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ABSTRACT

This paper revisits the question of how shocks to expectations of market participants can cause business cycle fluctuations. We use

a vector autoregression to estimate dynamic causal effects of belief shocks which are extracted from nowcast errors about output

growth. In afirst step, we replicate and corroborate the findings of Enders, Kleemann, and Miiller (2021). The second step computes

nowecast errors about growth-at-risk at various quantiles. This involves both recovering the quantiles of the nowcast distribution

of output growth from the Survey of Professional Forecasters, and, since the true quantiles of output growth are unobserved,

estimating them with quantile regressions. We document a lack of distinct patterns in response to shocks arising from nowcasts

misjudging macroeconomic risk. Although the differences are statistically insignificant, belief shocks about downside risk seem

to produce somewhat sharper business cycle fluctuations.
JEL Classification: C22, C32, E32, E71

1 | Introduction

This paper revisits the question of how shocks to expectations
of market participants can cause business cycle fluctuations
(see, e.g., Beaudry and Portier 2006, 2014). We build upon the
empirical framework of Enders, Kleemann, and Miiller (2021)
who discuss the identification of belief shocks. Usually, expec-
tations about variables enter theoretical models as expected
values conditional on some information set. In empirical models,
they are often operationalized as mean-based predictions. That
is, they are summary statistics of predictive distributions. This
potentially disregards higher-order moments and abstracts from
implied judgements of economic agents about macroeconomic
risks.!

We diverge partly from the related literature and explicitly lever-
age full predictive distributions. Our first contribution is to

replicate the findings of Enders, Kleemann, and Miiller (2021),
which are based on using the median consensus nowcast for
US real gross domestic product (GDP) growth from the Survey
of Professional Forecasters (SPF). They use this data to com-
pute real-time nowcast errors (NEs, defined as the difference
between realized output growth and nowcasts). Their identifi-
cation scheme then discriminates between belief and non-belief
shocks via sign restrictions in a vector autoregression (VAR).
They impose the belief shock to induce a negative co-movement
between output and NEs, while the non-belief shock causes a
positive co-movement. This reflects the notion that a favorable
belief shock (e.g., an overly optimistic outlook due to noisy signals
observed by markets) shifts predictions beyond actual growth.
This results in a negative NE while increasing output growth.

The second contribution is to move beyond the point predic-
tion and to recover the probabilistic distribution of nowcasted
output growth in the United States. This aspect of our work
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is motivated by the recent interest in macroeconomic (tail)
risk due to the influential paper by Adrian, Boyarchenko, and
Giannone (2019). A common definition of macroeconomic risk
is to consider the conditional quantiles of some underlying series
of interest. The quantiles of output growth, for instance, are
referred to as growth-at-risk (GaR) at some pre-defined proba-
bility. Related work finds time-varying macroeconomic risk to
be at least partly predictable (see, e.g., Adams et al. 2021; Clark
et al. 2023).

Evaluating and processing nowcasts of tail risk comes with two
main challenges. First, the SPF does not contain probabilis-
tic predictions in a format required for our analysis. Our solu-
tion is to rely on the ensemble methods proposed by Kriiger
and Nolte (2016) to recover the implied predictive distribution
from individual point forecasts of SPF participants. Second, the
quantiles of the dynamic process governing output growth are
not observed. Here, we rely on time-varying parameter quan-
tile regression (TVP-QR as in Pfarrhofer 2022) to estimate the
real-time quantiles of output growth (see also Loria, Matthes,
and Zhang 2024, for a related approach). These two ingredients
are used to compute reduced form GaR-NEs (which measure
an inaccurate assessment of potential best/worst-case scenarios
about the economic outlook; in this context, see, e.g., the Federal
Reserve Bank of New York Outlook-at-Risk dashboard), which
we then employ to study the dynamic effects of belief shocks.

Our empirical results can be summarized as follows. First, we
demonstrate the replicability of the results of Enders, Kleemann,
and Miiller (2021) in a narrow sense. Replicability in this con-
text refers to extending the sampling period and considering
alternative specifications in addition to the original implemen-
tations. Second, in a wide sense, we investigate whether belief
shocks about GaR induce distinct business cycle fluctuations.
The answer to this question is no. Indeed, we find very simi-
larly shaped responses. This is true both when comparing our
quantile-based estimates to the original framework, but also,
when we compare, for example, downside to upside risk. We
conjecture that this is because the nowcast distribution of out-
put growth, which we recover from the SPF, turns out to be
rather symmetric for most of the sample. This notion relates to
the nowcast setting (as opposed to forecasts), which are typi-
cally the focus of studies on macroeconomic risk (see Adrian
et al. 2022). Although the differences are statistically insignifi-
cant, belief shocks about downside risk seem to produce some-
what sharper business cycle fluctuations.

The paper proceeds as follows. In Section 2, we describe the
SPF data, the original framework to extract belief shocks, and
our extensions to recovering a suitable probabilistic predictive
distribution. Section 3 discusses the VAR framework and identifi-
cation procedure for belief shocks, before moving on to our main
empirical results. Section 4 concludes.

2 | Survey and Nowcast Distributions

2.1 | The Survey of Professional Forecasters
Predictions about the current state of the economy lie at the heart
of our paper. The SPF is a quarterly survey of such macroeco-
nomic predictions, maintained by the Federal Reserve Bank of
Philadelphia. It collects projections, from a changing panel of par-
ticipants, which are submitted in form of a single number which
is the point forecast of the target variable by the respective fore-
caster. For many applications, it is sufficient to aggregate these by
computing the mean or median consensus prediction at any given
point in time for any desired forecast horizon. This produces a
sequence of (point) forecasts and yields a single time series based
on an equal-weighted combination. Indeed, this is the default for-
mat for downloading SPF data and what Enders, Kleemann, and
Miiller (2021) use in their original paper.

In our paper, as an extension, we intend to identify belief shocks
related to the full predictive distribution. They are extracted from
NEs about GaR. While the SPF in principle collects probabilistic
forecasts, these come in the form of probability bins for a specific
horizon and transformation of output, which we thus cannot use
for our purposes. For this reason, we recover nowcast distribu-
tions from point predictions of individual forecasters as follows.
Suppose that the predictive density yﬁf ) of forecaster i at time
has mean y;, and variance 2. We observe the point prediction u;
(made at time ¢, when realizations were not yet available because
GDP is released with a lag) of individual forecasteri =1, ... , N,,
but we do not observe the variance gizr.

Due to the design of the SPF, with coverage and number of fore-
casters N, varying over time, we aim to construct an ensemble
forecast using participants that are exchangeable. Define the
average mean forecast u, = N ;1251’1 u;, and forecaster disagree-
ment 52 = (N, = )" X (,, — ﬁ,)z as the cross-sectional mean
and variance of the point predictions across all survey forecasts.
What is missing here is the unpredictable randomness (encoded
in ¢2) of the target series surrounding the nowcasts. To solve this
issue, we follow Kriiger and Nolte (2016) and use an ensemble
method, which has been shown to work well for the SPF.

In particular, we assume that the ensemble nowcast distribution
yff ) can be written as an equal-weighted mixture of Gaussians

with a common (but unknown) variance:
1
D= LS i, 2 1
¥, Nr,; (M), ¢y

where ¢? is the sole parameter to be estimated. Note that this
implies that the joint forecast distribution yff ) has a mean
equal to the average across forecasters, y,, and its variance is
given by Etz = s? + ¢%. The first variance component measures
dispersion over the cross-section of forecasters, while the sec-
ond reflects the unpredictable part of GDP. Note that even
though the individual components in the sum of Equation (1)
are Gaussian, the mixture allows for nowcast distributions with
highly non-Gaussian features such as skewness, multi-modality
or heavier-than-normal tails (see, e.g., Frithwirth-Schnatter 2006,
for a detailed discussion). Estimates for ¢? are obtained from a
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rolling window of = = 12 quarters, that is, 3 years worth of quar-
terly nowcasts. We optimize the parameter using the continuous
ranked probability score (CRPS) as predictive loss that we seek to
minimize for the pool of forecasters.?

It remains to explicitly define the minimization problem. We use
»"” to denote the real-time realization of GDP growth and assume
normally distributed nowecasts, in line with Equation (1): @f =
min, (Zf:‘(lr_w)zfi ', CRPS ( Ny 62, 97 ) ) Moving the rolling
window forward yields a sequence of estimates &f. Two features
are worth mentioning. First, this introduces time-varying vari-
ances, as we have estimates for each 7, and w governs the persis-
tence of these estimates. Second, even though the @f’s are dated
at time ¢, we only use information up to 7 — 1 (i.e., we do not mix
information sets). We may use this procedure to obtain Monte
Carlo samples or quantiles from the ensemble predictive distri-
bution in Equation (1):

N,
1 )
E;N(ﬂip g, ) (2)

Indeed, this is how we obtain the full predictive distribution of the
SPF ensemble nowcast whose pth quantile, y;{ ) , is the ensemble
nowecast for GaR at quantile p at time ¢. The consensus nowcast

is given by }ff ) = U,

22 |
Growth

Estimating Real-Time Quantiles of Output

The final challenge is that the true quantiles of output growth are
not observed. Each observation of GDP is just a single realization
of an underlying stochastic process, and comparing these realiza-
tions to our GaR expectations is futile. Next, we discuss how we
estimate the real-time latent quantiles of the GDP growth pro-
cess, which we require to compute NEs quantile-by-quantile (by
contrast, having access to explicit measures of quantiles is not
necessary when the focus is on out-of-sample predictive infer-
ence and designing scoring rules used for model selection, see,
e.g., Gneiting and Ranjan 2011).

Our baseline framework is similar to Loria, Matthes, and
Zhang (2024); that is, to estimate the unobserved quantiles of
output, we use a variant of quantile regression. In particular,
given its substantial degree of flexibility, our implementation is
based on a Bayesian time-varying parameter quantile regression
(TVP-QR) as in Pfarrhofer (2022). Let {y,}” denote a scalar
dependent variable, {x,}IT=1 comprises K predictors at time ¢t =
1, ...,T,andgq,(x,) = x| B, is the pth quantile function of y, given
x, for p € (0,1). We use a model of the form y, = x,8,, + ¢, with
/_000 f(e)de, = p, that is, the pth quantile of the error distribu-
tion f(e) is equal to zero. Specifically, we assume ¢, to follow an
asymmetric Laplace (AL) distribution with scale 2. The i S are
quantile-specific vectors of size K x 1 which collect the parame-
ters that vary over time. We assume an independent random walk
state equation for each of these parameters and rely on a dynamic
shrinkage prior for regularization.

This framework consists of two crucial ingredients. First, it allows
coefficients to vary at quantile p, allowing for heterogeneous

effects across specific parts of the distribution of y,. Second, the
magnitudes of these effects are allowed to vary over time. The for-
mer reflects the literature on measuring tail risks of GDP growth,
following Adrian, Boyarchenko, and Giannone (2019), while the
latter allows for another layer of nonlinearity that has been found
to improve accuracy (see, e.g., the corresponding discussion in
Clark et al. 2024). The target variable y, is the respective first
released vintage of the annualized growth rate of real GDP. These
data are from the Real-Time Data Set for Macroeconomists. We
choose these vintages such that our target variable is as close as
possible to the conceptual variable that the participants of the SPF
were asked to forecast at the time.

Our vector of predictors contains Q common factors f, that
drive economic fluctuations in the US economy. In particular,
we use a macroeconomic real-time dataset of 80 variables such
that it resembles the potential information set a forecaster of the
SPF has access to.> We extract Q = 4 factors following Stock and
Watson (2002). Additionally, we add lags of the National
Financial Conditions Index (NFCI), labeled z,, which
has been identified as an important variable that shifts
the quantiles of GDP, lags of the dependent variable
and an intercept term. We use P =4 lags such that
X, =L Yigs oo ViipsZicts o 2 Ziips s s f1p)

Running our algorithm produces estimates for the quantiles of
GDP growth for each point in time, that is, the fitted “realized”
values ﬁ(p',) = xB,,, which we interpret as the best possible esti-
mate of the true real-time quantile (we stress that these quantiles
are subject to potential measurement errors, and some of our
results below thus must be interpreted with caution). Note that
our procedure is based on an expanding window of observations,
such that the information sets of the quantile model and the one
available to the SPF forecasters is consistent. Our implementation
is fully Bayesian, which implies that we obtain a posterior distri-
bution for the fitted quantiles. We summarize this distribution by
taking the posterior median at a particular quantile of interest.

2.3 | Empirical Estimates for Growth-at-Risk
Nowcast Errors

Our full sample runs from 1968Q4 to 2019Q4. Figure 1 shows
real GDP growth and the quantiles estimated with TVP-QR in the
upper panel. The shaded areas range between the 10th and 90th
percentile. The solid line is actual GDP growth, while the dashed
line indicates the 50th percentile estimated using TVP-QR. The
lower panel is a chart of the SPF nowcast distribution. The shaded
area again reflects the 80 percent credible set, “Median” indicates
the default SPF aggregation as used in Enders, Kleemann, and
Miiller (2021) whereas “Ensemble” is the point nowcast arising
from using the methods of Kriiger and Nolte (2016) as described
above. These two approaches coincide for the mean/median, but
our implementation yields a full predictive distribution.

Next, we formally define the versions of NEs that we consider
descriptively and in our structural application. We previously
denoted the consensus nowcast with yﬁf ) and the realization as
yf’). These serve as the basis for the variant that replicates Enders,
Kleemann, and Miiller (2021). Recall that our estimates from

TVP-QR yield the quantile-based counterpart for observed GDP,
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median; “Median” refers to the default SPF.

)‘1;',) , and that the quantiles of the distribution in Equation (2)

define our SPF nowcast of the pth quantile, y;{ ). The NEs are

ne, =y - 3", ©)

ne, = 5 ) @
We purge the NEs of any remaining predictable components by
running ARIMA models with automatic lag selection.* Figure 2
shows the resulting NEs; “Actual” refers to those for the con-
sensus nowcast and actual GDP observations, as in Equation (3),
while the colored lines mark those for GaR at the indicated quan-
tile based on Equation (4). The baseline NEs are identical (up to
a scaling factor) to those shown in Figure 1 of Enders, Kleemann,
and Miiller (2021). The dynamics of our quantile-based versions
are similar. Indeed, all our versions of NEs are positively cor-
related at varying strengths (additional results are provided in
the Supporting Information). For the median, the correlation
exceeds 0.8, and we conclude that our framework to extract
quantile-based nowcast errors yields reasonable results.

3 | Belief Shocks and Their Effects on the
Business Cycle

We now turn to the specification and identification of the struc-
tural VAR that we use to recover dynamic causal effects of belief
shocks. This section contains the main empirical results: those
for our narrow replication of the original implementation and our
extension focusing on nowcasts about GaR.

3.1 | The Vector Autoregression and Structural
Identification

Aslaid out in Enders, Kleemann, and Miiller (2021), belief shocks
can be extracted from the NE. We use a bivariate VAR that fea-
tures the NE (ne, for the plain version, and ne, when we con-
sider GaR) and output, labeled y,, as endogenous variables. We

10
5jf”\ M .\MMMM
0 W AV \/ V

Vv

2000 2010

Real GDP growth, estimated quantiles, and SPF nowcast distribution. Shaded areas show the 10th and 90th percentiles around the

stack these in the vector x, = (ne,, y,)’ and estimate the following
reduced form VAR:

P
x, = ZA,x,_, + Bd, +u,,

=1

u, ~N(@O,3). (5)

A, is the dynamic coefficient matrix forlag/ =1, ... , P, B com-
prises the parameters associated with deterministic components
d, = (1,1,*) and u, = (uye,,u,,) are reduced form errors fol-
lowing a multivariate Gaussian distribution with zero mean and
covariance matrix X. The structural belief (b) and non-belief (nb)
shocks comprise the vector €, = (e, . €,,)'. They are uncorre-
lated and their variance is normalized such that €, ~ N'(0, I).
To achieve identification, we need to pin down the elements of
the matrix A,, which maps structural shocks to reduced form
innovations u, = Ae,. This implies that £ = AjA{ and presents
a well-known identification problem.

Further restrictions are necessary to give economic meaning
to our structural shocks, which we introduce as follows. The
belief shock causes a negative co-movement between the now-
cast error and output, because a negative (positive) nowcast error
means that the consensus survey expectation of growth is higher
(lower) than current output growth in real-time. Hence, agents
are overly optimistic which causes an outward (inward) shift of
the demand curve and subsequently output increases (decreases).
The non-belief shock differs from the belief shock insofar as it
causes co-movement between the nowcast error and output. This
gives rise to sign restrictions on the elements of A,:

Une,s — + + €nb,¢

Uy, + - Epy
which set-identifies the structural shocks. For estimation and
structural inference we rely on Bayesian methods. We use vari-
ants of Bayesian VARs with weakly informative Minnesota-type
priors, and alternative implementations are noted when appli-
cable. We use a Gibbs sampler and draw 15,000 times from the
posterior distribution while discarding the first 5000 draws as

burn-in. For the sign restrictions, we rely on the algorithm pro-
posed by Rubio-Ramirez, Waggoner, and Zha (2010).°
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3.2 | Revisiting the Original Belief Shocks

We replicate the main findings of Enders, Kleemann, and
Miiller (2021) and corroborate their results along several dimen-
sions. First, we consider two sampling periods. Specifically, we
apply our framework to the original sample which ranges from
1968Q4 to 2014Q4, but also use an extended version which runs
through 2019Q4.% Second, we consider different specifications of
the VARs. On the one hand, we vary the number of lags P €
{2,4, 6}. On the other hand, we consider both a flat prior (for the
“exact” replication of Enders, Kleemann, and Miiller 2021) and
the weakly informative prior implementation mentioned above.”

Impulse response functions are computed for a horizon of 20
quarters and shown in Figure 3 for the respective subsamples
in panels (a) and (b). Non-belief and belief shocks are in the
respective left and right columns; the upper rows refer to the
NE, while the bottom row depicts the response of output growth.
The recovered dynamic responses are virtually identical to those
in Enders, Kleemann, and Miiller (2021, compare their Figure
5 to our Figure 3a), for all considered model specifications. The
imposed sign restrictions result in positive co-movement between
the NE and output in response to the non-belief shock, and nega-
tive co-movement for the belief shock on impact. Note that prop-
agation dynamics are left unconstrained by this identification
scheme. The response of the NE is short-lived for both shocks and
insignificant for all horizons apart from the impact. The output
response by contrast is fairly persistent. Depending on the level of
statistical significance, it turns indistinguishable from zero after
about 12-15 quarters. A negative NE corresponds to excessively
optimistic beliefs. In this case, survey expectations exceed actual
real-time output growth, because agents have an optimistic out-
look. This optimism about current output growth causes actual
output growth to increase.

Varying the number of lags and introducing modest shrinkage via
a Minnesota-type prior has minor implications for the persistence
of our posterior median estimates. But these differences are statis-
tically insignificant. Comparing the extended sample in Figure 3b
to the original period in Figure 3a, as in Enders, Kleemann, and
Miiller (2021), indicates that this extension has no discernible
consequences for the results. To sum up this narrow replication
study, we find that the original results are robust to alternative

X6 - [ [ [ ]
1980 1990 2000 2010

— p=0.1 — p=0.9

NEs computed with actual realizations of real GDP growth and the indicated selected GaR probabilities.

specifications and implementations of the baseline econometric
framework.

3.3 | Nowcast Errors About Growth-at-Risk

In this subsection, we investigate whether nowcast errors about
GaR can be used as an alternative reduced form measure to iden-
tify belief shocks. These nowcast errors can be interpreted as
misjudgments of macroeconomic risk in real-time. The result-
ing belief shocks potentially differ from the mean-based ones
discussed above (e.g., through fundamental macroeconomic or
financial shocks asymmetrically affecting the objective versus
subjective nowcast distribution of output). The empirical find-
ings of this section thus also relate to those of Loria, Matthes, and
Zhang (2024), who measure quantile-specific responses of output
growth to several fundamental (mean-based or externally identi-
fied) macroeconomic and financial shocks. By contrast, we use
the NEs that originate in the quantiles to pin down shocks in a
mean-based linear VAR framework.

Given the robustness of the original results that we established in
the preceding section, we limit ourselves to using the full sample
ranging from 1968Q4 to 2019Q4, and use a lag length of P =4
in the Bayesian VAR. As pointed out earlier, we now use the
full predictive distribution from the SPF and rely on the NEs
as defined in Equation (4) to capture these aspects.® The main
results from this exercise are presented in Figure 4, in form of the
red-colored impulse response functions. The columns now report
the dynamic effects of belief shocks for three different quantiles
p € {0.1,0.5,0.9}. Since the nowcast errors are a reduced form
measure, we identify belief shocks via sign restrictions using mea-
sures of downside, median, and upside risk. For ease of refer-
ence, the effects measured in the narrow replication are shown in
shades of gray, and the dashed line marks the posterior median
estimate from before.

Peak response effects occur slightly earlier and they are also a
bit subdued when compared to the original framework. But the
credible sets are inflated when considering the quantiles, and the
structural VAR yields similar (and statistically indistinguishable)
dynamic effects. Overall we thus conclude that considering belief
shocks in different parts of the nowecast distribution does not
cause any noteworthy differences when the focus is on explaining
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Impulse response functions to a non-belief and belief shock. Estimation of bivariate Bayesian VAR(4) identified with sign restrictions.

Solid black lines are posterior median responses, while gray shaded areas depict the 68%/80%/90% credible sets of the flat prior version of this model. NEs
and output are measured in deviations from trend in percentage points. Dashed and dotted lines refer to posterior medians of alternative specifications.
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Impulse response functions to belief shocks using GaR-NEs. Estimation of bivariate Bayesian VAR(4) identified with sign restrictions.

Black/red lines denote the posterior median responses while gray/red shaded areas depict the 68%/80%/90% credible sets. Nowcast error and output are
measured in deviations from trend in percentage points. Responses in black/gray denote the original model of Enders, Kleemann, and Miiller (2021),

while the responses in red denote the impulse responses to the belief shocks arising from the tails of nowcast distributions.

business cycle fluctuations. The mean-based original implemen-
tation is sufficient to induce the characteristic effects which are
mostly homogeneous across GaR quantiles. This corroborates the
results of Enders, Kleemann, and Miiller (2021) in a wide sense.
And this finding can, at least in part, be traced back to the notion
that SPF nowcasts for output growth in our sampling period are
mostly unimodal and symmetric.

But while differences between effects at different probabilities of
GaR are statistically insignificant, some interesting heterogeneity
still emerges. For instance, zooming into the belief shock using
an upside risk NE at p = 0.9 we find that the corresponding 90

percent credible set includes zero for all horizons apart from the
impact. It is also worth mentioning that the median response
is less clearly hump-shaped and flatter, particularly when con-
trasted with the one for downside risk at p = 0.1. This pattern
appears monotonically when transitioning from the upper to the
lower quantiles (using finer grids of GaR).

We again stress that none of these differences are significant
in a statistical sense, but they point towards the notion that
the overall effects of belief shocks are at least to some extent
driven by misperceptions about adverse economic dynamics (in
the lower tails). This is in line with the literature on GaR, which
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has indeed almost exclusively focused on the lower tails of output
growth. Given the linearity of the model, positive and negative
shocks yield symmetric effects, so this also implies a somewhat
stronger expansion in response to benign belief shocks about
downside risk.

4 | Closing Remarks

In this paper, we replicate the study of belief shocks and their
implications by Enders, Kleemann, and Miiller (2021). Their
results are robust in a narrow sense concerning data sourcing,
econometric specification, and software implementation. In a
wide sense, we also investigate whether belief shocks differ when
using nowcast errors from the tails of the nowcast distribution
of output growth. Our findings suggest that the originally pro-
posed approach is sufficient to measure the overall effects of belief
shocks on business cycle fluctuations adequately. Distinct pat-
terns in dynamic responses arising from considering the full now-
cast distribution are negligible for the most part.
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Endnotes

! The literature investigating belief distortions/wedges or disagreement
usually focuses on mean outcomes and the cross-sectional disper-
sion of beliefs or expectations (Lahiri and Sheng 2010; Dovern, and
Enders 2023; Adam, Matveev, and Nagel 2021; Bianchi, Ludvigson,
and Ma 2022; Bhandari, Borovicka, and Ho 2022; Boeck 2023; Born
et al., 2012; Pei 2024).

2The CRPS(f(e]0),w) = [ (F(z]0) — l(w < 2))’dz, where f(o|0)
refers to the probability density function of some (predictive) dis-
tribution with parameter vector 0, F(z|0) = f_zw f(w|@)dw is the
corresponding cumulative distribution function, and w is the realized
value. In our application, f(e|0) is Gaussian, and € comprises a known
mean and unknown variance. See Gneiting and Raftery (2007) and
Gneiting and Ranjan (2011) for details and discussions of the favorable
properties of the CRPS as a scoring rule.

3 The dataset is described in more detail in Appendix B. Our results are
robust to relying on the most recent data vintage of the FRED-QD
database. In this case, we explicitly exploit the most recently available
information to measure the quantiles of the first release vintage of GDP
for each period.

4 For some quantiles the NEs exhibit a modest amount of persistence,
which we eliminate with this procedure. We also estimated the VAR
model in Section 3 without purging the NEs from predictable compo-
nents. In this case, the main results for output are very similar, but there
is some persistence in the responses of the nowcast errors.

5 This algorithm is based on a QR decomposition to draw uniformly from
the space of orthonormal matrices to construct A, that satisfies the
sign restriction. The original implementation of Enders, Kleemann, and
Miiller (2021) uses Givens rotation matrices to draw uniformly from
the space of orthonormal matrices. Hence, these approaches draw from
the same space of orthonormal matrices to construct A,. An alternative
approach that introduces identification information explicitly is due to
Baumeister and Hamilton (2015).

5 We thus estimate the model excluding the post-Covid period. Extending
the sample further but downweighting/dropping the pandemic obser-
vations (see, e.g., Lenza and Primiceri 2022) yields qualitatively similar
results.

7 Note that Enders, Kleemann, and Miiller (2021) carried out their com-
putations in MATLAB and relied on a frequentist approach to estimation
and inference. By contrast, we have independently compiled the dataset,
and use a Bayesian VAR implemented in R. This provides robustness
from a data, econometric, and software perspective.

8The NEs are based on real-time predictions of GaR. In a robustness
check, we also estimate the true quantile processes based on full-sample
information for the final vintage data of the predictors. The results are
robust to this choice.
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