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Abstract 
The scale of distribution network construction is huge and the differences in construction 
areas are significant. The accuracy of investment strategies would directly affect the 
effectiveness of upgrading distribution networks. In response to the current subjectivity and 
lack of precision in the distribution network investment allocation process, this study 
proposed a method to allocate the investment amount to distribution networks based on a 
panel data model and an incentive–penalty mechanism. First, the type of panel data model 
was selected using the joint hypothesis test and the Hausman test. Second, the initial 
allocation of the investment amount was calculated based on the selected panel data model. 
Third, investment productivity in each region in recent years was calculated using the data 
envelope analysis model. Given the variations in the importance of information during 
different periods, the concept of time degree was introduced to establish a time degree model. 
The weights of the model during different periods were assigned to the investment 
productivity and then the sum was calculated separately to obtain the comprehensive 
investment productivity of each distribution network. The final allocation of the investment 
amount for each distribution network was obtained based on its initial allocation of the 
investment amount and the comprehensive investment productivity. The case study showed 
the following points. (1) The differences among the distribution networks were significant 
and, thus, the fixed effects model could be employed to effectively compute the investment 
scale. (2) Given the differences in the construction and investment productivity of various 
distribution networks, the proposed method to calculate the complete investment productivity 
could be used to adjust the allocation of the investment amount and achieve an optimal 
allocation of funds. The research results exhibited practical significance in improving the 
investment allocation strategy of distribution networks. 
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Introduction 

The economy of China has experienced rapid growth in recent years. Consequently, the 

demand for electricity has also been increasing. Therefore, the construction of distribution 

networks as key links in power transmission has become a crucial task in the power industry. 

In particular, with the significant advancements in new energy and smart grid technology, a 

distribution network must not only undertake traditional power transmission and distribution, 

but must also have the ability to integrate new energy and optimise its allocation (Lu et al., 

2022; Lu, Lin and Dabić, 2024). Therefore, a scientific and rational investment strategy for 

distribution networks is directly related to the sustainability of the national economy, social 

development, and the environment.  

At present, the allocation of investment amounts to distribution networks is based largely on 

construction projects proposed by various regions. This method is highly subjective and lacks 

a theoretical basis, and thus ensuring the rationality and balance of investment amount 

allocation is difficult during the construction of distribution networks. Consequently, national 

funds are not only wasted, but the development of regional power grids and the economy are 

also affected. Research on investment allocation in distribution networks encompasses two 

principal classifications. In the initial classification,, the required investment amount for each 

region is determined by establishing predictive models (Wang et al., 2022; Wu et al., 2022). 

In the second classification, project optimisation is performed to determine the investment 

amount allocated to each region, with the maximisation of one or more indexes as the 

objective function and known total investment amount as one of the constraints (Gao, Zhao 

and Li, 2022; Garifi et al., 2022; Farah and Andresen, 2024). In the first type of method, the 

electricity demand related directly to the construction of distribution networks is used as the 

input of the model to estimate the investment amount of a distribution network, avoiding the 

drawbacks of traditional methods that rely largely on experience. However, the prediction 

results of the model are easily affected by data; moreover, a model based on the construction 

of distribution networks and regional economic characteristics cannot be established by 

utilising commonly used prediction models, such as grey models and neural networks (Chen 

et al., 2020; Xu et al., 2021).). Insufficient consideration of regional differences leads to 

unreasonable investment allocation. In the second type of method, the optimisation of 

projects is performed in the entire research area, and thus, the investment amount cannot be 

accurately estimated, resulting in unreasonable allocation with excessive or insufficient 

investment in some regions.  

Taking into account the aforementioned issues, in-depth research on investment models for 

distribution networks is carried out and an investment allocation method is proposed based 

on a panel data model and an incentive–penalty mechanism in the current study. The suitable 

panel data model for regional characteristics is selected through the joint hypothesis test and 

the Hausman test and is used to construct the investment allocation model for distribution 

networks. Data envelope analysis (DEA) and the time degree model are introduced to 
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quantify regional differences, and thus accurate allocation of investment amount to the 

construction of distribution networks can be obtained. 

 

1. Literature review  

Existing investment allocation methods can be broadly categorised into two groups. The first 

group involves detailed planning reports and unit price of the equipment. The amount of 

investment can be divided into several sections, and formulas based on planning reports and 

unit prices of equipment are proposed for each section to calculate its investment amount. 

The amount of investment is divided into rigid, economic, actual and planned investments 

based on project data in the planning reports. Yu et al. (2017) provided detailed calculation 

methods for each type of investment amount. However, these methods must be based on 

detailed planning reports and the requirement for initial data is strict, making them less 

applicable in practical situations. 

The second group involves macro-level investment allocation in the absence of planning 

reports. Currently, these methods include mainly evaluation and prediction. An evaluation 

method involved establishing an investment index system evaluation, collecting relevant 

index data, assigning weights to each index through a weighting method, and then using 

relevant evaluation models for evaluation (Sengul et al., 2015; Koponen and Le Net, 2021; 

Zafar et al., 2016; Sha et al., 2021). This method is simple and convenient, but establishing 

an investment index evaluation system is difficult. Many related studies had directly used an 

evaluation index system for distribution networks as an evaluation index system for 

investment, resulting in a lack of a scientific basis and accuracy. In contrast, the relevant 

factors that influence the allocation of investment amount were selected and the functional 

relationships between them were studied in a prediction method. Essentially, a prediction 

method was a modified evaluation method. The mathematical relationship between 

evaluation results and investment amount allocation was not thoroughly explored in an 

evaluation method, but it was examined using fitting functions in a prediction method, and 

thus accuracy was improved. 

The investment amount was allocated at the macrolevel and the calculation was optimised 

using the particle swarm algorithm. Xu et al. (2020) calculated the investment amount 

required for the distribution network in each region based on its evaluation result. Li et al. 

(2021) and Zhang et al. (2021) predicted the investment amount to be allocated based on 

investment and electricity demand by using the panel data model. These methods involved 

the general prediction of the investment amount to be allocated, resulting in a significant 

improvement in rationality and accuracy compared to evaluation methods. 

Based on the aforementioned studies, the current work presents an allocation method for the 

investment amount based on a panel data model and an incentive–penalty mechanism. The 

panel data model was used to determine the investment amount of each region, accurately 

reflect the situation of the regional power grids, and achieve the initial allocation of the 

investment amount. The incentive–penalty mechanism based on DEA and the time-degree 

model was introduced to adjust the initial allocation of investment amount to each region 

and, thus, fully utilise the investment advantages of all regions. 

The structure of the rest of this paper is described below. The third part briefly describes the 

establishment of the panel data model, the DEA, and the time-degree model. Then it analyses 
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the allocation methods and the processes of the investment amount for distribution networks. 

The fourth part examines the advantages and effectiveness of the panel data model and the 

incentive–penalty mechanism in the allocation of investment amounts to distribution 

networks through a numerical example. The fifth part summarises the research results and 

provides the relevant conclusions.  

 

2. Methodology  

The panel data model is commonly used to analyse data distribution in two dimensions: time 

and space; it obtains more information than a single-section data model (Lee and Yu, 2012; 

Briseño and Rojas, 2020; Hill et al., 2020; Zhou and Wang, 2022; Salamaga, 2023). The 

investment amount is distributed in the time and region dimensions, and thus, it is a common 

type of panel data. The panel data model is introduced in this study to establish the allocation 

model for the amount of investment in the distribution networks. 

2.1. Establishment of the panel data model 

(1) Basic panel data model 

The fundamental representation of a panel data model is expressed as: 

T

it it i ity u    x  (1) 

where: 

i  – represents the region, and 1,2 ,i n ，  ( n : number of regions); 

t  – represents time, and 1,2 ,t T ，  ( T : evaluation duration, number of years 

here);  

ity  – is the value of the dependent variable in the ith  region and the tth  year;  

itx  – is a vector of explanatory variables;  

1 2[ , , , ]l    – is the vector of parameters to be estimated;  

l  – number of explanatory variables; 

it  – is a random error term with zero mean, same variance, and independent 

distribution; and iu  is an intercept term. Here, the panel data model includes three categories. 

1) Mixed effects model 

The model is appropriate for situations wherein data in the time dimension are significantly 

different, but data in the region dimension are not considerably different. That is, data from 

different regions can be mixed and considered in the actual regression process. The mixed 

effects model can be expressed as: 

0

T

it ME it ity u    x  (2) 

where:  
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ME  – is the set of parameters that require estimation. 

2) Fixed effects model 

The model is appropriate for situations where the data in the time and region dimensions are 

significantly different. Data from different regions must be considered separately to reflect 

differences among regions. The intercept term 
iu  expresses the individual effect of each 

region, and thus, it is correlated with the explanatory variables. The fixed effects model can 

be expressed as: 

T

it FE it i ity u    x  (3) 

where  

FE  – is the set of parameters that require estimation. 

3) Random effects model  

The model is appropriate for situations wherein data in the time and region dimensions are 

significantly different, and the intercept term iu  bears no correlation with the explanatory 

variables and is used to represent random interference that reflects the characteristics of 

unobservable random information. The model can be expressed as: 

T

it RE it i ity u    x  (4) 

where: 

FE  – is the set of parameters that require estimation. 

(2) Recognition of data feature 

The joint hypothesis test and the Hausman test are used to select a panel data model from the 

three types using the specific data in this study.  

1) Joint hypothesis test 

The joint hypothesis test is also called the F test. For the mixed effects model and the fixed 

effects model, the essence is to determine the importance of the disparity between the 

intercept terms iu  to be estimated. The null hypothesis is: 

0 1 2: nH u u u    (5) 

where: 

n  – represents the number of regions.  

If the test results reject the null hypothesis, then the intercept terms iu  to be estimated are 

significantly different, and thus, the fixed effects model should be selected. Conversely, if 

the test results accept the null hypothesis, then the difference between the intercept terms iu  

to be estimated is within the acceptable range, and thus, the mixed effects model should be 

selected. The F statistic is defined as: 



Economic Interferences AE 

 

Vol. 27 • No. 69 • May 2025 661 

   

 

1r u

u

SSE SSE n
F

SSE nT n l

 


 
 (6) 

where:  

rSSE  – represents the aggregated squared residuals from the mixed effects model; 

uSSE  – represents the aggregated squared residuals from the fixed effects model; 

n  – is the number of regions;  

T  – is the evaluation duration; 

l  – is the number of explanatory variables. 

If the value of the F statistic is greater than the value of  1,F n nT n l    at a given 

significance level, then the null hypothesis is rejected and the fixed effects model should be 

selected. Conversely, the null hypothesis is accepted and the mixed effects model should be 

selected. 

2) Hausman test 

This test is primarily employed to select between the fixed effects model and the random 

effects model. It essentially judges whether the intercept term iu  is related to the explanatory 

variables. If iu  is associated with the explanatory variables, then the fixed effects model 

should be selected. If iu  is unrelated to the explanatory variables, then the random effects 

model should be selected. The null hypothesis is: 

0 ) ,     : ( , 0i itH Cov u x for all t  (7) 

The statistic can be calculated as: 

   
 

T

FE RE FE RE

FE RE

W
Var

 




   

 
 (8) 

where:  

FE  – is the dispersion ordinary least squares (OLS) estimators of the parameters in 

the fixed effects model; 

RE  – is the feasible generalised least squares estimators of the parameters in the 

random effects model; 

Var  – denotes variance.  

If the value of W  surpasses the value of  2 1l   at a given significance level, then the null 

hypothesis is rejected. That is, iu  is related to the explanatory variables, and the fixed effects 

model should be selected. Conversely, the null hypothesis is accepted and the random effects 

model should be selected.   
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2.2. Establishment of the incentive–penalty mechanism 

(1) Evaluation of the investment productivity based on the DEA model 

DEA is a mathematical programming-based technique for evaluating the relative 

performance of organisations (Yan, 2019; Akbarian, 2020; Kuosmanen and Johnson, 2020; 

Tohid, Mohammad and Sajad, 2020; Pouralizadeh, 2020; Yilmaz, 2023). In DEA, the 

organisational units are called decision-making units (DMUs). To enable its application to a 

wide variety of activities, the term DMU is used to refer to any object that is to be evaluated 

in terms of its ability to convert input into output. The Charnes–Cooper–Rhodes (CCR) 

model is a type of DEA. Suppose m  
SDMU , 1,2, ,iDMU i m， , and the input and 

output index vectors for iDMU  are iE  and Oi , respectively. Thus,  

1 2( , , , )i i i ipe e eE  (9) 

 1 2, , ,i i i iqo o oO  (10) 

where:  

p  – is the number of input indices; 

q  – is the number of output indices. 

 In accordance with the CCR model, the optimisation model for the relative efficiency of 

iDMU  can be established as follows: 

max

1, [1, ]

0, [1, ]. .

0, [1, ]

T

i
i T

i

i

r

j

h

h i m

r ps t

g j q









 
  
   



gO

E

 (11) 

where  1 2, , , , ,r p   μ ,  1 2, , , ,j qg g g gg ,  1,2r r p  ，  is the weight 

coefficient of  1,2ire r p ， ， , and  1 2jg j q ， ，  is the weight coefficient of 

 1,2, ,ijo j q . By using the Charnes–Cooper transformation: 

1
i T

i

t 
E

 (12) 

=i it μ  (13) 

i it g  (14) 

where:  

1 2=( , , , , , )i i i ir ip    ; 

1 2( , , , , , )i i i ij iq    . 
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Eq. (11) can be transformed into a linear programming problem, as follows: 

max

1, [1, ]

. . 1, [1, ]

0, [1, ], [1, ]

0, [1, ], [1, ]

T
Ti

i i iT

i

T T

i i i

T T

i i i

T

i i

ir

ij

h

i m

s t i m

i m r p

i m j q




 


 

   
 

  
   

    






 





gO
O

E

gO O

E E

E

 (15) 

Eq. (15) can be reduced to 

max

0, [1, ]

1, [1, ]
. .

0, [1, ], [1, ] 

0, [1, ], [1, ]

T

i i i

T T

i i i i

T

i i

ir

ij

h

i m

i m
s t

i m r p

i m j q






   


  


  
   

 

 





O

E O

E  (16) 

If the optimal solution to Eq. (16) is 1ih  , then the investment productivity of iDMU  (the 

thi  evaluation object) is the highest. 

(2) Time degree model 

The DEA allows for the assessment of each region's investment productivity in recent years. 

Evidently, investment productivity that is closer to the current time plays a greater role, that 

is, it should be assigned a greater weight; hence, the time degree model (Yager, 1988) is 

introduced to measure investment productivity in the current study. Time degree can fully 

reflect the following characteristic: the effect of the new information outweighs that of the 

old one; that is, the difference in importance among information during every period can be 

reflected by different time degree values. The time degree values and their corresponding 

meanings are provided in table no. 1. 

Table no. 1. Values of time degree and their corresponding meanings 

Values of Time Degree Meaning 

0.1 Extremely value new information 

0.3 Comparatively, value new information 

0.5 Value both new information and old information 

0.7 Comparatively value old information 

0.9 Extremely value old information 

Source: Yager R. R., 1988,  p. 183-190. 
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As indicated in Table no. 1, the greater the time degree value, the less emphasis is placed on 

new information and the greater emphasis is placed on old information. Conversely, a lower 

time degree value indicates a greater emphasis on new information compared to old 

information. When the time degree values are 0.2, 0.4, 0.6, and 0.8, their corresponding 

importance of information is between the importance of the corresponding information of 

adjacent values in Table no. 1. 

The time degree   is defined as: 

1
1

T

t

t

T t

T
 






  (17) 

where: 

T  – is the total number of years during which investment productivity is to be 

evaluated; 

t   0,1t   – is the investment productivity weight of the tth  year that is 

determined by information entropy I  and time degree   in this study. 

1

ln

T

t t

t

I  


   (18) 

As the value of I  decreases, the fluctuation over time diminishes. To obtain a set of 

investment productivity weights that are most stable in evaluation during every period, an 

optimisation model is established as 

1

1

1

max ln

1
. .

1

T

t t

t

T

t

t

T

t

t

I

T t

T
s t

 

 










 


  

 



 
 







 (19) 

The objective function of Eq. (19) is nonlinear, but the relevant constraints are linear. In this 

study, the interior point method is used to solve Eq. (19) for weight t  by using the time 

degree value. 

2.3. Allocation method for the investment amount 

The allocation method for the amount of investment in distribution networks based on the 

panel data model and the incentive–penalty mechanism involves the following steps. 

(1) The main factors that affect the allocation of the investment amount for the regression are 

used.  
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Total annual power consumption, regional gross domestic product (GDP), maximum social 

load, and the status quo evaluation of distribution network construction are selected as the 

major factors (explanatory variables) that affect the allocation of investment amount 

(independent variable) to make a regression.  

(2) The panel data model is selected using the F test and the Hausman test.  

Eqs. (5) and (6) are employed to determine whether to choose the mixed effects model or the 

fixed effects model. Eqs. (7) and (8) are employed to decide between the fixed effects model 

and the random effects model. Then, a suitable panel data model is determined.  

(3) The selected type of panel data model is used for the initial proportion of investment 

amount allocation for each distribution network.  

The initial allocation of their investment amount for the following year is calculated by 

substituting the explanatory variables, that is, the total annual power consumption, regional 

GDP, maximum social load, and status quo evaluation of distribution network construction 

for each distribution network for the following year, into the selected type of panel data 

model.  

(4) The annual investment productivity of each region in recent years is calculated based on 

DEA and the annual investment productivity weight based on the time degree model.  

Eq. (16) is solved for the optimal solution from which the annual investment productivity in 

recent years is obtained. Eq. (19) is solved for the annual investment productivity weight in 

recent years by setting the appropriate time degree value from table no. 1 and using the 

interior point method.  

(5) The comprehensive investment productivity of each region is calculated. 

The weight of annual investment productivity is assigned to the corresponding annual 

investment productivity of each distribution network in recent years. Their sum is calculated 

individually, followed by normalisation of the results to derive their respective 

comprehensive investment productivity.  

(6) The final allocation proportion of the investment amount is computed using the complete 

investment productivity and the initial allocation proportion of the investment amount. 

Let fP , bP , and cE  denote the final allocation proportion of the investment amount, the 

initial allocation proportion of the investment amount, and the comprehensive investment 

productivity, respectively. Thus, 

1 2f c bP k E k P   (20) 

where: 1k  and 2k  are the coefficients 1=0.1k  and 2 =0.9k  in this study.  

The flow chart of the allocation method for the investment amount is shown in figure no. 1. 

https://fanyi.so.com/?src=onebox# status quo
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Figure no. 1. The flowchart of allocation of investment amount 

 

4. Results and discussion 

The allocation of investment amounts for the distribution networks of nine cities in a province 

of China is used to verify the proposed method. 

The total annual power consumption, regional GDP, maximum social load, and the status 

quo score of the distribution network construction of the nine cities in the period 2018–2021 

are selected as affecting factors. Hence, the number of objects to be evaluated 9n  , the 

number of years 4T  , and the number of explanatory variables 4l  . 

The marginal effect occurs during the investment process and, thus, the logarithm of the 

variables in Eqs. (2), (3), and (4) are considered to reduce the order of magnitude and 

fluctuation ranges of total power consumption and other data. Evidently, the monotony of the 

logarithm ensures that the data are not distorted.  

The values of the related statistics of the F test, as indicated in Table no. 2, can be obtained 

by using Eq. (6). From the F distribution table, the value of  8,23F  is 2.37 at a significance 

level of 5%.  

https://fanyi.so.com/?src=onebox# status quo
https://fanyi.so.com/?src=onebox# status quo
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Table no. 2. Values of related statistics of F test 

Related statistics rSSE  uSSE  F   8,23F  

Value 554.3305 232.3459 5.8896 2.37 

Source: Authors’ calculations 

The values of the W  statistic of the Hausman test, as indicated in table no. 3, can be obtained 

using Eq. (8). From the chi-square distribution table, the value of  2 3  is 7.815. 

Table no. 3. Values of related statistics of the Hausman test 

Related statistics W   2 3  

Value 10.54 7.815 

Source: Authors’ calculations 

From Table no. 2, the calculation result of the F statistic exceeds the value of  8,23F , and 

thus, the null hypothesis is rejected. From table no. 3, the calculation result of the W  statistic 

exceeds the value of  2 3 , and thus, the rejection of the null hypothesis is also confirmed. 

A conclusion is drawn from the above judgment results that the fixed effects model should 

be selected; hence, the difference among regional distribution networks is marked. 

Substituting the dispersion OLS estimators 1 3.5140FE  , 2 2.8533FE  , 

3 3.2660FE  , and 4 13.1946FE   into Eq. (3) and taking the logarithm of the variables 

yield 

 
1 2

3 4

ln 3.5140ln 2.8533ln

       3.2660ln 13.1946ln

it i it it

it it it

y u x x

x x 

  

  
 (21) 

where: 

1itx  – is the total annual power consumption for the tth  year;  

2itx  – is the regional GDP for the tth  year;  

3itx  – is the maximum social load for the tth  year;  

4itx  is the status quo evaluation of distribution network construction for the tth  year.  

Investment amount is positively correlated with total annual power consumption and regional 

GDP; that is, power grid investment should meet the needs of social and economic 

development and investment amount should be increased in regions with faster economic 

growth. Meanwhile, the investment amount is negatively correlated with maximum social 

load and the status quo score of distribution network construction, because the ratio of input 

to output is relatively low for a mature power grid during construction, and thus, the 

investment in such a power grid should be reduced appropriately. 

https://fanyi.so.com/?src=onebox# status quo
https://fanyi.so.com/?src=onebox# status quo
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The dispersion OLS estimators  1,2 ,9i i  ，  for  1,2 ,9i i  ，  are provided in table 

no. 4. 

Table no. 4. Values of  1,2 ,9i i   corresponding to 9 distribution networks 

No. 

of 

City 

City1 City2 City3 City4 City5 City6 City7 City8 City9 

i  7.1278 15.4285 12.7183 17.6034 18.5317 14.5630 15.5796 22.0212 20.0288 

Source: Authors’ calculations 

Hence, 

1 2

3 4

ln 3.5140ln 2.8533ln

3.2660ln 13.1946ln

iit it it

it it it

y x x

x x





  

  
 (22) 

Substituting the values of the total annual power consumption, regional GDP, maximum 

social load, and status quo score of distribution network construction of the nine cities in 

2022 in Eq. (22) yields the initial allocation results of the investment amount, as indicated in 

table no. 5. 

Table no. 5. Initial allocation of investment amount of 9 distribution networks in 2022 

No. of City City1 City2 City3 City4 City5 City6 City7 City8 City9 

Initial 

investment 

amount/100 

Million 

CNY 

14.45 12.69 8.35 3.56 10.15 8.68 7.95 11.31 8.03 

Source: Authors’ calculations 

From Table no. 5, the expected investment amount is 8518 million yuan in 2022. Therefore, 

the initial allocation proportions of the investment amount of the distribution networks of the 

nine cities in 2022 are obtained, as indicated in Table no. 6. 

Table no. 6. Initial allocation proportion of investment amount of 9 distribution 

networks in 2022 

No. of City City1 City2 City3 City4 City5 City6 City7 City8 City9 

Initial 

allocation 

proportion 

0.1697 0.1489 0.0980 0.0418 0.1192 0.1019 0.0933 0.1328 0.0943 

Source: Authors’ calculations 

With an urban distribution network as the DMU, the investment amount of each region      is 

employed as the input, while the score and its increment of each distribution network and the 

increment in power consumption are taken as the output, the annual investment efficiencies 

of the distribution networks of the nine cities in the period 2018–2021 are evaluated using 

Eq. (16). The results are presented in Table no. 7 and Figure no. 2. 

https://fanyi.so.com/?src=onebox# status quo
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Figure no. 2. Annual investment productivity of 9 distribution networks  

in the year 2018-2021 

Table no. 7. Annual investment productivity of 9 distribution networks  

in the year 2018-2021 

Year City1 City2 City3 City4 City5 City6 City7 City8 City9 

2018 0.28 0.53 0.81 0.61 1.00 0.76 1.00 0.25 0.58 

2019 0.44 0.91 1.00 1.00 0.50 0.37 0.88 1.00 0.53 

2020 1.00 0.54 1.00 1.00 0.58 0.69 0.65 0.43 0.47 

2021 0.53 0.32 0.26 0.15 0.08 1.00 0.28 0.09 0.15 

Source: Authors’ calculations 

The time degree value is set as 0.4 here, and the annual investment productivity weights of 

the nine distribution networks in the period 2018–2021 (as provided in table no. 8) are 

obtained by solving Eq. (19). 

Table no. 8. Annual investment productivity weight of 9 distribution networks  

in the year 2018-2021 

Year 2018 2019 2020 2021 

 Annual investment productivity weight  0.1671 0.2133 0.2722 0.3474 

On the basis of tables no. 7 and no. 8, the comprehensive investment efficiencies of the nine 

distribution networks, as indicated in table no. 9, are obtained by assigning the weight of the 

annual investment productivity to the corresponding annual investment productivity of the 

nine distribution networks in the period 2018–2021, calculating their sum separately and 

normalising the results. 

Table no. 9. Comprehensive investment productivity of 9 Distribution Networks 

No. of City City1 City2 City3 City4 City5 City6 City7 City8 City9 

Comprehensive 

investment 

productivity 

0.1168 0.1058 0.1389 0.1254 0.0898 0.1450 0.1230 0.0790 0.0763 

Source: Authors’ calculations 

In accordance with Eq. (20), the final allocation proportions of the investment amount of the 

nine distribution networks in 2022 are provided in table no. 10. 



AE Investment Allocation Method for Distribution Networks Based  
on a Panel Data Model and an Incentive–Penalty Mechanism 

 

670 Amfiteatru Economic 

Table no. 10. Final allocation proportion of investment amount of 9 distribution 

networks in 2022 

No. of City City1 City2 City3 City4 City5 City6 City7 City8 City9 

Final 

allocation 

proportion 

0.1644 0.1446 0.1021 0.0502 0.1163 0.1062 0.0963 0.1274 0.0925 

Source: Authors’ calculations 

The final and initial allocation proportions of the investment amount of the nine distribution 

networks in 2022 are shown in Figure no. 3. 

 

Figure no. 3. The final proportion and initial one of allocation of the investment 

amount of 9 distribution networks in 2022 

From this figure, given that the comprehensive investment efficiencies (dotted line) of the 

distribution networks of City3, City4, City6, and City7 are high, their final allocation 

proportion of investment amount (yellow) is also higher than their initial one (blue) to a 

certain extent. However, the case is contrary to the distribution networks of the remaining 

cities. 

 

Conclusions 

This study presents an allocation method for the amount of investment in distribution 

networks based on a panel data model and an incentive–penalty mechanism. The main 

conclusions drawn are as follows. 

(1) In general, the fixed effects model exerts a good regression effect on the allocation of 

investment amount for distribution networks, and therefore it can be used for the allocation 

of investment amount.  

(2) The DEA and the time degree model can reflect the investment productivity of each 

region; therefore, they can be used to adjust the initial allocation of the investment amount 

as a type of incentive–penalty mechanism.  

(3) The approach suggested in this research can mirror the characteristics of the distribution 

networks in each region, fully utilising regional investment advantages and effectively 

achieving a reasonable allocation of the investment amount for the distribution networks. 
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In the allocation of the investment amount, the basic scale and investment productivity of a 

distribution network are considered comprehensively in this study. However, minimal 

attention is paid to factors related to the geographical adjacency and interconnection of 

distribution networks. Linkage effects caused by developments in the adjacent regional 

distribution network may potentially influence the analysis of investment benefits. Therefore, 

these factors should be considered in the optimisation of the follow-up of the allocation of 

investment amount to distribution networks. 
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