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Summary

Prompted by modern technologies in data acquisition, the statistical analysis of spatially distrib-
uted function-valued quantities has attracted a lot of attention in recent years. In particular, com-
binations of functional variables and spatial point processes yield a highly challenging instance of
such modern spatial data applications. Indeed, the analysis of spatial random point configurations,
where the point attributes themselves are functions rather than scalar-valued quantities, is just in
its infancy, and extensions to function-valued quantities still remain limited. In this view, we extend
current existing first- and second-order summary characteristics for real-valued point attributes to
the case where, in addition to every spatial point location, a set of distinct function-valued quantities
are available. Providing a flexible treatment of more complex point process scenarios, we build a
framework to consider points with multivariate function-valued marks, and develop sets of differ-
ent cross-function (cross-type and also multi-function cross-type) versions of summary characteris-
tics that allow for the analysis of highly demanding modern spatial point process scenarios. We con-
sider estimators of the theoretical tools and analyse their behaviour through a simulation study and
two real data applications.

Key words: cross-function mark correlation; forest monitoring data; functional-marked point processes;
mark variogram; mark weighted second order summary characteristics; nearest neighbour mark indices;
urban economics.

1 Introduction

Introducing general ideas from functional data analysis (Ferraty & Vieu, 2006; Horváth &
Kokoszka, 2012; Hsing & Eubank, 2015; Ramsay & Silverman, 1997) into the field of spatial
statistics, the statistical analysis of functional spatial data has attracted a lot of attention in recent
years (see Delicado et al., 2010; Mateu & Romano, 2017, Martínez-Hernández & Genton, 2020,
for a general review). Potential applications from the literature include the analysis of regional
penetration resistance profiles (Giraldo et al., 2011), air pollution monitoring data (Bohorquez
et al., 2017) and regional gross domestic product dynamics (Pineda-Ríos et al., 2019). Different
from more classical spatial statistics (see, e.g. Cressie, 1993), the objects of interest in any such
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data are the realised trajectories, that is, curves, of some underlying continuous mechanism
which are collected over some spatial domain X ⊂ ℝd , usually d ¼ 2. As such, the functional
observations themselves are assumed to be spatially dependent relative to the distance between
the spatial entities, which needs to be accounted for in any statistical analysis. The observed
functions at nearby stations might be more similar or dissimilar in shape depending on where
the measurements are recorded. Clearly, in an urban context the amount of gases and particu-
lates in the air depends on the location of the monitoring stations, and nearby stations are likely
to have similar air pollution profiles. This spatial structure among the functions is, however, not
accounted for in any non-spatial methods yielding potentially biased or misleading results. To
this end, various approaches from classical spatial statistics were extended to functional out-
comes yielding an ever-increasing methodological toolbox of different functional spatial data
analysis techniques. Predetermined by the exact nature ofX, these techniques help to investigate
the spatial interrelations between the individual functional objects in geostatistical, areal or
point process data contexts. While a relatively large body of contributions exists on
geostatistical functional data and functional areal data, the analysis of spatial random point con-
figurations is just in its infancy. In particular, different from geostatistical functional
data/functional kriging approaches (see Bohorquez et al., 2022; Franco-Villoria &
Ignaccolo, 2022; Nerini et al., 2022, for general reviews) or functional areal data regression
models (Aw & Cabral, 2020; Pineda-Ríos et al., 2019; Zhang et al., 2016), the point locations
are treated as random and the attributes themselves are functions rather than scalar-valued
quantities.
Despite the notable progress in spatial point process methodology with extensions to more

challenging non-Euclidean domains for the points including the sphere, linear networks and
graphs with Euclidean edges, extensions to more complicated non-scalar marks have not been
covered much so far. For the scalar-valued marks setting, there already exist various mark sum-
mary characteristics and nearest-neighbour versions (Stoyan & Stoyan, 1994). Here, prominent
tools for the characterisation of real-valued marks include the mark covariance (Stoyan, 1984),
mark correlation (Isham, 1985; Stoyan & Stoyan, 1994), mark weighted K (Penttinen
et al., 1992), mark variogram (Cressie, 1993; Stoyan & Wälder, 2000; Wälder & Stoyan, 1996),
and mark differentiation (Hui & Pommerening, 2014; Pommerening et al., 2011) functions.
Literature currently offers methodology for (marked) spatio-temporal point processes

(González et al., 2016; Rathbun, 1993; Vere-Jones, 2009) where different clustered point pro-
cess (González et al., 2016), Gibbsian processes (Redenbach & Särkkä, 2013; Renshaw
et al., 2009; Renshaw & Särkkä, 2001; Särkkä & Renshaw, 2006), log-Gaussian (Serra
et al., 2014; Siino et al., 2018) and shot-noise (Brix & Chadœuf, 2002; Møller & Díaz-
Avalos, 2010) Cox model specifications are developed. We can also find corresponding
second-order summary characteristics (Iftimi et al., 2019; Stoyan et al., 2017) used to character-
ise the temporal evolution for a set of (marked) point locations. However, contributions to
function-valued marks remain elusive. In particular, advances to sets of distinct
function-valued attributes, that is, multivariate curves, do not exist.
The mark correlation function for function-valued point attributes originates from the pio-

neering paper of Comas et al. (2008) and subsequent works by Comas et al. (2011); Comas
et al. (2013). Ghorbani et al. (2021) were the first to provide a mathematically rigorous treat-
ment on the subject. Instead of the set xim xið Þð Þf gni¼1 with points xi ∈ X and scalar-valued
marks m xið Þ on some suitable mark space M, these authors considered the set
xi; f xið Þ tð Þ; l xið Þð Þð Þf gni¼1 where each point xi is augmented by a function-valued quantity

f xið Þ tð Þ ∈ F and, potentially, an additional Euclidean auxiliary mark l xið Þ living on a suitable
latent mark space L. As such, apart from the trivial case when no auxiliary mark is available,
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this formulation allows for (i) function-valued marked multivariate point patterns, where differ-
ent types of points with one function-valued point attribute are observed, and (ii)
function-valued marked point patterns where at each point additional real-valued information
is available. While providing a flexible treatment of more complex point process scenarios
which include unmarked (resp. scalar-valued marked) point processes as special case when
the f xið Þ tð Þ; l xið Þð Þ (resp. f xið Þ tð Þ) argument is ignored, extensions to points with multiple dis-
tinct function-valued marks have not been covered to the very best of our knowledge. Consid-
ering at least two distinct function-valued point attributes for each point location, this paper
aims to fill this gap. In particular, sets of different cross-function summary characteristics for
points with two distinct function-valued marks are introduced and extended to cross-type and
also multi-function cross-type versions. Overall, the proposed tools will allow for the analysis
of highly demanding modern spatial point process scenarios. All data and R code to reproduce
the proposed auto- and cross-function mark characteristics are made publicly available in a
github repository https://github.com/carlescomas/SppFDA.

The remainder of the paper is structured as follows. After a general introduction to spatial
point processes with multivariate function-valued point attributes, Section 2 establishes differ-
ent cross-function mark characteristics and potential extension to multitype point processes.
In particular, extensions of classical test functions to the function-valued mark setting are
discussed in Section 2.2. Estimators of the proposed mark characteristics are presented in
Section 3. The proposed characteristics are evaluated through a simulation study in Section 4.
Section 5 presents an application of the proposed tools to two different data sources originating
from forestry and urban economic contexts. The paper concludes with a discussion in Section 6.

2 Spatial Point Processes With Multivariate Function-Valued Marks

To extend the theory and methodology of function-valued marked spatial point processes to
multivariate function-valued point attributes, let X denote a subset of ℝ2 equipped with Borel
sets B Xð Þ, and d �ð Þ an Euclidean metric on X . On X , define ΨG ¼ xif gni¼1 as ground, that
is, unmarked, spatial point process with intensity measure ΛG. As such, ΨG is well embedded
into the theory of spatial point processes and a rich body of different tools can directly be ap-
plied to investigate the structural properties of the points (see Møller & Waagepetersen, 2004;
Illian et al., 2008; Chiu et al., 2013, for general references to spatial point processes). Associ-
ated withΨG, denote byΨ ¼ xif xið Þ tð Þf gni¼1 a marked spatial point process on X � Fp with lo-

cations xi ∈ X and p -variate associated function-valued marks f xið Þ tð Þ ¼

f 1 xið Þ tð Þ…; f p xið Þ tð Þ
� �

on Fp where each f h xið Þ tð Þ:T ⊆ ℝ↦ℝ; h ¼ 1; …; p with T ¼
a; bð Þ; �∞ ≤ a ≤ b ≤ ∞. In general, Fp is assumed to be a Polish, that is, complete separable
metric space equipped with σ -algebra F p ¼ ⊗p

h¼1F h (Daley & Vere-Jones, 2008). For Ψ,
the expected number of points Nh �ð Þ in B ∈ B Xð Þ with function-valued attribute in
Fh ∈ F h corresponds to the intensity measure Λh B� Fhð Þ which simplifies to

E Nh B� Fhð Þ½ � ¼ Λh B� Fhð Þ ¼ ∫B � Fh
λG xð ÞdxP dFhð Þ

for fixed Fh inF h with λG being the intensity function ofΨG and P dFhð Þ a reference measure on
FpF pð Þ. For stationaryΨ, that is, ifΨ ¼ Ψx withΨx ¼ xi þ x; f xið Þ tð Þð Þf gni¼1 for any translation
x and fixed f h tð Þ, the intensity measureΛh B� Fhð Þ equals λhν Bð Þ, with λh denoting the intensity
of Ψ with respect to Fh and ν �ð Þ the Lebesgue measure, that is, the volume, of its argument.
Similarly, Ψ is called isotropic if Ψ ¼ rΨ with rΨ ¼ rxi; f xið Þ tð Þð Þf gni¼1 for any rotation r.
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To account for additional integer-valued marks, that is, when different types of points are
available, Ψ can be generalised to a m-variate (i.e. multitype) spatial point process Ψ with n ¼
n1 þ…þnm points and multivariate function-valued point attributes on Xm � Fp with corre-
sponding component processes Ψd; d ¼ 1; …; m and associated ground process ΨG. We note
that the above point processes could also be extended by additional real-valued mark informa-
tion, for example, through additional auxiliary mark terms l xið Þ ∈ ℝ, which allows for the for-
mulation of doubly-marked (multitype) point processes where each point is augmented by mul-
tivariate function-valued marks and one (resp. w distinct) real-valued mark living on
Xm � Fp �ℝ (resp. Xm � Fp �ℝw).

2.1 Functional Summary Characteristics for Unmarked Point Processes

Before discussing various mark characteristics, a succinct overview of the standard functional
summary characteristics commonly associated with unmarked point patterns is presented. In the
absence of any mark information, the spatial arrangement of points is routinely examined via
the assumption of complete spatial randomness, wherein the absence of discernible structure
is assessed, against clustering or regularity of the points. Using empty-space,
nearest-neighbour or pairwise distances, commonly applied characteristics include the empty
space function F rð Þ, the nearest neighbour distance distribution function G rð Þ, the pair correla-
tion function g rð Þ and Ripley’s K rð Þ function (Ripley, 1977). The empty space function F rð Þ
considers the distance from a typical point to a point in the pattern, whereas the nearest neigh-
bour distance distribution function G rð Þ is constructed from the distance of any neighbouring
points. Under complete spatial randomness, corresponding to a homogeneous Poisson pro-
cesses, both the F rð Þ and G rð Þ functions are equal to 1 � e�λπr2 where λ is the intensity of
the points. The pair correlation function is constructed from the pairwise distance between
the locations and becomes equal to 1 under the complete spatial randomness assumption. The
reader is referred to the complete essays of Illian et al. (2008) and Chiu et al. (2013).

2.2 Cross-Function Second-Order Mark Summary Characteristics and Nearest Neighbour
Indices

Apart from the first-order properties, a variety of second-order mark summary characteristics
and their related nearest-neighbour versions have become useful methodological tools for the
analysis of classical (real-valued) marked spatial point process scenarios. They help to investi-
gate the heterogeneity and interrelation between the observed point attributes, and decide on the
independent mark hypothesis as a function of the distance between pairs of two points. To ex-
tend the methodological toolbox to the function-valued marks setting and define suitable
cross-function characteristics, let f h xð Þ tð Þ and f l x

’ð Þ tð Þ denote two distinct function-valued
marks for a pair of distinct point locations in Ψ with interpoint distance d x; x’ð Þ ¼ r; r > 0.
Adopting the core principles from classical mark characteristics and applying a pointwise eval-
uation first, different cross-function mark characteristics can be defined by introducing a test
function tf (Penttinen & Stoyan, 1989), that is, a map tf :F� F→ℝþ , which itself takes the
marks f h tð Þ and f l tð Þ for a pair of distinct points inΨ as arguments. In what follows, we assume
Ψ to be second-order stationary and isotropic such that the characteristics solely depend on
the distance r; r > 0 and it suffices to consider the marks at the origin ∘ and the distance r
where d ∘rð Þ ¼ r. Depending on the precise specification of tf , different mark characteristics
can be constructed by taking the expectation E∘; r of tf under the condition that Ψ has indeed
points at locations ∘ and r . Writing f h ∘ð Þ tð Þ and f l rð Þ tð Þ to denote the h -th and l -th
function-valued marks at the origin ∘ and at a distance ∥r∥ ¼ r apart, different summary
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characteristics can be obtained by generalising their classic form to the function-valued marks
setting. Focusing on the most prominent test functions from the literature, we yield the follow-
ing five specifications, noting that each t has as input arguments f h ∘ð Þ tð Þ; f l rð Þ tð Þð Þ : t1 ¼
1=2 f h ∘ð Þ tð Þ � f l rð Þ tð Þð Þ2 and t2 ¼ min f h ∘ð Þ tð Þ; f l rð Þ tð Þð Þð Þ= max f h ∘ð Þ tð Þ; f l rð Þ tð Þð Þð Þ, which
are based on the difference or the ratio between the pair of distinct marks, and t3 ¼
f h ∘ð Þ tð Þ � f l rð Þ tð Þ; t4 ¼ f h ∘ð Þ tð Þ and t5 ¼ f l rð Þ tð Þ, which are based on the product of the argu-
ments (see Schlather, 2001; Illian et al., 2008, for detailed discussion). All of the above test
functions address only certain aspects of the mark distribution. Taking the conditional expecta-
tion of test function t1 yields the mark variogram which depicts the variation of the marks as a
function of the distance r. The mark variogram could be used to decide on the average (dis)sim-
ilarity for pairs of marks at distinct points. If the marks are on average similar, their variation is
on average also small leading small values of the mark variogram. A similar characteristic, the
mark differentiation function, is obtained by taking the conditional expectation of 1 � t2. If
the marks are similar in values, the ratio in t2 will become close to one such that 1 � t2 is
also close to zero. Different from these two test functions, t3 and t4 or t5 can be used to
compute Stoyan’s mark correlation and the r-mark functions. Although different from Pearson’s
correlation, Stoyan’s mark correlation (i.e. the conditional expectation of t3) reflects the average
pairwise association of the marks at any two distinct points. Under independence of the
marks, this characteristic coincides with the squared mean mark such that normalising Stoyan’s
mark correlation by the squared mean mark yields a value of one. If the marks are on average
larger (resp. smaller) than the squared mean mark, the estimated products will also be clearly
different from the squared mean mark. Finally, the conditional expectation of either t4 or t5
relates to the conditional mean of the first or the second mark for any pair of points given
that there are points at both locations, respectively. The conditional mean could be used to de-
tect dependence between the marks and the points. We note that only under independent marks,
the conditional expectation of t4 or t5 coincides with the mark mean. Obviously, the above
formulations include auto-mark characteristics as special cases for h ¼ l. We note that apart
from a concurrent setting, alternative pointwise test functions may be defined for the marks
f h tð Þ and f l sð Þ with s < t.

2.2.1 Cross-function variation and differentiation characteristics

As a first cross-function mark characteristic, the pointwise cross-function mark variogram
γhl r; tð Þ, which helps to investigate the strength and range of the variation in the mark differ-
ences with respect to the distance r, can be derived by taking the conditional expectation E∘; r
of t1 . This pointwise characteristic can then be turned into a global cross-function mark
variogram γhl rð Þ, which corresponds to the L2 metric, by integrating γhl r; tð Þ over T ,

γhl rð Þ ¼ ∫T E∘; r t1 f h ∘ð Þ tð Þ; f l rð Þ tð Þð Þ½ �dt≕∫T γhl r; tð Þdt:
The limit of this characteristic equals the non-spatial variance, and the normalised version

yields a straight line that is constantly one under the independent mark assumption. In contrast,
large values of this cross-function characteristic will indicate a strong heterogeneity between the
function-valued attributes at a distance r.

Different from the cross-function mark variogram, taking t3 as argument of E∘; r yields a
pointwise cross-function version of Stoyan’s mark covariance function (Stoyan, 1984),

ovStohl r; tð Þ ¼ E∘; r t3½ � � μh tð Þ � μl tð Þ
where μh tð Þ ¼ E f h tð Þ½ � and μl tð Þ ¼ E f l tð Þ½ � are the non-spatial means of f h tð Þ and f l tð Þ ,

154 ECKARDT ET AL.

International Statistical Review (2025), 93, 1, 150–178
© 2024 The Author(s). International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.



respectively. Again, a corresponding global characteristic is achieved as ovStohl rð Þ ¼
∫ovStohl r; tð Þdt. Alternatively, a cross-function mark covariance can also be obtained by rewrit-
ing Cressie’s (Cressie, 1993) covariance function ovCrehl as ovCrehl r; tð Þ ¼ E∘; r t3½ � �
E∘; r t4½ �E∘; r t5½ �, with ovCrehl rð Þ ¼ ∫ovCrehl r; tð Þdt.
Inserting the ratio of t2 instead of the difference between the paired marks into the conditional

expectation E∘; r �½ � yields a pointwise cross-function version of the mark differentiation func-
tion (Hui & Pommerening, 2014; Pommerening et al., 2011) τhl r; tð Þ for function-valued marks,

defined by τhl r; tð Þ ¼ 1 � E∘; r t2½ � with global characteristic τhl rð Þ ¼ ∫τhl r; tð Þdt. Obviously,
values of τhl r; tð Þ equal or close to zero imply that the function-valued point attributes at
distance r are equal or almost identical while increasing non-zero values indicate an increase
in heterogeneity of the marks.

2.2.2 Cross-function correlation characteristics

Different from the difference and ratio based characteristics, an alternative set of
cross-function mark characteristics can be defined through the product of the function-valued
marks. Taking t3 as argument ofE∘; r yields a pointwise cross-function version of the conditional
mean product of marks chl r; tð Þ within a distance r at t ∈ T . We note that chl r; tð Þ translates
again into a global cross-function characteristic chl rð Þ by integration of the pointwise one over
T ,

chl rð Þ ¼ ∫T E∘; r f h ∘ð Þ tð Þ � f l rð Þ tð Þ½ �dt≕∫T chl r; tð Þdt: (1)

Further, normalising chl r; tð Þbyμh tð Þ � μl tð Þ, that is, the product of non-spatial means, yields a
cross-function pointwise version of Stoyan’s mark cross-correlation function κhl r; tð Þ
(Stoyan, 1987) from which the global characteristic κhl rð Þ follows analogous to (1) by integra-
tion of κhl r; tð Þ over T . We note that Stoyan’s mark covariance function is indeed a linear trans-
formation of the mark correlation function such that ovStohl rð Þ and κhl rð Þ are essentially the
same (Schlather, 2001).
Apart from Stoyan’s mark correlation function, Isham (1985) and Beisbart and

Kerscher (2000) introduced two alternative mark correlation functions that could also be ex-
tended to the function-valued mark setting. Beisbart and Kerscher (2000) proposed a simpler
version of the above formulation of the mark correlation function in which the product of the
mark values is replaced by the normalised sum of marks. Using this formulation allows for a
straightforward extension to a pointwise version for function-valued marks f h ∘ð Þ tð Þ and
f l rð Þ tð Þ defined by

κBeihl r; tð Þ ¼ f h ∘ð Þ tð Þ þ f l rð Þ tð Þ
μh tð Þ þ μl tð Þ

with κBeihl rð Þ ¼ ∫κBeihl r; tð Þdt. As the nominator approaches the product (resp. the sum) of means
μh tð Þ and μl tð Þ as limits, both κkl and κBeikl are constantly equal to one for all t ∈ T in case of
independent marks. In constrast, positive or negative mark correlations could easily be identi-
fied by positive or negative deviations from one, respectively. Opposite to the above formula-
tions, Isham (1985) introduced a different type of mark correlation function which is closely
related to Pearson’s correlation. Using the cross-function version of Cressie’s mark covariance
function, a pointwise cross-function analogue to Isham’s mark correlation function can be de-
fined as
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orIshhl r; tð Þ ¼ ovCrehl r; tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varhh r; tð Þ

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varll r; tð Þ

p
where Varhh r; tð Þ ¼ E∘; r f h ∘ð Þ tð Þ � f h rð Þ tð Þð � � E∘; r f h ∘ð Þ tð Þ½ �E∘; r f h rð Þ tð Þ½ �

�
and Varll r; tð Þ is

defined analogous, and orIshhl rð Þ ¼ ∫orIshhl r; tð Þdt.
Apart from the extended cross-function mark correlation characteristics outlined above, tak-

ing t4 or t5 as arguments of E∘; r leads to pointwise r-mark functions ch• r; tð Þ and c•l r; tð Þ, re-
spectively, where ch• r; tð Þ ¼ c•l r; tð Þ. As before, both pointwise r-mark functions translate into
global characteristics ch• rð Þ and c•l rð Þ by integration of ch• r; tð Þ and c•l r; tð Þ over T , respectively.
Further, normalisation of ch• r; tð Þ and c•l r; tð Þ by μh tð Þ and μl tð Þ yields the pointwise r-mark

correlation functions κh• r; tð Þ and κ•l r; tð Þ, respectively, where κh• rð Þ ¼ ∫κh• r; tð Þdt and κ•l rð Þ ¼
∫κ•l r; tð Þdt.

We note that the cross-function mark correlation and r-correlation functions can also be used
to define a counterpart version of the U rð Þ function for function-valued marks, this U rð Þ being
the mean product of marks sited at distance r apart,

U rð Þ ¼ ∫λ2g rð Þκhl rð Þdada0; (2)

where λ≡λG is the intensity of the points, g rð Þ the pair correlation function, and a and a0 are two
infinitesimal small areas containing points x and x’ which are separated by a distance r
(Capobianco & Renshaw, 1998; Renshaw, 2002). Including second-order summary characteris-
tics for both the points and the function-valued marks, these characteristics account jointly for
spatial variation of the point locations and the marks. Under the independent marks assumption,
κhl rð Þ ¼ 1 whereas g rð Þ ¼ 1 under the complete spatial randomness hypothesis, that is, the ho-
mogeneous Poisson point process case. Alternative formulation of U rð Þ can be achieved by
substituting κhl rð Þ by the r-correlation functions κh• rð Þ and κ•l rð Þ, the mark variogram γhl rð Þ
and the mark differentiation function τhl rð Þ, or alternatively by rewriting U rð Þ into polar coor-
dinates allows for handling anisotropic behaviour.

2.2.3 Cross-function nearest-neighbour indices and k-nearest neighbour characteristics

While second-order cross-characteristics provide functional summary characteristics of the
pairwise interrelations between the function-valued point attributes against the distance r ,
nearest-neighbour indices are essentially numerical mark summary characteristics which help
to quantify the local variation between the marks for a pair of nearest-neighbouring points. Sim-
ilar to the previous sections, different cross-function nearest-neighbour characteristics can be
constructed by taking the conditional expectation of particular test functions. In contrast to
the above sections these, however, only consider the function-valued marks f h ∘ð Þ tð Þ and
f l z ∘ð Þð Þ tð Þ at the origin ∘ and its nearest neighbouring point z ∘ð Þ (Stoyan & Stoyan, 1994).

Rewriting the test function t3 into a nearest-neighbour version tnn3 ¼ f h ∘ð Þ tð Þ � f l z ∘ð Þð Þ tð Þ and
taking the conditional expectation E∘; z ∘ð Þ tnn3

� �
leads to a pointwise cross-function nearest-

neighbour mark product index cnnhl tð Þ . The corresponding pointwise nearest-neighbour mark
product correlation index κnnhl tð Þ derives directly from cnnhl tð Þ by normalising cnnhl tð Þ by the product
of means μh tð Þ � μl tð Þ. Likewise, taking the conditional expectation of tnn4 ¼ f l z ∘ð Þð Þ tð Þ yields a
pointwise nearest-neighbour mark index cnn•; l tð Þ which transforms into the pointwise
nearest-neighbour mark correlation index by normalising cnn•; l tð Þ by μl . Similarly, pointwise
cross-function nearest neighbour mark variogram and mark differentiation indices γnnhl tð Þ and
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τnnhl tð Þ can be constructed by taking the conditional expectationE∘; z ∘ð Þ of the test functions tnn1 ¼
1=2 f h ∘ð Þ tð Þ � f l z ∘ð Þð Þ tð Þð Þ2 and tnn2 ¼ minnn=maxnn where minnn ¼ min f h ∘ð Þ tð Þ; f l z ∘ð Þð Þ tð Þð Þ
and maxnn ¼ max f h ∘ð Þ tð Þ; f l z ∘ð Þð Þ tð Þð Þ , respectively. We note that all pointwise indexes
translate into global numerical summary characteristics by integration of the pointwise version
over T .
Apart from considering only the function-valued mark of the nearest neighbouring point lo-

cation z ∘ð Þ, the nearest neighbour indices can also be used to compute cumulative cross-function
k-nearest neighbour summary characteristics from the marks f h and f l at the origin ∘ and its k-th
nearest neighbouring point zv ∘ð Þ with v ¼ 1; …; k. Substituting z ∘ð Þ by zv ∘ð Þ, a corresponding
cumulative mark correlation index can be computed from the pointwise cross-function k -th
nearest neighbouring index Kk tð Þ,

Kk tð Þ ¼ 1

k
E∘; zv

Xk
v¼1

f h ∘ð Þ tð Þ � f l zv ∘ð Þð Þ tð Þ
 !

=μh tð Þμl tð Þ;

with Kk ¼ ∫Kk tð Þdt . Likewise, a cumulative mark variogram index can be defined as Γk ¼
Γk tð Þdt with

Γk tð Þ ¼ 1

k
E∘; zv

Xk
v¼1

1

2
f h ∘ð Þ tð Þ � f l zv ∘ð Þð Þ tð Þð Þ2

 !
:

In addition, a pointwise counterpart version of Hui’s mark dominance index Dk (Hui
et al., 1998) for function-valued marks can be defined as

Dk tð Þ ¼ 1

k
E∘; zv

Xk
v¼1

1 f h ∘ð Þ tð Þ > f l zv ∘ð Þð Þ tð Þð Þ
 !

which translates into a global characteristics by computing Dh ¼ ∫Dk tð Þdt.

2.3 Cross-Function Mark-Weighted Summary Characteristics

A different useful set of cross-function cumulative summary characteristics can be defined by
adjusting classical functional point process summary characteristics for the function-valued
marks by introducing a test function as weight into the specific functional point process sum-
mary expression. Although the principal idea also applies for the empty space and nearest
neighbour contact distribution functions and related quantities, we explicitly only cover exten-
sion of second-order summary characteristics to the function-valued mark scenario including
the mark-weighted pair correlation, K and L functions.

2.3.1 Mark-weighted characteristics for unitype point processes with multivariate
function-valued marks

To define a suitable pair correlation function for function-valued marks f h xð Þ tð Þ and f l x’ð Þ tð Þ
inΨ, let α 2ð Þ

tf
tð Þ denote the pointwise cross-function second-order factorial moment measure with

density ϱ 2ð Þ
tf

tð Þ, that is, the pointwise cross-function second-order product density functions. For
tf ¼ t3, α

2ð Þ
hl becomes
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α 2ð Þ
hl B1 � B2ð Þ tð Þ ¼

X≠
x; f h xð Þð Þ;

x0; f l x
0ð Þð Þ ∈ Ψ

E 1B1 xð Þ1B2 x0ð Þf h xð Þ tð Þ � f l x0ð Þ tð Þ½ �

with density ϱ 2ð Þ
hl tð Þ. Then, a pointwise mark-weighted pair correlation function ghl r; tð Þ can be

defined as ghl r; tð Þ ¼ ϱ 2ð Þ
hl r; tð Þ= λ2μh tð Þμl tð Þ

� �
and ghl rð Þ ¼ ∫ghl r; tð Þdt . Specifying tf ¼ t5

instead, the pair correlation function equals g•l r; tð Þ ¼ ϱ 2ð Þ
•l r; tð Þ= λ2μl tð Þ

� �
where ϱ 2ð Þ

•l is the

density of α 2ð Þ
•l tð Þ.

Similarly, setting tf ¼ t3 a cross-function pointwise extension of the mark-weighted K func-
tion (Penttinen et al., 1992) can be defined as

λμh tð Þμl tð ÞKhl r; tð Þ ¼ E∘

X
xf l xð Þð Þ ∈ Ψ

f h ∘ð Þ tð Þ � f l xð Þ tð Þ1b ∘rð Þ xf g

24 35;
where b ∘rð Þ is a ball of radius r centred at the origin, λ is the intensity of the points and μh tð Þ and
μl tð Þ are the non-spatial means of f h tð Þ and f l tð Þ, respectively. Likewise, for t4 and t5, the mark
weighted pointwise K function changes to

λμh tð ÞKh• r; tð Þ ¼ E∘

X
x; f l xð Þð Þ ∈ Ψ

f h ∘ð Þ tð Þ1b ∘rð Þ xf g

24 35
and

λμl tð ÞK •l r; tð Þ ¼ E∘

X
x; f l xð Þð Þ ∈ Ψ

f l xð Þ tð Þ1b ∘rð Þ xf g

24 35;
respectively (see Illian et al., 2008). Analogous to the classical scalar-valued case, the
mark-weighted L function Ltf r; tð Þ is preferable to use in practice instead of the

mark-weighted K tf r; tð Þ function, where Ltf r; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K tf r; tð Þ=π

q
. As for the pair correlation

function, both K tf r; tð Þ and Ltf r; tð Þ translate into global cross-function characteristics by inte-
gration of the pointwise versions over T .

Finally, applying the principal idea of the above mark-weighted second-order summary char-
acteristics to local summary characteristics, a localised version of the pointwise cross-function
mark-weighted K function for the u-th point location of Ψ can be defined for tf ¼ t3 as

λμh tð Þμl tð ÞKu r; tð Þ ¼ E
X

x’;f l x’ð Þð Þ ∈ Ψ

f h xuð Þ tð Þ � f l x’ tð Þ
� �

1b xurð Þ x’
	 
24 35:

2.3.2 Extensions to multitype points with multivariate function-valued marks

In what follows, let Ψi ¼ xi; f xið Þ tð Þð gnii¼1

	
and Ψj ¼ xj; f xj

� �
tð Þ

� 
nj
j¼1

n
denote two compo-

nent processes ofΨ where i ≠ j and f xið Þ tð Þ and f xj
� �

tð Þ are p-variate function-valued marks on
Fp . For tf ¼ t3 the pointwise cross-function second-order factorial moment measure can be

rewritten into a cross-function cross-type measure α 2ð Þ
ij; hl tð Þ,

158 ECKARDT ET AL.

International Statistical Review (2025), 93, 1, 150–178
© 2024 The Author(s). International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.



α 2ð Þ
ij; hl B1 � B2ð Þ tð Þ ¼

X≠
xif h xið Þð Þ ∈ Ψi;

xjf l xj
� �� �

∈ Ψj

E 1B1 xið Þ1B2 xj
� �

f h xið Þ tð Þ � f l xj
� �

tð Þ
� �

;

with density ϱ 2ð Þ
ij; hl B1 � B2ð Þ tð Þ. This product density, in turn, allows to define a pointwise

cross-function cross-type pair correlation function gij; hl r; tð Þ ¼ ϱij; hl tð Þ= λiλjμh tð Þμl tð Þ
� �

with

gij; hl rð Þ ¼ ∫gij; hl r; tð Þdt. Further, a pointwise mark-weighted cross-function cross-type K func-
tion can be defined as

λiμh tð Þμl tð ÞKij; hl r; tð Þ ¼ E∘; i tf f h ∘ð Þ tð Þ; f l r tð Þð Þ1 b ∘ð Þ; rð Þ xj
	 
� ��

from which a pointwise cross-function dot-type version can be obtained through λKi•; hl ¼P
jμh tð Þμl tð ÞλjKij; hl rð Þ.

2.4 Test Functions for Points With Multiple Function-Valued Marks

Previous sections were restricted to the derivation of mark summary characteristics defined
through a set of different test functions with at most two distinct function-valued point attri-
butes. Here, we now discuss potential extensions to marked point process scenarios with
p ≥ 3 distinct function-valued marks. For simplicity, we restrict to the trivariate case which
could be extended naturally to sets of p with p ≥ 3 distinct function-marks.
For points with function-valued marks f xð Þ tð Þ ¼ f d xð Þ tð Þ; f h xð Þ tð Þ; f l xð Þ tð Þð Þ, three different

generalised test functions can be defined through unconditional and also conditional formula-
tions. As a general first approach, function f d xð Þ tð Þ could be related to the set
f h xð Þ tð Þ; f l xð Þ tð Þf g by specifying t f d ∘ð Þ tð Þ; f hf lf g rð Þ tð Þð Þ. Using this formulation and writing
μhl rð Þ tð Þ for the mean of functions h and l at t ∈ T and distance r, trivariate versions of t1 and t3
can be expressed as t1 f d ∘ð Þ tð Þ; f hf lf g rð Þ tð Þð Þ ¼ 1=2 f d ∘ð Þ tð Þ � μhlð Þ rð Þ tð ÞÞ2 and
t3 f d ∘ð Þ tð Þ; f hf lf g rð Þ tð Þð Þ ¼ f d ∘ð Þ tð Þ � μhlð Þ rð Þ tð ÞÞ . Instead of μhl , alternative formulations
might be defined through the sum of pairwise operations, for example,

t1 f d ∘ð Þ tð Þ; f hf lf g rð Þ tð Þð Þ ¼ 1=2 f d ∘ð Þ tð Þ � f hð Þ rð Þ tð Þð Þ2 þ f d ∘ð Þ tð Þ � f hð Þ rð Þ tð ÞÞ2Þ:

Instead of only the h-th and l-th function-valued marks, a second general approach could be
defined by relating the d-th function to all three functions, that is, t f d ∘ð Þ tð Þ; f rð Þ tð Þð Þ. Similar to
the above formulation, suitable specifications might be defined through μdhl rð Þ tð Þ, the mean of
set f xð Þ tð Þ at t ∈ T and distance r, or alternatively using a pairwise formulation which, in turn,
would combine both auto- and cross-type terms. While both of the above versions are specified
through unconditional formulations, an alternative approach might derive from the conditional
function-valued marks f d∣f l and f h∣f l yielding t f dj; jjf l ∘ð Þ tð Þ; f hj; jjf l rð Þ tð Þð Þ. Both conditional
marks could be derived by partialising out the effect of f l xð Þ tð Þ from f d xð Þ tð Þ and f h xð Þ tð Þ using
standard functional regression methods. Although interesting, this conditional formulation will
not be pursued in this paper to make it more concise and focused.

3 Estimation of Cross-Function Summary Characteristics

After having discussed extensions of various mark characteristics for (multitype) spatial point
processes with multiple function-valued marks, their estimation from observed spatial point pat-
terns is presented next. As before, the empirical cross-function estimators for unitype point pat-
terns are first described. To this end, letψ denote a spatial point pattern of n points observed in a

159Summary characteristics for multivariate function-valued spatial point process attributes

International Statistical Review (2025), 93, 1, 150–178
© 2024 The Author(s). International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.



bounded observation window W , where each point is augmented by a multivariate
function-valued point attribute. Denote by ψ the corresponding multitype point pattern with
multivariate function-valued marks and components ψ1; …; ψd . Further, let card �ð Þ denote
the cardinality, that is, the number of points, in the argument.

3.1 Estimation of Cross-Function Summary Characteristics

Using the results of Section 2.2 and writing ct rð Þ to denote the conditional expectation for any
specific test function tf , both variation and product related cross-function mark summary char-
acteristics can be derived through a generic functionκt rð Þ. Again, the specific form of κt rð Þ itself
depends on the specification of tf . We can estimate the second-order tf -product density ϱ

2ð Þ
t rð Þ,

and its analogue version ϱ 2ð Þ rð Þ of the ground pattern ψG, by

bϱ 2ð Þ
t rð Þ ¼ 1

2πrν Wð Þ
X≠

xf hð Þ;
x0f lð Þ ∈ ψ

ℓ tf f h xð Þ tð Þ; f l x0ð Þ tð Þð Þ
� �

Kb ∥x � x0∥� rð Þe x∥x � x0∥ð Þ;

(3)

and

bϱ 2ð Þ rð Þ ¼ 1

2πrν Wð Þ
X≠

x; x0 ∈ ψG

Kb ∥x � x0∥� rð Þe x∥x � x0∥ð Þ; (4)

respectively, where

ℓ tf f h xð Þ; f l x0ð Þð Þ
� �

¼ ∫
b

atf f h xð Þ tð Þ; f l x0ð Þ tð Þð Þdt
and Kb �ð Þ is a kernel function with bandwidth b, ν �ð Þ the area of its argument, and e �ð Þ is an
edge correction factor. Then, κt rð Þ can be estimated by

bκt rð Þ ¼
bϱ 2ð Þ
t rð Þbϱ 2ð Þ rð Þ=bct; for r > 0; (5)

where bct ¼Xx

X
x’
ℓ tf f h xð Þ tð Þ; f l x’ tð Þ

� �� �
=n2

�
is an estimator of ct ¼ ct ∞ð Þ.

We note that κt rð Þ can alternatively also be estimated by

bκt rð Þ ¼ 1

2πrν Wð Þ
X≠
xf hð Þ;

x0f lð Þ ∈ ψ

ℓ t f h xð Þ; f l x0ð Þð Þð ÞKb ∥x � x0∥� rð Þe x∥x � x0∥ð Þbλ2bg rð Þbct (6)

where bg rð Þ ¼ bϱ 2ð Þ rð Þ=bλ2; r ≥ 0; and bλ ¼ card Wð Þ=ν Wð Þ are estimators for the pair correlation
function and the intensity of the ground process, respectively. Specifying tf by t1 and t3 in the
above formulation of bκt, the cross-function mark variogram and mark correlation function can
be estimated by

bγhl rð Þ ¼ 1

2πrν Wð Þ
X≠
xf hð Þ;

x0f lð Þ ∈ ψ

ℓ t1 f h xð Þ tð Þ; f l xð Þ0 tð Þ
� �� �

Kb ∥x � x0∥� rð Þe x∥x � x0∥ð Þbλ2bg rð Þbct : (7)

and
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bκhl rð Þ ¼ 1

2πrν Wð Þ
X≠
xf hð Þ;

x0f lð Þ ∈ ψ

ℓ t3 f h xð Þ tð Þ; f l xð Þ0 tð Þ
� �� �

Kb ∥x � x0∥� rð Þe x∥x � x0∥ð Þbλ2bg rð Þcμh bμl

; (8)

respectively, where bμl is the empirical functional mean of mark f l. Similarly, estimators forκh• rð Þ
(resp. κ•l rð Þ) can be obtained by setting tf to t4 (resp. t5) and substitutingcμh (resp. bμl) forcμh bμl in
(8).

3.2 Estimation of Cross-Function Nearest-Neighbour Indices

Estimators for the cross-function nearest-neighbour indices can be derived analogous to
Section 3.1 by replacing the above test functions by the nearest neighbour counterpart versions.
Using the nearest neighbour test functions tnn1 and tnn3 , the nearest-neighbour mark variogram and
mark product correlation index can be estimated through

bγnnhl ¼ 1

n

Xn
i¼1

ℓ tnn1 f h xið Þ tð Þ; f l z ið Þð Þ tð Þð Þ
� �

=bct
and

bκnnhl ¼ 1

n

Xn
i¼1

ℓ tnn3 f h xið Þ tð Þ; f l z ið Þð Þ tð Þð Þ
� �

=cμhbμh;

respectively.

3.3 Estimation of Cross-Function Mark-Weighted Summary Characteristics

Estimators of the cross-function mark weighted K function can be obtained by normalising

the function bkhl,
bkt rð Þ ¼

X≠
x; x0 ∈ W

ℓ tf f h xð Þ tð Þ; f l x0ð Þ tð Þð Þ
� �

1 ∥x � x0∥ ≤ rf g
ν Wð Þ

by the empirical versions of the intensitybλ2 and a suitable normalising factor bct corresponding to
the specific test function used with bct ¼ bμhbμl for tf ¼ t3. The normalised estimator can then be
transformed in the corresponding cross-function mark weighted L function by taking the square

root of bK rð Þ. Likewise, the cross-function mark weighted pair correlation function can be com-

puted as bgt rð Þ ¼ bϱ 2ð Þ
t rð Þ=bλ2bct which becomes bghl rð Þ ¼ bϱ 2ð Þ

hl rð Þ=bλ2bμhbμl for choosing t3 as test
function.
For the multitype point pattern scenario with components ψi and ψj and function-valued

marks f h and f l , the cross-function cross-type mark weighted K function can be estimated by
dividing

bkij; t rð Þ ¼
X≠

xi; xj ∈ W

ℓ tf f h xið Þ tð Þ; f l xj
� �

tð Þ
� �� �

1 ∥xi � xj∥ ≤ r
	 


ν Wð Þ
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bybλiλj bct withbλi denoting the intensity of the i-th component ofψ. Again, this function translates
into the corresponding estimator of the L function through the square root of bK. Similarly to the
unitype case, a cross-function cross-type mark weighted pair correlation function can be calcu-

lated by computing bgij; t rð Þ ¼ bϱ 2ð Þ
ij; t rð Þ=bλibλjbct:

4 A Simulation Study

We conducted a simulation study to investigate how our estimators of the cross-function sum-
mary characteristics behave not only under several point configurations (including random, clus-
ter and regular structures) but, also under different mark scenarios including spatial independence
and function-valued marks, and positive or negative inter-dependencies between functions of
type h and type l. For the case when we have positive interaction between functions, functions
of type l grow or decrease when interacting with functions of type h, and vice versa, whilst for
negative inter-dependencies, functions of type l grow or decrease when interacting with functions
of type h, but functions of type h decrease or grow when interacting functions of type l.

4.1 Generating Point Patterns With Function-Valued Marks

To control for the effect of the inherent point configuration on the proposed estimators, we con-
sidered three distinct point process configurations including Poisson, cluster and regular point
process scenarios. Each of these three cases were generated on the unit torus to avoid edge effects
with an expected number of pointsn ¼ 200. To obtain a clustered point process structure, we sim-
ulated a Thomas process (Thomas, 1949) with offspring dispersion parameter σ ¼ 0:04, parent
intensity λp ¼ 40 andμ ¼ 5 expected offsprings per parent, yielding an average number of points
of around 200 in the unit square with a moderate clustered configuration. The regular point pro-
cess scenariowas constructed using a Strauss process (Kelly & Ripley, 1976; Strauss, 1975) with
interaction effect parameter q ¼ 0:05, and a radius of interaction Rint ¼ 0:025 which ensures
strong inhibition effects for short scales of interaction, with an average number of points of
around 200. Note that the Thomas and the Strauss processes have been considered to model
and analyse clustered and aggregated point patterns, respectively. In particular, these models have
been very suitable to model forest patterns. For instance, Asefa et al. (2020) considered a Thomas
process to analyse the spatial distribution of tropical, subtropical and subalpine forests in south-
west China, while Obiang et al. (2010) considered the Strauss process to analyse the strength of
competition between trees in central African rainforests.

To generate spatial point patterns in which each point location is augmented by a set of
function-valued quantities, we consider the continuous space–time stochastic process developed
by Renshaw and Särkkä (2001). In this model, marked points located on the unit torus grow and
interact with each other in terms of a suitable growth-interaction scheme. We adapt this ap-
proach to avoid point mortality and point immigration. In this way, we keep the same point pat-
tern over time and their associated growth curves. Technically, the Renshaw and Särkkä algo-
rithm generates a spatial point pattern with function-valued marks h and l through

f h xð Þ t þ dtð Þ ¼ f h xð Þ tð Þ þ βhf h xð Þ tð Þ 1 � f h xð Þ tð Þ=Shð Þdt

þ
X≠

x; f h xð Þð Þ;

x0; f l x
0ð Þð Þ ∈ ψ

Jh f h xð Þ tð Þ; f l x0ð Þ tð Þ; ∥x � x0∥ð Þdt (9)

and
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f l xð Þ t þ dtð Þ ¼ f l xð Þ tð Þ þ βl 1 � f l xð Þ tð Þ=Slð Þdt

þ
X≠

x; f l xð Þð Þ;
x0; f l x

0ð Þð Þ ∈ ψ

J l f l xð Þ tð Þ; f h x0ð Þ tð Þ; ∥x � x0∥ð Þdt

(10)

where f h xð Þ tð Þ and f l xð Þ tð Þ are two functions of point x at time t, ψ is a realisation of Ψ, βh the
intrinsic rate of growth, Sh the non-spatial carrying capacity, ∥x1 � x2∥ the Euclidean distance
between a pair of points, and Jh �ð Þ a suitable interaction function between points. Note that
functions of type h and l grow in terms of the classic logistic growth and the
immigration-death process, respectively. These two simple growth functions ensure that both
functions remain bounded.
To generate positive correlation between functions, we use a Strauss like symmetric interac-

tion function (Renshaw & Särkkä, 2001) adapted to the case where the interaction is between
the marks f h xð Þ tð Þ and f l xð Þ tð Þ,

J f h xð Þ tð Þ; f l x0ð Þ tð Þ; ∥x � x0∥ð Þ ¼
c if ∥x � x0∥ < D

0 otherwise;

�
(11)

where c ∈ ℝ is a constant interaction effect. Here, points start to interact with each other with
constant value c as soon as their distance is less thanD. To ensure a symmetric interacting struc-
ture, we set Jh �ð Þ ¼ J l �ð Þ ¼ J �ð Þ, so that smaller function values affect the growth of larger
ones in the same way as larger function values affects smaller ones. To avoid interacting effects
to decrease function values, we set c > 0; c < 0 implies function reduction and eventually
negative function values.
Moreover, to generate negative correlation between functions, we take Jh �ð Þ ¼ J �ð Þ and

J l �ð Þ ¼ 0. Now functions of type h take an advantage when interacting with functions of type
l (faster grow), whilst functions of type l are not affected by the interaction with functions of
type h. This promotes an asymmetric function interaction, resulting in negative spatial correla-
tion between growth functions of distinct type.
To generate spatial point patterns with function-valued marks, we consider expressions (9)

and (10) with growth carrying capacity Sh ¼ Sl ¼ 5, intrinsic rates of growth βh ¼ 0:05, βl ¼
0:2 and interaction distance D ¼ 0:05. These scenario parameters are chosen as they give rise
to functions that are convenient as illustrative examples. Moreover, to obtain the desired marked
point patterns with spatially independent and/or positive correlation between function-valued
marks, we consider the interaction mechanism (11) for Jh �ð Þ ¼ J l �ð Þ ¼ J �ð Þ, with interaction
parameter c ¼ 0 and c ¼ 0:5, respectively. Whilst to generate negative spatial correlation be-
tween functions we assume the same interaction function (11), but for Jh �ð Þ ¼ J �ð Þ and
J l �ð Þ ¼ 0 with c ¼ 0:5.
Figure 1 shows the results for the homogeneous Poisson point process scenario with intensity

λ ¼ 200. The red lines are the empirical cross-function mark summary characteristics from a
single simulation. The grey shading shows the fifth-largest and smallest envelope values based
on 199 random simulations according to the null hypothesis of random labeling of functions
over fixed point locations. Here, we consider three correlation function scenarios, namely, spa-
tial independence between functions (left), positive (middle) and negative (right) correlation be-
tween functions. This highlights that in absence of interaction between functions, the resulting
estimators of both the cross-function mark variogram (7) (top panels) and the cross-function
mark correlation (8) (bottom panels) lie within the grey shading area, confirming the spatial in-
dependence between functions of type h and l. In direct contrast, when assuming spatial positive
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or negative interaction between curves (central and right panels, respectively), these estimators
lie outside this grey shading area, confirming the presence of inter-function dependencies. In
particular, under positive correlation of the function-valued marks, the empirical
cross-function mark variogram lies outside this grey shading area with values smaller than
the smallest envelope values, for small r values. This suggests that the positive interacting
function-valued marks have less variability than under the independent mark setting. Similarly,
under negative correlation between functions, estimators of both the cross-function mark
variogram and the mark correlation lie outside the grey shading area with values larger than

Figure 1. Cross-function mark summary characteristics for a simulated homogeneous Poisson process on the unit torus with
point intensity λ ¼ 200 . Cross-function mark variogram (top) and cross-function mark correlation (bottom) with
no-interaction effects ( Jh �ð Þ ¼ J l �ð Þ ¼ J �ð Þ , with c = 0) (left), positive inter-function interaction ( Jh �ð Þ ¼ J l �ð Þ ¼
J �ð Þ, with c ¼ 0:5) (central), and negative inter-function correlation Jh �ð Þ ¼ J �ð Þð and J l �ð Þ ¼ 0 with c ¼ 0:5) (right).
Empirical versions of both characteristics are highlighted in red, theoretical values in black. Grey shading shows the
fifth-largest and smallest envelope values based on 199 random simulations according to the null hypothesis of random la-
beling of functions over fixed point locations.
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the largest envelope values, for small r values, suggesting negative interactions between
functions.
Similar results can be found for the Thomas (Figure 2) and the Strauss process scenarios

(Figure 3). In absence of inter-function dependencies both estimators (cross-function mark
variogram and mark correlation) lie within the grey shading area, whilst for positive or negative
correlation effects between functions these functions lie outside these envelopes. This confirms
that the new cross-function mark summary characteristics can detect spatial dependencies be-
tween functions of distinct type independently of the spatial structure of the underlying point
pattern.

Figure 2. Cross-function mark summary characteristics for a simulated Thomas process with offspring dispersion parameter
σ ¼ 0:04, parent intensity λp ¼ 40, and μ ¼ 4 expected offsprings per parent. Cross-function mark variogram (top) and
cross-function mark correlation (bottom) with no-interaction effects (J h �ð Þ ¼ J l �ð Þ ¼ J �ð Þ , with c = 0) (left), positive
inter-function interaction ( J h �ð Þ ¼ J l �ð Þ ¼ J �ð Þ , with c ¼ 0:5 ) (central), and negative inter-function correlation
Jh �ð Þ ¼ J �ð Þð and J l �ð Þ ¼ 0 with c ¼ 0:5) (right). Empirical versions of both characteristics are highlighted in red, theo-
retical values in black. Grey shading shows the fifth-largest and smallest envelope values based on 199 random simulations
according to the null hypothesis of random labeling of functions over fixed point locations.
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For completeness, we consider a simulation study based on the simulation of 100 datasets for
the above scenarios to illustrate the performance of our second-order characteristics. In partic-
ular, we simulated 100 realisations of the scenario defined above to show the percentage of
times the resulting empirical function lies outside the simulated envelopes based on 199 random
realisations according to the null hypothesis of random labeling of functions over fixed point
locations. Table 1 shows the percentage of times the simulated empirical cross-function mark
variogram and correlation lie outside the envelopes for the scenarios defined above. This high-
lights that under the scenarios with absence of interaction between functions, the percentage of
times both empirical function lie outside the simulated envelopes is around 25% of the

Figure 3. Cross-function mark summary characteristics for a simulated Strauss process with interaction distance Rint ¼ 0:05
and interaction parameter q ¼ 0:05. Cross-function mark variogram (top) and cross-function mark correlation (bottom) with
no-interaction effects (J h �ð Þ ¼ J l �ð Þ ¼ J �ð Þ, with c = 0) (left), positive inter-function interaction (Jh �ð Þ ¼ J l �ð Þ ¼ J �ð Þ,
with c ¼ 0:5) (central), and negative inter-function correlation Jh �ð Þ ¼ J �ð Þð and J l �ð Þ ¼ 0with c ¼ 0:5) (right). Empirical
versions of both characteristics are highlighted in red, theoretical values in black. Grey shading shows the fifth-largest and
smallest envelope values based on 199 random simulations according to the null hypothesis of random labeling of functions
over fixed point locations.
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realisations for any of the initial point configurations. This suggests that the rejection of the null
hypothesis is unlikely in absence of inter-function interactions. Note that these significant cases,
where the empirical function lies outside the envelopes, correspond to random excursions of the
empirical function outside the envelopes rather than significant trends of this function. In direct
contrast, for the scenarios with positive/negative interaction effects between functions, the per-
centage of times both empirical functions lie outside the envelopes is always larger than 78%
(assuming the empirical function lying above or bellow the envelopes) showing that our new
summary characteristics detect the presence of these inter-function dependencies. For instance,
for the scenarios with negative interaction effects, and any initial point configuration, empirical
cross-function mark variogram and correlation functions lie 100% of the simulations above the
envelopes, confirming the validity of our new approach to detect spatial dependencies between
functions.

5 Applications

5.1 Application to Swiss Tree Data

We first consider tree measurements recorded at an annual basis over 14 years that originates
from a long-term irrigation experiment located in Pfynwald, the central part of the Pfyn-Finges
national park in Switzerland (Schaub et al., 2016). Initiated in 2003, the experiment aimed to
investigate the effect of increased water availability on the individual trees and the ecosystem
in a naturally dry Scots pine (Pinus sylvestris L.) forest. The study region covers an area of
1.2 ha and is located in one of the driest inner-Alpine valleys of the European Alps (see Bose
et al., 2022, for detailed summary). The data at hand was provided as open data under an Open
Database Licence and has been made available publicly at https://opendata.swiss. It covers the
tree-specific spatial coordinates, the initial assignment into the treatment or control group and
different tree characteristics for 900 trees. From this source, we initially selected the annual total
crown defoliation (TCD) from the provided list of tree characteristics and also the exact point
locations of the individual tree stands. The TCD parameter is a commonly used parameter in
forest monitoring studies to quantify the loss of needles or leaves of a given tree relative to a
local reference tree. Within the application, we considered the retrieved TCD information as
function-valued tree attribute and assigned it as a mark to the tree locations in a subsequent ac-
tion. Restricting the data to complete cases, we excluded any trees with incomplete or missing
TCD information from the data yielding a final sample of 799 trees with annual TCD records
over all 14 years. In a next step, we computed the local pairwise correlation function for all trees
of the reduced sample which describes the contribution of the individual point to the empirical

Table 1. Percentage of times the simulated empirical cross-function mark variogram (Mark Var.) and correlation (Mark Cor.)
lie outside the envelopes, based on the simulation of 100 datasets for the homogeneous Poisson process (Poisson) (as defined
in Figure 1, the Thomas process (as defined in Figure 2) and the Strauss process (as defined in Figure 3), assuming no
interaction effects, and, positive and negative inter-function interaction effects (as defined in Figure 1). A andBdenote that the
empirical function lies above or below the simulated envelopes, respectively.

No interaction Positive interaction Negative interaction

Mark Var. Mark Cor. Mark Var. Mark Cor. Mark Var. Mark Cor.

A B A B A B A B A B A B

Poisson 24 28 25 21 44 97 100 76 100 63 100 57
Thomas 28 25 30 24 49 78 100 66 100 60 100 58
Strauss 31 29 25 28 32 100 100 59 100 50 100 44
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pair correlation function, that is, its pair correlation function based local indicator of spatial as-
sociation. The local information was then used as a second function-valued mark in our appli-
cation such that each tree was marked by two distinct function-valued quantities. The resulting
point pattern with both function-valued marks and classic second-order summary characteristics
of the points are shown in Figure 4. While not considered here, we note that the data also allows
for cross-function cross-type versions as outlined on Section 2.3.2 by taking additionally the
tree-specific assignment into treatment or control group into account. Such advanced mark

Figure 4. Observed function-valued marks and classic second-order point process summary characteristics of the Swiss tree
patterns. Top panel: spatial distribution of Scots pines of the Pfynwald data with observed total crown defoliation (left), a
magnification of the study region (center), and pair correlation function and theoretical envelopes under the independent
mark hypothesis (left). Bottom panel: spatial distribution of Scots pines of the Pfynwald data with local pair correlation func-
tions as function-valued marks (left), a magnification of the study region (center), and Ripley’s K rð Þ function minus rπ2 and
theoretical envelopes (right) computed from the point locations. Empirical versions of both characteristics are highlighted in
red, theoretical values in black, and blue lines are the function-valued marks. Grey shading shows the fifth-largest and
smallest envelope values based on 199 random simulations according to the null hypothesis of complete spatial randomness
(Poisson point randomisations).
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characteristics might help to investigate the complex interplay of the TCD and local pair corre-
lation function curves with the effect of additional water supply.
As expected by the large number of trees, the sampled point pattern reflects some clear struc-

ture and a tendency of clustering among the points. This impression is supported by the pair cor-
relation function (top-right panel) and also Ripley’s K function bottom-right panel) which show
a clear positive shift of the empirical curves from the theoretical lines under the complete spatial
randomness hypothesis which indicates a clear tendency of clustering.
Next, to evaluate the findings of the proposed auto- and cross-function summary characteris-

tics with the classic summary characteristics for scalar-valued marks commonly used at present,
we transformed the function-valued marks into function-wise averages and computed the mark
variogram and Stoyan’s mark correlation function from the averaged quantities (see Figure 5).

Figure 5. Classic mark summary characteristics for the Pfynwald tree data with averaged function-valued point attributes
treated as scalar-valued marks. Mark variogram and mark correlation functions for the mean TCD (top) and mean local pair
correlation function (bottom). Empirical versions of both characteristics are highlighted in red, theoretical values in black.
Grey shading shows the fifth-largest and smallest envelope values based on 199 random simulations according to the null
hypothesis of random labeling of marks over fixed point locations.
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The empirical versions of both mark characteristics show a clear deviation from the theoretical
envelopes for the average TCD (top panel). While the mark variogram (top-left panel) suggests
that the mean TCD values exhibit less pairwise variation as expected under the independent
mark hypothesis, we found a clear positive shift of the empirical pairwise product of TCD av-
erages as considered by the mark correlation function (top-right panel) from the theoretical en-
velopes. In comparison with the TCD, both empirical mark characteristics show almost no de-
viations from the independent mark hypothesis in case of the averaged local pair correlation
function (bottom panels). Except for only some negative shift of the mark variogram (left) at
small distances, both estimated characteristics are covered by the envelopes.

Figure 6. Auto- and cross-function mark summary characteristics computed from the Swiss tree data. Top: auto-function
mark variogram (left) and mark correlation function (right) of the total crown defoliation curves. Central panel:
auto-function mark variogram (left) and mark correlation function (right) of the local pair correlation functions. Bottom:
cross-function (left) and mark correlation function (right) between the total crown defoliation and the local pair correlation
functions. Empirical versions of both characteristics are highlighted in red, theoretical values in black. Grey shading shows
the fifth-largest and smallest envelope values based on 199 random simulations according to the null hypothesis of random
labeling of functions over fixed point locations.
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Different from the classic mark characteristics, all auto- and cross-function mark variograms
and correlation functions of Figure 6, except the auto-function mark correlation of the local pair
correlation (central-right panel), show significant results. As already indicated by the classic
characteristics, the top panel corresponding to the TCD curves reflects again a negative devia-
tion of the empirical auto-function mark variogram (top-leftpanel) contrasted with a clear pos-
itive shift of the empirical auto-function mark correlation function (top-right panel) from the
theoretical lines under the independent mark hypothesis. This indicates that the observed
TCD curves show less spatial variation among pairs of neighbouring points. At the same time,

Figure 7. Observed function-valued marks and classic second-order point process summary characteristics computed from
84 municipalities of the province of Albacete. Top panel: spatial distribution of Spanish municipalities and the yearly differ-
ences to the reference year 2022 for the business (top-left) and population (top-right) records as function-valued marks. Bot-
tom panel: pair correlation function and theoretical envelopes under the independent mark hypothesis (left), and Ripley’s
K rð Þ function minus rπ2 and theoretical envelopes (right) computed from the point locations. Empirical versions of both char-
acteristics are highlighted in red, theoretical values in black, and blue lines are the function-valued marks. Grey shading
shows the fifth-largest and smallest envelope values based on 199 random simulations according to the null hypothesis of
complete spatial randomness (Poisson point randomisations).
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the product of the TCD curves clearly exceeds the expected case, that is, the non-spatial func-
tional mean squared. For the central panels showing the auto-function characteristics computed
from the local pair correlation functions, the auto-function mark variogram (left) again suggests
smaller variation between the function-valued marks compared with the independent mark set-
ting for some small distances. Finally, looking at the cross-function characteristics of the TCD
and local pair correlation curves, both results show a clear variation from the independent mark
envelopes. This would imply that the pairwise spatial variation of both functions is smaller than
under the limiting case where the cross-function variogram is equal to the covariance, whereas
the pairwise product of the two marks exceeds the limiting case in which the pairwise product of
the two marks approaches the product of the functional means μh and μl.

5.2 Application to Spanish Labour Data

As second example of a spatial point pattern with bivariate function-valued marks, we con-
sider data on the total number of companies as of 1 January and the number of residents

Figure 8. Classic mark summary characteristics for the Spanish municipality data computed from the averaged business and
population information with averaged function-valued point attributes treated as scalar-valued marks. Mark variogram and
conditional mean product of marks for the mean business (top) and mean population function (bottom). Empirical versions of
both characteristics are highlighted in red, theoretical values in black. Grey shading shows the fifth-largest and smallest en-
velope values based on 199 random simulations according to the null hypothesis of random labeling of marks over fixed point
locations.
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recorded annually at municipality level for the period from 2012 to 2022. The data originated
from the official data reports released by the National Statistics Institute of Spain (INE) and
was made publicly available at www.ine.es. The business information was derived from the of-
ficial business register of INE and corresponds to the total number of local companies over dif-
ferent economic sectors. The local assignment of the companies to exactly one municipality was
performed by INE in a pre-processing step using the registered business address information to
avoid potential inconsistencies in case of regionally wide spreading business locations, for ex-
ample, factories or business facilities of one company in several distinct municipalities. From
the provided data, we initially selected a sample of 87 municipalities that fall into the boundaries
of Albacete, a Spanish province on La Mancha (the Spanish Plateau). The area of La Mancha is

Figure 9. Auto- and cross-function mark summary characteristics computed from the Spanish municipality data. Top panel:
auto-function mark variogram (left) and mark correlation function (right) of the business curves. Central panel: auto-function
mark variogram (left) and mark correlation function (right) of the population curves. Bottom panel: cross-function (left) and
mark correlation function (right) between the business and population curves. Empirical versions of both characteristics are
highlighted in red, theoretical values in black. Grey shading shows the fifth-largest and smallest envelope values based on 199
random simulations according to the null hypothesis of random labeling of functions over fixed point locations.
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located southeast of Madrid and is characterised by a homogeneous climate and population den-
sity, and as such, has been treated as a particular instance of a homogeneous spatial point pro-
cess in the literature (see, e.g. Glass & Tobler, 1971; Ripley, 1977, 1988, Chiu et al., 2013, for
some applications). From the selected file we excluded the municipalities of Masegoso,
Montalvos and Villa de Ves in a subsequent action for which no economic information was
available. This yielded a final sample of 84 Spanish municipalities to which we applied the fol-
lowing pre-processing. In a first step, we derived the exact spatial location of the centroids for
each municipality in the sample and assigned the corresponding pair of coordinates to the data.
Next, we generated two function-valued attributes from the provided local business and popu-
lation statistics by computing the pointwise yearly differences between the values from 2012
to 2021 and the reference records of 2022. As such, both generated marks express the annual
change in the size (resp. number) of the local business sector (resp. population) with respect
to 2022. All information was then transformed into a spatial point process with
function-valued marks in a final step. The generated point pattern and classic second-order
point process summary characteristics of the points are shown in Figure 7.

Different from the Swiss tree data example, the Spanish point pattern appears to be less dense
and clustered with both constructed business (7, top-left panel) and population (7, top-right
panel) showing some heterogeneity. Both the empirical pair correlation function (bottom-left
panel) and Ripley’s K function minus rπ2 indicate a clear tendency to clustering for the point
locations, which supports the visual impression.

As for Section 5.1, we computed the means from the business and population curves and
used the scalar information as input for classic mark summary characteristics (see Figure 8).
Due to the presence of negative mark values, the unnormalised version, that is, the conditional
mean product of marks cmm rð Þ, was computed instead of the mark correlation function kmm rð Þ.
For the averaged business variation (top panels) and the mean variation of the population (bot-
tom panels) both the mark variogram and mark correlation function are completely covered by
the envelopes, supporting the independent mark hypothesis.

Comparing these findings with the results of the auto- and cross-function mark characteristics
depicted in Figure 9, the independence hypothesis is not supported by the auto-function mark

Figure 10. Cross-function mark variogram (left) and mark correlation (right) summary characteristics computed from the
Swiss tree data (top) and the Spanish municipality data (bottom) adapted to show time and inter-point distances: dark and
white colours correspond to large and small values of these functions, respectively.
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variogram for population (central-left panel) and the cross-function mark variogram of business
and population (bottom-left). Both functions would instead suggest less pairwise variation be-
tween the generated populations differences resp. business and population differences as ex-
pected under the independent mark assumption. As both mark summary characteristics for
the change in size of the business sectors (top panels) are included in the envelopes, the signif-
icant results of the cross-function mark variogram seem to be driven mostly be the pairwise var-
iation of the population curves.
For completeness, Figure 10 shows the cross-function mark summary characteristics for the

two analysed datasets adapted to show time and inter-point distances. This modification of the
original functions permits to observe the resulting spatial structure for a given inter-point dis-
tance and time interval of these functional objects. This figure highlights that, as expected,
the resulting spatial structure depends on the time interval, and the spatial configuration of
points affects the resulting interaction of these functions for each time interval. In general,
resulting values of these functions are quite similar between time intervals suggesting a tempo-
ral dependency of these spatial structures. This is expected because the values that form each
function are dependent.

6 Conclusions

This paper proposes an immense variety of different mark summary characteristics which al-
low to decide on potential structure of the marks within highly challenging spatial point process
scenarios. Including cross-function, multi-function and corresponding mark weighted versions
of well-established mark summary characteristics, the extended methods are providing a suit-
able statistical toolbox for the analysis of spatially aligned function-valued quantities for a
plethora of potential applications. Formalised through generalisations of classical test functions
to the (multivariate) function-valued mark scenario, the proposed characteristics are well em-
bedded into the statistical literature and methodology for spatial point patterns with
real-valued marks and allow for similar interpretations.
The considered estimators are natural extensions to the complex function-valued cases of

those proposed in Comas et al. (2008, 2011, 2013) and are technically supported by the theo-
retical treatments in Ghorbani et al. (2021). We rely on this latter contribution to support the
behaviour of the proposed estimators. However, there are a number of doors open in both, the-
oretical and inferential aspects, that starting from our developments can go further in providing
tools for complex mark structures. One such example we can think of is the case when we have
trajectories restricted to a network-based topology. Here more topological arguments are needed
to be considered when developing further tools and their estimators. While we have discussed
extensions to multivariate functions, it would be intriguing to further expand our concept by of-
fering additional technical insights into the construction and estimation of general test functions
involving more than two arguments. Specifically, comparing classical test functions with two ar-
guments to more intricate versions, as delineated in Section 2.3, could yield valuable and
thought-provoking results for advancing the development of such multi-argument test functions.
In addition to the spatial domain formulation, it would be intriguing to derive appropriate fre-
quency domain characteristics that consider the structural interdependence of both the points
and the function-valued marks (see, e.g. Eckardt & Mateu, 2019a, 2019b, for frequency domain
approaches to spatial point processes with scalar-valued marks). Lastly, beyond point processes
in planar regions, there is a requirement for appropriate mark characteristics for point processes
occurring in structured domains featuring function-valued marks.
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