labeling, and specific areas
needing refinement.

3.5.2 External validation

External validation extends beyond model metrics to assess whether the WebAI-derived
indicators correspond to or correlate with external, real-world measures or established
knowledge. In this context, traditional indicators, such as survey results, patent statis-
tics, R&D expenditures, or official statistics, are valuable baselines, though they may often
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cover only a subset of analyzed organizations (Ashouri et al., 2022; Kinne & Lenz, 2021).
Having domain experts review samples of model outputs for validity, coherence, and se-
mantic accuracy can help identify subtle errors or misinterpretations. Such plausibility
checks should at least include a review of the results and methods by experts, benchmark-
ing against established standards, a baseline, or a historical trend analysis to check con-
sistency over time. For some use cases, validation with complimentary geodata, e.g. re-
mote sensing data for sustainability-related analyses (Schmidt et al., 2022), or news articles
might also be sensible.

3.6 Methodological challenges

Beyond limitations specific to methods employed at each processing stage, researchers
using the WebAI paradigm must navigate several overarching methodological challenges
that can influence the validity and reliability of their findings:

• Text identification: Reliably identifying relevant textual content in the noise of di-
verse website structures remains difficult. Evaluating semantic content and infor-
mation density, removing non-informative elements (navigation, ads, boilerplate),
and standardizing formats across heterogeneous sites are crucial but non-trivial steps
(Penedo et al., 2025; Wenzek et al., 2019).

• Technical limitations: While vastness is one of the greatest strengths of organiza-
tional web data, it also presents practical constraints. Achieving sufficient scrap-
ing depth without excessive computational cost requires careful strategies (Kinne
& Axenbeck, 2020; Sayles et al., 2022). Handling dynamic content (rendered via
JavaScript) often necessitates more complex acquisition methods, while some con-
tent formats (e.g., embedded applications, complex PDFs) may remain inaccessible
(Valova et al., 2023).

• Bias and representativeness: There are several potential biases that need to be con-
sidered in evaluating WebAI results. Large companies generally maintain more com-
prehensive websites, in terms of the sheer quantity and liveliness of textual content
and its semantic diversity. Similarly, companies with technology-related business
activities generally have a stronger web presence and are therefore more suitable
for WebAI-based analyses than companies in traditional industries (e.g. agriculture)
(Kinne & Axenbeck, 2020). As urban areas usually have better website coverage due
to higher digital adoption rates (Vicente & López, 2011), geography might also be an
influencing factor. Given that organizations generally curate their online presence,
selective emphasis or omission of information should be expected. Disentangling
substantive activity from more strategic communication remains a key challenge.

• Temporal Consistency: For longitudinal studies using web archives or repeated
scrapes, ensuring methodological consistency over time is paramount. Changes in
website design trends, scraping technologies, data processing steps, or AI models

15



may introduce artificial variations that obscure genuine temporal trends (Haans &
Mertens, 2024).

• Legal and ethical considerations: Although data acquisition from publicly accessi-
ble websites is generally less problematic than e.g. the scraping social media data
(Brown et al., 2024; Gilga et al., 2025), some ethical and legal considerations re-
main essential. This includes compliance with data privacy regulations like General
Data Protection Regulation (GDPR) (for data collection and storage in the European
Union) and developing robust data anonymization protocols to safeguard sensitive
information (Weitzenboeck et al., 2022). Ethical scraping practices aim to minimize
the impact on servers and adhere to established guidelines. This involves the imple-
mentation of rate limiting to prevent server overload, strict compliance with robots.txt
directives and site-specific policies, as well as the responsible management of server
loads through the use of distributed scraping techniques (Brown et al., 2024).

4 Use Cases for WebAI Methods in Innovation Studies

Innovation lies at the heart of societal progress. In today’s world, the process of generat-
ing and diffusing innovation is increasingly complex, distributed, and embedded in evolv-
ing socio-technical systems (Geels, 2020; Geels et al., 2023). Addressing grand challenges
such as climate change, digital transformation, and inequality requires us to understand
innovation not as a linear outcome, but as an emergent process shaped by interactions
across diverse actors, institutions, and sectors (Foster, 2006; Mainzer, 2009; Rittel & Webber,
1973). Traditional data sources struggle to capture this complexity. The WebAI paradigm—
leveraging large-scale web data and advanced AI techniques—provides a framework for
studying innovation in a comprehensive way by capturing both innovation-related activ-
ities of organizations and links between innovative organizations, while allowing for the
characterization of innovation by technologies used, sustainability impacts, and the re-
gional dimension.

The five key properties outlined above make organizational web data uniquely suited
to this task. First, its vastness provides broad coverage across organizational types and
sizes, enabling system-level insights that go beyond narrow samples (Kinne & Axenbeck,
2020). Second, its comprehensiveness captures rich and self-curated information about
organizational identity, strategy, and technological positioning—crucial for tracing inno-
vation trajectories across stages of maturity (Dahlke et al., 2024; Oertel & Thommes, 2018).
Third, its timeliness allows for near real-time observation of emerging trends and innova-
tion signals, especially during periods of rapid change (Buchanan & Denyer, 2013; Marres
& Weltevrede, 2013). Fourth, liveliness makes it possible to track how discourses, tech-
nologies, and organizational roles evolve over time, thereby supporting dynamic analy-
ses of innovation ecosystems (Oberg et al., 2022). Finally, relationality captures both ex-
plicit and latent connections between organizations—through hyperlinks or content sim-
ilarity—revealing the underlying structure and flow of knowledge and influence within
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innovation networks (Abbasiharofteh, Krüger, et al., 2023; Katz & Cothey, 2006; Vaughan
et al., 2007).

Together, these properties position the WebAI paradigm as a powerful approach to
study innovation in the context of socio-economic complexity. The following sections high-
light how this approach enables novel insights into the distributed and evolving nature of
innovation across different research fields in innovation studies.

4.1 Measuring firm-level innovation in times of rapid change

The innovativeness of a company is traditionally measured on the basis of publications,
patents, or through surveys (Archibugi & Planta, 1996). As a precursor to the WebAI
paradigm, Gök et al. (2015) find that studying R&D activities in innovative firms by ac-
cessing websites from the Wayback Machine and performing a keyword-based analysis
can yield valid results. Several studies based on the WebAI paradigm, i.e., the extension
of such simple NLP approaches to more complex semantic analysis methods, have since
shown that organizational web data is a suitable alternative or complementary data source
for innovation research (Kinne & Axenbeck, 2020).

Building on a framework by Kinne and Axenbeck (2020), Kinne and Lenz (2021) de-
velop a methodology to predict the level of innovativeness of a company based on its
website text for the first time. They develop a method that uses artificial neural networks
to classify firms as product innovators, leveraging data from the German Community In-
novation Survey to train the model. Comparing the predictions to traditional benchmarks
like patent statistics, survey extrapolation, and regional innovation indicators, they find
the web-based approach to be reliable, cost-efficient, and capable of providing greater cov-
erage and regional detail.

Organizational web data has also been shown to be well suited to investigating very
specific topics, which can be of particular interest for innovation-related analyses. Focus-
ing on the diffusion of a specific standard within the German firm population, Mirtsch
et al. (2021) examine the adoption of the ISO/IEC 27001 information security management
standard in Germany, using web mining to analyze the websites of 2,664 firms from the
Mannheim Enterprise Panel dataset, finding that larger and more innovative firms are
more likely to obtain the certification.

Against the backdrop of the COVID-19 pandemic, a study by Dörr et al. (2022) shows
one of the major advantages of the WebAI paradigm, its timeliness. By analyzing corpo-
rate websites, they are able to provide early insights into the pandemic’s diverse impacts
and predict firm-level outcomes, such as credit rating changes. Similarly, Koenig et al.
(2025) analyze the content of five million corporate websites worldwide to quantify the
extent and nature of the impact of the COVID-19 pandemic on companies. They show that
this web-based impact indicator at the firm level is highly correlated with pandemic con-
tainment measures and reliably predicts the performance of firms during the pandemic.
In fields of innovation such as artificial intelligence, which change quickly and frequently,
web data can provide timely information, thereby overcoming for instance the typical de-
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lay in patent data. This enables the large-scale monitoring of product innovation activities.
Using a similar concept, Borchert et al. (2023) use NLP methods, such as BERT, to integrate
website contents into business failure prediction models, finding that this improves model
performance.

4.1.1 Tracking emerging technologies and their diffusion

A particular focus in innovation studies is on analyzing new technologies, especially with
regard to their emergence and diffusion (Comin & Mestieri, 2014). However, traditional
methods, such as patents and surveys, generally capture technological change with signif-
icant time lags, making it difficult to track emerging technologies in near real time. Addi-
tionally, static patent classifications and predefined survey categories can struggle to keep
pace with the rapid advances of new technologies (Martin, 2016). Moreover, product dig-
itization derived from web-scraped organizational data has been empirically associated
with productivity improvements among European high-tech companies, highlighting the
economic significance of digital transformations captured via website data (Deschryvere
et al., 2023). The lively nature of web data offers a unique perspective on how technolo-
gies emerge and become (re)defined by the economic actors using them. More than that,
the comprehensive information in organizational web data helps to distinguish between
different groups of actors engaging with the technology, such as technology producers or
technology users, and accounting for the interactions between them. This is particularly
important because technology usage often provides deeper insights into economic devel-
opment than production alone, for example, regarding technology diffusion in networks of
adopters or regarding the resulting economic dependencies between producers and users
(Franco et al., 2023).

Dahlke et al. (2024) derive a web-based indicator for AI adoption among firms from
Germany, Austria, and Switzerland, using textual data from over 1.1 million websites.
They also leverage the relationality of web data by constructing a hyperlink network of
more than 380,000 firms, which allows them to incorporate social capital and network em-
beddedness into epidemic models of inter-firm diffusion of AI technology. Based on the
developed indicator and constructed networks, they identify three key mechanisms influ-
encing AI adoption: co-location in AI-related industrial and regional hubs, direct expo-
sure to deep AI knowledge; and relational embeddedness in the AI knowledge network.
In their study, (Schwierzy et al., 2022) analyze the spread of additive manufacturing in
Germany. For this, they distinguish different types of key actors in the diffusion process,
including manufacturers, service providers, retailers, and information providers. Addi-
tionally, they find indications that the proximity to pioneer firms and technical univer-
sities could influence the diffusion of 3D printing. Similarly, Gschnaidtner et al. (2024)
analyze companies with blockchain-related products and services in Germany, Austria,
and Switzerland. Their findings identify regional blockchain clusters close to important fi-
nancial centers, despite blockchain being an inherently decentralized and distributed tech-
nology.
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4.1.2 Discerning sustainability engagement across concepts and space

One of the key challenges in contemporary innovation research is studying the green tran-
sition, i.e. the transformation of business models and processes towards more sustainable
and environmentally friendly ones (Martin, 2016). Here, two key issues persist: One of
scope and one of legitimacy. Regarding the former, the wickedness of today’s problems
(Ritala, 2024; Rittel & Webber, 1973) requires consideration of a broad range of sustain-
ability aspects and their interrelations. This range is particularly reflected by the UN’s
Sustainable Development Goalss (SDGs), which address the ecological, economic, and so-
cial dimensions of the concept of sustainability (Bennich et al., 2020). The comprehensive
content sourced from organizational websites can capture this range across the diverse
areas of sustainability, as well as their co-evolution, since companies generally use their
websites to present their sustainable products and practices.

Following this WebAI paradigm, Wildnerova et al. (2024) analyze content from over
one million firm websites across 15 OECD countries and develop a metric to identify the
sustainability engagement of SMEs. They find that approximately one-third of SMEs are
sustainability-engaged, i.e. offer sustainability-related products or services, though this
varies significantly by country, with solar energy, recycling, and energy efficiency being
the most frequently cited actions. Building on the metric of Wildnerova et al. (2024), Kinne
et al. (2024) exploit the vastness, comprehensiveness, and relationality of organizational
web data to study the twin transition for all US firms by analyzing the co-occurrence of
blockchain knowledge and sustainability engagement in the context of firm ecosystems.
For this, they create measures based on the hyperlink networks and physical co-location
of firms. To quantify location factors (e.g., proximity to transport infrastructure), they
use data from OpenStreetMap (OSM). While they find that blockchain remains a niche
technology (Gschnaidtner et al., 2024), they show a much higher level of sustainability en-
gagement for Blockchain firms than is exhibited across the general firm population. They
also show the high importance of deep embedding in entrepreneurial ecosystems for the
promotion of the twin transition. Kriesch and Losacker (2024) use website texts from Com-
monCrawl to analyze firm activities related to the bioeconomy. They find that such firms
are mostly located in rural areas and close to their biomass feedstocks, whereas innova-
tions in the bioeconomy are found in urban areas. In a more technical study, Auzepy et
al. (2023) classify climate-related financial disclosures on corporate websites, introducing
a zero-shot approach. They find that climate-related reporting has risen, while the extent
of the reporting varies considerably. Focusing on the social dimension of sustainability,
W. Wang et al. (2023) use structural topic modeling to identify key elements in corporate
diversity statements, in particular with respect to racism.

A second issue in measuring sustainability orientation is one of legitimacy. A critical
issue that needs to be discussed in the context of sustainability analyses is so-called green-
washing. This refers to the misrepresentation of environmental practices for advertising
purposes. Against the backdrop of the ever-increasing importance of sustainability and
a ‘green image’, greenwashing is becoming an increasingly common practice (De Freitas

19



Netto et al., 2020; Y. Liu et al., 2023). In order to study the application and diffusion of
truly sustainable economic practice, the processing of web data by means of AI models
takes center stage. Training such models can help to discern superficial engagement from
a true commitment to different dimensions of sustainability as displayed in an organiza-
tion’s web data.

Schmidt et al. (2022) address this topic by studying the sustainability engagement of the
US metal industry, which they evaluate based on the WebAI paradigm. They find a cor-
relation between the location of the metal industry and sulfur dioxide concentrations in
the atmosphere, which they derive from Sentinel-5P satellite data. Using a spatial regres-
sion analysis, they place the presence of sustainability-engaged companies in the context
of these air pollutants, but find no statistically significant correlation and therefore no evi-
dence of widespread greenwashing. This study serves as a first contribution to evaluating
the legitimacy of sustainability reporting on websites through earth observation data, i.e.,
an external data source.

4.2 Mapping innovation systems through hyperlink networks

The systemic approach to innovation has been conceptualized in the literature with differ-
ent focal points in national (Lundvall et al., 2002), regional (Asheim et al., 2011) and techno-
logical innovation systems (Carlsson & Stankiewicz, 1991), as well as business ecosystems
(Gawer & Cusumano, 2014). A common methodological challenge unifying these streams
is the difficulty in delineating the boundaries of such systems, as well as of determining
measures for their aggregate performance (Carlsson et al., 2002). Due to their complex
nature, studies on innovation systems often rely on qualitative approaches confined to
narrow contexts, where all elements and outputs of such systems can be mapped (Bergek
et al., 2015). Pairing the relational nature of organizational web data with the vast and
comprehensive information on its individual elements has the potential to translate the
systemic approach to innovation to a larger scale.

First, hyperlinks between organizational websites can be seen as a proxy for collabora-
tion and cooperation between entities. Reminiscent of the basic idea of business clusters
(Delgado et al., 2014; Grashof & Fornahl, 2021; Porter, 1998) and innovation networks
(Chesbrough & Rosenbloom, 2002; Katz & Cothey, 2006), classical methods of network
analysis can be applied to this data. This allows to uncover system boundaries in the
geographic and relational space of companies endogenously. Second, the economic de-
velopments unfolding within these networks can be measured through aggregating the
thematic properties of its individual elements based on the comprehensiveness of orga-
nizational websites. For example, capturing network dynamics such as social capital, co-
location, and relational embeddedness, web data can provide insights into the clustered
nature of technology adoption (Dahlke et al., 2024).

Developing the concept of a digital layer, Abbasiharofteh, Krüger, et al. (2023) reveal
that the intensity and quality of firms’ hyperlinks are strongly correlated with their inno-
vation capabilities, particularly in relation to geographically distant and cognitively close

20



firms. The digital layer framework is designed to address limitations of traditional datasets,
which often overlook dynamic, real-time, and informal interactions, particularly among
smaller or less-publicized firms.

Technically, the digital layer is constructed by scraping hyperlinks and textual content
from organizational websites. These organizations are then represented as nodes in a net-
work, with hyperlinks between organizations forming edges. Edge weights reflect link
reciprocity, assigning higher importance to bidirectional connections. Several attributes
are derived from this network, including the total number of hyperlinks (link count), ge-
ographic distances (calculated as Euclidean distances between firms), and cognitive dis-
tances (measured via cosine similarity of website text representations using TF-IDF). Hy-
perlinks are further categorized into ”business” or ”non-business” types using machine
learning models trained on contextual data. In a follow-up study, Abbasiharofteh, Kinne,
and Krüger (2023) show that strong inter-firm connections are formed involving common
third-party partners and inter-regional relationships and are positively linked to higher
innovation levels.

The digital layer concept and adjacent approaches have been applied in several con-
texts. Using hyperlink and textual data from corporate websites, C. Liu et al. (2024) inves-
tigate how multidimensional proximities —geographical, cognitive, organizational, insti-
tutional, social, and technological — interact to influence innovation for over three million
technology firms in China. Arifi et al. (2023) explore how connection strategies of innova-
tive firms differ between Twitter and hyperlink networks. Analyzing a sample of 11,892 IT
firms, the study compares the two networks across four dimensions: network structure,
information flow patterns, geographic and cognitive proximity, and the influence of com-
pany characteristics. The results suggest that innovative companies tend to align their
connection strategies across online networks, while highlighting the importance of geo-
graphic and cognitive proximity for online connections. Sayles et al. (2022) investigate
how different search depths (i.e. number of analyzed subpages) impact the creation of hy-
perlink networks, focusing on environmental organizations. In a similar context, Bogers,
Biermann, et al. (2022) examine the impact of the creation of the SDGs on the hyperlink
networks of 276 international organizations, revealing that fragmentation has increased,
which counteracts the intended objective. Humalisto et al. (2021) study the policy on the
circular economy in Finland through an analysis of hyperlink clusters. Hyperlink network
analyses also form integral parts of previously described studies on technology diffusion
(Dahlke et al., 2024; Kinne et al., 2024).

4.3 Identifying spatial patterns and geographies of innovation

Mapping and analyzing the spatial dynamics of production, consumption, distribution,
and exchange in economies have been fundamental topics in regional studies and eco-
nomic geography (Clark et al., 2018). Scholars in these fields have mostly relied on stan-
dardized classifications of economic activities (e.g., NACE codes) and geo-coded firm data
to approximate the spatial distribution of economic activities. While this approach is
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widely used for convenience, it has limitations that can introduce biases in empirical anal-
yses. One key limitation is that these classifications assign firms to a single sector, failing
to account for the fact that companies often engage in multiple economic activities. This
approach contradicts the evolutionary perspective on economic activities, which suggests
that firms build on their routines and relationships, diversifying into new activities (Nel-
son & Winter, 1982). It becomes particularly problematic when researchers seek to identify
firms operating in market niches or commercializing newly developed technologies. For
instance, a study found that the ICT sector in the UK is 40% larger than estimates based
on standardized classifications of firm activities (Nathan & Rosso, 2015). Here, advanced
WebAI techniques have significantly enhanced the granularity and linkage to traditional
classification systems like NACE, capturing additional complexities and innovation activ-
ities that traditional industry classifications may overlook (Hajikhani et al., 2023).

Advancing new techniques to specify the economic activities of firms and regions is
a crucial focus in today’s economic geography and regional studies. While most stud-
ies and policies have focused on the technological capabilities of regions, less attention
has been given to market applications, overlooking the capabilities of a significant share
of regions—particularly peripheral ones outside major technology hubs (Breznitz, 2021;
Tödtling et al., 2020). Addressing this gap is a key component of the normative turn in
the geography of innovation research (Binz & Castaldi, 2024). This shift offers valuable
insights into place-based policies that leverage the capabilities of local firms as a window
of opportunity for a just and green transition of local economies (Lema et al., 2020). The
application of WebAI is a timely enabling method for tackling the challenges described
above. Websites and the data they provide can be linked to organizational characteris-
tics through the uniqueness of URLs, including organizational location. The location can
be determined through external data sources (e.g., company databases) or by geo-coding
the address provided in the website’s legal notice. This geo-referencing provides higher
spatial accuracy than other web-based data (e.g., from social media) (Honzák et al., 2024),
enabling entity-level analyses, such as individual companies (Kinne et al., 2024). WebAI-
based analyses offer higher spatial resolution than traditional economic aggregates, which
often suffer from the modifiable areal unit problem (Fotheringham & Wong, 1991). With
precise geo-location of company data, regional analyses can be performed through spa-
tial aggregation at district, nuts, or federal state levels, complemented by additional data
sets (e.g., socio-demographic data) (Dahlke et al., 2024; C. Liu et al., 2024; Schmidt et al.,
2022; Schwierzy et al., 2022). WebAI powered by recently developed LLMs can provide in-
sights into the economic activities of firms (and regions at the aggregate level), as web text
includes information about firms’ products. This approach can be combined with goods
and services descriptors provided by trademark applicants, serving as a benchmark for
LLM-driven classification of real-world market applications (Abbasiharofteh et al., 2022;
Castaldi, 2019). For example, a recent study analyzes firms’ web text and used market ap-
plication benchmarks to identify firms offering eco-friendly and AI-related products (Ab-
basiharofteh & Kriesch, 2024).
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Corporate websites provide a valuable, vast data source for assessing the digital divide
between regions (Mazzoni et al., 2024), a phenomenon that reflects differences in digital ca-
pabilities and online engagement. Different website features can be used as proxies for un-
derlying digital capabilities and engagement. Individual features are often combined into
a composite index, providing a more holistic and nuanced measure of a company’s digital
capabilities than any single indicator in isolation. This allows researchers to make com-
parisons across various company characteristics and geographic regions. The resulting
analysis reveals patterns and trends in digital readiness, highlighting disparities between
different groups of companies and territories.

Given the near-real-time and highly granular nature of WebAI insights, this method-
ology can significantly improve the targeting and assessment of innovation and regional
development policies. Policymakers can leverage WebAI-generated indicators to monitor
the diffusion of new technologies, identify emergent innovation clusters, and evaluate the
effectiveness of place-based or industry-specific policies with significant timeliness and de-
tail. Moreover, by combining WebAI results with external validation sources (e.g., survey
and patent data), researchers and policymakers can develop more accurate assessments
of policy impacts, adjusting and refining interventions dynamically rather than retrospec-
tively.

WebAI provides particularly valuable input for place-based policymaking, such as
smart specialization strategies for sustainable and inclusive growth. By offering insights
into the market applications of firms within local economies and their diversification, pol-
icymakers can prioritize strategic investments (Balland et al., 2019) identify gaps in com-
plementary capabilities that may be lacking in the region. These gaps can be addressed by
funding research locally or by fostering interregional collaborations (Balland & Boschma,
2021).

4.3.1 Analyzing institutions at granular scale

Another pivotal challenge in economic geography and regional studies is understanding
the function of institutions in influencing economic development (Boschma & Frenken,
2009; Gertler, 2010; Rodrı́guez-Pose, 2013). While institutions are widely acknowledged
as key enablers of innovation, mutual learning and productivity growth, the empirical
evaluation of these institutions and their impact at the sub-national level remains difficult.
Significant strides have been made in this regard through research on institutional quality
and, more specifically, ’quality of government’ (Rodrı́guez-Pose, 2020). Governments, in
general, and local and regional governments, in particular, are the primary organizations
that establish the rules of the game at the local level. Consequently, the quality of local
governments will influence economic development and assist in shaping the efficiency
and returns of public investments (Rodrı́guez-Pose & Garcilazo, 2015).

Existing measurement approaches based on expert surveys and composite indices,
such as the European Quality of Government Index (EQI) (Charron et al., 2014), provide
valuable insights but face significant limitations. Survey-based indicators rely on the will-
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ingness to participate by respondents, are costly to update regularly, and are often based
on small samples which limits the extent to which findings can be aggregated at relatively
large spatial scales (such as NUTS2 regions) and hinders the capture of local institutional
variation (Charron et al., 2019). Furthermore, these measures primarily concentrate on
formal institutions, such as laws and governance structures, while largely overlooking
informal institutions—norms, networks and localized social practices—that are equally
relevant to economic development (Rodrı́guez-Pose, 2013).

This complexity poses significant challenges in effectively measuring and operational-
izing these institutions at local and regional levels. In this context, analyzing text data
from local government websites provides a novel opportunity to gain deeper insights into
the functioning of regional institutions. As demonstrated by (Youngblood & Mackiewicz,
2012), government websites have been shown to be utilized for the purpose of enhanc-
ing the perception held by external stakeholders. Furthermore, these websites reflect the
government’s priorities and strategies (Feeney & Brown, 2017; Sandoval-Almazan & Gil-
Garcia, 2012). Making use of the WebAI paradigm, particularly its timeliness and thematic
comprehensiveness (Gentzkow et al., 2019), it is now possible to establish a novel data
source comprising county-level web text data, demonstrating that this data source can be
utilized to study local institutions and to monitor government priorities and policies across
a wide range of issues.

5 Limitations and Propositions for Future Research

While organizational web data represent a wealth of information, the shift from tradi-
tional, structured indicators (e.g., patents, surveys) to web-based proxies marks a funda-
mental methodological and epistemological transformation. The properties of web data—
vastness, comprehensiveness, timeliness, liveliness, and relationality—afford new obser-
vational capacities, but also introduce new and echo known challenges to innovation mea-
surement validity and theoretical grounding. We would propose to focus on several areas
of development, addressing issues of representation of i) individual organizations, ii) in-
novation systems, and iii) multi-system interactions through WebAI techniques.

5.1 Representation of organizational identity and firm-level innovation

The WebAI paradigm builds on the assumption that organizational websites serve as com-
prehensive representations of organizational identity, offering data to extract insights into
their strategy, capabilities, and innovations (Oertel & Thommes, 2018; Powell et al., 2016).
However, this demands careful and systematic analysis of the mechanisms, completeness,
and frequency with which these identities are (re)constructed and maintained online, and
how they reflect innovation activities.
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5.1.1 Measuring intra-firm diffusion of innovation

While WebAI indicators have proven to be plausible and reliable to measure inter-firm dif-
fusion of innovation at larger scale (see chapter 4), a key limitation in current approaches
lies in their inability to adequately capture the intra-organizational diffusion of technolo-
gies and practices. As Battisti and Stoneman (2003) emphasize, innovation does not con-
clude at the point of adoption; rather, it unfolds through the uneven and incremental
spread of new technologies within organizations. Current web indicators primarily re-
flect externally directed signals—mentions of technologies, initiatives, or strategic goals—
without providing a clear picture of how deeply or widely these practices are embedded
within organizational routines. While current measurements can be used to calculate in-
tensities at the website level (Dahlke et al., 2024; Kinne et al., 2024), future work could
extend the analysis by analyzing specific web pages (e.g., subdomains for business units)
to measure the diffusion of a technology within the organization.

5.1.2 Accounting for strategic signaling

Website’s function as inherently strategic communication channels further complicates ef-
forts to approximate the ground truth of intra-firm diffusion of innovations. Organiza-
tions increasingly align digital messaging with policy and market trends—such as ”sus-
tainability,” ”digital transformation,” or ”AI leadership” irrespective of actual internal ca-
pability. This raises the issue of strategic signaling and reputational inflation. Much like
patents filed for strategic signaling (Griliches, 1990), web content may overstate innova-
tion engagement, particularly when incentives are high to appear aligned with fashion-
able trends. To reduce the risk of producing falsely positive measurements, the applied
research using WebAI techniques has introduced AI models able to distinguish between a
superficial and sincere engagement of organization with certain innovations, which goes
beyond a detection of keywords and builds on curated training data to make inferences
based on more complex patterns.2 Besides the progressing capabilities of generative AI
models allowing for flexible and adaptive usage, this highlights value of training stable
supervised models to detect latent patterns of specific concepts.

5.1.3 Distinguishing innovation inputs and outputs

When aggregating WebAI metrics at the level of entire organizations, they run the risk of
conflating innovation inputs (e.g., expressions of intent, R&D emphasis, human capital, or
capability signaling) with outputs (e.g., realized products, new services, or operational-
ized practices). While this conflation has been recognized in innovation measurement
more broadly (Rogers, 1998), web-based approaches have yet to establish reliable methods
for distinguishing between the two. Here, the comprehensiveness of organizational web
content presents untapped potential for further differentiation: job postings may serve as

2The reverse issue of accounting for false negatives is more salient as some organizations may avoid re-
porting activities in certain technology fields for strategic purposes.
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signals of investment and capacity building (inputs) also in the field of R&D, while prod-
uct announcements or project cases may reflect realized innovation outcomes (outputs).
However, current indicators lack the conceptual clarity and computational precision to op-
erationalize these distinctions at scale. In particular, the curation of more targeted sets of
training data and the use of LLMs to contextualize calculated indicators constitute promis-
ing approaches to meet this end.

5.1.4 Distinguishing product, process, and business model innovation

Drawing from the Oslo Manual’s (Eurostat, 2018) distinction between product and process
innovations, it is important to recognize that websites may differentially reflect these cat-
egories. Product innovations, often more visible and customer-facing, are likely overrep-
resented in web narratives, while process innovations—embedded in backend systems or
organizational routines—may be underreported. This warrants more thorough investiga-
tions into what types of innovation WebAI metrics can capture. As a starting point, Dahlke
et al. (2024) applied topic modeling to website paragraphs exhibiting high scores for their
AI indicator and found that both product- and process-related topics were associated with
it. Further research should explore ways to infer process innovations from indirect signals
such as supply chain topics, operational case studies, or recruitment for technical roles.
The comprehensiveness of organizational websites could also offer a valuable resource to
measure innovation to business models.

5.1.5 Accounting for methodological drift

The liveliness of web data, with its continuous updating and responsiveness to socio-
political signals, enables the early detection of emerging issues and discursive shifts (Mar-
res & Weltevrede, 2013). However, this same volatility poses challenges for temporal con-
sistency. As websites evolve in structure and content and/or as AI models are updated or
retrained, indicators can drift. This represents a fundamental methodological shift from
the use of stable, archival data to fluid, conceptually evolving corpora. Without robust
versioning of both data and models, longitudinal studies lose comparability (Schafer &
Winters, 2021). Techniques such as anomaly detection, temporal consistency checks, and
contextual semantic analysis are a way forward to mitigate these biases.

5.1.6 Propositions

Future research working within the WebAI paradigm must address the following repre-
sentational issues at the organizational level:

• Develop ontologies and taxonomies aligned with innovation theory to improve in-
dicator interpretability.

• Investigate mechanisms of digital self-representation to distinguish rhetorical inno-
vation from ”de facto” innovation (particularly along the dimension of process inno-
vation).
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• Use domain-adapted LLMs to extract and classify innovation claims with higher se-
mantic specificity.

• Explore techniques to address representation biases in web data, including imputa-
tion techniques, as well as robustness tests based on survey data and administrative
data.

• Develop infrastructures for longitudinal tracking of WebAI metrics, including time-
stamped indicators, panel datasets, version-controlled models, and techniques to
check for temporal consistency of web data.

• Map innovation input-output trajectories across different types of data by correlating
WebAI indicators with patent and publication records or job postings and exploring
their temporal sequence.

5.2 Representation of innovation systems

5.2.1 Exhaustiveness and bias in capturing economic systems

We have argued that the WebAI paradigm exceeds traditional innovation measurement
practices through removing limitations in data collection, allowing to move from the anal-
ysis of small sample sizes to capturing larger parts of economic systems. However, this
coverage is likely to still carry systematic bias. Despite the vastness of organizational web
data, many firms—especially micro-enterprises, young ventures, or entities in traditional
service sectors—are less likely to (actively) maintain a web presence. Even among regis-
tered firms, web presence may be limited to inactive landing pages or social media pro-
files (Kinne & Axenbeck, 2020). As such, WebAI indicators skew toward digitally mature,
resource-rich firms, introducing a representation bias that echoes known limitations in tra-
ditional data sources, even if this bias may arguably be less severe.

5.2.2 Structural and functional characteristics of hyperlink networks

Hyperlinks, co-mentions, or semantic similarity of websites encode a latent network of
innovation-related relationships. This relationality can enable WebAI to model informa-
tion flows, inter-firm proximity, and embeddedness (Dahlke et al., 2024). However, the
digital architecture of these networks is shaped by rules that are only partially under-
stood. Hyperlink connections may indicate formal partnerships, supply chain relations,
shared ecosystem membership, or simply content management strategies. While digital
relational data has the potential to reflect sectoral or national innovation systems (Katz &
Cothey, 2006; Vaughan et al., 2007), this requires linking patterns of connection to under-
lying system functions (e.g., knowledge development, resource mobilization, market for-
mation, etc.). Without such functional mapping, network metrics risk becoming descrip-
tive rather than explanatory. Regarding indirect relations, co-occurrence of topics across
websites could indicate diffusion patterns (epidemic effects) but could also reflect parallel
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signaling to external audiences. This ambiguity complicates the interpretation of WebAI-
generated network indicators. Further exploration should combine longitudinal data with
more advanced network analyses to develop a sequential picture of relationships in order
to determine (investigate) their causality.

5.2.3 Propositions

Future research working within the WebAI paradigm must, thus, address the following
representational issues at the level of socio-economic systems:

• Analyze the logic behind digital link formation, including the representation of dif-
ferent forms of organizational relationships and strategic linking behavior.

• Use advanced AI techniques to infer latent relations and knowledge flows from tex-
tual and structural web data.

• Understand temporal patterns in hyperlink network including link formation be-
tween individual organization and structural properties of networks.

• Situate digital networks within established systems-of-innovation frameworks to un-
cover their structural-functional properties.

5.3 Multi-system and multi-data integration

Given the potentials and limitations mentioned above, we argue that the WebAI paradigm
is best understood as an empirical perspective on innovation that complements traditional
measurements. In particular, we argue that the vast, comprehensive, and lively properties
of web-based measures could offer richer insights on broader industrial regimes. That is,
because WebAI techniques are particularly well suited to identify organizations as users of
innovation alongside organizations as producers of innovation (which are also well covered
by traditional metrics). This advantage may be particularly salient for soft and intangible
forms of innovations (i.e., as often found in the service sectors).

We are, nevertheless, conscious of the fact that innovation is embedded in multi-level,
interdependent systems that span economic, social, scientific, and ecological domains (Geels,
2020). Organizational innovation and industrial practice, as captured through WebAI tech-
niques, is deeply entangled with other regimes that form within institutional, technologi-
cal, and ecological systems (Geels, 2005; Geels et al., 2023). Understanding this complexity
of modern economic systems necessitates an integrative approach that adopts a system
of systems perspective. Using the relational properties of web data and combining it with
other data sources such as patents, publications, as well as institutional and environmental
data can be a promising way for future research to capture the interaction between such
different (industrial, technological, socio-political, and ecological) systems.
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5.3.1 Propositions

To integrate WebAI techniques into more holistic concepts of innovation and transition
research, future work should:

• Design multi-level models capable of capturing micro-level organizational activity,
meso-level system dynamics, and macro-level trends by integrating multiple data
sources.

• Explore how innovation signals propagate across systems (e.g., from science to tech-
nology to organizational practice and public perception, or regulation).

6 Conclusions

This paper aims to spark a discussion on a new WebAI paradigm in innovation studies,
business analytics, and informed policymaking. We presented suggestions on how to ex-
tract insight from organizational web data by using state-of-the-art AI techniques. We
introduced five central properties of organizational web data (vastness, comprehensive-
ness, timeliness, liveliness, and relationality) that set it apart from traditional data sources
such as surveys or patents, and make it relevant for studying innovation. These proper-
ties also necessitate rigorous processing techniques to separate signal from noise. To this
end, we provided best practices and outlined current challenges of the methods that can
be employed to extract and process organizational web data. The potential of the WebAI
paradigm is highlighted through several scientific use cases that demonstrate how We-
bAI enables the analysis of innovation in a comprehensive way, including micro-level in-
novation activities, technology diffusion, sustainability engagement, innovation systems,
organizational networks, institutions, and the geography of innovation.

While organizational web data represent a wealth of information, it may also be sus-
ceptible to selective self-presentation, potentially introducing biases into analyses derived
from WebAI methods. Applying the WebAI paradigm in future research should focus on
sharpening processing techniques to further distinguish rhetorical signaling from actual
innovation activities. We propose that it should also focus on developing methods to pre-
cisely measure different types of innovation. While the WebAI paradigm unlocks a more
exhaustive coverage of economic systems than traditional metrics can offer, future research
should focus on accounting for remaining representation biases in hosting or maintaining
organizational websites (e.g., for micro-enterprises, traditional service providers). Further-
more, the relational nature of web data (e.g., hyperlinks) needs to be explored and linked
to specific functions (e.g., knowledge sharing) to move beyond merely descriptive network
measures.

Finally, innovation is embedded in multi-level systems that include organizational, in-
dustrial, societal, and ecological contexts. We argue that WebAI should not replace tra-
ditional data (e.g., patents, publications), but rather complement them to trace innova-
tion pathways and understand how innovation signals spread from scientific discovery to
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technological application and economic outcomes, as well as how they relate to the socio-
political discourse. This requires models that leverage the relationality of web data and
explore its integration with other data sources to link innovation signals at the micro level
with higher-level developments and regimes in socio-technical systems.
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