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Abstract
We prove a version of the fundamental theorem of asset
pricing (FTAP) in continuous time that is based on the
strict no-arbitrage condition and that is applicable to
both frictionless markets andmarkets with proportional
transaction costs. We consider a market with a single
risky asset whose ask price process is higher than or
equal to its bid price process. Neither the concatenation
property of the set of wealth processes, that is used in the
proof of the frictionless FTAP, nor some boundedness
property of the trading volume of admissible strate-
gies usually argued within models with a nonvanishing
bid–ask spread need to be satisfied in our model.

KEYWORDS
fundamental theorem of asset pricing, no unbounded profit with
bounded risk, proportional transaction costs, strict no-arbitrage

1 INTRODUCTION

In frictionless financial marketmodels with finitelymany assets and a single probabilitymeasure,
the arbitrage theory can be considered to be fully understood in principle. The fundamental the-
orem of asset pricing (FTAP) by Delbaen and Schachermayer (1998) states that a market model
satisfies no free lunch with vanishing risk (NFLVR) iff there exists an equivalent probability mea-
sure under which discounted asset prices are 𝜎-martingales. A variant of this theorem by Yan
(1998) provides even true martingales by considering a credit line that is a multiple of the sum
of all asset prices in the market. For a detailed discussion of the arbitrage theory in frictionless
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markets, we refer the reader to Delbaen and Schachermayer (2006) and Eberlein and Kallsen
(2019, Subsection 11.7).
The picture for models with proportional transactions costs that generalize frictionless markets

by allowing for bid–ask spreads is different. The picture is clear-cut in finite discrete time and for a
finite probability space: in a general “currencymodel,” Kabanov and Stricker (2001) show that no-
arbitrage (NA) is equivalent to the existence of a so-called consistent price system (CPS), which is
a multidimensional martingale under the objective probability measure taking values within the
dual of the cone of solvent portfolios at each point in time. In the special case of only one risky
asset that we consider in the present paper, a CPS is a pair of an equivalent probability measure
and a martingale under this measure that lies between the (discounted) bid and the (discounted)
ask price of the risky asset. For infinite probability spaces, this equivalence fails; Schachermayer
(2004, Example 3.1) provides an example for an arbitrage-free market, which allows an approxi-
mate arbitrage, that is, a nonzero and nonnegative portfolio which is the limit in probability of a
sequence of portfolios attainable fromzero endowment, and consequently aCPS cannot exist. This
raises the obvious question under which stronger no-arbitrage conditions the existence of a CPS
can be guaranteed. Schachermayer (2004) introduces the concept of robust no-arbitrage (NA𝑟)—
a no-arbitrage condition which is robust with respect to small changes in the bid–ask spreads.
Loosely speaking, if the bid–ask spread (of a pair of assets) does not vanish, there have to exist
more favorable bid–ask prices, leading to a smaller spread, such that the modified market still
satisfies NA. Schachermayer (2004) shows that NA𝑟 implies that the set of terminal portfolios
attainable from zero endowment is closed in probability, and that NA𝑟 is equivalent to the exis-
tence of a strictly consistent price system (SCPS), that is, a martingale taking values within the
relative interior of the dual of the cone of solvent portfolios at each point in time. For general
probability spaces but only one risky asset (in addition to a bank account), it is shown by Grig-
oriev (2005) thatNAalready implies the existence of aCPS, although the set of attainable portfolios
need not be closed in probability; see also Bayraktar and Zhang (2016) for a different proof that
holds in the more general framework of model uncertainty.
Most of the literature on continuous time models is based on the NA𝑟 concept. Guasoni et al.

(2010) derive a FTAP for a continuousmid-price process and small deterministic transaction costs.
This means that the equivalence between no-arbitrage and the existence of a CPS holds asymp-
totically for small transaction costs. Guasoni et al. (2012) prove a FTAP under a continuous time
extension ofNA𝑟 called robust no free lunch with vanishing risk (RNFLVR). The condition states
that the bid–ask market has to satisfy NFLVR also for slightly more favorable bid and ask prices.
The reduction of the spread is uniformly in time but not uniformly in the scenario. The closed-
ness required for portfolio optimization is shown under similar conditions, see Czichowsky and
Schachermayer (2016).
Introduced by Guasoni (2006), another popular sufficient condition to obtain an arbitrage-free

model is stickiness. It is formulated in the special case that the investor pays deterministic trans-
action costs when she buys or sells at a stochastic (mid-)price process. Roughly speaking, the
condition states that there are positive probabilities that the mid-price stays in neighborhoods of
its starting value. The appeal of the condition is that it is satisfied for many of the stochastic pro-
cesses usually considered in stochastic modeling (e.g., for fractional Brownian motion). On the
other hand, it is of course far away from being necessary.
An alternative to NA𝑟 is the strict no-arbitrage (NA𝑠) condition introduced by Kabanov et al.

(2002). Loosely speaking, a market model satisfiesNA𝑠 if any claim which is attainable from zero
endowment up to some intermediate time 𝑡 and can be liquidated in 𝑡 for sure can also be attained
from zero endowment by trading at time 𝑡 only. Property NA𝑠 alone does not imply the existence
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of a CPS, see Schachermayer (2004, Example 3.3) for the existence of an approximate arbitrage
underNA𝑠. For a detailed discussion, we refer to the monograph of Kabanov and Safarian (2009).
More recently, Kühn and Molitor (2019) introduced (in discrete time) a variant of NA𝑠 that is
called prospective strict no-arbitrage (NA𝑝𝑠). A market model satisfiesNA𝑝𝑠 if any claim which is
attainable from zero endowment by trading up to some intermediate time 𝑡 and can subsequently
be liquidated for sure can also be attained from zero endowment in the subsequent periods (here,
“subsequent” is not understood in a strict sense). This means that in contrast to theNA𝑠 criterion,
one does not distinguished between a trade that can be realized at time 𝑡 and a trade from which
one knows at time 𝑡 for sure that it can be realized in the future.NA𝑝𝑠 is slightly weaker thanNA𝑟,
but it guarantees that the set of terminal portfolios attainable from zero endowment is closed in
probability (see Kühn and Molitor, 2019, Theorem 2.6).
The aim of the present paper is to extend Kühn and Molitor (2019) to continuous time. We

consider a single risky asset with càdlàg bid and ask price processes that may or may not coincide
depending on the scenario and time. An essential preparatory work is the paper by Kühn and
Molitor (2022). Under no unbounded profit with bounded risk (NUPBR) for simple strategies, it is
shown that there exists a semimartingale price system, that is a semimartingale lying between the
bid and ask price processes. Then, Kühn andMolitor (2022) show how these semimartingales can
be used to construct gains of general trading strategies that are not necessarily of finite variation.
For the continuous time extension of Kühn and Molitor (2019) that we consider in the present
paper, it is very natural to merge the NA𝑝𝑠 condition with no unbounded profit with bounded
risk (NUPBR). The latter is needed for the frictionless FTAP (the combination of NA and NUPBR
is equivalent toNFLVR).Very loosely speaking, amarketmodel satisfies the newcondition thatwe
call prospective strict no unbounded profit with bounded risk (NUPBR𝑝𝑠) if the set of cost values of
the portfolios that can be liquidated at maximal loss of 1 is bounded in probability. The cost value
was introduced by Bayraktar and Yu (2018) as the cost to enter the portfolio position. It is the
counterpart of the liquidation value. In the special cases of a discrete time model or a frictionless
model,NUPBR𝑝𝑠 coincide withNA𝑝𝑠 and NUPBR, respectively. As in almost all FTAPs, we prove
that the set of attainable terminal portfolios is closed. This property is of independent use.
In plain English, the key idea of our proof is that if a stock position is built up at a time with

positive spread (in terms of the “actual” bid and ask prices), there is a positive worst-case risk
taken by the investor that cannot be eliminated by smart trading at a later stage. This restricts
the amount of shares that can be hold at that time. Of course, the restriction also depends on the
current wealth of the investor (whereby we value positions at their cost/purchase price). Once
the number of assets is bounded on an interval, a semimartingale price system can be used to
show that trading costs cannot explode. The same holds for the total variation of strategies as
long as the spread is bounded away from zero. Then, we can apply the stochastic version of
Helly’s theorem by Campi/Schachermayer, and after passing to forward convex combinations,
any sequence of strategies converges pointwise to a finite limit. By contrast, the worst-case risk
described above disappears if the spread is zero since then a stock can be liquidated again imme-
diately at the same price as it has been purchased. But, for frictionless intervals, we can apply the
(completely different) results used for the proof of the frictionless FTAP byDelbaen and Schacher-
mayer (1998). Here, one directly analyzes thewealth processes (without having a good control over
the size of the strategies) and use that the investor can always switch between strategies without
transaction costs.
Unfortunately, although the basic intuition described above sounds not too complicated the

details are extremely technical. The main difficulties arises from the transition of frictionless
periods and periods with friction. This can occur continuously or by jumps that cause different
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mathematical difficulties.Wenevertheless hope tomake themain ideas accessible to awider read-
ership. The above-mentioned worst-case risk is a new approach to the problem that is also rather
different to the arguments used under the RNFLVR condition. The latter use that any transaction
leads to costs that are added to the gains coming from a more favorable but still arbitrage-free
price system. This means that the starting point is to control the trading volume of the strategies.
The rest of the paper is organized as follows. In Section 2, we introduce the notation and the

financial model, discuss the assumptions, and state the main results of the paper (Theorems 2.22
and 2.23). Section 3 is devoted to their proofs. Appendix A consists of auxiliary statements and
their proofs that are not directly linked to a financial application.

2 DEFINITIONS ANDMAIN THEOREMS

Throughout the paper, we fix a terminal time 𝑇 ∈ ℝ+ and a filtered probability
space (Ω, , (𝑡)𝑡∈[0,𝑇], 𝑃) satisfying the usual conditions. The predictable 𝜎-algebra on
Ω× [0, 𝑇] is denoted by  , the set of bounded predictable processes starting at zero by 𝐛 .
A stopping time 𝜏 is allowed to take the value ∞, but [[𝜏]] ∶= {(𝜔, 𝑡) ∈ Ω × [0, 𝑇] ∶ 𝑡 = 𝜏(𝜔)}.
Especially, we use the notation 𝜏𝐴, 𝐴 ∈ 𝜏, for the stopping time that coincides with 𝜏 on 𝐴

and is infinite otherwise. (In)equalities between stochastic processes are understood “up to
evanescence,” that is, up to a global 𝑃-null set not depending on time. The term Var𝑏𝑎(𝑋) denotes
the pathwise variation of a process 𝑋 on the interval [𝑎, 𝑏]. In the case that 𝑃(Var𝑏𝑎(𝑋) < ∞) = 1,
𝑋 = 𝑋𝑎 + 𝑋↑ − 𝑋↓ is its Jordan–Hahn decomposition into two nondecreasing processes on
[𝑎, 𝑏] with 𝑋↑

𝑎 = 𝑋↓
𝑎 = 0. A real-valued process 𝑋 is called làglàd if and only if all paths pos-

sess finite left and right limits (but they can have double jumps). We set Δ+𝑋 ∶= 𝑋+ − 𝑋

and Δ𝑋 ∶= Δ−𝑋 ∶= 𝑋 − 𝑋−, where 𝑋𝑡+ ∶= lim𝑠↓𝑡 𝑋𝑠 and 𝑋𝑡− ∶= lim𝑠↑𝑡 𝑋𝑠 (with the con-
vention 𝑋𝑇+ ∶= 𝑋𝑇 and 𝑋0− ∶= 𝑋0). For a random variable 𝑌, we set 𝑌+ ∶= max(𝑌, 0) and
𝑌− ∶= max(−𝑌, 0). The standard stochastic integral as defined in Jacod and Shiryaev (2003,
Definition III.6.17) is denoted by 𝜑 ∙ 𝑆 for 𝜑 ∈ 𝐿(𝑆) with the convention 𝜑𝜑 ∙ 𝑆 = (𝜑𝜑) ∙ 𝑆.
It does not cause any ambiguity that by 𝜑 ∙ 𝑆 we also denote the integral of an almost sim-
ple integrand (cf., e.g., Kühn and Molitor, 2022, Definition 3.15) of the form, for example,
𝜑 = 1]]𝜏1,𝜏2[[ with respect to a làglàd process 𝑆 (not necessarily a semimartingale and not even
right-continuous). The integral reads 𝜑 ∙ 𝑆 ∶= (𝑆𝜏2− − 𝑆𝜏1)1{𝜏2>𝜏1} and analog definitions are
canonical (the integral does not allow to “invest” separately in Δ+𝑆). For làglàd processes 𝑋 and
𝑌, we define the metric 𝑑𝑢𝑝(𝑋, 𝑌) ∶= 𝐸(sup𝑡∈[0,𝑇] |𝑋𝑡 − 𝑌𝑡| ∧ 1) that metrizes the convergence
“uniformly in probability.” For semimartingales 𝑋 and 𝑌 (that are by definition càdlàg), the
Émery metric is defined by 𝑑𝕊(𝑋, 𝑌) ∶= sup𝐻∈𝐛 ,||𝐻||∞≤1 𝐸(sup𝑡∈[0,𝑇] |𝐻 ∙ (𝑋 − 𝑌)𝑡| ∧ 1) that
metrizes convergence in the semimartingale topology.
The financial market consists of one risk-free asset or bank account that does not pay interest

and one risky asset with bid price 𝑆 and ask price 𝑆 expressed in units of the risk-free asset. We
assume that 𝑆 and 𝑆 are adapted càdlàg processes with

0 ≤ 𝑆 ≤ 𝑆 and 𝑆𝑇 > 0. (1)

The second condition is made to avoid confusion. Namely, a vanishing ask price would already
lead to an arbitrage in the multidimensional sense (see Definition 2.13 below) but not necessarily
in the one-dimensional sense, which is considered when the market is frictionless.
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Definition 2.1. The actual bid and ask price processes are defined as the càdlàg versions of 𝑋
𝑡
=

essinf𝑡 sup𝑢∈[𝑡,𝑇] 𝑆𝑢 and𝑋𝑡 = esssup𝑡 inf𝑢∈[𝑡,𝑇] 𝑆𝑢 (whose existence is shown in Proposition A.1
that also provides the precise definition of the conditional essential infimum/supremum). The
actual bid–ask spread is denoted by 𝑋 ∶= 𝑋 − 𝑋.

In discrete time transaction costsmodels, these processes that take certain future trading oppor-
tunities into account have already proven to be very useful. For the case of only one risky asset,
which we consider in this paper, Sass and Smaga (2014, equation before Lemma 4.1) introduce
them by a backward recursion. We leave it as an easy exercise to the reader to prove (by induction
on the number of periods) that in (finite) discrete time the processes from Definition 2.1 coincide
with the processes in Sass and Smaga (2014). In the general multidimensional Kabanov model,
the (discrete time) actual bid and ask price processes correspond to the set-valued processes that
are constructed in Rokhlin (2008, p. 95) by a more general backward recursion.
The random variable 𝑋

𝑡
is the highest price at which the investor can liquidate the stock at

present or in the future for sure—with the information she has at time 𝑡. One has 𝑋
𝑡
≥ 𝑆

𝑡
. When

the inequality is strict, it is silly to liquidate the position right now. The continuous time counter-
part of the NA𝑝𝑠 condition from Kühn and Molitor (2019) has to be expressed in terms of (𝑋, 𝑋)
since it captures trading opportunities in the future.
To work with the processes 𝑋 and 𝑋 is strongly related to freezing a portfolio position as it is

done in Guasoni et al. (2012). They start with almost simple strategies and consider associated
portfolios that are frozen after a transaction of the original portfolio if a better liquidation price
can be achieved for sure in the future. By introducing𝑋 and𝑋, we can directly work with general
strategies that shortens the proofs. The relation to Guasoni et al. (2012) is discussed further after
Definition 2.13.
We decided to pass already now to the actual bid and ask price processes because in the spirit of

Guasoni et al. (2012), the admissibility condition has anyhow to be expressed in terms of these
processes, and also a meaningful definition of a “frictionless interval” is in terms of the actual
bid and ask prices 𝑋,𝑋 rather than in terms of 𝑆, 𝑆 themselves. But, for the motivation of the
admissibility condition, we keep the original processes 𝑆 and 𝑆 in mind. We note that the “actual
actual bid and ask prices” are just the actual bid and ask prices. For the price processes that are
commonly considered, we have that 𝑋 = 𝑆 and 𝑋 = 𝑆.
The arbitrage theory in continuous time frictionless markets is based on the set of general trad-

ing strategies, that is, on the set of predictable processes 𝐿(𝑆) which are integrable against the
semimartingale 𝑆 modeling the stock price. This set was generalized to models with transaction
costs beyond efficient friction by Kühn and Molitor (2022). As in frictionless markets, but in con-
trast to models with efficient friction, the set contains strategies of infinite variation. Accordingly,
the present paper is based on this set and the corresponding self-financing condition. We only
outline the definitions that are needed to follow the present paper. For the rest of the paper, we
assume that there exists a semimartingale price system, that is, a semimartingale 𝑆 such
that

𝑋 ≤ 𝑆 ≤ 𝑋. (2)

Remark 2.2. Of course, Equation (2) includes the condition that 𝑋 ≤ 𝑋. This condition is vio-
lated in a market with 𝑆 = 𝑆 and 𝑆 generated by an unfavorable doubling strategy such that
𝑆
0
= 2 and 𝑆

𝑇
= 1. Then, one has 𝑋 = 𝑆 > 𝑋 = 1 on a set that is not evanescent. But, the model
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is only arbitrage-free with the bank account as numéraire. In the present paper, we work with
a numéraire-free no-arbitrage condition that rules out such price processes and perfectly fits to
actual bid and ask price processes.
Under a mild NUPBR-condition for simple strategies in the bid–ask model, it is shown in

Kühn and Molitor (2022, Theorem 2.7) that a semimartingale price system exists. To motivate
Equation (2), we can apply this theorem to 𝑋, 𝑋. The assumptions we need in the present paper
to establish a FTAP are stronger—even if they were only required for simple strategies. Thus,
Equation (2) is no further restriction.

For the extension of the self-financing condition to general strategies, also the following
assumption is needed.

Assumption 2.3. For every (𝜔, 𝑡) ∈ Ω × [0, 𝑇)with𝑋𝑡(𝜔) = 𝑋
𝑡
(𝜔), there exists an 𝜀 > 0 such that

𝑋𝑠(𝜔) = 𝑋
𝑠
(𝜔) for all 𝑠 ∈ (𝑡, (𝑡 + 𝜀) ∧ 𝑇) or 𝑋𝑠(𝜔) > 𝑋

𝑠
(𝜔), 𝑋𝑠−(𝜔) > 𝑋

𝑠−
(𝜔) for all 𝑠 ∈ (𝑡, (𝑡 +

𝜀) ∧ 𝑇).

This means that each zero of the path 𝑡 ↦ 𝑋𝑡(𝜔) − 𝑋
𝑡
(𝜔) is either an inner point from the right

of the zero set or a starting point of an excursion away fromzero.Wenote that there starts no excur-
sion of the càdlàg function 𝑓(𝑡) ∶=

∑∞

𝑛=1
(2−𝑛 − 𝑡)1(2−(𝑛+1)≤𝑡<2−𝑛) at 𝑡 = 0 since there are zeros of

the left limit. Assumption 2.3 incorporating left limits is already needed in the proof of Kühn and
Molitor (2022, Lemma 5.1) to ensure that the constructed excursion has a positive length.
Under Assumption 2.3, it is shown in Kühn andMolitor (2022, Lemma 5.1 and Lemma 5.2) that

there exist sequences of stopping times (𝜏𝑖1)𝑖∈ℕ and (𝜎
𝑖
1)𝑖∈ℕ that exhaust the set of starting times

of the excursions of the spread away from zero and the set of starting times of the frictionless
intervals, respectively. Hence, there is a decomposition

Ω× [0, 𝑇] = ∪𝑖∈ℕ(𝑐𝑖 ∪ 𝑓𝑐
𝑖
) up to evanescence, where

𝑐
𝑖
∶=]](𝜏𝑖1){𝑋𝜏𝑖

1
=0}, Γ(𝜏

𝑖
1)]] ⧵ [[(Γ(𝜏

𝑖
1)){𝑋Γ(𝜏𝑖

1
)−
=0}]] ∈  ,

𝑓𝑐
𝑖

∶= [[(𝜎𝑖1){𝑋𝜎𝑖
1
−
=0}]]∪]]𝜎

𝑖
1, Λ(𝜎

𝑖
1)]]

∪(]](Λ(𝜎𝑖1)){𝑋Λ(𝜎𝑖
1
)
>0}, Γ(Λ(𝜎

𝑖
1))]] ⧵ [[(Γ(Λ(𝜎

𝑖
1))){𝑋Γ(Λ(𝜎𝑖

1
))−

=0}]]) ∈  , 𝑖 ∈ ℕ, (3)

and the stochastic intervals can be chosen such that they are disjoint. Here, Γ(𝜏𝑖1) ∶= inf {𝑡 > 𝜏𝑖1 ∶

𝑋𝑡 = 0 or 𝑋𝑡− = 0} denotes the end time of the excursion starting in 𝜏𝑖1, and Λ(𝜎𝑖1) ∶= inf {𝑡 ≥
𝜎𝑖1 ∶ ∃𝜀 > 0 ∀𝑠 ∈ (𝑡, (𝑡 + 𝜀) ∧ 𝑇) 𝑋𝑠 > 0} is the starting time of the next excursion after 𝜎𝑖1. The
interval 𝑐

𝑖
is with “costs,” and the interval 𝑓𝑐

𝑖
starts with a “frictionless” period that is followed

by a period with “costs” iff at the end of the frictionless interval, the spread is already positive.
By construction, the investor can rebalance her portfolio at the boundaries of 𝑐

𝑖
and 𝑐𝑓

𝑖
without

costs (since the spread can jump away from zero at an unpredictable stopping time, this would not
be the case if a frictionless periodwas not sometimes followed by a periodwith costs). For𝑋𝜏𝑖

1
> 0,

there must exist a frictionless forerunner (possibly only consisting of the single point 𝜏𝑖1). Then,
the excursion is included in some 𝐼𝑓𝑐

𝑗
. For notational convenience, we fix the sequences in Equation

(3) for the rest of the paper, but we stress that the definitions below do not depend on their choice.
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For a 𝜑 ∈ 𝐛 , specifying the number of risky assets the investor holds in her portfolio, Kühn
andMolitor (2022, equation before (3.9)) constructed the corresponding self-financing position in
the bank account by the [−∞,∞)-valued predictable process

Π(𝜑) ∶= 𝜑+ ∙ 𝑆 − 𝜑− ∙ 𝑆′ − 𝐶𝑆(𝜑+) − 𝐶𝑆′(−𝜑−) − 𝜑+𝑆 + 𝜑−𝑆′. (4)

Here, 𝑆 and 𝑆′ are arbitrary semimartingale price systems. The nondecreasing processes 𝐶𝑆 and
𝐶𝑆′ model accumulated costs that occur when trades are executed at the less favorable bid and
ask prices but positions are evaluated with 𝑆 and 𝑆′, respectively. The key discovery was thatΠ(𝜑)
does not depend on the choice of the semimartingale price system (see Kühn and Molitor, 2022,
Corollary 3.22). We consider the construction directly for the actual bid and ask prices 𝑋,𝑋 and
not for 𝑆, 𝑆 as in Kühn and Molitor (2022). We apply the cost term 𝐶 that is [0,∞]-valued sepa-
rately to 𝜑+ and−𝜑− and set 𝐶𝑆,𝑆′ (𝜑) ∶= 𝐶𝑆(𝜑+) + 𝐶𝑆′(−𝜑−). This definition makes sense: if one
applied𝐶 to 𝜑 ∈ 𝐛 with only one semimartingale, onewould obtain𝐶(𝜑+) + 𝐶(−𝜑−) (see Kühn
and Molitor, 2022, Step 3 in the proof of Theorem 4.5). The intuition for this is that 𝜑+ and −𝜑−
never trade in the opposite direction. Thus, executing them through different trading accounts
does not yield higher costs. Although the choice of the semimartingale is irrelevant for bounded
strategies, we provide more flexibility for the extension to unbounded strategies by allowing dif-
ferent semimartingales for long and short positions. Since in Kühn and Molitor (2022) 𝑆′ = 𝑆,
one has to check that the proof of Kühn and Molitor (2022, Corollary 3.22) still holds for different
semimartingale price systems for the positive and the negative part. But this obviously follows by
the above-mentioned decomposition of the costs into 𝐶(𝜑+) and 𝐶(−𝜑−). The process

𝑉𝑆,𝑆′ (𝜑) ∶= Π(𝜑) + 𝜑+𝑆 − 𝜑−𝑆′ = 𝜑+ ∙ 𝑆 − 𝜑− ∙ 𝑆′ − 𝐶𝑆(𝜑+) − 𝐶𝑆′(−𝜑−)

is the wealth process if long positions are evaluated by 𝑆 and short positions by 𝑆′. The wealth
process 𝑉𝑆,𝑆′ is written as a function of 𝜑 only since the increments of the bank account 𝜑0 result
from the self-financing condition. This direct relation exists only for the increments of 𝜑 and 𝜑0,
which is why the initial values are set to zero. They would have to be modeled separately. With
this background information, one can follow the present paper to a large extent without know-
ing the details of Kühn and Molitor (2022). For a complete understanding, the reader is referred
to the construction of the cost term in Kühn and Molitor (2022, Subsections 3.1 and 3.2).

Definition 2.4. Let 𝑆 be a càdlàg process. The lower and upper predictable envelopes of 𝑆,
denoted by essinf−𝑆 and esssup−𝑆, are defined as the unique predictable processes such that
(essinf−𝑆)𝜏 = essinf𝜏−𝑆𝜏 and (esssup−𝑆)𝜏 = esssup𝜏−𝑆𝜏 a.s., respectively, for all predictable
stopping times 𝜏 (the definition makes sense by Proposition A.2).

Predictable envelopes are needed for a consistent valuation of portfolio positions after the port-
folio is rebalanced at some time 𝑡 but before prices move at 𝑡. Looking at both a semimartingale
price system 𝑆 and its envelope can be seen as a splitting of time. In frictionless markets, these
envelopes are not needed since the wealth only changes due to price movements but not due to
portfolio rebalancing. The example below that is adapted from Larsson (Preprint) shows that 𝑆−
generally does not do the job well enough since 𝑆𝑡 can exceed 𝑆𝑡− for sure.
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Example 2.5 (Example 2.11 in Larsson, Preprint). Let 𝑡1 ∈ (0, 𝑇) and 𝐵 be a standard Brown-
ian motion. Consider the bid price process 𝑆

𝑡
= (|𝐵𝑡1 | + 𝐵𝑡 − 𝐵𝑡1)1[𝑡1,𝑇](𝑡) that coincides with

its actual bid price process, that is, 𝑋 = 𝑆. Nevertheless, lim𝑡↑𝑡1 𝑋𝑡
is zero and differs from

essinf𝑡1−𝑋𝑡1
= |𝐵𝑡1 |.

If𝑋were a frictionless price process, therewould be an arbitrage, but as part of a bid–askmodel,
it canmake perfect sense. Now, consider an investor who buys𝜑𝑡1 stocks at the ask price𝑋𝑡1− with
the information 𝑡1−. The quantity 𝑋𝑡1− − essinf𝑡1−𝑋𝑡1

is the minimal worst-case loss per share
she takes by building up this position. Neither 𝑋

𝑡1−
nor 𝑋

𝑡1
could provide this information.

The set of unbounded strategies to which Equation (4) is extended is slightly different to Kühn
and Molitor (2022). The main difference is that we do not require that the up-convergence of
wealth processes holds “globally” over all (countable many) excursions of the spread away from
zero. In the special case of a frictionless market, the set of course coincides with the set of
integrable processes in the semimartingale sense (see Proposition 2.10).

Definition 2.6. Let 𝐿(𝑋,𝑋) denote the subset of real-valued, predictable processes 𝜑 such that
there exists a sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π ∶= {𝜓 ∈ 𝐛 ∶ Π(𝜓) > −∞} with

(a) 𝜑𝑛 → 𝜑 pointwise on Ω× [0, 𝑇] and (𝜑𝑛)+ ≤ 𝜑+, (𝜑𝑛)− ≤ 𝜑− for all 𝑛 ∈ ℕ,
(b) there exist semimartingales 𝑆, 𝑆′ with 𝑋 ≤ 𝑆 ≤ 𝑋, 𝑋 ≤ 𝑆′ ≤ 𝑋, an optional làglàd wealth

process 𝑉 satisfying

(1𝐽𝑛 ∙ 𝑉 − 𝑉)1{𝑋=0}, (1𝐽𝑛 ∙ 𝑉− − 𝑉−)1{𝑋−=0} → 0 in 𝑑𝑢𝑝 as 𝑛 → ∞ for all

sequences (𝐽𝑛)𝑛∈ℕ of finite unions of (𝐼𝑐𝑖 )𝑖∈ℕ, (𝐼
𝑓𝑐

𝑖
)𝑖∈ℕ

with 1𝐽𝑛 → 1Ω×[0,𝑇] up to evanescence as 𝑛 → ∞, (5)

and predictable processes 𝑝𝑆 and 𝑝𝑆′ with essinf−𝑆 ≤ 𝑝𝑆, 𝑝𝑆′ ≤ esssup−𝑆′ such that

1𝑐
𝑖
∙ 𝑉𝑆,𝑆′ (𝜑𝑛) → 1𝑐

𝑖
∙ 𝑉, 1𝑓𝑐

𝑖

∙ 𝑉𝑆,𝑆′ (𝜑𝑛) → 1𝑓𝑐
𝑖

∙ 𝑉 in 𝑑𝑢𝑝 as 𝑛 → ∞, (6)

and
(
1𝑐

𝑖
∙ (Π(𝜑𝑛) + (𝜑𝑛)+ 𝑝𝑆 − (𝜑𝑛)− 𝑝𝑆′)

)
𝑛∈ℕ

,(
1𝑓𝑐

𝑖

∙ (Π(𝜑𝑛) + (𝜑𝑛)+ 𝑝𝑆 − (𝜑𝑛)− 𝑝𝑆′)

)
𝑛∈ℕ

are 𝑑𝑢𝑝-Cauchy for all 𝑖 ∈ ℕ. (7)

Furthermore, for all competing sequences (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π satisfying (a) and for all 𝑖 ∈ ℕ,
there exists a (deterministic) subsequence (𝑛𝑘)𝑘∈ℕ such that

(
1𝑐

𝑖
∙ (𝑉𝑆,𝑆′ (𝜑𝑛𝑘 ) − 𝑉𝑆,𝑆′ (𝜑𝑛𝑘 ))

)+
,

(
1𝑓𝑐

𝑖

∙ (𝑉𝑆,𝑆′ (𝜑𝑛𝑘 ) − 𝑉𝑆,𝑆′ (𝜑𝑛𝑘 ))

)+

→ 0, 𝑘 → ∞,

(8)

up to evanescence.
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We extend the self-financing operator Π to 𝐿(𝑋,𝑋) by setting

Π(𝜑) ∶= 𝑉 − 𝜑+𝑆 + 𝜑−𝑆′, 𝜑 ∈ 𝐿(𝑋,𝑋). (9)

A self-financing strategy is a pair (𝜑0, 𝜑) of predictable processes specifying the number of bonds
and stocks in the portfolio such that 𝜑 − 𝜑0 ∈ 𝐿(𝑋,𝑋) and 𝜑0 = 𝜑00 + Π(𝜑 − 𝜑0). When the term
“bounded strategy” is used, it refers only to the position in the stock, unless otherwise stated.

Proposition 2.7. Π(𝜑) is well-defined, that is, it does not depend on the choice of 𝑆, 𝑆′, and 𝑉. In
addition, one has that (𝐛)Π ⊆ 𝐿(𝑋,𝑋).

Proof. (i) Let 𝑉1 and 𝑉2 be wealth processes that result from different approximating strategies
with regard to different semimartingales 𝑆1, (𝑆′)1 and 𝑆2, (𝑆′)2, respectively. From Kühn and
Molitor (2022, Proposition 4.2) applied to the strategy 𝜑1𝐽𝑛 , it follows that

1𝐽𝑛 ∙ 𝑉
1 = 1𝐽𝑛 ∙ 𝑉

2 + 𝜑+(𝑆1 − 𝑆2) − 𝜑−((𝑆′)1 − (𝑆′)2) on 𝐽𝑛 for all 𝐽𝑛 as in (5).

For this, it is crucial that by construction, at the boundaries of 𝐼𝑐
𝑖
and 𝐼

𝑓𝑐

𝑖
, the portfolio can

be rebalanced without costs (thus, the choice of the semimartingales does not matter there).
By Equations (5) and (6) (the latter is only needed for the last excursion), it follows that 𝑉1 =

𝑉2 + 𝜑+(𝑆1 − 𝑆2) − 𝜑−((𝑆′)1 − (𝑆′)2) up to evanescence.
(ii) For the second assertion, we take a 𝜑 ∈ (𝐛)Π and consider it as a constant sequence.

The semimartingale price systems are arbitrarily chosen and𝑉 ∶= 𝑉𝑆,𝑆′ (𝜑) = 𝜑+ ∙ 𝑆 − 𝜑− ∙ 𝑆′ −

𝐶𝑆(𝜑+) − 𝐶𝑆′(−𝜑−). Condition (5) holds since 1𝐽𝑛 ∙ (𝜑
+ ∙ 𝑆) → 𝜑+ ∙ 𝑆, 1𝐽𝑛 ∙ (𝜑

− ∙ 𝑆′) →

𝜑− ∙ 𝑆′, 1𝐽𝑛 ∙ 𝐶
𝑆(𝜑+) → 𝐶𝑆(𝜑+), and 1𝐽𝑛 ∙ 𝐶

𝑆′(−𝜑−) → 𝐶𝑆′(−𝜑−) converge separately in 𝑑𝑢𝑝 as
𝑛 → ∞ by the dominated convergence theorem for stochastic integrals (cf., e.g., Cohen andElliott,
2015, Theorem 12.4.10). For the cost processes that are only làglàd, we refer to the notation and
the fact that there are no costs at the boundaries of 𝐽𝑛. Condition (8) is already shown in Kühn
and Molitor (2022, Corollary 3.24). □

Remark 2.8. The combination of Equations (5) and (6) does not imply up-convergence of
(𝑉𝑆,𝑆′ (𝜑𝑛))𝑛∈ℕ to𝑉 on the whole time interval. Namely, we need not have control over the wealth
processes during the excursions uniformly in time.

Remark 2.9. In frictionless markets, the approximating sequence (𝜑𝑛)𝑛∈ℕ ⊆ 𝐛 = (𝐛)Π from
Definition 2.6 can be chosen such that𝜑𝑛 ∙ 𝑆 ≥ −1 for all𝑛 ∈ ℕ if𝜑 ∙ 𝑆 ≥ −1. To see this, one con-
siders for arbitrary 𝜀 > 0 the stopping times 𝜏𝑛 ∶= inf {𝑡 ≥ 0 ∶ 𝜑𝑛 ∙ 𝑆𝑡 ≤ 𝜑 ∙ 𝑆𝑡 − 𝜀} and uses that
𝑑𝑢𝑝(𝜑

𝑛 ∙ 𝑆, 𝜑 ∙ 𝑆) → 0, (𝜑𝑛)+ ≤ 𝜑+, and (𝜑𝑛)− ≤ 𝜑−. Consequently, the approximating bounded
(not elementary!) strategies can be chosen to satisfy the admissibility conditions of the unbounded
strategy. By condition (7) that allows for a consistent valuation of the portfolio after the trade
but before the price movement (cf. Example 2.5), the same property can be shown in the bid–
ask model (see Lemma 3.5). Condition (7) is weak in the sense that it only requires minimal
consistency for the intermediate valuation of long and short positions by 𝑝𝑆 and 𝑝𝑆′, respectively.
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Proposition 2.10. In the special case of a frictionless market, in the sense that𝑋 = 𝑋, condition (6)
implies condition (7) with the choice 𝑝𝑆 ∶= 𝑆− ∨ essinf−𝑆 and 𝑝𝑆′ ∶= 𝑆′− ∧ esssup−𝑆′, and we
have 𝐿(𝑋,𝑋) = 𝐿(𝑋).

Proof of Proposition 2.10. It is sufficient to show the first assertion. Then, the second one follows
along the lines of the proof of Kühn and Molitor (2022, Proposition 4.3).
Let 𝑆 ∶= 𝑆′ ∶= 𝑋 and (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π be a sequence such that sup𝑡∈[0,𝑇] |(𝜑𝑛 − 𝜑𝑚) ∙ 𝑆𝑡| →

0 in probability as 𝑛,𝑚 → ∞. This implies that sup𝑡∈[0,𝑇] |((𝜑𝑛𝑡 )+ − (𝜑𝑚𝑡 )
+)Δ𝑆𝑡| +

sup𝑡∈[0,𝑇] |((𝜑𝑛𝑡 )− − (𝜑𝑚𝑡 )
−)Δ𝑆′𝑡| → 0 in probability. From Equation (A.2), it follows that

{𝑝𝑆 > 𝑆−} ∩ {𝑝𝑆 > 𝑆} and {𝑝𝑆′ < 𝑆′−} ∩ {𝑝𝑆′ < 𝑆′} are evanescent, and we obtain that
sup𝑡∈[0,𝑇] |((𝜑𝑛𝑡 )+ − (𝜑𝑚𝑡 )

+)( 𝑝𝑆𝑡 − 𝑆𝑡−)| + sup𝑡∈[0,𝑇] |((𝜑𝑛𝑡 )−𝑡 − (𝜑𝑚𝑡 )
−)( 𝑝𝑆′𝑡 − 𝑆′𝑡−)| → 0 in prob-

ability. Since Π𝑡(𝜑
𝑛) + 𝜑𝑛𝑡 𝑆𝑡− = 𝜑𝑛 ∙ 𝑆𝑡− and sup𝑡∈[0,𝑇] |(𝜑𝑛 − 𝜑𝑚) ∙ 𝑆𝑡−| → 0 in probability as

𝑛,𝑚 → ∞, we are done. □

Our admissibility condition is in the spirit of Guasoni et al. (2012). For a motivation, we refer
to Guasoni et al. (2012, Proposition 4.9) and Lemma 3.1 (and the text before the lemma).

Definition 2.11. Let 𝑀 ∈ ℝ+. A self-financing strategy (𝜑0, 𝜑) is called 𝑀-admissible iff 𝜑0 +
𝑀 + (𝜑 +𝑀)+𝑋 − (𝜑 +𝑀)−𝑋 ≥ 0. We write (𝜑0, 𝜑) ∈ 𝑀 . A strategy is admissible iff it lies in
 ∶= ∪𝑀∈ℝ+

𝑀 . We denote by 𝑀
0 and 0 the corresponding sets of strategies which start at

(0,0). The liquidation value process of (𝜑0, 𝜑) is defined as 𝑉liq(𝜑) ∶= 𝜑0 + 𝜑+𝑋 − 𝜑−𝑋.

The following example shows that in Definition 2.11, the actual bid and ask prices (𝑋, 𝑋) cannot
be replaced by the original bid and ask prices (𝑆, 𝑆) if the set of terminal (liquidation) values
that can be achieved by an admissible strategy should be Fatou-closed (cf. Theorem 2.23 for a
definition). This is an insight of Guasoni et al. (2012), but we did not find an explicit example in
the literature.

Example 2.12 (Admissibility). Let 𝑇 = 2, 𝐵 be a standard Brownian motion, and 𝑈 be a random
variable that is uniformly distributed on (0,1) and independent of 𝐵. Define𝑚𝑡 ∶= inf0≤𝑠≤𝑡 𝐵𝑠 and
𝜏 ∶= inf {𝑡 ≥ 0 ∶ 𝑚𝑡 = −𝑈} ∧ 1. The original ask price is given by 𝑆𝑡 ∶= 3 + 𝐵𝑡∧𝜏 and the bid price
by 𝑆

𝑡
∶= 1{𝑡<𝜏} + (𝑆𝜏 + 2)∕21{𝑡≥𝜏}. The filtration is generated by 𝐵𝜏 and augmented by null sets.

We have that𝑋 = 𝑆 and𝑋
𝑡
= 2 ⋅ 1{𝑡<𝜏} + (𝑆𝜏 + 2)∕21{𝑡≥𝜏}. The only nonsilly investment strategies

are to buy stocks before 𝜏 has occurred and sell them at time 𝜏 (or later). The market satisfies
the RNFLVR condition in Guasoni et al. (2012, Definition 5.2(ii)) (one considers the ask and bid
price processes 3∕4𝑆𝑡 + 1∕4 ⋅ 2 and 3∕21{𝑡<𝜏} + (2∕3𝑆𝜏 + 1∕3 ⋅ 2)1{𝑡≥𝜏} that are uniformly in time
strictly more favorable than 𝑆, 𝑆 by 𝑃(−𝑈 > −1) = 1).
We define the function 𝑓(𝑥) ∶= (1 − 𝑥)−1∕2 − 1 for 𝑥 ∈ [0, 1) and consider the sequence

of nondecreasing strategies 𝜑𝑛𝑡 ∶= 𝑓((−𝑚𝑡∧𝜏) ∧ (1 − 1∕𝑛))1{0<𝑡≤𝜏}, 𝑛 ∈ ℕ. The stock position is
liquidated before 𝑇, and the terminal bond position results

𝜑0,𝑛𝑇 = 𝑓((−𝑚𝜏) ∧ (1 − 1∕𝑛))
1 + 𝐵𝜏
2

− ∫
(−𝑚𝜏)∧(1−1∕𝑛)

0

(1 − 𝑥) 𝑑𝑓(𝑥) ≥ −∫
1

0

(1 − 𝑥) 𝑑𝑓(𝑥).
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Following the strategies (𝜑𝑛)𝑛∈ℕ, stocks are purchased when 𝑆 attains its running minimum
(above 3 − 𝑈), and the amount of stocks explodes when 𝑆 approaches 2 before 𝜏 stops. But, a share
purchased at price 2 + 𝜀 and liquidated at time𝑇 cannot produce losses larger than 𝜀. The example
was chosen such that𝑀 ∶= ∫ 1

0
(1 − 𝑥) 𝑑𝑓(𝑥) < ∞. This means that 𝜑0,𝑛𝑇 ≥ −𝑀 ∈ ℝ for all 𝑛 ∈ ℕ.

We even have that (𝜑0,𝑛, 𝜑𝑛) is 𝑀-admissible in the sense of Definition 2.11. The strategies and
their terminal wealth converge pointwise to 𝜑∞𝑡 ∶= 𝑓(−𝑚𝑡∧𝜏)1{0<𝑡≤𝜏} and

𝜑0,∞𝑇 = 𝑓(−𝑚𝜏)
1 + 𝐵𝜏
2

− ∫
−𝑚𝜏

0

(1 − 𝑥) 𝑑𝑓(𝑥) ≥ −∫
1

0

(1 − 𝑥) 𝑑𝑓(𝑥), respectively.

The limiting strategy (𝜑0,∞, 𝜑∞) is 𝑀-admissible as well (𝜑∞ is not bounded anymore but
obviously in 𝐿(𝑋,𝑋)).
Now, we turn to admissibility in the sense of Definition 2.11 but with (𝑋, 𝑋) replaced by

(𝑆, 𝑆). For each 𝑛 ∈ ℕ, we want to determine the minimal 𝑀𝑛 ∈ ℝ+ such that (𝜑0,𝑛, 𝜑𝑛) is 𝑀𝑛-
admissible. The most vulnerable time for the strategy is when 𝐵 reaches −1 + 1∕𝑛 and 𝑈 >

1 − 1∕𝑛. If the stocks were sold at that time, the bond position would be− ∫ 1−1∕𝑛

0
(1 − 𝑥) 𝑑𝑓(𝑥) −

𝑓(1 − 1∕𝑛). The difference to above is one unit per share. Since the admissibility condition also
allows debts in the stock position,we arrive at𝑀𝑛 = (∫ 1−1∕𝑛

0
(1 − 𝑥) 𝑑𝑓(𝑥) + 𝑓(1 − 1∕𝑛))∕2 ∈ ℝ+.

By the choice of 𝑓, we have that𝑀𝑛 → ∞ as 𝑛 → ∞. Thus, the sequence is not admissible with
regard to a joint𝑀′ ∈ ℝ+, and the limiting strategy (𝜑0,∞𝜑∞) is not admissible at all.
This already gives a strong hint that one would not have Fatou-closedness of the set of termi-

nal portfolios, which can be achieved by admissible strategies if (𝑋, 𝑋) were replaced by (𝑆, 𝑆) in
Definition 2.11. The reason is that 𝑀𝑛 is too large compared to the worst-case risk at maturity.
However, it remains to show that the limiting wealth 𝜑0,∞𝑇 cannot be achieved by an admissi-
ble strategy different from (𝜑0,∞, 𝜑∞). Assume by contradiction that (𝜓0, 𝜓) is admissible with
(𝜓0𝑇, 𝜓𝑇) = (𝜑0,∞𝑇 , 0). We leave it as an exercise for the reader to show that for each 𝑛 ∈ ℕ, 𝜓 has
to coincide with 𝜑𝑛 on {𝑈 ≤ 1 − 1∕𝑛}. By the minimality of𝑀𝑛, it follows that (𝜓0, 𝜓) cannot be
𝑀′-admissible for𝑀′ < 𝑀𝑛. Since𝑀𝑛 → ∞, (𝜓0, 𝜓) cannot be admissible at all.

For the rest of the paper, we follow the standard convention to assume that

𝑇 = 𝑇−, 𝑆
𝑇
= 𝑆

𝑇−
, and 𝑆𝑇 = 𝑆𝑇−. (10)

For the actual bid and ask prices, this implies that𝑋
𝑇
= 𝑋

𝑇−
and𝑋𝑇 = 𝑋𝑇− as well. The assump-

tion allows to identify (𝜑0𝑇, 𝜑𝑇) with the terminal portfolio that cannot be rebalanced anymore. It
is w.l.o.g. since it just avoids to introduce an additional time after 𝑇 when the investor can trade
at prices 𝑆

𝑇
, 𝑆𝑇 .

Definition 2.13. The market model satisfies the numéraire-free no-arbitrage condition (NA𝑛𝑓)
iff there is no admissible strategy (𝜑0, 𝜑) with 𝜑00 = 𝜑0 = 0, 𝑃(𝜑0𝑇 ≥ 0, 𝜑𝑇 ≥ 0) = 1, and 𝑃({𝜑0𝑇 >
0} ∪ {𝜑𝑇 > 0}) > 0.

The condition is called “numéraire-free” since bounded short positions in both the bond and
the stock are allowed. Stating the admissibility condition in terms of 𝑋 and 𝑋 is equivalent to
freezing a portfolio position as it is done in Guasoni et al. (2012). On the other hand, freezing a
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short position in a stock with a frictionless price modeled by a nonnegative strict local martingale
that behaves like a doubling strategy leads to an arbitrage. Thus, the freezing of positions better
fits to the numéraire-free arbitrage theory that leads to true martingale price processes.
As discussed in the introduction, we want to merge the conditions NUPBR and NA𝑝𝑠 coming

from continuous time frictionlessmodels and discrete time transaction costs models, respectively.
For this purpose, we consider the cost value process introduced by Bayraktar and Yu (2018) as the
cost to enter a portfolio position and defined as

𝑉cost(𝜑) ∶= 𝜑0 + 𝜑+𝑋 − 𝜑−𝑋 for (𝜑0, 𝜑) self-financing with 𝜑00 = 𝜑0 = 0.

Definition 2.14. The market model satisfies the prospective strict no unbounded profit with
bounded risk (NUPBR𝑝𝑠) condition iff{

sup
𝑡∈[0,𝑇]

𝑉cost
𝑡 (𝜑) ∶ (𝜑0, 𝜑) ∈ 1

0

}
is bounded in 𝐿0, (11)

and for every sequence (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ ⊆ 1
0 such that (𝜑

𝑛)𝑛∈ℕ ⊆ (𝐛)Π and (𝜑0,𝑛𝑇 , 𝜑𝑛𝑇) → (𝐶0, 𝐶)

a.s., where (𝐶0, 𝐶) is a maximal element (in the sense that the convergence of 1-admissible strate-
gies cannot hold for a random vector that strictly dominates (𝐶0, 𝐶)with respect to the pointwise
order), there exist forward convex combinations (𝜆𝑛,𝑘)𝑛∈ℕ, 𝑘=0,…,𝑘𝑛 , 𝑘𝑛 ∈ ℕ, that is, 𝜆𝑛,𝑘 ∈ ℝ+ and∑𝑘𝑛

𝑘=0
𝜆𝑛,𝑘 = 1, such that

sup
𝑛∈ℕ

sup
𝑡∈[0,𝑇]

𝑉cost
𝑡 (

𝑘𝑛∑
𝑘=0

𝜆𝑛,𝑘𝜑
𝑛+𝑘) < ∞ a.s. (12)

Remark 2.15. In the special case that 𝑋 = 𝑋, the condition NUPBR𝑝𝑠 coincides with NUPBR
(the latter still considered for numéraire-free 1-admissible strategies). Namely, when the run-
ning supremum of a frictionless wealth process reaches a prespecified level, the value can be
conserved by liquidating the portfolio (for condition (12) in frictionless markets, we refer to the
proof of the second assertion of Theorem 2.22). This transfer of the cost value to time 𝑇 is not
possible in models with friction, and the condition has to be stated directly in terms of pathwise
suprema. Condition (12) is weaker than assuming 𝐿0-boundedness of the convex hull in Equa-
tion (11). The latter would be needed to obtain a finite limit of forward convex combinations from
arbitrary sequences of 1-admissible strategies by the 𝐿0-version of Komlós’ theorem (see Delbaen
and Schachermayer, 1994, Lemma A1.1 and the counterexample in Delbaen and Schachermayer,
1994, Remark 4 in the appendix). Economically, convex combinations of pathwise supremawould
not be very meaningful and in general larger than the suprema of mixed strategies considered in
Equation (12).

Remark 2.16. From the subadditivity of 𝐶𝑆,𝑆′ , it follows that the set (𝐛)Π is convex and
𝑉cost(

∑𝑘𝑛
𝑘=0

𝜆𝑛,𝑘𝜑
𝑛+𝑘) ≥ ∑𝑘𝑛

𝑘=0
𝜆𝑛,𝑘𝑉

cost(𝜑𝑛+𝑘) for all (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π and (𝜆𝑛,𝑘)𝑛∈ℕ, 𝑘=0,…,𝑘𝑛 ⊆

ℝ+ with
∑𝑘𝑛

𝑘=0
𝜆𝑛,𝑘 = 1. The same holds for 𝑉liq and 𝑉𝑆,𝑆′ . On the other hand, in contrast to 𝐿(𝑆),

the set 𝐿(𝑋,𝑋) need not be convex. The reason is that the wealth of a mixed strategy would have
to be +∞ (which is excluded) if trading costs cancel by the mixing. We note that for the arbi-
trage theory, this is no problem: in the frictionless market with price process 𝑆𝑡 = 𝑡, the “arbitrage
strategy” 𝜑𝑡 = 1∕𝑡 does not lie in 𝐿(𝑆), but NUPBR is already ruled out by bounded strategies.
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By convention (10), we could reformulate the NUPBR𝑝𝑠 condition by considering only 1-
admissible strategies with 𝜑0𝑇, 𝜑𝑇 ≥ −1. This means that at 𝑇, the investor must actually limit
her debts, not just be able to do so. Thus, it makes sense to work with the pointwise order than
comparing terminal positions in Definition 2.14.

Remark 2.17 (Discrete time). In the case of only one risky asset, that we consider in this paper, the
discrete time NA𝑝𝑠 condition from Kühn and Molitor (2019, Definition 2.3) reduces to

∀ 𝜑 predictable, 𝑡 = 0, 1, … , 𝑇 (𝑉
liq
𝑡 (𝜑) ≥ 0 ⇒ 𝑉cost

𝑡 (𝜑) = 𝑉
liq
𝑡 (𝜑) = 0)

(this follows by the arguments in the proof of Lemma 3.1). In discrete time, we have that
NUPBR𝑝𝑠 ⇔ NA𝑝𝑠. The implication “⇒” follows from the fact that 𝑉liq

𝑡 (𝜑) ≥ 0 implies that
𝑉
liq
𝑢 (𝜑) ≥ 0 for 𝑢 = 0, 1, … , 𝑡 − 1, where (𝜑0, 𝜑) is a discrete time strategy not necessarily admissi-

ble ex ante (cf. again the proof of Lemma 3.1). Let us show “⇐.” On the set {𝑋0 = essinf0𝑋1
} ∈ 0,

a purchase at time 0 is reversible in the sense of Kühn and Molitor (2019, Definition 3.2). Thus,
underNA𝑝𝑠, we have 𝑋1 = 𝑋

1
= 𝑋0 on {𝑋0 = essinf0𝑋1

}, and the purchase can be postponed to
time 1. On the complement {𝑋0 > essinf0𝑋1

}, the number of risky assets of a 1-admissible strat-
egy is bounded by (1 + essinf0𝑋1

)∕(𝑋0 − essinf0𝑋1
). For a short position in the risky asset,

one gets a similar random bound. Applying this argument inductively for 𝑡 = 0, 1, 2, … we obtain
the following. For every sequence of 1-admissible strategies (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ, there is a correspond-
ing sequence (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ with the same liquidation and cost value processes such that (𝜑𝑛𝑡 )𝑛∈ℕ
is 𝐿0-bounded for every 𝑡 = 1, … , 𝑇 (namely, when following the strategies, we only realize the
purely nonreversible parts of the orders in the sense of Kühn and Molitor (2019, Lemma 3.3).
This means that, for example, at time 0 purchases are only realized on {𝑋0 > essinf0𝑋1

}). The
𝐿0-boundedness of the adjusted positions yields that NUPBR𝑝𝑠 is satisfied.

Assumption 2.18. Let 𝜏 be a stopping time such that on {𝜏 < ∞}, there starts an excursion of
the actual spread 𝑋 ∶= 𝑋 − 𝑋 away from zero (cf. Equation 3). Then, there exist a stopping time
𝜎 with 𝜎 ≥ 𝜏 and 𝜎 > 𝜏 on {𝜏 < ∞, 𝑋𝜏 = 0} and probability measures 𝑄1 and 𝑄2 equivalent to 𝑃
such that 𝑋

𝜎
− 𝑋

𝜏
is a 𝑄1-supermartingale and 𝑋𝜎 − 𝑋𝜏 is a 𝑄2-submartingale. Let 𝐿1 and 𝐿2 be

the stochastic logarithm of the corresponding density process 𝑍𝑄1 and 𝑍𝑄2 , respectively, that is,
𝑍𝑄

𝑖
= 1 + 𝑍

𝑄𝑖

− ∙ 𝐿𝑖 . For each 𝐴 ∈  , we define 𝑍𝐴 by 𝑍𝐴 = 1 + 𝑍𝐴−1𝐴 ∙ 𝐿1 + 𝑍𝐴−1(Ω×[0,𝑇])⧵𝐴 ∙ 𝐿2

and assume that 𝑍𝐴, 𝐴 ∈  , are true martingales defining probability measures 𝑄𝐴, for which
we, in turn, assume that they are uniformly equivalent to 𝑃, that is,

∀𝜀 > 0 ∃𝛿 > 0 ∀𝐴 ∈  ∀𝐵 ∈  (𝑃(𝐵) ≤ 𝛿 ⇒ 𝑄𝐴(𝐵) ≤ 𝜀) (13)

and ∀𝜀 > 0 ∃𝛿 > 0 ∀𝐴 ∈  ∀𝐵 ∈  (𝑄𝐴(𝐵) ≤ 𝛿 ⇒ 𝑃(𝐵) ≤ 𝜀). (14)

Let Γ(𝜏) be the end time of the excursion. Analogously to above, there exist a stopping time
𝜎 with 𝜎 ≤ Γ(𝜏) and 𝜎 < Γ(𝜏) on {Γ(𝜏) < ∞, 𝑋Γ(𝜏)− = 0} and probability measures 𝑄1 and

𝑄2 equivalent to 𝑃 such that 𝑋
Γ(𝜏)

1{𝑋Γ(𝜏)−>0} + 𝑋
Γ(𝜏)−

1{𝑋Γ(𝜏)−=0} − 𝑋
𝜎
is a 𝑄1-submartingale and

𝑋Γ(𝜏)1{𝑋Γ(𝜏)−>0} + 𝑋Γ(𝜏)−1{𝑋Γ(𝜏)−=0} − 𝑋𝜎 is a 𝑄2-supermartingale. The pair (𝑄1, 𝑄2) satisfies the
same pasting conditions as (𝑄1, 𝑄2) from above.
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Remark 2.19. First of all, it should be noted that Assumptions 2.3 and 2.18 are automatically satis-
fied if the efficient friction condition in the sense of𝑃(inf 𝑡∈[0,𝑇](𝑋𝑡 − 𝑋

𝑡
) > 0) = 1holds. Thus, the

assumptions are weaker than those in the previous literature. In addition, they are automatically
satisfied if the spread can only move away from zero or come back by jumps.

But unfortunately, the situation is extremely complicated when this happens continuously.
Already to construct self-financing portfolios, Kühn andMolitor (2022) need Assumption 2.3 that
rules out Brownian local time behavior, and under which the starting times of excursions of the
spread away from zero are stopping times. Assumption 2.18 is for beginning and end, and it goes
beyond Assumption 2.3. It requires that for an arbitrarily short random duration at the beginning
of an excursion, the market would be arbitrage-free even if purchases could be liquidated at the
ask price and short positions could be closed at the bid price. This can be regarded as a local tight-
ening of the NUPBR𝑝𝑠 condition at the starting time of an excursion: The process 𝑉cost values a
purchased position at the higher ask price as long as it is in the portfolio. In the fictitious fric-
tionless market described above, the position can even be liquidated at the ask price, that is, the
cost value can be realized. With short sells, it is the other way round, that is, the fictitious friction-
less market consists of different price processes for long and short positions. Since long and short
positions cannot be hold simultanously, there is a nonconvex trading constraint, and separation
theorems are not applicable. The condition is mirrored at the end of an excursion.

Remark 2.20. Condition (13) is equivalent to the condition that {𝑍𝐴𝑇 ∶ 𝐴 ∈ } is uniformly inte-
grable. By the Neyman–Pearson lemma, condition (14) is equivalent to inf {𝑞𝜀(𝑍𝐴𝑇 ) ∶ 𝐴 ∈ } > 0

for all 𝜀 > 0, where 𝑞𝜀(𝑍𝐴𝑇 ) denotes the right 𝜀-quantile of the distribution of 𝑍
𝐴
𝑇 under 𝑃. For price

processes of the form𝑋𝑡 = 𝑆𝑡 = 𝐵𝑡 + 𝜇𝑡 and𝑋
𝑡
= 𝑆

𝑡
= 𝐵𝑡 + 𝜇𝑡 with a standard Brownianmotion

𝐵 and 𝜇 ≥ 𝜇, Assumption 2.18 can easily be verified by using Novikov’s condition.

Definition 2.21. A consistent price system (CPS) is a pair (𝑆, 𝑄) such that 𝑄 is a probability
measure equivalent to 𝑃 and 𝑆 is a 𝑄-martingale with 𝑋 ≤ 𝑆 ≤ 𝑋 (and thus a fortiori 𝑆 ≤ 𝑆 ≤ 𝑆).

Theorem 2.22. If the market model satisfies Assumption 2.3, Assumption 2.18, NA𝑛𝑓 , and
NUPBR𝑝𝑠, then there exists a CPS. Conversely, if (𝑆, 𝑄) is a CPS, then the bid–ask model with bid
price 𝑆 and ask price 𝑆 satisfies Assumption 2.3, Assumption 2.18, NA𝑛𝑓 , and NUPBR𝑝𝑠 .

Theorem 2.23. Under Assumption 2.3, Assumption 2.18, NA𝑛𝑓 , and NUPBR𝑝𝑠, the cone 0 ∶=
{(𝜑0𝑇, 𝜑𝑇) ∶ (𝜑

0, 𝜑) ∈ } − 𝐿0(Ω, , 𝑃; ℝ2
+) is Fatou-closed in the sense that for every𝑀 ∈ ℝ+, every

sequence (𝐶0,𝑛, 𝐶𝑛)𝑛∈ℕ ⊆ 0 with𝐶0,𝑛, 𝐶𝑛 ≥ −𝑀 for all 𝑛 ∈ ℕ, and every (𝐶0, 𝐶) ∈ 𝐿0(Ω, , 𝑃; ℝ2)

with (𝐶0,𝑛, 𝐶𝑛) → (𝐶0, 𝐶) a.s. as 𝑛 → ∞, there exists a (𝜑0, 𝜑) ∈  with (𝜑0𝑇, 𝜑𝑇) ≥ (𝐶0, 𝐶) a.s.

3 PROOF OF THEOREMS 2.22 AND 2.23

The following lemma corresponds to Guasoni et al. (2012, Proposition 4.9). Intuitively, it states
that at any intermediate time, the credit line (in terms of bonds and stocks) required for the trad-
ing strategy (that is followed so far) is minimized by freezing the portfolio and close the stock
position at the best price that can be achieved for sure now or in the future. Put differently, con-
sider an investor who has built up a, say, positive stock position at some time 𝑡. Then, to minimize
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her worst-case risk, she just has to sell the stocks at price 𝑋
𝑡
, and complicated dynamic trading

strategies cannot improve the result.

Lemma 3.1. Let 𝑀 ∈ ℝ+. Assume that the model satisfies NA
𝑛𝑓 . Let (𝜑0, 𝜑) be an admissible

strategy with 𝑃(𝜑0𝑇 ≥ −𝑀,𝜑𝑇 ≥ −𝑀) = 1. Then, (𝜑0, 𝜑) is𝑀-admissible.

Proof. It is sufficient to show the following seemingly weaker implication: for all 𝑡0 ∈ (0, 𝑇) and
for all admissible strategies (𝜑0, 𝜑) with 𝜑0𝑡0 = 0, 𝜑𝑡0 = 1, and 𝜑𝑇 = 0, we have essinf𝑡0 𝜑

0
𝑇 ≤ 𝑋

𝑡0
(by symmetry, the arguments for an initial stock position below −𝑀 are the same).
Since we already passed to the actual prices, we prefer not to use the processes 𝑆 and 𝑆

anymore (even though this may be more appealing at this place). Instead, we observe that
𝑋
𝑡
= essinf𝑡 sup𝑢∈[𝑡,𝑇] 𝑋𝑢

and 𝑋𝑡 = esssup𝑡 inf 𝑢∈[𝑡,𝑇] 𝑋𝑢. W.l.o.g. let 𝑡0 be 𝑃-trivial. Assume
by contradiction that there exists 𝜀 > 0 such that 𝑃(𝜑0𝑇 ≥ 𝑋

𝑡0
+ 𝜀) = 1. The interesting case is that

𝑋𝑡0 ≥ 𝑋
𝑡0
+ 𝜀 since otherwise already (𝜑0 − 𝑋𝑡0 , 𝜑)1]]𝑡0,𝑇]] would be an arbitrage, but we do not

have to make a case differentiation. Consider the stopping time

𝜏 ∶= inf {𝑡 ≥ 𝑡0 ∶ (𝑋𝑡 ≤ 𝑋
𝑡0
+ 2𝜀∕3 or 𝜑𝑡 ≤ 0) and 𝑋

𝑢
≤ 𝑋

𝑡0
+ 𝜀∕3 ∀𝑢 ∈ (𝑡0, 𝑡)}. (15)

We have that 𝑃(𝜏 < ∞) > 0 since 𝑃(𝜑𝑇 = 0, sup𝑢∈[𝑡0,𝑇] 𝑋𝑢
≤ 𝑋

𝑡0
+ 𝜀∕3) > 0 by the definition of

the conditional essential infimum. In addition, before time 𝜏(𝜔) < ∞, the ask price is above𝑋
𝑡0
+

2𝜀∕3 and the bid price below𝑋
𝑡0
+ 𝜀∕3. At time 𝜏(𝜔) < ∞, either the investor can buy the stock at a

better price than ever before or she short-sells the stock for the first time. Under the contradiction
assumption, we can switch from strategy 0 to strategy 𝜑 at time 𝜏 and obtain an arbitrage. To
formalize this, let us show several inequalities, at first only in the case that (𝜑0, 𝜑) is almost simple.
Here, 𝑆 and 𝑆′ are arbitrary semimartingale price systems. The first inequality reads

𝑋𝑡0− + 𝑉𝑆,𝑆′

𝜏 (𝜑1[[𝑡0,𝑇]]) + 𝜑𝜏(𝑋𝜏 − 𝑆𝜏) ≤ 𝑋
𝑡0
+ 2𝜀∕3 on {𝜏 < ∞,𝑋𝜏 ≤ 𝑋

𝑡0
+ 2𝜀∕3, 𝜑𝜏 > 0}. (16)

The LHS are the costs to build up the position (𝜑0𝜏, 𝜑𝜏) at time 𝜏 (note that𝑉
𝑆,𝑆′

0 (⋅) = 0 and𝑋𝑡0− +

𝑉𝑆,𝑆′

𝑡0
(𝜑1[[𝑡0,𝑇]]) is the wealth of (𝜑0, 𝜑) at time 𝑡0). For almost simple strategies, inequality (16)

follows from 𝑋𝑡 ≥ 𝑋
𝑡0
+ 2𝜀∕3 ≥ 𝑋𝜏 and 𝑋𝑡0

+ 𝜀∕3 ≥ 𝑋
𝑡
for all 𝑡 ∈ [𝑡0, 𝜏), which means that the

initial stock position cannot be liquidated at a better price than 𝑋
𝑡0
+ 𝜀∕3 and further purchases

reduce the cost value. Next, we have again for (𝜑0, 𝜑) almost simple

𝑋𝑡0− + 𝑉𝑆,𝑆′

𝜏 (𝜑1[[𝑡0,𝑇]]) + 𝜑𝜏(𝑋𝜏
− 𝑆𝜏) ≤ 𝑋

𝑡0
+ 𝜀∕3 on {𝜏 < ∞,𝑋𝜏 > 𝑋

𝑡0
+ 2𝜀∕3, 𝜑𝜏 > 0}. (17)

The estimate is for the case that 𝜏 is triggered by a nonpositive stock position but the infimum is
not attained. Since the long position is liquidated immediately afterwards at the lower bid price,
we do not need to have control over 𝑋𝜏, but 𝑋𝜏

≤ 𝑋
𝑡0
+ 𝜀∕3 holds on {𝜏 < ∞}. Finally, one has for

almost simple strategies

𝑋𝑡0− + 𝑉𝑆,𝑆′

𝜏− (𝜑1[[𝑡0,𝑇]]) + 𝜑𝜏−(𝑋𝜏−
− 𝑆𝜏−) ≤ 𝑋

𝑡0
+ 𝜀∕3 on {𝜏 < ∞, 𝜑𝜏 ≤ 0}, (18)
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where the left limit𝜑𝜏− also exists for𝜑 ∈ 𝐿(𝑋,𝑋) since𝑋 − 𝑋 ≥ 𝜀∕3 on [𝑡0, 𝜏) if 𝜏 < ∞, see (Kühn
and Molitor, 2022, Proposition 3.3) and Proposition 3.2(a).
Let us show how Equations (16)–(18) can successively be extended to strategies from (𝐛)Π

and 𝐿(𝑋,𝑋). Let 𝜑 ∈ (𝐛)Π and 𝜏 from (15) belongs to this strategy. Since 𝑋− − 𝑋
−
is away from

zero up to time 𝜏 on {𝜏 < ∞}, 𝜑 can be approximated by almost simple strategies uniformly in
probability in the sense of Kühn andMolitor (2022, proof of Proposition 3.17). The approximation
can be adjusted such that the almost simple strategies take the value zero if 𝜑 or its right limit
takes the value zero. We observe that 𝜏 need not coincide with the stopping times in Equation (15)
for the almost simple strategies. But, Equations (16)–(18) still hold with the different stopping time
since we only need that the almost simple strategy does not become negative before the stopping
time. Thus, the inequalities carry over to 𝜑 by convergence of 𝑉𝑆,𝑆′ uniformly in probability and
pointwise convergence of the strategies and their left limits at 𝜏 (see Kühn and Molitor (2022,
Theorem 3.19(ii) and Proposition 3.17)). Now, let 𝜑 ∈ 𝐿(𝑋,𝑋). From the proof of Lemma 3.3, it
follows that the approximating sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π in Definition 2.6 can be chosen such
that (𝜑𝑛)+ ∧ 1 = 𝜑+ ∧ 1 for all 𝑛 ∈ ℕ. This means that the associated 𝜏 is the same for 𝜑𝑛 and 𝜑
and the inequalities carry over to 𝜑 by Equation (6) and the fact that 𝜑𝑛𝜏− → 𝜑𝜏− on {𝑋𝜏−

< 𝑆𝜏−}

by Proposition 3.2(b) after passing to a deterministic subsequence.
Putting inequalities (16)–(18) together implies that the self-financing strategy (𝜓0, 𝜓) with

𝜓 ∶= 𝜑1[[𝜏{𝜑𝜏≤0}]]∪]]𝜏,𝑇]] is admissible and satisfies 𝜓𝑇 = 𝜑𝑇 = 0, 𝜓0𝑇 = 0 on {𝜏 = ∞}, and 𝜓0𝑇 ≥
𝜑0𝑇 − 𝑋

𝑡0
− 2𝜀∕3 on {𝜏 < ∞}. Under the contradiction assumption, one has 𝜑0𝑇 − 𝑋

𝑡0
− 2𝜀∕3 ≥

𝜀∕3. As observed above, we have 𝑃(𝜏 < ∞) > 0. Thus, (𝜓0, 𝜓) must be an arbitrage, which is a
contradiction. □

The following proposition describes jumps of general wealth processes at points with positive
spread. Here, strategies have to be of finite variation.

Proposition 3.2. (a) Let𝜑 ∈ 𝐿(𝑋,𝑋). On {𝑋 > 𝑋}, the paths of𝜑 are of finite variation in right-hand
neighborhoods; consequently, the right-hand limit of 𝜑 exists, Δ+𝜑 is finite, and Δ+𝑉𝑆,𝑆′ (𝜑) = (𝑆 −

𝑋)(Δ+𝜑+)+ + (𝑋 − 𝑆)(Δ+𝜑+)− + (𝑋 − 𝑆′)(Δ+𝜑−)+ + (𝑆′ − 𝑋)(Δ+𝜑−)− up to evanescence. Analo-
gously, on {𝑋− > 𝑋

−
}, the paths of 𝜑 are of finite variation in left-hand neighborhoods, the left-hand

limit of 𝜑 exists, Δ−𝜑 is finite, and Δ−𝑉𝑆,𝑆′ (𝜑) = 𝜑+Δ𝑆 − 𝜑−Δ𝑆′ + (𝑆− − 𝑋−)(Δ
−𝜑+)+ + (𝑋

−
−

𝑆−)(Δ
−𝜑+)− + (𝑋

−
− 𝑆′−)(Δ

−𝜑−)+ + (𝑆′− − 𝑋−)(Δ
−𝜑−)− up to evanescence.

(b) Let (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π be an “optimal” approximating sequence of 𝜑 in the sense of Defini-
tion 2.6. Then, one has that (Δ+(𝜑𝑛𝑘 )+)+ → (Δ+𝜑+)+ on {𝑋 > 𝑆} ∪ {𝑋 > 𝑋, (Δ+𝜑+)+ = 0} and
(Δ−(𝜑𝑛𝑘 )+)+ → (Δ−𝜑+)+ on {𝑋− > 𝑆−} ∪ {𝑋− > 𝑋

−
, (Δ−𝜑+)+ = 0} up to evanescence as 𝑘 → ∞

for some (deterministic) subsequence (𝑛𝑘)𝑘∈ℕ. The analogous statements for all combinations of
negative/positive parts of the strategies and their jumps hold as well (cf. (a)).

Proof. Ad (a). Let (𝜔, 𝑡1) ∈ Ω × [0, 𝑇) with 𝑋𝑡1(𝜔) > 𝑋
𝑡1
(𝜔) and, omitting 𝜔 in the notation,

𝑡2 ∶= inf {𝑡 > 𝑡1 ∶ 𝑋𝑡 ≤ 2∕3𝑋𝑡1 + 1∕3𝑋
𝑡1
or𝑋

𝑡
≥ 1∕3𝑋𝑡1 + 2∕3𝑋

𝑡1
} ∧ 𝑇. By the right-continuity of

𝑋 and 𝑋, we have that 𝑡2 > 𝑡1. For an almost simple strategy 𝜑, elementary calculations show the
estimate

𝑉𝑆,𝑆′

𝑡2
(𝜑) − 𝑉𝑆,𝑆′

𝑡1
(𝜑) ≤ −(𝑋𝑡1 − 𝑋

𝑡1
)∕6Var

𝑡2
𝑡1
(𝜑) + (|𝜑𝑡1 | + |𝜑𝑡2 |)( sup

𝑡∈[𝑡1,𝑡2]
𝑋𝑡 − inf

𝑡∈[𝑡1,𝑡2]
𝑋
𝑡
). (19)
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(Having the “last in first out principle” in mind, we argue as follows: A stock position which is
both built up and liquidated between 𝑡1 and 𝑡2 cause a loss higher than (𝑋𝑡2 − 𝑋

𝑡1
)∕3. Gains from

shares which are trades at most once can be estimated very roughly since their trading volume is
bounded by |𝜑𝑡1 | + |𝜑𝑡2 |).
It remains to extend (19) successively to (𝐛)Π and to𝐿(𝑋,𝑋). This follows by convergence up to

evanescence along subsequences (cf. Kühn andMolitor, 2022, Theorem 3.19(ii)) andDefinition 2.6
and by the fact that the variation of the pointwise limiting strategy is dominated by the lim inf of
the variation processes. The arguments for the left-handneighborhood are the same. For a strategy
path of finite variation the equations in (a) easily follow from the definition of the cost term (cf.
Kühn and Molitor, 2022, Definition 3.2 and the proof of (A.3)).
Ad (b). Convergence in probability implies almost sure convergence along a subsequence. Thus,

by a diagonalization argument, we can find a (deterministic) subsequence (𝑛𝑘)𝑘∈ℕ (not depending
on 𝑖) such that for each 𝑖 ∈ ℕ, the convergence in Equation (6) holds uniformly in time for almost
all 𝜔. By part (a), we know that on the set {𝑋 > 𝑋}, the right-hand limits of the strategies exist and
(𝑆 − 𝑋)(Δ+(𝜑𝑛𝑘 )+)+ + (𝑋 − 𝑆)(Δ+(𝜑𝑛𝑘 )+)− + (𝑋

−
𝑆′)(Δ+(𝜑𝑛𝑘 )−)+ + (𝑆′ − 𝑋)(Δ+(𝜑𝑛𝑘 )−)− →

(𝑆 − 𝑋)(Δ+𝜑+)+ + (𝑋 − 𝑆)(Δ+𝜑+)− + (𝑋 − 𝑆′)(Δ+𝜑−)+ + (𝑆′ − 𝑋)(Δ+𝜑−)− up to evanescence
by the above-mentioned uniform convergence of the wealth processes on a single excursion.
There remains the problem that Δ+𝜑𝑛𝑘 can have the opposite sign of Δ+𝜑 although the jumps of
the cost terms are similar.
We fix an 𝜔 ∈ Ω outside the 𝑃-null sets from above and omit it in the notation. Let 𝑡1 ∈ [0, 𝑇).

To save space, we only write down the case that 𝜑𝑡1 ≥ 0,𝑋𝑡1 > 𝑆𝑡1 , andΔ
+𝜑𝑡1 > 0. The other cases

follow analogously. Now, assume by contradiction that, in addition, there exist an 𝜀 > 0 and a
(random) subsequence (𝑘𝑙)𝑙∈ℕ with

|(Δ+(𝜑𝑛𝑘𝑙𝑡1
)+)+ − (Δ+𝜑+𝑡1)

+| ≥ 𝜀 for all 𝑙 ∈ ℕ. (20)

Define

𝑡2 ∶= inf {𝑡 > 𝑡1 ∶ 𝜑𝑡 ≤ 𝜑𝑡1+ − Δ+𝜑𝑡1∕2 or 𝑉𝑆,𝑆′

𝑡 (𝜑) ≤ 𝑉𝑆,𝑆′

𝑡1+
(𝜑) − Δ+𝜑𝑡1(𝑋𝑡1 − 𝑆𝑡1)∕7

or 𝑋𝑡 ≤ 2∕3𝑋𝑡1 + 1∕3𝑆𝑡1 or 𝑆𝑡 ≥ 1∕3𝑋𝑡1 + 2∕3𝑆𝑡1} ∧ 𝑇.

By 𝜑𝑛𝑘𝑡1 → 𝜑𝑡1 , Δ
+𝑉𝑆,𝑆′

𝑡1
(𝜑𝑛𝑘 ) → Δ+𝑉𝑆,𝑆′

𝑡1
(𝜑), and Δ+𝑉𝑆,𝑆′

𝑡1
(𝜑) < 0, we must have that Δ+𝜑

𝑛𝑘𝑙
𝑡1

< 0

for all 𝑙 large enough (depending on 𝜔). Indeed, if Δ+𝜑
𝑛𝑘𝑙
𝑡1

had the same sign as Δ+𝜑𝑡1 , divergent
absolute values would be contrary to convergent jumps of the cost term. By 𝜑𝑛𝑘

(𝑡1+𝑡2)∕2
→ 𝜑(𝑡1+𝑡2)∕2

and the construction of 𝑡2, the loss of wealth that (𝜑
𝑛𝑘𝑙 )𝑙∈ℕ necessarily produces on (𝑡1, (𝑡1 + 𝑡2)∕2]

to get closer to 𝜑 again can be estimated from below by 1∕6(𝑋𝑡1 − 𝑆𝑡1)Δ
+𝜑𝑡1 for 𝑙 → ∞. Since this

dominates the possible losses of 𝜑 after 𝑡1+, we arrive at a contradiction to 𝑉
𝑆,𝑆′

𝑡1
(𝜑𝑛𝑘 ) → 𝑉𝑆,𝑆′

𝑡1
(𝜑)

and 𝑉𝑆,𝑆′

(𝑡1+𝑡2)∕2
(𝜑𝑛𝑘 ) → 𝑉𝑆,𝑆′

(𝑡1+𝑡2)∕2
(𝜑) as 𝑘 → ∞. This means that if (𝜑𝑛𝑘𝑙 )𝑙∈ℕ traded in the opposite

direction of 𝜑, it would have to compensate for this promptly, which would lead to additional
transaction costs. The assertion for the left-hand jump follows analogously. □

By definition of 𝜑 ∈ 𝐿(𝑋,𝑋), its wealth process can be approximated by wealth pro-
cesses𝑉𝑆,𝑆′ (𝜑𝑛)with bounded strategies 𝜑𝑛, 𝑛 ∈ ℕ, satisfying (𝜑𝑛)+ ≤ 𝜑+, (𝜑𝑛)− ≤ 𝜑−, and 𝜑𝑛 →
𝜑. However, 𝜑𝑛 need not be 𝑀-admissible if 𝜑 is 𝑀-admissible. Lemma 3.5 shows that we can
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choose the approximating bounded strategies such that they are𝑀-admissible. The following two
lemmas prepare Lemma 3.5. Since the investor has a credit line of 𝑀 stocks, the “safest short-
term strategy” is to hold −𝑀 stocks. This means that for 𝑀 > 0, the inequalities (𝜑𝑛)+ ≤ 𝜑+

and (𝜑𝑛)− ≤ 𝜑− do not imply that 𝜑𝑛 is “safer than 𝜑 in the short term.” The following lemma
overcomes this problem.

Lemma 3.3. Let 𝜑 ∈ 𝐿(𝑋,𝑋) and𝑀 ∈ ℝ+. Then, the approximating sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π
in Definition 2.6 can be chosen such that

(𝜑𝑛)− ∧ 𝑀 = 𝜑− ∧𝑀 (21)

and thus (𝜑𝑛 +𝑀)+ ≤ (𝜑 +𝑀)+ for all 𝑛 ∈ ℕ.

We note that, by contrast, the inequality (𝜑𝑛 +𝑀)− ≤ (𝜑 +𝑀)− already follows from (𝜑𝑛)− ≤
𝜑.

Proof of Lemma 3.3. Step 1: Let 𝜑 ∈ 𝐿(𝑋,𝑋) and 𝑀 ∈ ℝ+. By definition, there exists a
sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π with (𝜑𝑛)+ ≤ 𝜑+, (𝜑𝑛)− ≤ 𝜑−, 𝜑𝑛 → 𝜑, and semimartingale price
systems 𝑆, 𝑆′ such that Equations (5)–(7) hold and Equation (8) is satisfied for all competing
sequences. For any 𝜓 ∈ (𝐛)Π, we have that

𝐶𝑆′(−𝜓−) = 𝐶𝑆′(−(𝜓− ∧𝑀)) + 𝐶𝑆′(−(𝜓 +𝑀)−) (22)

since the strategies −(𝜓− ∧𝑀) and −(𝜓 +𝑀)− never trade in the opposite direction
(formally, one checks it for almost simple strategies and apply the approximation in Kühn
and Molitor, 2022, proof of Theorem 3.19). Consequently, we can decompose: 𝑉𝑆,𝑆′ (𝜑𝑛) =

𝑉𝑆,𝑆′ ((𝜑𝑛)+) + 𝑉𝑆,𝑆′ (−((𝜑𝑛)− ∧ 𝑀)) + 𝑉𝑆,𝑆′ (−(𝜑𝑛 +𝑀)−) and consider the alternative point-
wise approximation 𝜑𝑛 ∶= 𝜑𝑛1{𝜑≥0} − (𝜑− ∧𝑀) − (𝜑𝑛 +𝑀)− = 𝜑𝑛 ∧ ((−𝑀) ∨ 𝜑), 𝑛 ∈ ℕ. Again
by Equation (22), we have that 𝑉𝑆,𝑆′ (𝜑𝑛) = 𝑉𝑆,𝑆′ ((𝜑𝑛)+) + 𝑉𝑆,𝑆′ (−(𝜑− ∧𝑀)) + 𝑉𝑆,𝑆′ (−(𝜑𝑛 +

𝑀)−) and thus 𝑉𝑆,𝑆′ (𝜑𝑛) − 𝑉𝑆,𝑆′ (𝜑𝑛) = 𝑉𝑆,𝑆′ (−(𝜑− ∧𝑀)) − 𝑉𝑆,𝑆′ (−((𝜑𝑛)− ∧ 𝑀)). By the Fatou-
type estimate in Kühn and Molitor (2022, Corollary 3.24), there exists a (deterministic)
subsequence (𝑛𝑘)𝑘∈ℕ such that

(𝑉𝑆,𝑆′ (−(𝜑− ∧𝑀)) − 𝑉𝑆,𝑆′ (−((𝜑𝑛𝑘 )− ∧ 𝑀)))− → 0 up to evanescence as 𝑘 → ∞. (23)

Now, we turn to a single interval 𝑐
𝑖
(the same for 𝑓𝑐

𝑖
) and define 𝑌𝑛 ∶= 1𝑐

𝑖
∙ (𝑉𝑆,𝑆′ (−(𝜑− ∧

𝑀)) − 𝑉𝑆,𝑆′ (−((𝜑𝑛)− ∧ 𝑀))). Equation (23) already implies that, with (𝜑𝑛)𝑛∈ℕ, also (𝜑𝑛)𝑛∈ℕ is
better than all competing sequences in the sense of Equation (8). By Equation (8), there exists a
further subsequence (𝑘𝑙)𝑙∈ℕ such that (1𝑐

𝑖
∙ (𝑉𝑆,𝑆′ (𝜑𝑛𝑘𝑙 ) − 𝑉𝑆,𝑆′ (𝜑𝑛𝑘𝑙 )))+ → 0, and together with

Equation (23), we arrive at

1𝑐
𝑖
∙ 𝑌𝑛𝑘𝑙 → 0 up to evanescence as 𝑙 → ∞. (24)

We continue by observing that

𝑌𝑛 = 1𝑐
𝑖
∙ ((𝜑𝑛)− ∧ 𝑀 − (𝜑− ∧𝑀)) ∙ 𝑆′ − 1𝑐

𝑖
∙ 𝐶𝑆′(−(𝜑− ∧𝑀)) + 1𝑐

𝑖
∙ 𝐶𝑆′(−((𝜑𝑛)− ∧ 𝑀))
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and define𝑌𝑛 ∶= 1𝑐
𝑖
∙ 𝐶𝑆′(−((𝜑𝑛)− ∧ 𝑀)) − 1𝑐

𝑖
∙ 𝐶𝑆′(−(𝜑− ∧𝑀)). There exists a further (deter-

ministic) subsequence (𝑙𝑗)𝑗∈ℕ such that

sup
𝑡∈[0,𝑇]

|((𝜑𝑛𝑘𝑙𝑗 )− ∧ 𝑀 − (𝜑− ∧𝑀)) ∙ 𝑆′𝑡| → 0, a.s. (25)

(cf. Jacod and Shiryaev, 2003, Theorem I.4.31(iii)) and Proposition 3.2(b) holds true for (𝑛𝑘𝑙𝑗 )𝑗∈ℕ.
Putting Equations (24) and (25) together, we have

𝑌
𝑛𝑘𝑙𝑗 → 0 up to evanescence as 𝑗 → ∞. (26)

Step 2: It remains to show that (𝜑
𝑛𝑘𝑙𝑗 )𝑗∈ℕ satisfies Equations (6) and (7), where the limiting

wealth process is of course the same as for the approximating strategies (𝜑𝑛)𝑛∈ℕ we started

with. By Equation (25), it is sufficient to show that sup𝑡∈[0,𝑇] |𝑌𝑛𝑘𝑙𝑗
𝑡 | → 0 a.s. as 𝑗 → ∞. W.l.o.g.

𝑛𝑘𝑙𝑗
= 𝑗. We assume by contradiction that there exists 𝐴 ∈ 𝑇 with 𝑃(𝐴) > 0 such that on 𝐴,

the sequence (sup𝑡∈[0,𝑇] |𝑌𝑛
𝑡 |)𝑛∈ℕ does not tend to 0, but the convergence in Equation (26)

holds. We fix an 𝜔 ∈ 𝐴 that is omitted in the following notation. There exists 𝜀 > 0 such that
sup𝑡∈[0,𝑇] |𝑌𝑛

𝑡 | > 𝜀 for infinitely many 𝑛 (depending on 𝜔). Define 𝜎𝑛 ∶= inf {𝑡 ≥ 0 ∶ |𝑌𝑛
𝑡 | > 𝜀}.

The sequence (𝜎𝑛)𝑛∈ℕ has an accumulation point in [0, 𝑇] denoted by 𝜎. By Equation (26), we
have that

𝑌𝑛
𝜎 → 0 as 𝑛 → ∞. (27)

At first, we consider the behavior of 𝑌𝑛 in a right-hand neighborhood of 𝜎. By 𝜑𝑛𝜎 → 𝜑𝜎 and
Proposition 3.2(b), considering the cases Δ+𝜑−𝜎 < 0, Δ+𝜑−𝜎 > 0, and Δ+𝜑−𝜎 = 0, we obtain that
(𝑆′𝜎 − 𝑋𝜎)((𝜑

𝑛
𝜎+)

− ∧ 𝑀 − ((𝜑𝑛𝜎)
− ∧ 𝑀))− + (𝑋

𝜎
− 𝑆′𝜎)((𝜑

𝑛
𝜎+)

− ∧ 𝑀 − ((𝜑𝑛𝜎)
− ∧ 𝑀))+ converges

to (𝑆′𝜎 − 𝑋𝜎)(𝜑
−
𝜎+ ∧ 𝑀 − (𝜑−𝜎 ∧ 𝑀))− + (𝑋

𝜎
− 𝑆′𝜎)(𝜑

−
𝜎+ ∧ 𝑀 − (𝜑−𝜎 ∧ 𝑀))+. This means that

Δ+𝑉𝑆,𝑆′

𝜎 (−((𝜑𝑛)− ∧ 𝑀)) → Δ+𝑉𝑆,𝑆′

𝜎 (−(𝜑− ∧𝑀)). By the right-continuity of stochastic integrals
and by Equation (27), we have that 𝐶𝑆′

𝜎+(−((𝜑
𝑛)− ∧ 𝑀)) → 𝐶𝑆′

𝜎+(−(𝜑
− ∧𝑀)). In addition, there

exists 𝜎′ > 𝜎 such that the limit cost term 𝐶𝑆′

𝜎′
(−(𝜑− ∧𝑀)) is bounded from above by 𝐶𝑆′

𝜎+(−(𝜑
− ∧

𝑀)) + 𝜀∕2. By 𝐶𝑆′

𝜎′
(−((𝜑𝑛)− ∧ 𝑀)) → 𝐶𝑆′

𝜎′
(−(𝜑− ∧𝑀)) as 𝑛 → ∞, Equation (27), and by themono-

tonicity of the cost terms, we obtain sup𝑛≥𝑛0, 𝑡∈[𝜎,𝜎′] |𝐶𝑆′

𝑡 (−((𝜑
𝑛)− ∧ 𝑀)) − 𝐶𝑆′

𝑡 (−(𝜑
− ∧𝑀))| ≤ 𝜀

for 𝑛0 large enough. The left-hand neighborhood of 𝜎 can be handled in the same way. We arrive
at a contradiction to 𝜎𝑛 → 𝜎. This shows that sup𝑡∈[0,𝑇] |𝑌𝑛

𝑡 | → 0 a.s. and thus Equation (6). Since
the differences of the cost terms and the semimartingale gains converge separately in 𝑑𝑢𝑝, we can
argue as in Proposition 2.10 to derive Equation (7) with the same process 𝑝𝑆′ that does the job for
(𝜑𝑛)𝑛∈ℕ. □

Lemma 3.4. For 𝜓 ∈ 𝐿(𝑋,𝑋), we define the predictable process

𝐿(𝜓) ∶= Π(𝜓) +𝑀 + (𝜓 +𝑀)+essinf−𝑋 − (𝜓 +𝑀)−esssup−𝑋

(that models the liquidation value of (Π(𝜓) +𝑀,𝜓 +𝑀) after the portfolio is rebalanced but before
the prices jump at some time 𝑡). Then,

(Π(𝜓), 𝜓) is𝑀-admissible ⇒ 𝐿(𝜓) ≥ 0
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Proof. We suppose otherwise. Then, by a section theorem for predictable sets (see, e.g., He
et al., 1992, Theorem 4.8), there would exist a predictable stopping time 𝜏 with 𝑃(𝜏 < ∞) > 0

and 𝐿𝜏(𝜓) < 0 on {𝜏 < ∞}. This implies 𝑃(Π𝜏(𝜓) +𝑀 + (𝜓𝜏 +𝑀)+𝑋
𝜏
− (𝜓𝜏 +𝑀)−𝑋𝜏 < 0) > 0,

a contradiction to the𝑀-admissibility of (Π(𝜓), 𝜓). □

Lemma 3.5. Let 𝜑 ∈ 𝐿(𝑋,𝑋) such that (Π(𝜑), 𝜑) is 𝑀-admissible for some 𝑀 ∈ ℝ+. Then, the
approximating sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π in Definition 2.6 can be chosen such that (Π(𝜑𝑛), 𝜑𝑛) are
also𝑀-admissible for all 𝑛 ∈ ℕ.

Proof of Lemma 3.5. Let 𝜑 ∈ 𝐿(𝑋,𝑋) such that (Π(𝜑), 𝜑) is𝑀-admissible. By Lemma 3.3, we can
and do choose an approximating sequence (𝜑𝑛)𝑛∈ℕ ⊆ (𝐛)Π such that Equation (21) holds. The
approximation holds with regard to the semimartingale price systems 𝑆 and 𝑆′ and the associated
predictable processes by 𝑝𝑆 and 𝑝𝑆′.Wewrite𝜑0,𝑛 ∶= Π(𝜑𝑛),𝜑0 ∶= Π(𝜑),𝑉𝑆,𝑆′ (𝜑) ∶= 𝑉 and intro-
duce the predictable processes 𝑝𝑉𝑛 ∶= 𝜑0,𝑛 + (𝜑𝑛)+ 𝑝𝑆 − (𝜑𝑛)− 𝑝𝑆′, 𝑝𝑉 ∶= 𝜑0 + 𝜑+ 𝑝𝑆 − 𝜑− 𝑝𝑆′,
𝐿𝑛 ∶= 𝐿(𝜑𝑛), and 𝐿 ∶= 𝐿(𝜑).
Step 1: In the first step, we prove the lemma for the special case that 𝜑 invests only during

finitely many intervals 𝑐
𝑖
and 𝑓𝑐

𝑖
. Let 𝛿 > 0. In this special case, Equations (6) and (7) imply

that 𝑃(sup𝑡∈[0,𝑇](|𝑉𝑆,𝑆′

𝑡 (𝜑𝑛) − 𝑉𝑆,𝑆′

𝑡 (𝜑)| + |𝑝𝑉𝑛
𝑡 −

𝑝𝑉𝑡|) > 𝛿) ≤ 𝛿 for 𝑛 large enough. We define

𝜏 ∶= inf {𝑡 ≥ 0 ∶ 𝑉𝑆,𝑆′

𝑡 (𝜑𝑛) < 𝑉𝑆,𝑆′

𝑡 (𝜑) − 𝛿 or 𝑝𝑉𝑛
𝑡 <

𝑝𝑉𝑡 − 𝛿} and 𝐴 ∶= {𝑝𝑉𝑛
𝜏 ≥ 𝑝𝑉𝜏 − 𝛿} ∈ 𝜏−.

Since 𝜏 is the debut of a progressive set, it is a stopping time (see e.g., Cohen and Elliott, 2015,
Theorem 7.3.4). Consequently, [[0, 𝜏[[∪[[𝜏𝐴]] = [[0, 𝜏]] ∩ {𝑝𝑉𝑛 ≥ 𝑝𝑉 − 𝛿} ∈  , which allows us to
consider the strategy

𝜑𝑛 ∶= 𝜑𝑛1[[0,𝜏[[∪[[𝜏𝐴]].

At first, we compare liquidation values strictly before 𝜏. By Equation (21), it is easy to check that

𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 −
(
𝜑0 +𝑀 + (𝜑 +𝑀)+𝑋 − (𝜑 +𝑀)−𝑋

)
= 𝑉𝑆,𝑆′ (𝜑𝑛) − 𝑉𝑆,𝑆′ (𝜑) + (𝜑+ − (𝜑𝑛)+)(𝑆 − 𝑋) + (𝜑− − (𝜑𝑛)−)(𝑋 − 𝑆′)

≥ 𝑉𝑆,𝑆′ (𝜑𝑛) − 𝑉𝑆,𝑆′ (𝜑) ≥ −𝛿 on [[0, 𝜏[[ (28)

and thus, by the𝑀-admissibility of 𝜑,

𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 ≥ −𝛿 on [[0, 𝜏[[. (29)

We proceed by analyzing the liquidation value of the portfolio (Π(𝜑𝑛) + 𝑀, 𝜑𝑛 +𝑀) at 𝜏 if the
event Ω ⧵ 𝐴 occurs. This means that long and short positions in the stock are liquidated at
the prices 𝑋

𝜏−
and 𝑋𝜏−, respectively. The paths of the processes 𝜑0,𝑛 and 𝜑𝑛 must be of finite

variation in a left-hand neighborhood of 𝜏 if 𝑋𝜏− > 𝑋
𝜏−

(see Proposition 3.2(a)). Consequently,
on (Ω ⧵ 𝐴) ∩ {𝑋𝜏− > 𝑋

𝜏−
}, one receives (𝜑𝑛𝜏− +𝑀)+𝑋

𝜏−
− (𝜑𝑛𝜏− +𝑀)−𝑋𝜏− ≥ −(𝜑0,𝑛𝜏− +𝑀 + 𝛿) by

Equation (29). On (Ω ⧵ 𝐴) ∩ {𝑋𝜏− = 𝑋
𝜏−
}, we use that 𝑉𝑆,𝑆′

𝑡 (𝜑𝑛 +𝑀) +𝑀 ≥ −𝛿 for all 𝑡 < 𝜏

by Equation (29), 𝑉𝑆,𝑆′

𝑡 (𝜑𝑛 +𝑀) → 𝑉𝑆,𝑆′

𝜏− (𝜑𝑛 +𝑀) as 𝑡 ↑ 𝜏, and 𝑉𝑆,𝑆′

𝜏− (𝜑𝑛 +𝑀) +𝑀 = 𝑉𝑆,𝑆′

𝜏− (𝜑𝑛 +
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𝑀) +𝑀 + Δ−𝐶𝜏(𝜑
𝑛 +𝑀) = 𝜑0,𝑛𝜏 + 𝑀 + (𝜑𝑛𝜏 + 𝑀)+𝑋

𝜏−
− (𝜑𝑛𝜏 + 𝑀)−𝑋𝜏−. This yields that

𝜑0,𝑛𝜏 + 𝑀 = 𝜑0,𝑛𝜏 + 𝑀 + (𝜑𝑛𝜏 + 𝑀)+𝑋
𝜏−

− (𝜑𝑛𝜏 + 𝑀)−𝑋𝜏− ≥ −𝛿 on Ω ⧵ 𝐴. (30)

Finally, we analyze the liquidation on the event 𝐴, that is, we have to show that 𝜑0,𝑛 + 𝑀 +

(𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 ≥ 0 on the set [[𝜏𝐴]]. Analogously to Equation (28), again using
Equation (21), we estimate

𝐿𝑛 − 𝐿 = 𝑝𝑉𝑛 − 𝑝𝑉 + (𝜑+ − (𝜑𝑛)+)(𝑝𝑆 − essinf−𝑋) + (𝜑− − (𝜑𝑛)−)(esssup−𝑋 − 𝑝𝑆′)

≥ 𝑝𝑉𝑛 − 𝑝𝑉 on [[𝜏𝐴]]. (31)

By Lemma 3.4, we have that 𝐿 ≥ 0 up to evanescence. Together with Equation (31), we obtain that

𝐿𝑛 ≥ 𝐿 − 𝛿 ≥ −𝛿 on [[𝜏𝐴]]. (32)

In order to replace the predictable lower bound 𝐿𝑛 of the liquidation process by the process itself,
we pointwise distinguish the two cases below. Note that 𝜏 is in general not predictable and thus,
(essinf−𝑋)𝜏 need not coincide with essinf𝜏−𝑋𝜏

.
Case 1: 𝑋

𝜏
≥ (essinf−𝑋)𝜏 if 𝜑𝜏 +𝑀 ≥ 0 (and 𝑋𝜏 ≤ (esssup−𝑋)𝜏 if 𝜑𝜏 +𝑀 < 0). This means

that the liquidation value becomes higher. Inequation (32) yields

𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 (33)

≥ 𝐿𝑛 ≥ −𝛿 on [[𝜏𝐴]] ∩ ({𝜑 +𝑀 ≥ 0, 𝑋 ≥ essinf−𝑋} ∪ {𝜑 +𝑀 < 0, 𝑋 ≤ esssup−𝑋}).

Case 2:𝑋
𝜏
< (essinf−𝑋)𝜏 if 𝜑𝜏 +𝑀 ≥ 0 (and𝑋𝜏 > (esssup−𝑋)𝜏 if 𝜑𝜏 +𝑀 < 0). This case can

only occur if 𝜏 is an unpredictable stopping time with 𝑋
𝜏
< 𝑋

𝜏−
(or 𝑋𝜏 > 𝑋𝜏−). The liquidation

value becomes smaller than its predictable lower bound, but the decrease is smaller than that of
the limiting strategy:

𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 (34)

= 𝜑0 +𝑀 + (𝜑 +𝑀)+𝑋 − (𝜑 +𝑀)−𝑋 + 𝐿𝑛 − 𝐿

+((𝜑𝑛)+ − 𝜑+)(𝑋 − essinf−𝑋) + (𝜑− − (𝜑𝑛)−)(𝑋 − esssup−𝑋)

≥ 𝜑0 +𝑀 + (𝜑 +𝑀)+𝑋 − (𝜑 +𝑀)−𝑋 + 𝐿𝑛 − 𝐿

≥ −𝛿 on [[𝜏𝐴]] ∩ ({𝜑 +𝑀 ≥ 0, 𝑋 < essinf−𝑋} ∪ {𝜑 +𝑀 < 0, 𝑋 > esssup−𝑋}),

where the equality holds by Equation (21) and the second inequality holds because (𝜑0, 𝜑) is𝑀-
admissible.
Putting together, the strategy (Π(𝜑𝑛), 𝜑𝑛) is (𝑀 + 𝛿)-admissible. By compression and since 𝛿 >

0 is arbitrary, we find an approximating sequence (with a suitable null sequence (𝛿𝑛)𝑛∈ℕ) that is
also𝑀-admissible.
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Step 2: We now proceed to the general case. Again, let 𝛿 > 0. By Equation (5), one can
find a finite union 𝐽 of intervals (𝐼𝑐

𝑖
)𝑖∈ℕ, (𝐼

𝑓𝑐

𝑖
)𝑖∈ℕ such that 𝑃(sup𝑡∈[0,𝑇] |1𝐽 ∙ 𝑉𝑡 − 𝑉𝑡|1{𝑋𝑡=0} ∨|1𝐽 ∙ 𝑉𝑡− − 𝑉𝑡−|1{𝑋𝑡−=0} > 𝛿) ≤ 𝛿. Given 𝛿 > 0, we modify the approximating strategies such that

they satisfy 𝜑𝑛 ∶= −𝑀 on (Ω × [0, 𝑇]) ⧵ 𝐽. By construction of 𝐼𝑐
𝑖
, 𝐼𝑐𝑓

𝑖
, there are no trading costs at

the boundaries of the intervals. In addition, by the semimartingale property of 𝑆′, 𝐽 can be chosen
close enough to Ω× [0, 𝑇] such that 𝑑𝕊(−𝑀1(Ω×[0,𝑇])⧵𝐽 ∙ 𝑆

′, 0) ≤ 𝛿. With these considerations in
mind, the proof is analog to Step 1. We note that on (Ω × [0, 𝑇]) ⧵ 𝐽, the strategies 𝜑𝑛 need not be
liquidated since they just hold −𝑀 stocks. □

Lemma 3.6. Let 𝜑𝑛, 𝜑 ∈ 𝐿(𝑋,𝑋) for all 𝑛 ∈ ℕ and let 𝑆, 𝑆′ be semimartingale price systems. If
𝜑𝑛 is𝑀-admissible for all 𝑛 ∈ ℕ, 𝑉𝑆,𝑆′ (𝜑𝑛) → 𝑉𝑆,𝑆′ (𝜑) uniformly in probability, and 𝜑𝑛 → 𝜑 up to
evanescence on {𝑋 > 𝑋}, then 𝜑 is𝑀-admissible as well.

Proof. For any 𝜓 ∈ 𝐿(𝑋,𝑋), we define the process 𝐴(𝜓) ∶= Π(𝜓) +𝑀 + (𝜓 +𝑀)+𝑋 − (𝜓 +

𝑀)−𝑋 − 𝑉𝑆,𝑆′ (𝜓) and rewrite it to

𝐴(𝜓) = 𝑀 + 1{𝜓≥0}(𝜓(𝑋 − 𝑆) +𝑀𝑋) + 1{−𝑀<𝜓<0}(𝜓(𝑋 − 𝑆′) + 𝑀𝑋)

+1{𝜓≤−𝑀}(𝜓(𝑋 − 𝑆′) + 𝑀𝑋).

Consequently, 𝜑𝑛 → 𝜑 implies that𝐴(𝜑𝑛) → 𝐴(𝜑) pointwise. Since,Π(𝜑𝑛) + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 −

(𝜑𝑛 +𝑀)−𝑋 ≥ 0 for all 𝑛 ∈ ℕ and 𝑉𝑆,𝑆′ (𝜑𝑛) → 𝑉𝑆,𝑆′ (𝜑) uniformly in probability, the assertion
follows. □

For the rest of the section, we fix an𝑀 ∈ ℝ+ and a sequence

(𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ ⊆  such that 𝜑0,𝑛𝑇 , 𝜑𝑛𝑇 ≥ −𝑀 for all 𝑛 ∈ ℕ and (𝜑0,𝑛𝑇 , 𝜑𝑛𝑇) → (𝐶0, 𝐶) a.s., (35)

where (𝐶0, 𝐶) ∈ 𝐿0(Ω, , 𝑃; ℝ2) is amaximal element in the sense that Equation (35) cannot hold
for a random vector that strictly dominates (𝐶0, 𝐶) in the pointwise order. For example, (2, −1)
does not dominate (0,0) even if 𝑆𝑇 = 1. By Equation (11), maximal elements exist following the
arguments in Delbaen and Schachermayer (1994, Lemma 4.3).
To prove Theorem 2.23, we have to show that there exists an 𝑀-admissible strategy with ter-

minal value (𝐶0, 𝐶), but there is still a long way to go. We refer to Delbaen and Schachermayer
(1994, Remark 4.4) for an in-depth discussion for the need of maximal elements and also for the
argument why it is sufficient to consider sequences as in Equation (35) to prove Theorem 2.23.
We note that for these considerations, it does not make any difference that we consider a two-
dimensional framework here. Under convention (10), we can interpret (𝜑0,𝑛𝑇 , 𝜑𝑛𝑇) as the position
after the market has closed. Thus, positions in different “currencies” are analog to wealth in
different scenarios.
By Lemma 3.1, the sequence in Equation (35) has to be 𝑀-admissible. In addition, for each

𝑛 ∈ ℕ, there is a sequence of bounded processes (𝜑𝑛,𝑚)𝑚∈ℕ that approximate 𝜑𝑛 in the sense of
Definition 2.6. By Lemma 3.5, the self-financing strategies (𝜑0,𝑛,𝑚, 𝜑𝑛,𝑚) with 𝜑0,𝑛,𝑚 ∶= Π(𝜑𝑛,𝑚)

can be chosen to be 𝑀-admissible as well. Conditions (5) and (6) in Definition 2.6 imply that
𝑉𝑆,𝑆′

𝑇 (𝜑𝑛,𝑚) → 𝑉𝑇 in probability as𝑚 → ∞, whichmeans that𝜑0,𝑛,𝑚𝑇 + (𝜑𝑛,𝑚𝑇 )+𝑆𝑇 − (𝜑𝑛,𝑚𝑇 )−𝑆′𝑇 →

𝜑0,𝑛𝑇 + (𝜑𝑛𝑇)
+𝑆𝑇 − (𝜑𝑛𝑇)

−𝑆′𝑇 in probability. By 𝜑𝑛,𝑚𝑇 → 𝜑𝑛𝑇 pointwise as 𝑚 → ∞, we get 𝜑0,𝑛,𝑚𝑇 →
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𝜑0,𝑛𝑇 in probability as 𝑚 → ∞ for all 𝑛 ∈ ℕ. Since the convergence in probability is metrizable,
there exists a subsequence (𝑚𝑛)𝑛∈ℕ with (𝜑

0,𝑛,𝑚𝑛

𝑇 , 𝜑
𝑛,𝑚𝑛

𝑇 ) → (𝐶0, 𝐶) in probability as 𝑛 → ∞ (one
can choose𝑚𝑛 such that 𝑃(|𝜑0,𝑛,𝑚𝑛

𝑇 − 𝜑0,𝑛𝑇 | > 1∕𝑛 or |𝜑𝑛,𝑚𝑛

𝑇 − 𝜑𝑛𝑇| > 1∕𝑛) ≤ 1∕𝑛). By passing to a
subsequence, we can also get almost sure convergence. This allows us to assumew.l.o.g. that there
exists a sequence (𝑎𝑛)𝑛∈ℕ ⊆ ℝ+ such that already the sequence in Equation (35) satisfies

|𝜑𝑛| ≤ 𝑎𝑛 and (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ ⊆ 𝑀, 𝑛 ∈ ℕ. (36)

Of course, 𝑎𝑛 may explode as 𝑛 → ∞ but for the analysis at the boundaries of the intervals with
friction, we want to argue with bounded strategies.

Note 3.7. Let 𝑆 be a semimartingale price system. Then, there exist semimartingale price systems 𝑆
and 𝑆′ such that for every starting time of an excursion 𝜏, there exist stopping times 𝜎 and 𝜎

satisfying the conditions from Assumption 2.18 with

(𝑆, 𝑆′)1[[𝜏,Γ(𝜏)]] = (𝑋, 𝑋)1[[𝜏,𝜎[[ + (𝑆, 𝑆)1[[𝜎,𝜎[[ + (𝑋, 𝑋)1[[𝜎,Γ(𝜏)]], (37)

Proof. There are at most countably many excursions. Since the processes 𝑋,𝑋, and 𝑆 are càdlàg,
one can choose 𝜎 and 𝜎 close enough to 𝜏 and Γ(𝜏), respectively, such that the correction terms
that occurs by replacing the semimartingale by 𝑄𝐴-super- and submartingales at the boundaries
are arbitrarily small in terms of the metric 𝑑𝕊. □

For the rest of the section, we fix the semimartingale price systems 𝑆 and 𝑆′ to evaluate long and
short positions in the risky asset, respectively, and construct a limiting strategy of the sequence in
Equation (35)/(36) using these semimartingales inDefinition 2.6(b). This implies that if the spread
cannot move away from zero continuously or return to zero continuously, then one can take any
semimartingale price system to construct the limiting strategy.

3.1 Fictitious dormant market

In the proof of the frictionless FTAP, the concatenation property of the set of wealth processes
plays a crucial role. This property is not available in models with transaction costs since on
{𝑋𝑡 > 0}, one cannot switch between two strategies without additional costs. On the other hand,
frictionlessmarkets are included in ourmodel. To prove Theorem 2.23, we proceed in two steps. In
the first step, we consider a fictitious market that behaves similar to a frictionless market and sat-
isfies the concatenation property. When the bid–ask spread is positive, themarket is dormant, but
at other times, one can switch between the strategies. More precisely, the gains that are obtained
during an excursion of the spread away from zero enter in the wealth processes but one cannot
switch from one strategy to another strategy during this time. Then, in the second step, the limiting
strategy is constructed separately for each excursion, and properties (6)–(8) are verified accord-
ingly. We stress that the second step is themain new step. However, the first step that is developed
in this subsection is not only needed to capture the frictionless intervals but also to paste the lim-
iting strategies of the countably many excursions together and obtain a suitable limiting strategy
along the whole interval.
Intuitively, the dormant model coincides with the original model if 𝑋− = 0, and it is dormant

during excursions of the spread away from zero. When an excursion ends and a new frictionless
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interval begins, the model is restarted with the current frictionless wealth (including gains from
trades during the excursions). At the starting time of an excursion, two different cases can occur:
Either the spread is still zero. Then, we investor can still switch to another strategy using the infor-
mation that an excursion has just started. Or, the spread jumps away from zero. Then, the investor
is already in the midst of an excursion, and in the fictitious model, the gains at the jump time and
the gains during the rest of the excursion cannot be separated from each other. The easiest way to
model this is to allow in the first case for double jumps of the wealth process at the starting time of
an excursion: the left jump models movements triggered by a possible synchronous jump of the
semimartingale price systems, and the right jump models the anticipated gains during the excur-
sion. By contrast, if the spread jumps away from zero, the fictitious wealth already takes the value
after the excursion and remains constant up to the end of the excursion. Formally, we introduce
the generalized time change (𝜏𝑡, 𝐷𝑡)𝑡∈[0,𝑇] by

𝜏𝑡 ∶=

{
𝑡 if 𝑋𝑡 = 0

Γ(𝜏𝑖1) ∧ 𝑇 if 𝑋𝑡 > 0 and for 𝑖 ∈ ℕ with 𝑡 ∈ [𝜏𝑖1, Γ(𝜏
𝑖
1))

and𝐷𝑡 ∶= {𝑋𝑡 > 0} ∩ (∪𝑖∈ℕ{𝜏
𝑖
1 ≤ 𝑡 < Γ(𝜏𝑖1) ≤ 𝑇, 𝑋Γ(𝜏𝑖

1
)− = 0}). We observe that (𝜏𝑡)𝑡∈[0,𝑇] is a non-

decreasing family of stopping times (not necessarily right-continuous). It is shown in Kühn and
Molitor (2022, proof of Lemma 5.2) that Γ(𝜏𝑖1){𝑋Γ(𝜏𝑖

1
)−
=0} is a predictable stopping time. Together

with {𝑋𝑡 > 0} = {𝜏𝑡 > 𝑡} ∈ 𝜏𝑡− for 𝑡 ∈ [0, 𝑇), this implies that 𝐷𝑡 ∈ 𝜏𝑡− for all 𝑡 ∈ [0, 𝑇], using
that 𝐷𝑇 = ∅. We introduce the not necessarily right-continuous filtration 𝔽 = (̃𝑡)𝑡∈[0,𝑇] by

̃𝑡 ∶= 𝜎(𝜏𝑡− ∪ ((Ω ⧵ 𝐷𝑡) ∩ 𝜏𝑡 )), 𝑡 ∈ [0, 𝑇].

For any 𝜓 ∈ (𝐛)Π with wealth process 𝑉𝑆,𝑆′ (𝜓) ∶= 𝜓+ ∙ 𝑆 − 𝜓− ∙ 𝑆′ − 𝐶𝑆(𝜓+) − 𝐶𝑆′(−𝜓−), the
dormant wealth process 𝑉𝜓 is defined as

𝑉
𝜓
𝑡 ∶= 𝑉𝑆,𝑆′

𝜏𝑡−
(𝜓)1𝐷𝑡 + 𝑉𝑆,𝑆′

𝜏𝑡
(𝜓)1Ω⧵𝐷𝑡 , 𝑡 ∈ [0, 𝑇]. (38)

For the bounded strategies above, we write 𝑉𝑛 ∶= 𝑉𝜑𝑛 , 𝑛 ∈ ℕ. We note that the definition of 𝑉𝜓
𝑡

on {𝜏𝑡 = 𝑇} can depend on the choice of (𝑆, 𝑆′), but these semimartingale price systems are already
fixed. The paths of the process 𝑉𝜓 are làglàd but can have double jumps. The integration theory
for làglàd integrators is comparatively little developed (see the monograph by Abdelghani and
Melnikov, 2022, for a survey). An integration theory that is tailor-made for trading models with
làglàd price processes (not trading strategies!) is introduced in Kühn and Stroh (2009). The key
idea is that one can separately invest in the part of the right jumps of the asset price process that
can be overlapped by countably many stopping times, that is, that is “accessible.”

Remark 3.8. It is quite natural to model the dormant market with double jumps since this allows
to keep the time domain [0, 𝑇]. However, a reader who prefers to follow the arguments of this
subsection within the standard framework of càdlàg integrators may introduce at time (𝜏𝑖1){𝑋𝜏𝑖

1
=0}

an additional time shift of 2−𝑖: the movement in the original model is paused briefly, and the right
jump turns into a left jump taking place at a later point in time. Formally, this corresponds to the
generalized time change ((𝜏◦𝜏′)𝑡+, 𝐷′

𝑡)𝑡∈[0,𝑇] with 𝜏′𝑡 ∶= inf {𝑢 ≥ 0 ∶ 𝑢 +
∑∞

𝑖=1
2−𝑖1{𝜏𝑖

1
<𝑢, 𝑋

𝜏𝑖
1
=0} ≥

𝑡} and 𝐷′
𝑡 ∶= {𝑋𝜏′𝑡

> 0} ∩ {𝜏′𝑡 < 𝑇} ∩ {𝑋((𝜏◦𝜏′)𝑡+)− = 0} for 𝑡 ∈ [0, 𝑇 +
∑∞

𝑖=1
2−𝑖1{𝜏𝑖

1
<𝑇, 𝑋

𝜏𝑖
1
=0}].
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Lemma 3.9 (cf. Corollary 10.12 in Jacod (1979)). For every 𝜓 ∈ (𝐛)Π, the process𝑉𝜓 is an optional
semimartingale (see, e.g., Kühn and Stroh, 2009, Definition 2.5) under the filtration 𝔽.

Proof. We have to start with some preparatory work on stopping times regarding the two
filtrations. Let 𝜎 be an 𝔽-stopping time.
Step 1: Let us show that 𝜏𝜎 is an (𝑡)𝑡∈[0,𝑇]-stopping time. By construction of (𝜏𝑡)𝑡∈[0,𝑇], one has

{𝜏𝜎 ≤ 𝑡} = ({𝑋𝑡 = 0} ∩ {𝜎 ≤ 𝑡}) ∪ ∪𝑖∈ℕ
(
{𝜏𝑖1 ≤ 𝑡} ∩ {𝜎 < 𝜏𝑖1}

)
, 𝑡 ∈ [0, 𝑇]. (39)

In addition, {𝑞 < 𝜏𝑖1} ∈ 𝜏𝑖
1
and {𝑞 < 𝜏𝑖1} ∩ 𝜏𝑞 ⊆ 𝜏𝑖

1
imply that

{𝜎 < 𝜏𝑖1} = ∪𝑞∈ℚ∩[0,𝑇]
(
{𝜎 < 𝑞} ∩ {𝑞 < 𝜏𝑖1}

)
∈ 𝜏𝑖

1
. (40)

By Equation (39), {𝑋𝑡 = 0} ∩ ̃𝑡 ⊆ 𝑡, and Equation (40), one obtains that {𝜏𝜎 ≤ 𝑡} ∈ 𝑡.
Step 2: Let us show that (𝜏𝜎)𝐷𝜎 is an (𝑡)𝑡∈[0,𝑇]-predictable stopping time, where 𝐷𝜎 ∶= {𝜔 ∈

Ω ∶ 𝜔 ∈ 𝐷𝜎(𝜔)}. Since Γ(𝜏𝑖1){𝑋Γ(𝜏𝑖
1
)−
=0} is an (𝑡)𝑡∈[0,𝑇]- predictable stopping time (see Kühn and

Molitor, 2022, proof of Lemma 5.2), we have that {𝜏𝑖1 ≤ 𝜎 < Γ(𝜏𝑖1) ∧ 𝑇} ∩ {𝑋Γ(𝜏𝑖
1
)− = 0} ∈ Γ(𝜏𝑖

1
)−

and [[Γ(𝜏𝑖1){𝜏𝑖1≤𝜎<Γ(𝜏𝑖1)∧𝑇}∩{𝑋Γ(𝜏𝑖
1
)−
=0}, 𝑇]] ∈  (cf., e.g., Jacod and Shiryaev, 2003, Proposition I.2.10).

By [[(𝜏𝜎)𝐷𝜎 , 𝑇]] = ∪𝑖∈ℕ[[Γ(𝜏
𝑖
1){𝜏𝑖1≤𝜎<Γ(𝜏𝑖1)∧𝑇}∩{𝑋Γ(𝜏𝑖

1
)−
=0}, 𝑇]] we are done.

Step 3: Now, we come to the main part of the proof. Since the cost terms 𝐶𝑆 , 𝐶𝑆′ are nonde-
creasing adapted processes, 𝑉𝑆,𝑆′ (𝜓) is an optional semimartingale under (𝑡)𝑡∈[0,𝑇] which even
possesses a local martingale part𝑀 with càdlàg paths.We can adapt the arguments of Jacod (1979,
Theorem 10.10). It is sufficient to analyze the time-changed process 𝑀̃𝑡 ∶= 𝑀𝜏𝑡−1𝐷𝑡 + 𝑀𝜏𝑡1Ω⧵𝐷𝑡 ,
𝑡 ∈ [0, 𝑇], whereas the time-changed finite variation process is obviously of finite variation.
Let (𝑇𝑘)𝑘∈ℕ be a localizing sequence of (𝑡)𝑡∈[0,𝑇]-stopping times such that 𝑀𝑇𝑘 , 𝑘 ∈ ℕ,

are martingales under (𝑡)𝑡∈[0,𝑇]. Let us show that the time-changed stopped process 𝑀̃𝑘
𝑡 ∶=

𝑀
𝑇𝑘
𝜏𝑡−

1𝐷𝑡 + 𝑀
𝑇𝑘
𝜏𝑡
1Ω⧵𝐷𝑡 , 𝑡 ∈ [0, 𝑇], is an optional martingale under 𝔽. For this, let 𝜎 be an arbitrary

𝔽-stopping time. By Steps 1 and 2, we have that [[(𝜏𝜎)𝐷𝜎 ]]∪]]𝜏𝜎, 𝑇]] ∈  and thus 𝐸(𝑀̃𝑘
𝑇 − 𝑀̃𝑘

𝜎) =

𝐸(1[[(𝜏𝜎)𝐷𝜎 ]]∪]]𝜏𝜎,𝑇]] ∙ 𝑀
𝑇𝑘
𝑇 ) = 0, using that 𝜏𝑇 = 𝑇 and 𝐷𝑇 = ∅.

Now, consider 𝑆𝑘 ∶= 𝜏𝑇𝑘 , 𝑘 ∈ ℕ, which is a localizing sequence of 𝔽-stopping times by 𝑡 ⊆ ̃𝑡
and Step 1. Since 𝑀̃ = 𝑀̃𝑘 on [[0, sup{𝑠 ≥ 0 ∶ 𝜏𝑠 < 𝑇𝑘}[[ and 𝑀̃ is constant on ]] sup{𝑠 ≥ 0 ∶ 𝜏𝑠 <

𝑇𝑘}, 𝜏𝑇𝑘 [[, the process 𝑀̃ is an optional semimartingale under 𝔽, and the assertion of the lemma
follows (wenote that one has no control over the left and right jump at sup{𝑠 ≥ 0 ∶ 𝜏𝑠 < 𝑇𝑘}, which
is in general not even an 𝔽-stopping time, thus one cannot conclude that 𝑀̃ is an optional local
martingale). □

Lemma3.10 ([cf. Lemma 4.5 in Delbaen and Schachermayer (1994)]). LetNA𝑛𝑓 andNUPBR𝑝𝑠 be
satisfied. Then,

sup
𝑡∈[0,𝑇]

|𝑉𝑛
𝑡 − 𝑉𝑚

𝑡 | → 0 in probability as 𝑛,𝑚 → ∞.

This means that at the times the bid–ask spread vanishes, the wealth processes have to be
close together.
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Proof. The proof is analogous to that in the frictionless model by Delbaen and Schacher-
mayer (1994, Lemma 4.5), but a bit more technical since we have to deal with processes
that have double jumps. By Equation (35), we already know that (𝑉𝑛

𝑇)𝑛∈ℕ is a Cauchy
sequence in probability. Now, assume by contradiction that there exists 𝜀 > 0 and subse-
quences (𝑛𝑘,𝑚𝑘)𝑘∈ℕ with 𝑃(sup𝑡∈[0,𝑇),𝜏𝑡<𝑇(𝑉

𝑛𝑘
𝑡 − 𝑉

𝑚𝑘
𝑡 ) > 𝜀) ≥ 𝜀 for all 𝑘 ∈ ℕ (note conven-

tion (10)). Let 𝑇𝑘 ∶= inf {𝑡 ≥ 0 ∶ 𝜏𝑡 < 𝑇, 𝑉
𝑛𝑘
𝑡 − 𝑉

𝑚𝑘
𝑡 ≥ 𝜀}. Define 𝑇𝑘 ∶= 𝑇𝑘 on {𝑇𝑘 < ∞} ∩ {𝑋𝑇𝑘

=

0} ∩ {𝑉
𝑛𝑘
𝑇𝑘
− 𝑉

𝑚𝑘

𝑇𝑘
≥ 𝜀}, 𝑇𝑘 ∶= Γ(𝑇𝑘) elsewhere on {𝑇𝑘 < ∞}, and 𝑇𝑘 ∶= ∞ on {𝑇𝑘 = ∞}. Consider

𝜓𝑘 ∶= 𝜑𝑛𝑘1[[0,𝑇𝑘]]⧵[[(𝑇𝑘)𝐴]] + 𝜑𝑚𝑘1[[(𝑇𝑘)𝐴]]∪]]𝑇𝑘,𝑇]] with 𝐴 ∶= {𝑇𝑘 < ∞} ∩ ({𝑋𝑇𝑘
> 0} ∪ {𝑉

𝑛𝑘
𝑇𝑘
− 𝑉

𝑚𝑘

𝑇𝑘
<

𝜀}) ∩ {𝑋Γ(𝑇𝑘)−
= 0}. The process 𝜓𝑘 is predictable in the original model and thus generates a strat-

egy. If 𝑇𝑘 coincides with some 𝜏𝑖1, there are two cases. In the case that𝑋𝑇𝑘
= 0 and𝑉𝑛𝑘

𝑇𝑘
− 𝑉

𝑚𝑘

𝑇𝑘
≥ 𝜀

one switches from 𝜑𝑛𝑘 to 𝜑𝑚𝑘 before the excursion starts (using the information 𝜏𝑖
1
). Otherwise,

one still follows the strategy 𝜑𝑛𝑘 during the excursion and switches to 𝜑𝑚𝑘 at its end. In the fic-
titious model, the information about the excursion is already available at 𝜏𝑖1 and the model is
dormant afterwards. We arrive at 𝜓𝑘𝑇 = 𝜑

𝑚𝑘

𝑇 , Π𝑇(𝜓
𝑘) ≥ Π𝑇(𝜑

𝑚𝑘) + 𝜀 on {𝑇𝑘 < ∞} and 𝜓𝑘𝑇 = 𝜑
𝑛𝑘
𝑇 ,

Π𝑇(𝜓
𝑘) = Π𝑇(𝜑

𝑛𝑘 ) on {𝑇𝑘 = ∞} with 𝑃(𝑇𝑘 < ∞) ≥ 𝜀. Now, we pass to forward convex combina-
tion of (𝜓𝑘)𝑘∈ℕ (cf. Delbaen and Schachermayer, 1994, Lemma A1.1). Since (Π(𝜓𝑘), 𝜓𝑘) ∈ 𝑀 for
all 𝑘 ∈ ℕ and the self-financing operator Π is concave on (𝐛)Π, we arrive at a contradiction to
the maximality of (𝐶0, 𝐶) in the above sense. □

Lemma 3.11. Let 𝑌 be an 𝔽-optional semimartingale whose right jumps only take place at

the stopping times (𝜏𝑖1){𝑋𝜏𝑖
1
=0}, 𝑖 ∈ ℕ. Then, the sequence

(∑𝑘

𝑖=1
Δ+𝑌𝜏𝑖

1
1{𝑋

𝜏𝑖
1
=0}1]]𝜏𝑖

1
,𝑇]]

)
𝑘∈ℕ

is 𝑑𝑢𝑝-

Cauchy, and the limiting process 𝑌𝑔 ∶=
∑∞

𝑖=1
Δ+𝑌𝜏𝑖

1
1{𝑋

𝜏𝑖
1
=0}1]]𝜏𝑖

1
,𝑇]] is a left-continuous 𝔽-optional

semimartingale. The process 𝑌𝑟 ∶= 𝑌 − 𝑌𝑔 is a càdlàg 𝔽-semimartingale.

Proof. By the continuity of the integral in Kühn and Stroh (2009, Theorem 3.5), applied to the
optional semimartingale 𝑌 and the sequence of optional integrands 𝐻2,𝑘 ∶=

∑𝑘

𝑖=1
1[[(𝜏𝑖

1
){𝑋

𝜏𝑖
1
=0}]]

,

𝑘 ∈ ℕ, the above sequence is 𝑑𝑢𝑝-Cauchy, and its limit 𝑌𝑔 is the integral of the pointwise limit of
(𝐻2,𝑘)𝑘∈ℕ with respect to the integrator 𝑌. Then, the integral 𝑌𝑔 is an optional semimartingale
by Galtchouk (1985, Theorem 2.3) and the arguments at the end of Step 2 in the proof of Kühn and
Stroh (2009, Theorem 3.5) (the former is only for the case that the integrator is a locally square
integrable martingale). By construction, the process 𝑌𝑟 has no right jumps. □

Next, we proceed towards convergence with respect to the semimartingale topology. Since
the processes are not càdlàg but can have right jumps, the Émery metric has to be adjusted. To
avoid the introduction of too much notation, we write down 𝑑𝕊 only for 𝔽-optional semimartin-
gales 𝑌1, 𝑌2 whose right jumps only take place at the stopping times (𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ, using the

decomposition in Lemma 3.11:

𝑑𝕊(𝑌
1, 𝑌2) ∶= sup

𝐻 𝔽-predictable with |𝐻|≤1, 𝐺𝑖∈𝐿0(𝜏𝑖
1
), |𝐺𝑖|≤1 𝐸( sup𝑡∈[0,𝑇]

|𝐻 ∙ ((𝑌1)𝑟 − (𝑌2)𝑟)𝑡

+

∞∑
𝑖=1

𝐺𝑖1{𝜏𝑖
1
<𝑡, 𝑋

𝜏𝑖
1
=0}(Δ

+𝑌1

𝜏𝑖
1

− Δ+𝑌2

𝜏𝑖
1

)| ∧ 1). (41)
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The integral in Equation (41) can be seen as a standard stochastic integral under 𝔽 or 𝔽+ (the
filtrations generate the same predictable sets). The sum in Equation (41) converges uniformly in
probability by the same arguments as in the proof of Lemma 3.11.

Remark 3.12. With the integral in Kühn and Stroh (2009, Theorem 3.5), the definition of 𝑑𝕊 for
arbitrary optional semimartingales is canonical. For the purposes of the present paper, however,
it is sufficient to consider optional semimartingales whose right jumps only take place at the stop-
ping times (𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ. By Lemma 3.9, the dormantwealth processes𝑉𝜓 satisfy this property.

This special situation is much simpler since right jumps can then be treated as left jumps that take
place at separate times (cf. Remark 3.8).

Lemma 3.13 ([cf. Lemmas 4.7–4.11 in Delbaen and Schachermayer (1994)]). Let NA𝑛𝑓 and
NUPBR𝑝𝑠 be satisfied. Then, there exist forward convex combinations (𝜆𝑛,𝑘)𝑛∈ℕ, 𝑘=0,…,𝑘𝑛 , 𝑘𝑛 ∈ ℕ,
that is, 𝜆𝑛,𝑘 ∈ ℝ+ and

∑𝑘𝑛
𝑘=0

𝜆𝑛,𝑘 = 1, such that for𝜓𝑛 ∶=
∑𝑘𝑛

𝑘=0
𝜆𝑛,𝑘𝜑

𝑛+𝑘 , (𝑉𝜓𝑛)𝑛∈ℕ is a 𝑑𝕊-Cauchy
sequence. In addition, there exists an𝔽-optional semimartingale𝑉 whose right jumps only take place
at the stopping times (𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ, such that 𝑑𝕊(𝑉𝜓𝑛 , 𝑉) → 0 as 𝑛 → ∞.

As soon as the lemma is proven, we pass to these forward convex combinations and use that
𝑑𝕊(𝑉

𝑛, 𝑉) → 0 as 𝑛 → ∞. By concavity of Π, the properties of (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ remain valid.

Proof of Lemma 3.13. By the time change 𝜏′ from Remark 3.8, that pauses the movement at
the stopping times (𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ, 𝔽-optional semimartingales 𝑌1, 𝑌2 whose right jumps only

take place at the times (𝜏𝑖1){𝑋𝜏𝑖
1
=0}, 𝑖 ∈ ℕ, can be transformed into the processes (𝑌𝑗)′𝑡 ∶= 𝑌𝜏′𝑡+

,

𝑡 ∈ [0, 𝑇], 𝑗 ∈ {0, 1}, that are càdlàg semimartingales under the right-continuous filtration  ′
𝑡 ∶=⋂

𝑠>𝑡
̃𝜏′𝑠 for 𝑡 ∈ [0, 𝑇) and  ′

𝑇 ∶= ̃𝜏′
𝑇
. By construction of 𝜏′, it follows that 𝑑𝕊((𝑌1)′, (𝑌2)′) =

𝑑𝕊(𝑌
1, 𝑌2) (cf., for example, the proof of He et al., 1992, Theorem 5.55). This makes the results

below for càdlàg semimartingales directly applicable to our setting.
Based on the analogon of Lemma 3.10, it is shown in Delbaen and Schachermayer (1994, proofs

of Lemmas 4.7 to 4.11) that after passing to forward convex combinations, the convergence holds in
the stronger Émery topology (when reading one must abstract from the fact that the semimartin-
gales are stochastic integrals). The proofs are reformulated in Kabanov (1997) in a more abstract
setting. It seems to be easier to adapt the arguments in Kabanov (1997) to our setting, which is
what we want to do in the following. We define the following set of 𝔽-optional semimartingales:

 ∶= {𝑉𝜓 ∶ 𝜓 ∈ (𝐛)Π such that (Π(𝜓), 𝜓) is𝑀-admissible}.

This means that for 𝑌 ∈  , 𝑌𝑇 is the gain of an𝑀-admissible strategy in the original model if on
{𝑋𝑇 > 0}, terminal stock positions are evaluated by (𝑆, 𝑆′). We list key properties of the set  :
(i) By the estimate 𝑉𝑆,𝑆′

𝑇 (𝜓) ≤ 𝑉cost
𝑇 (𝜓) and condition (11), the set {𝑌𝑇 ∶ 𝑌 ∈ } is 𝐿0-bounded.

(ii) For any 𝑌1, 𝑌2 ∈  , 𝜆 ∈ [0, 1], there exists 𝑌3 ∈  with 𝑌3 ≥ 𝜆𝑌1 + (1 − 𝜆)𝑌2 (this holds
since the wealth process is concave in the strategy).

(iii) Let𝑌1, 𝑌2 ∈  and (𝑌1)𝑟, (𝑌2)𝑟 defined as in Lemma 3.11. For any [0,1]-valued 𝔽-predictable
processes 𝐻1,𝐻2 with 𝐻1𝐻2 = 0 and 𝐺1

𝑖
, 𝐺2

𝑖
∈ 𝐿0(𝜏𝑖

1
; [0, 1]), 𝑖 ∈ ℕ, with 𝐺1

𝑖
𝐺2
𝑖
= 0, the
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process

𝐻1 ∙ (𝑌1)𝑟 +

∞∑
𝑖=1

𝐺1
𝑖
1{𝑋

𝜏𝑖
1
=0}1]]𝜏𝑖

1
,𝑇]]Δ

+𝑌1

𝜏𝑖
1

+ 𝐻2 ∙ (𝑌2)𝑟 +

∞∑
𝑖=1

𝐺2
𝑖
1{𝑋

𝜏𝑖
1
=0}1]]𝜏𝑖

1
,𝑇]]Δ

+𝑌2

𝜏𝑖
1

is the dormant wealth process of a self-financing strategy (not necessarily𝑀-admissible).
(iv) In the dormant market, one can consider the numéraire 𝑁𝑡 ∶= (1 + 𝑆𝜏𝑡−)1𝐷𝑡 + (1 +

𝑆𝜏𝑡 )1Ω⧵𝐷𝑡 , 𝑡 ∈ [0, 𝑇], that is the sum of 1 and the time-changed semimartingale price sys-
tem 𝑆. For an𝑀-admissible strategy (𝜓0, 𝜓) with 𝜓 ∈ (𝐛)Π, we have that 𝑉𝜓

𝑡 ∕𝑁𝑡 ≥ −𝑀 on
{𝜏𝑡 < 𝑇} for all 𝑡 ∈ [0, 𝑇) (for stopping at 𝜏𝑡− cf. Lemma 3.4 combined with NA𝑛𝑓). We refer
to the term of an “allowable strategy” introduced in (Yan, 1998, Definition 2.4).

With these four properties of  , one obtains a 𝑑𝕊-Cauchy sequence along the lines of Kabanov
(1997, proofs of Lemmas 2.3–2.8 and Lemma 3.3). Let us only describe the minor adjustments
that are needed. By considering the dormant market, one switches from one strategy to another
strategy only at frictionless points. Here, one can express the difference of frictionless wealth as
multiple of 𝑁 (cf. item (iv)) and control it as in Kabanov (1997). Then, during an excursion of
the spread away from zero, the number of stocks of a concatenated strategy coincides with some
𝜓, with (𝜓0, 𝜓) admissible, and the position in the bank account coincides with 𝜓0 shifted by the
difference of frictionless wealth before the excursion. Thismeans that the difference of frictionless
wealth coming from past trades is invested in the bank account, which allows to estimate the
constant 𝑀′ with which the concatenated strategy is 𝑀′-admissible. On the technical level, the
arguments in the proof of Lemma 3.10 have to be repeated to concatenate strategies, using that
(𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ, are stopping times and the left limit process𝑁− is locally bounded. In that proof,

it can also be seen how the maximality of (𝐶0, 𝐶) is used.
To prove the second assertion,weuse the fact that the space of semimartingales is completewith

regard to the Émery topology (see Émery, 1979, Theorem 1 for càdlàg semimartingales). Along the
lines of the proof of Émery (1979, Theorem 1), one can show that there exists a limiting 𝔽-optional
semimartingale 𝑉 that shares with 𝑉𝜓 the property that right jumps only take place at (𝜏𝑖1){𝑋𝜏𝑖

1
=0},

𝑖 ∈ ℕ. We stress that𝑉 does in general not lie in , which is generated by bounded strategies. □

Remark 3.14. In a more recent article, Cuchiero and Teichmann (2015, Theorem 3.3(ii)) show that
in the case of a frictionless market, Lemma 3.13 holds without passing to (further) forward convex
combinations.We leave it as an open problem if their arguments can also be adapted to our setting.
For the proof of Theorem 2.23, this question is not crucial, and the proofs of Kabanov (1997) can
be more easily adapted.

Proof of Theorem 2.23. So far, we made well-known results on frictionless markets accessible
to our model by considering a fictitious dormant market that ignores the problems that occur by
positive bid–ask spreads.We now turn to the construction of the limiting strategywhen the spread
does not vanish. The random vector (𝐶0, 𝐶) and the approximating sequence (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ are still
from Equation (35), and we have to show that (𝐶0, 𝐶) is the terminal position of an𝑀-admissible
strategy. We can assume that (𝜑0,𝑛, 𝜑𝑛)𝑛∈ℕ satisfies Equation (36).
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Step 1: By Equation (12), the second part of theNUPBR𝑝𝑠 condition, we can assume w.l.o.g. that

sup
𝑡∈[0,𝑇]

sup
𝑛∈ℕ

𝑉cost
𝑡 (𝜑𝑛) < ∞. (42)

If this does not already hold for the original sequence of cost value processes, we pass to
forward convex combinations. Equation (42) allows us to define the finite process 𝐴𝑡 ∶=

sup𝑠∈[0,𝑡] sup𝑛∈ℕ 𝑉
cost
𝑠 (𝜑𝑛) that dominates all cost processes. Putting this together with the 𝑀-

admissibility of 𝜑𝑛, the later means that 𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+𝑋 − (𝜑𝑛 +𝑀)−𝑋 ≥ 0, we can
control the size of the strategies. Namely, we get

|𝜑𝑛|(𝑋 − 𝑋) ≤ 𝐴 +𝑀 +𝑀𝑋, ∀𝑛 ∈ ℕ. (43)

Estimate (43) is used for the case that positions are built up during a frictionless interval but
the spread jumps away from zero. For the case that the portfolio is rebalanced under a positive
spread, we need another estimate. The finite process𝐴 is prelocally bounded, that is, there exists a
sequence of stopping times (𝑇𝑚)𝑚∈ℕ with 𝑃(𝑇𝑚 = ∞) → 1 for𝑚 → ∞ and 𝑉cost(𝜑𝑛)1[[0,𝑇𝑚[[ ≤ 𝑚

for all 𝑛 ∈ ℕ. Let us show that(
𝜑0,𝑛 + (𝜑𝑛)+𝑋− − (𝜑𝑛)−𝑋

−

)
1[[0,𝑇𝑚]] ≤ 𝑚, ∀𝑛,𝑚 ∈ ℕ. (44)

Intuitively, this means that trading cannot increase the cost value of a portfolio. We have to prove
that 𝜑0,𝑛𝑠 + (𝜑𝑛𝑠 )

+𝑋𝑠 − (𝜑𝑛𝑠 )
−𝑋

𝑠
≤ 𝑚 for all 𝑠 < 𝑡 implies that 𝜑0,𝑛𝑡 + (𝜑𝑛𝑡 )

+𝑋𝑡− − (𝜑𝑛𝑡 )
−𝑋

𝑡−
≤ 𝑚.

On the set {𝑋𝑡− > 𝑋
𝑡−
}, 𝜑𝑛𝑠 converges to 𝜑𝑛𝑡−, and the variation of 𝜑

𝑛 on [𝑠, 𝑡) vanishes as 𝑠 ↑ 𝑡 by
Proposition 3.2(a). This implies that

𝜑0,𝑛𝑡− + (𝜑𝑛𝑡−)
+𝑋𝑡− − (𝜑𝑛𝑡−)

−𝑋
𝑡−

≤ 𝑚. (45)

In addition, the LHS of Equation (45) dominates 𝜑0,𝑛𝑡 + (𝜑𝑛𝑡 )
+𝑋𝑡− − (𝜑𝑛𝑡 )

−𝑋
𝑡−
. On {𝑋𝑡− =

𝑋
𝑡−
}, we can use that 𝑉𝑆,𝑆′

𝑠 (𝜑𝑛) ≤ 𝜑0,𝑛𝑠 + (𝜑𝑛𝑠 )
+𝑋𝑠 − (𝜑𝑛𝑠 )

−𝑋
𝑠
≤ 𝑚 for all 𝑠 < 𝑡 and 𝑉𝑆,𝑆′

𝑠 (𝜑𝑛) →

𝑉𝑆,𝑆′

𝑡− (𝜑𝑛) = 𝜑0,𝑛𝑡 + (𝜑𝑛𝑡 )
+𝑋𝑡− − (𝜑𝑛𝑡 )

−𝑋
𝑡−
.

We can and do choose the sequence (𝑇𝑚)𝑚∈ℕ from above such that one has, in addition, that

𝑋−1[[0{𝑇𝑚>0}]]∪]]0,𝑇𝑚]] ≤ 𝑚, ∀𝑚 ∈ ℕ.

From Equation (44), we subtract the inequality

𝜑0,𝑛 + 𝑀 + (𝜑𝑛 +𝑀)+essinf−𝑋 − (𝜑𝑛 +𝑀)−esssup−𝑋 ≥ 0

that holds by Lemma 3.4 and obtain the estimate

max{(𝜑𝑛)+(𝑋− − essinf−𝑋), (𝜑𝑛)−(esssup−𝑋 − 𝑋
−
)} ≤ 𝑚 +𝑀 +𝑀𝑚 on ]]0, 𝑇𝑚]].
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We arrive at

|𝜑𝑛|𝑋 ≤ 𝑚 +𝑀 +𝑀𝑚 on ]]0, 𝑇𝑚]],

where 𝑋 ∶= min(𝑋− − essinf−𝑋, esssup−𝑋 − 𝑋
−
). (46)

Estimate (46) is crucial to control the position in the risky asset during an excursion of the spread
away from zero.
Step 2: Let 𝜏 ∶= 𝜏𝑖1 be the starting time of an excursion (cf. Equation 3). The spread at 𝜏 can be

zero or positive. Let us show that the end of an excursion can be rewritten as follows:

Γ(𝜏) ∶= inf {𝑡 > 𝜏 ∶ 𝑋𝑡 = 𝑋
𝑡
or 𝑋𝑡− = 𝑋

𝑡−
} (47)

= inf {𝑡 > 𝜏 ∶ 𝑋𝑡 = 𝑋
𝑡
or 𝑋𝑡− = 𝑋

𝑡−
or 𝑋𝑡− = (essinf−𝑋)𝑡 or (esssup−𝑋)𝑡 = 𝑋

𝑡−
}.

Let 𝜏1 be a predictable stopping time with 𝑋𝜏1− = (essinf−𝑋)𝜏1 on {𝜏1 < ∞}. Since 𝑋
𝜏1

≥
(essinf−𝑋)𝜏1 , the NA𝑛𝑓 condition implies that 𝑋

𝜏1
= 𝑋𝜏1−. This means that a long stock posi-

tion built up at time 𝜏1− can be liquidated for sure at time 𝜏1. Consequently, we must have
that 𝑋𝜏1 = 𝑋

𝜏1
on {𝜏1 < ∞} since otherwise the sequence 𝜓𝑛 ∶= 𝑛1[[𝜏1]], 𝑛 ∈ ℕ, would violate the

NUPBR𝑝𝑠 condition. This means that at 𝑡 = 𝜏1, the first condition 𝑋𝑡 = 𝑋
𝑡
is satisfied as well.

To complete the proof, we define the debut 𝜏2 ∶= inf {𝑡 > 𝜏 ∶ 𝑋𝑡− = (essinf−𝑋)𝑡} that is a (not
necessarily predictable) stopping time with [[(𝜏2){𝑋𝜏2−

=(essinf−𝑋)𝜏2 }]] ∈  . We have to show that
𝑃(𝜏2 ≥ Γ(𝜏)) = 1. Assume by contradiction that there exists an 𝜀 > 0 such that 𝑃(𝜏2 + 𝜀 < Γ(𝜏)) >

0. By a section theorem for predictable sets (see, e.g., He et al., 1992, Theorem 4.8) applied to
the predictable set {𝑋− = essinf−𝑋} ∩ [[𝜏2, (𝜏2 + 𝜀) ∧ Γ(𝜏)]], there exists a predictable stopping
time 𝜏3 with 𝑃(𝜏3 < ∞, 𝜏2 + 𝜀 < Γ(𝜏)) > 0, 𝜏2 ≤ 𝜏3 ≤ 𝜏2 + 𝜀 and 𝑋𝜏3− = (essinf−𝑋)𝜏3 on {𝜏3 <

∞, 𝜏2 + 𝜀 < Γ(𝜏)}. Above, we have shown that this implies that 𝑋𝜏3 = 𝑋
𝜏3
on {𝜏3 < ∞, 𝜏2 + 𝜀 <

Γ(𝜏)}—a contradiction to the definition of Γ(𝜏). By exactly the same arguments, we get rid of the
condition (esssup−𝑋)𝑡 = 𝑋

𝑡−
in Equation (47).

In the following, we construct a double sequence of stopping times (𝜏1,𝑁, 𝜏2,𝑁)𝑁∈ℕ with
which one can exhaust the excursion while keeping the spread away from zero. We set 𝜏1,𝑁 ∶=

(𝜏 + 1∕𝑁1{𝑋𝜏=𝑋𝜏
}) ∧ 𝜎. Since the stopping time (Γ(𝜏)){𝑋Γ(𝜏)−=𝑋Γ(𝜏)−

} is predictable, it possesses an

announcing sequence. Thus, there exists a sequence (𝜏2,𝑁)𝑁∈ℕ with 𝜎 ≤ 𝜏2,𝑁 ≤ Γ(𝜏), 𝜏2,𝑁 < Γ(𝜏)

on {𝑋Γ(𝜏)− = 𝑋
Γ(𝜏)−

}, and 𝜏2,𝑁 → Γ(𝜏) a.s. as 𝑁 → ∞, where 𝜎 comes from Assumption 2.18. For
fixed 𝑁 ∈ ℕ, the event {𝜏2,𝑁 < 𝜏1,𝑁} can have positive probability, but we have

]]𝜏, Γ(𝜏)]] ⧵ [[(Γ(𝜏)){𝑋Γ(𝜏)−=𝑋Γ(𝜏)−
}]] = ∪𝑁∈ℕ]]𝜏

1,𝑁, 𝜏2,𝑁]]. (48)

For all 𝑁 ∈ ℕ, we define

𝜂𝑁 ∶= inf
𝑡∈[𝜏

1,𝑁

{𝑋𝜏=𝑋𝜏}
]∪(𝜏1,𝑁,𝜏2,𝑁)∪[𝜏

2,𝑁

{𝜏2,𝑁<Γ(𝜏)}
]
min

{
𝑋𝑡− − (essinf−𝑋)𝑡,

(esssup−𝑋)𝑡 − 𝑋
𝑡−
, 𝑋𝑡− − 𝑋

𝑡−

}
(49)
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with the convention that inf ∅ ∶= ∞. Let us show that

𝜂𝑁 > 0 a.s. (50)

The NA𝑛𝑓 condition and a section theorem for predictable sets (see, e.g., He et al., 1992,
Theorem 4.8) imply that 𝜂𝑁 ≥ 0 a.s. Now, fix some 𝑁 ∈ ℕ and define

𝐵𝑛 ∶=

⎧⎪⎨⎪⎩ inf
𝑡∈[𝜏

1,𝑁

{𝑋𝜏=𝑋𝜏}
]∪(𝜏1,𝑁,𝜏2,𝑁]

(𝑋𝑡− − (essinf−𝑋)𝑡) ≤ 1∕𝑛

⎫⎪⎬⎪⎭, 𝑛 ∈ ℕ.

In contrast to Equation (49), 𝑡 = Γ(𝜏) is included in the infimum that makes 𝐵𝑛 predictable.
Let 𝜀 > 0. Again by a section theorem for predictable sets, there exists a sequence of pre-
dictable stopping times (𝜎𝑛)𝑛∈ℕ such that 𝑃(𝐵𝑛 ∩ {𝜎𝑛 < ∞}) ≥ 𝑃(𝐵𝑛) − 𝜀2−𝑛, (essinf−𝑋)𝜎𝑛 ≥
𝑋𝜎𝑛− − 1∕𝑛, 𝜏1,𝑁 ≤ 𝜎𝑛 ≤ 𝜏2,𝑁 on {𝜎𝑛 < ∞}, and 𝜏1,𝑁 < 𝜎𝑛 on {𝑋𝜏 > 𝑋

𝜏
}. In addition, 𝜎𝑛 can

be chosen such that it does not exceed the debut of 𝐵𝑛 by more than 2−𝑛. It follows that
𝑋
𝜎𝑛

≥ 𝑋𝜎𝑛− − 1∕𝑛 on {𝜎𝑛 < ∞} which means that the strategies 𝜓𝑛 ∶= 𝑛1[[𝜎𝑛]], 𝑛 ∈ ℕ, are 1-

admissible. The NUPBR𝑝𝑠 condition implies that the sequence (𝑛(𝑋𝜎𝑛 − 𝑋𝜎𝑛−)1{𝜎𝑛<∞})𝑛∈ℕ and
thus (𝑛(𝑋𝜎𝑛 − 𝑋

𝜎𝑛
)1{𝜎𝑛<∞})𝑛∈ℕ is𝐿0-bounded. The latter implies that𝑋𝜎𝑛 − 𝑋

𝜎𝑛
converges to zero

in probability on 𝐵 ∶= ∩𝑛∈ℕ(𝐵𝑛 ∩ {𝜎𝑛 < ∞}) as 𝑛 → ∞. Consequently, there exists a (determinis-
tic) subsequence (𝑛𝑘)𝑘∈ℕ such that𝑋𝜎𝑛𝑘

− 𝑋
𝜎𝑛𝑘

→ 0 on 𝐵 a.s. as 𝑘 → ∞. First, we observe that on

{𝜏2,𝑁 < Γ(𝜏)}, the bid–ask spread is bounded away from zero and thus 𝐵 ⊆ {𝜏2,𝑁 = Γ(𝜏)} a.s. On
the other hand, on {𝜏2,𝑁 = Γ(𝜏)}, we have that 𝑋Γ(𝜏)− > 𝑋

Γ(𝜏)−
. Putting together, we obtain that

𝐵 ⊆ {𝜎𝑛𝑘 = Γ(𝜏) for all but finitely many 𝑘} a.s. Since the stopping times are close to the debuts of
𝐵𝑛𝑘 and 𝜀 > 0 was arbitrary, we arrive at Equation (50) by symmetry.
We conclude this step with a remark. Following Example 2.5, it can happen that 𝑋Γ(𝜏)− =

(essinf−𝑋)Γ(𝜏) but 𝑋Γ(𝜏)− > 𝑋
Γ(𝜏)−

. In this case, the point Γ(𝜏) is still considered to be part
of the regime with friction. However, on {𝑋Γ(𝜏)− = (essinf−𝑋)Γ(𝜏)}, we must have anyway that
𝑋Γ(𝜏)− = 𝑋

Γ(𝜏)
= 𝑋Γ(𝜏), and there are no investment opportunities between Γ(𝜏)− and Γ(𝜏).

Step 3a: In the following, we consider an interval 𝑐
𝑖
, 𝑖 ∈ ℕ, whose left endpoint (𝜏𝑖1){𝑋𝜏𝑖

1
=0}

is the starting time of an excursion of the spread 𝑋 away from zero but at which the spread is
still zero. This is the most tricky case in the proof since we do not have an upper bound for the
number of stocks of𝑀-admissible strategies on {𝑋𝜏𝑖

1
= 0}. Assumption 2.18 is needed to show that

with 𝑛 → ∞ the cost value processes 𝑉cost(𝜑𝑛) cannot increase significantly “closer and closer”
to (𝜏𝑖1){𝑋𝜏𝑖

1
=0}.

Let 𝜏 ∶= (𝜏𝑖1){𝑋𝜏𝑖
1
=0} be accompanied by the measures 𝑄𝐴, 𝐴 ∈  , from Assumption 2.18. In

addition, we fix some𝑚 ∈ ℕ and 𝜀 ∈ (0, 1). By Proposition A.3(b), there exists 𝛾 ∈ (0, 𝜀) such that
for every 𝐴 ∈  and every 𝑄𝐴-supermartingale 𝑌 on [0, 𝑇] with 𝑌0 = 0 and 𝑌 ≥ −𝑚 −𝑀, the
following implication holds:

𝑄𝐴( sup
𝑡∈[0,𝑇]

|𝑌𝑡| > 𝛾) ≤ 𝛾 ⇒ 𝑑𝕊(𝑌, 0) ≤ 𝜀2, (51)
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where 𝑑𝕊 denotes the Émery distance under 𝑃 (the proposition is applied under themeasures𝑄𝐴,
but by Equation 14, 𝑑𝕊 is small if the Émery distance under 𝑄𝐴 is small). Next, there exists 𝛿 ∈
(0, 𝛾∕3) such that for every𝐴 ∈  and every𝑄𝐴-supermartingale𝑌with𝑌0 = 0 and𝑌 ≥ −𝑚 −𝑀

𝑃(𝑌𝑇 < −3𝛿) ≤ 3𝛿 ⇒ 𝑃( sup
𝑡∈[0,𝑇]

|𝑌𝑡| > 𝛾) ∨ 𝑄𝐴( sup
𝑡∈[0,𝑇]

|𝑌𝑡| > 𝛾) ≤ 𝛾. (52)

Indeed, by Equation (13)/(14), we can switch between the measures 𝑃 and 𝑄𝐴, and one has that
𝐸𝑄𝐴(𝑌−

𝑇 ) ≤ 𝑎 + (𝑚 +𝑀)𝑄𝐴(𝑌𝑇 < −𝑎) for all 𝑎 ∈ ℝ+. Since at every stopping time, the expected
loss of a supermartingale exceeds the expected gain, and the former is maximal at maturity, impli-
cation (52) follows by considering the stopping times inf {𝑡 ≥ 0 ∶ 𝑌𝑡 > 𝛾} and inf {𝑡 ≥ 0 ∶ 𝑌𝑡 <

−𝛾}.
By Lemma 3.10 and 𝑉𝑛

𝜏 = 𝑉𝑆,𝑆′

𝜏 (𝜑𝑛) = 𝑉cost
𝜏 (𝜑𝑛) on {𝜏 < ∞} for all 𝑛 ∈ ℕ, we have that

𝑃(𝜏 < ∞, |𝑉cost
𝜏 (𝜑𝑛1) − 𝑉cost

𝜏 (𝜑𝑛2)| > 𝛿) ≤ 𝛿 for all 𝑛1, 𝑛2 large enough. Since the converging
sequence (𝜑0,𝑛𝑇 , 𝜑𝑛𝑇)𝑛∈ℕ is maximal, there exists 𝑛𝜀 ∈ ℕ such that for all 𝑛1, 𝑛2 ≥ 𝑛𝜀, there exists
no 𝑀-admissible (𝜓0, 𝜓) with (𝜓0𝑇, 𝜓𝑇) ≥ (𝜑

0,𝑛1
𝑇 ∧ 𝜑

0,𝑛2
𝑇 , 𝜑

𝑛1
𝑇 ∧ 𝜑

𝑛2
𝑇 ) and 𝑃(𝜓0𝑇 ≥ 𝜑

0,𝑛1
𝑇 + 𝛿) ≥ 𝛿

(cf. the end of the proof of Lemma 3.10). By |𝜑𝑛𝜀 | ≤ 𝑎𝑛𝜀 (cf. Equation 36), we find an𝑁𝜀 ∈ ℕ such
that 𝑃(𝜎 > 𝜏, inf 𝑡∈[𝜏,𝜏1,𝑁𝜀 ] 𝑉

liq
𝑡 (𝜑𝑛

𝜀
) − 𝑉cost

𝜏 (𝜑𝑛
𝜀
) < 𝛿) ≤ 𝛿 and 𝑃(𝜏 < 𝜎 ≤ 𝜏1,𝑁

𝜀
) ≤ 𝜀. Let us show

that

𝑃( inf
𝑡∈[𝜏,𝜏1,𝑁𝜀 ]

(𝑉cost
𝑡 (𝜑𝑛) − 𝑉

liq
𝑡 (𝜑𝑛

𝜀
)) < −𝛿) ≤ 𝛿 for all 𝑛 ≥ 𝑛𝜀. (53)

We suppose otherwise. Then, one can switch from 𝜑𝑛
𝜀 to 𝜑𝑛 at a stopping time 𝜏̃𝑛 with 𝑃(𝜏̃𝑛 <

∞) > 𝛿 and 𝜏 ≤ 𝜏̃𝑛 ≤ 𝜏1,𝑁
𝜀 , 𝑉cost

𝜏̃𝑛
(𝜑𝑛) − 𝑉

liq

𝜏̃𝑛
(𝜑𝑛

𝜀
) < −𝛿 on {𝜏̃𝑛 < ∞} (such a stopping time exists

by a section theorem for optional sets, see, e.g., He et al. (1992, Theorem 4.7)). This generates a
superior strategy (𝜓0, 𝜓) of the type described above that is a contradiction. Putting together we
obtain that

𝑃( inf
𝑡∈[𝜏,𝜏1,𝑁𝜀 ]

(𝑉cost
𝑡 (𝜑𝑛) − 𝑉cost

𝜏 (𝜑𝑛)) < −3𝛿) ≤ 3𝛿 for all 𝑛 ≥ 𝑛𝜀. (54)

But, Equation (54) implies that

𝑃( inf
𝑡∈[𝜏,𝜏1,𝑁𝜀 ]

((𝜑𝑛)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋𝑡 − (𝜑𝑛)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋𝑡
) < −3𝛿) ≤ 3𝛿. (55)

The processes 1{𝑇𝑚>𝜏}((𝜑
𝑛)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋 − (𝜑𝑛)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋), 𝑛 ∈ ℕ, are bounded from below

by −𝑚 −𝑀. By Assumption 2.18, the 𝑛th process is a supermartingale with respect to the
measure 𝑄𝐴𝑛 with 𝐴𝑛 ∶= {𝜑𝑛 ≥ 0}. Thus, we can derive from Equations (55) and (52) that

𝑄𝐴𝑛(1{𝑇𝑚>𝜏} sup
𝑡∈[𝜏,𝜏1,𝑁𝜀 ]

|(𝜑𝑛)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋𝑡 − (𝜑𝑛)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋𝑡
| > 𝛾) ≤ 𝛾. (56)

From Equation (51), it follows that

𝑑𝕊(1{𝑇𝑚>𝜏}((𝜑
𝑛)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋 − (𝜑𝑛)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋), 0) ≤ 𝜀2 for all 𝑛 ≥ 𝑛𝜀 (57)
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and 𝑑𝕊 taken with respect to 𝑃. By 𝑃(𝜏 < 𝜎 ≤ 𝜏1,𝑁
𝜀
) ≤ 𝜀, (𝑋, 𝑋) coincides with (𝑆, 𝑆′) on [[𝜏, 𝜏1,𝑁𝜀

]]

with high probability (cf. Note 3.7). Together with Equation (54), 3𝛿 ≤ 𝜀, and Equation (57), we
conclude that

𝑃(1{𝑇𝑚>𝜏} sup
𝑡∈[𝜏,𝜏1,𝑁𝜀 ]

|𝑉𝑆,𝑆′

𝑡 (𝜑𝑛) − 𝑉𝑆,𝑆′

𝜏 (𝜑𝑛)| > 𝜀) ≤ 3𝜀 for all 𝑛 ≥ 𝑛𝜀. (58)

Step 3b: Let Γ(𝜏) be the end time of the excursion. The numbers 𝜀 and 𝑛𝜀 are still
given by Step 3a. Analogously to 𝜏1,𝑁

𝜀 , again using Equation (36), we find an 𝑁′ such that
𝑃(𝜏2,𝑁

′
< Γ(𝜏), sup𝑡∈[𝜏2,𝑁′ ,Γ(𝜏)) 𝑉

cost
𝑡 (𝜑𝑛

𝜀
) − 𝑉

liq

Γ(𝜏)
(𝜑𝑛

𝜀
)1{𝑋Γ(𝜏)−>0} − 𝑉

liq

Γ(𝜏)−
(𝜑𝑛

𝜀
)1{𝑋Γ(𝜏)−=0} > 𝛿) ≤ 𝛿.

Since Step 3a is a fortiori true if we reduce 𝜏1,𝑁 , we can assume that𝑁′ = 𝑁𝜀. By similar arguments
as for Equation (53), we get

𝑃( sup
𝑡∈[𝜏2,𝑁𝜀 ,Γ(𝜏))

(𝑉
liq
𝑡 (𝜑𝑛) − 𝑉cost

𝑡 (𝜑𝑛
𝜀
)) > 𝛿) ≤ 𝛿 for all 𝑛 ≥ 𝑛𝜀. (59)

If Equation (59) did not hold, then one could switch from 𝜑𝑛 to 𝜑𝑛𝜀 and improve the terminal
position. Economically, this means that it could be anticipated if the sequence of strategies per-
formed too bad at the foreseeable end of the excursion, and one would switch to 𝜑𝑛𝜀 before that
happens. By contrast, at the beginning of the excursion, one would switch from 𝜑𝑛

𝜀 to 𝜑𝑛 after a
bad performance of 𝜑𝑛, compare Equation (53). Consequently, towards the end of the excursion,
the liquidation values of the sequence of strategies can be controlled, instead of the cost values as
at the beginning of the excursion. Putting together, we obtain

𝑃(𝑉
liq

Γ(𝜏)
(𝜑𝑛)1{𝑋Γ(𝜏)−>0} + 𝑉

liq

Γ(𝜏)−
(𝜑𝑛)1{𝑋Γ(𝜏)−=0} − sup

𝑡∈[𝜏2,𝑁𝜀 ,Γ(𝜏))

𝑉
liq
𝑡 (𝜑𝑛) < −3𝛿) ≤ 3𝛿 (60)

for all 𝑛 ≥ 𝑛𝜀. Since the cost term 𝐶 is nondecreasing, Equation (60) implies that

𝑃((𝜑𝑛)+1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋

𝑇

−(𝜑𝑛)−1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋𝑇 < −3𝛿) ≤ 3𝛿 for all 𝑛 ≥ 𝑛𝜀. (61)

The processes

1{𝑇𝑚>𝜏2,𝑁
𝜀 }((𝜑

𝑛)+1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋 − (𝜑𝑛)−1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]

∙ 𝑋),

𝑛 ∈ ℕ, are bounded frombelow by−𝑚 −𝑀, and the 𝑛th process is a supermartingalewith respect
to the measure 𝑄𝐴𝑛 with 𝐴𝑛 ∶= {𝜑𝑛 ≥ 0}. Thus, we can derive from Equations (61) and (52) that

𝑄𝐴𝑛(1{𝑇𝑚>𝜏2,𝑁
𝜀 } sup
𝑡∈[𝜏2,𝑁𝜀 ,Γ(𝜏)]

|(𝜑𝑛)+1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]] ∙ 𝑋𝑡

−(𝜑𝑛)−1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋𝑡| > 𝛾) ≤ 𝛾 for all 𝑛 ≥ 𝑛𝜀. (62)
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From Equations (62) and (51), it follows that

𝑑𝕊(1{𝑇𝑚>𝜏2,𝑁
𝜀 }((𝜑

𝑛)+1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋 −

(𝜑𝑛)−1]]𝜏2,𝑁𝜀 ,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑋), 0) ≤ 𝜀2 for all 𝑛 ≥ 𝑛𝜀 (63)

and 𝑑𝕊 taken with respect to 𝑃. Since 𝜏2,𝑁
𝜀 ≥ 𝜎, we have that (𝑋, 𝑋) = (𝑆, 𝑆′) on [[𝜏2,𝑁

𝜀
, Γ(𝜏)]] ⧵

[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]], compare Note 3.7. Together with Equations (60) and (63), we arrive at

𝑃(1{𝑇𝑚>𝜏2,𝑁
𝜀 } sup
𝑡∈[𝜏2,𝑁𝜀 ,Γ(𝜏))

|𝑉𝑆,𝑆′

𝑡 (𝜑𝑛) − 𝑉𝑆,𝑆′

𝜏2,𝑁𝜀
(𝜑𝑛)| ∨ (1{𝑋Γ(𝜏)−>0}|𝑉liq

Γ(𝜏)
(𝜑𝑛) − 𝑉

liq

𝜏2,𝑁𝜀
(𝜑𝑛)|)

> 𝜀) ≤ 2𝜖 for all 𝑛 ≥ 𝑛𝜀. (64)

Step 4: Now, we fix 𝑚,𝑁 ∈ ℕ and show how a limiting strategy can be constructed on the
stochastic interval ]]𝜏1,𝑁, 𝜏2,𝑁 ∧ 𝑇𝑚]] defined in Equation (48). By Equation (46)/(49), we have

|𝜑𝑛|1[[𝜏1,𝑁∧𝑇𝑚,𝜏2,𝑁∧𝑇𝑚]] ≤ (𝑚 +𝑀 +𝑀𝑚)∕𝜂𝑁 =∶ 𝑌𝑚,𝑁 ∀𝑛 ∈ ℕ, (65)

and by Equation (50),𝑌𝑚,𝑁 is a finite random variable (not necessarily bounded). First we observe
that by the semimartingale property of 𝑆 and 𝑆′, the set{

𝜓+1]]𝜏1,𝑁,𝜏2,𝑁]] ∙ 𝑆𝑇 − 𝜓−1]]𝜏1,𝑁,𝜏2,𝑁]] ∙ 𝑆
′
𝑇 ∶ 𝜓 is a predictable process with |𝜓| ≤ 𝑌𝑚,𝑁

}
(66)

is 𝐿0-bounded (namely, for a given probability of error,𝑌𝑚,𝑁 can be estimated by a constant). This
implies that the set

conv(𝐶𝑆,𝑆′ (𝜑𝑛, [𝜏1,𝑁, 𝜏2,𝑁 ∧ 𝑇𝑚]); 𝑛 ∈ ℕ) is also 𝐿0-bounded. (67)

Note that since 𝐿0 is not locally convex, the 𝐿0-boundedness of (𝐶𝑆,𝑆′ (𝜑𝑛, [𝜏1,𝑁, 𝜏2,𝑁]))𝑛∈ℕ
would be potentially weaker. However, we can consider a convex combination of strategies
𝜑𝑛, 𝜑𝑛+1, … , 𝜑𝑛+𝑘 but executing them through different trading accounts. This means that we do
not benefit from the subadditivity of 𝐶𝑆,𝑆′ . Since the resulting strategies are still 𝑀-admissible,
Equation (67) follows from Equations (65) and (66).
The processes 𝑋, 𝑋, 𝑆, and 𝑆′ are càdlàg, and the paths of 𝑋 − 𝑋 are bounded away from

zero on [𝜏1,𝑁, 𝜏2,𝑁). The latter holds since 𝜏2,𝑁 < Γ(𝜏) on {𝑋Γ(𝜏)− = 𝑋
Γ(𝜏)−

}. Consequently, we
have that𝑋 − 𝑆 ≥ (𝑋𝜏1,𝑁 − 𝑋

𝜏1,𝑁
)∕3 > 0 or 𝑆 − 𝑋 ≥ (𝑋𝜏1,𝑁 − 𝑋

𝜏1,𝑁
)∕3 > 0 on an interval with pos-

itive random length, and after finitely many analogous estimates, we arrive at 𝜏2,𝑛. The same
holds for 𝑋 − 𝑆′ and 𝑆′ − 𝑋. By Equation (67) and Kühn and Molitor (2022, Proposition 3.3), this
implies that 𝜑𝑛, 𝑛 ∈ ℕ are processes of finite variation on [[𝜏1,𝑁, 𝜏2,𝑁]]. Furthermore, by |(𝜑𝑛)↑𝑡 −
(𝜑𝑛)↑𝑠 − ((𝜑𝑛)↓𝑡 − (𝜑𝑛)↓𝑠 )| ≤ 2𝑌𝑚,𝑁 for all 𝜏1,𝑁 ≤ 𝑠 ≤ 𝑡 ≤ 𝜏2,𝑁 ∧ 𝑇𝑚 and 𝑛 ∈ ℕ (cf. Equation (65)), it
implies that conv((𝜑𝑛)↑

𝜏2,𝑁∧𝑇𝑚
− (𝜑𝑛)↑

𝜏1,𝑁∧𝑇𝑚
; 𝑛 ∈ ℕ) and conv((𝜑𝑛)↓

𝜏2,𝑁∧𝑇𝑚
− (𝜑𝑛)↓

𝜏1,𝑁∧𝑇𝑚
; 𝑛 ∈ ℕ)

are 𝐿0-bounded, too.
Now, we can proceed as in Schachermayer (2014, proof of Theorem 3.4). It is a stochastic ver-

sion of Helly’s classic theorem that shows the existence of a converging subsequence of monotone
functions on the real line. We repeat only the results that are needed in the present paper. On
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[[𝜏1,𝑁, 𝜏2,𝑁 ∧ 𝑇𝑚]], there exists a predictable process 𝜑 such that after passing to forward con-
vex combinations, 𝜑𝑛 → 𝜑 up to evanescence. If one applies the same construction for a larger
pair (𝑁,𝑚) (and thus on a larger subinterval of the excursion), the strategy coincides with 𝜑 on
the smaller subinterval up to evanescence. By 𝑃(𝑇𝑚 = ∞) → 1 as𝑚 → ∞ and Equation (48), we
arrive at a predictable process 𝜑 with

𝜑𝑛 → 𝜑 on ]]𝜏, Γ(𝜏)]] ⧵ [[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]] up to evanescence, 𝑛 → ∞, (68)

after passing to joint forward convex combinations using a diagonalization argument.
Step 5: In this step, we want to show that 𝜑+1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]

∈ 𝐿(𝑆) and
𝜑−1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]

∈ 𝐿(𝑆′), where the semimartingales 𝑆 and 𝑆′ are defined in Note 3.7.

Let 𝜀 > 0. We choose 𝑚 ∈ ℕ such that 𝑃(𝑇𝑚 < ∞) ≤ 𝜀2. The stopping times 𝜏1,𝑁𝜀 , 𝜏2,𝑁𝜀 are from
Step 2. They actually also depend on 𝑚. Beforehand, we observe that the 𝑑𝕊-distance of two
semimartingales is bounded from above by the probability that their paths do not coincide. Then,
by Equation (57) and the triangle inequality of the metric 𝑑𝕊, we obtain

𝑑𝕊((𝜑
𝑛1)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋 − (𝜑𝑛1)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋, (𝜑

𝑛2)+1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋 − (𝜑𝑛2)−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑋) ≤ 3𝜀2

for all 𝑛1, 𝑛2 ≥ 𝑛𝜀. By Equation (63), we have the analog estimate at the end of the excursion. Since
𝜑𝑛1[[𝜏1,𝑁𝜀∧𝑇𝑚,𝜏2,𝑁

𝜀 ∧𝑇𝑚]]
≤ 𝑌𝑚,𝑁𝜀 for all 𝑛 ∈ ℕ, all strategies are bounded by 𝑦 ∈ ℝ+ on ]]𝜏1,𝑁

𝜀
, 𝜏2,𝑁

𝜀
]]

outside the event {𝑇𝑚 < ∞} ∪ {𝑌𝑚,𝑁𝜀 > 𝑦} that does not depend on 𝑛 and has smaller probability
than 2𝜀2 for 𝑦 large enough (with a corresponding boundof the effect on𝑑𝕊). Consequently,we can
argue with the dominated convergence theorem for stochastic integrals (cf., for example, Cohen
and Elliott, 2015, Theorem 12.4.10) and the pointwise convergence (68) to deduce that

𝑑𝕊((𝜑
𝑛1)+1]]𝜏1,𝑁𝜀 ,𝜏2,𝑁𝜀 ]] ∙ 𝑆 − (𝜑𝑛1)−1]]𝜏1,𝑁𝜀 ,𝜏2,𝑁𝜀 ]] ∙ 𝑆

′,

(𝜑𝑛2)+1]]𝜏1,𝑁𝜀 ,𝜏2,𝑁𝜀 ]] ∙ 𝑆 − (𝜑𝑛2)−1]]𝜏1,𝑁𝜀 ,𝜏2,𝑁𝜀 ]] ∙ 𝑆
′) ≤ 3𝜀2

for 𝑛1, 𝑛2 large enough. Since 𝜀 > 0 was arbitrary and (𝜑𝑛)+(𝜑𝑛)− = 0, we conclude that the
sequences

((𝜑𝑛)+1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑆)𝑛∈ℕ, ((𝜑𝑛)−1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]

∙ 𝑆′)𝑛∈ℕ

and a fortiori the sequences

(((𝜑𝑛)+ ∧ 𝜑+)1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑆)𝑛∈ℕ, (((𝜑

𝑛)− ∧ 𝜑−)1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∙ 𝑆′)𝑛∈ℕ

are 𝑑𝕊-Cauchy. Therefore, together with Equation (68) and (𝜑𝑛)+ ∧ 𝜑+ ≤ 𝜑+, (𝜑𝑛)− ∧ 𝜑− ≤ 𝜑−,
we are in the position to apply Chou et al. (1980) (see also Kühn and Molitor, 2022, Note 4.4) and
arrive at

𝜑+1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∈ 𝐿(𝑆) and 𝜑−1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]

∈ 𝐿(𝑆′). (69)



602 KÜHN

Step 6: Let us show that 𝜑1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]] ∈ 𝐿(𝑋, 𝑋) (this states that 𝜑, which is not yet
globally defined, satisfies the “local” properties (6)–(8) of Definition 2.6 on the interval 𝑐

𝑖
). As a

candidate for the “optimal” sequence (𝜓𝑁)𝑁∈ℕ ⊆ 𝐛 , we take
𝜓𝑁 ∶= median(−𝑦𝑁, 𝜑, 𝑦𝑁)1]]𝜏1,𝑁,𝜏2,𝑁∧𝑇𝑚𝑁 ]]

∈ 𝐛 ,
where𝑚𝑁 ∈ ℕ is large enough such that 𝑃(𝑇𝑚𝑁

< ∞) ≤ 1∕𝑁 and 𝑦𝑁 ∈ ℝ+ is large enough such
that 𝑃(𝑌𝑚𝑁,𝑁 > 𝑦𝑁) ≤ 1∕𝑁.
Let 𝜀 > 0 and 𝑚 large enough such that 𝑃(𝑇𝑚 < ∞) ≤ 𝜀. By Equations (57) and (58), we have

𝑃(𝑇𝑚 = ∞, 𝐶𝑆,𝑆′

𝜏1,𝑁𝜀
(𝜑𝑛) − 𝐶𝑆,𝑆′

𝜏1,𝑁
(𝜑𝑛) > 2𝜀) ≤ 4𝜀 for all 𝑛 ≥ 𝑛𝜀 and 𝑁 ≥ 𝑁𝜀. By the Fatou-type esti-

mate in Kühn and Molitor (2022, Proposition 3.11), the cost term of the limiting strategy cannot
be higher in the sense that

𝑃(𝑇𝑚 = ∞, 𝑌𝑚,𝑁 ≤ 𝑦𝑁, 𝐶
𝑆,𝑆′

𝜏1,𝑁𝜀
(𝜑) − 𝐶𝑆,𝑆′

𝜏1,𝑁
(𝜑) > 3𝜀) ≤ 4𝜀 for all 𝑁 ≥ 𝑁𝜀. (70)

By Equation (69) and again by the dominated convergence theorem for stochastic integrals, we
find 𝑁′ ≥ 𝑁𝜀 such that 𝑑𝕊(𝜑+1]]𝜏,𝜏1,𝑁′ ]] ∙ 𝑆 − 𝜑−1]]𝜏,𝜏1,𝑁𝜀 ]] ∙ 𝑆

′, 0) ≤ 𝜀2. Adding up the increments,
we get that

𝑃(𝑇𝑚 = ∞, 𝑌𝑚,𝑁 ≤ 𝑦𝑁, sup
𝑡∈[𝜏1,𝑁,𝜏1,𝑁′ ]

|𝑉𝑆,𝑆′

𝑡 (𝜑) − 𝑉𝑆,𝑆′

𝜏1,𝑁
(𝜑)| > 4𝜀) ≤ 5𝜀 for all 𝑁 ≥ 𝑁′. (71)

By Equations (63) and (64), the analog estimate holds for the end of the excursion. Since
𝑆 = 𝑋, 𝑆′ = 𝑋 on ]]𝜏, 𝜎]], the strategy 𝜓𝑁 does not produce trading costs at time 𝜏1,𝑁 , and
we have that (𝑉𝑆,𝑆′ (𝜓𝑁))𝑁∈ℕ is an up-Cauchy sequence. Since trading gains and trading costs
converge separately, condition (7) follows from Equation (6) by the arguments in the proof of
Proposition 2.10.
Now let (𝜓𝑁)𝑁∈ℕ ⊆ (𝐛)Π be a competing sequence with (𝜓𝑁)+ ≤ 𝜑+, (𝜓𝑁)− ≤ 𝜑−, and 𝜓𝑁 →

𝜑 pointwise. Since, by Step 5, 𝜑+, 𝜑− are integrable with respect to the semimartingale price
systems, it follows again from the dominated convergence theorem for stochastic integrals that
𝑑𝕊((𝜓

𝑁)+ ∙ 𝑆 − (𝜓𝑁)− ∙ 𝑆′, 𝜑+ ∙ 𝑆 − 𝜑− ∙ 𝑆′) → 0 as 𝑁 → ∞ and thus

𝑑𝕊((𝜓
𝑁)+ ∙ 𝑆 − (𝜓𝑁)− ∙ 𝑆′, (𝜓𝑁)+ ∙ 𝑆 − (𝜓𝑁)− ∙ 𝑆′) → 0, 𝑁 → ∞. (72)

On the other hand, again by Kühn and Molitor (2022, Proposition 3.11), the cost term of the
competing sequence can be estimated from below by

lim inf
𝑁→∞

𝐶𝑆,𝑆′ (𝜓𝑁) ≥ 𝐶𝑆,𝑆′ (𝜓𝑁
′
) − 𝐶𝑆,𝑆′

𝜏1,𝑁′
(𝜓𝑁

′
) for every 𝑁′ ∈ ℕ. (73)

By Equation (70),𝐶𝑆,𝑆′

𝜏1,𝑁′
(𝜓𝑁

′
) → 0 in probability as𝑁′ → ∞. Thus, putting Equations (72) and (73)

together yields (8), and we arrive at

𝜑1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∈ 𝐿(𝑋, 𝑋) for 𝜏 = (𝜏𝑖1){𝑋𝜏𝑖

1
=0}, 𝑖 ∈ ℕ. (74)
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We define the wealth process starting in zero at time (𝜏𝑖1){𝑋𝜏𝑖
1
=0} as

𝑉1,𝑖 ∶= up−lim
𝑁→∞

𝑉𝑆,𝑆′ (𝜓𝑁) on 𝑐
𝑖
=]](𝜏𝑖1){𝑋𝜏𝑖

1
=0}, Γ(𝜏

𝑖
1)]] ⧵ [[(Γ(𝜏

𝑖
1)){𝑋Γ(𝜏𝑖

1
)−
=0}]], 𝑖 ∈ ℕ (75)

(it corresponds to 1𝑐
𝑖
∙ 𝑉, but the global wealth process 𝑉 in Definition 2.6 is not yet defined).

Step 7: By Equation (43), we have that for fixed 𝑖 ∈ ℕ, (𝜑𝑛
Λ(𝜎𝑖

1
)
1{𝑋

Λ(𝜎𝑖
1
)
>0})𝑛∈ℕ is 𝐿0-bounded. After

passing once again to forward convex combinations, it converges a.s. to some Λ(𝜎𝑖
1
)-measurable

finite random variable 𝜓𝑖 . By a diagonalization argument, one finds a joint sequence for all 𝑖 ∈ ℕ

(cf. the paragraph at the end of the proof). With this, one can argue as in Step 4, but starting
directly at the beginning of the excursion. Step 3a is not needed, and the arguments in Steps 5 and
6 only become simpler. Consequently, we obtain a predictable process 𝜑 that satisfies

(𝜑 − 𝜓𝑖)1]]𝜏,Γ(𝜏)]]⧵[[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]]
∈ 𝐿(𝑋, 𝑋) where 𝜏 ∶= (Λ(𝜎𝑖1)){𝑋Λ(𝜎𝑖

1
)
>0}, 𝑖 ∈ ℕ. (76)

On ]]𝜏, Γ(𝜏)]] ⧵ [[(Γ(𝜏)){𝑋Γ(𝜏)−=0}]], the limiting wealth process 𝑉
2,𝑖 is defined as in Equation (75).

Observe that the convergence of the strategies at the starting time of the excursion on {𝑋𝜏 > 0} fol-
lows from an analysis of the frictionless intervals whereas at the end the behavior can be explained
by considering only the excursion itself.
Step 8: Let 𝑓

𝑖
∶= [[(𝜎𝑖1){𝑋𝜎𝑖

1
−
=0}]]∪]]𝜎

𝑖
1, Λ(𝜎

𝑖
1)]] be a frictionless interval. It is (𝑡)𝑡∈[0,𝑇]-

predictable and thus a fortiori 𝔽-predictable, and we have that

1𝑓
𝑖

∙ (𝑉𝑛)𝑟 = (𝜑𝑛)+1𝑓
𝑖

∙ 𝑆 − (𝜑𝑛)−1𝑓
𝑖

∙ 𝑆′

+1(⋅≥Λ(𝜎𝑖
1
))1{𝑋Λ(𝜎𝑖

1
)
>0}(Δ𝑉

𝑛

Λ(𝜎𝑖
1
)
− (𝜑𝑛

Λ(𝜎𝑖
1
)
)+Δ𝑆Λ(𝜎𝑖

1
) + (𝜑𝑛

Λ(𝜎𝑖
1
)
)−Δ𝑆′

Λ(𝜎𝑖
1
)
), 𝑖 ∈ ℕ, (77)

where 𝑉𝑛 is defined in Equation (38) and (𝑉𝑛)𝑟 is its “càdlàg part” in the sense of Lemma 3.11. By
Lemma 3.13, (1𝑓

𝑖

∙ (𝑉𝑛)𝑟)𝑛∈ℕ is 𝑑𝕊-Cauchy and (Δ𝑉𝑛

Λ(𝜎𝑖
1
)
)𝑛∈ℕ is Cauchywith regard to the conver-

gence in probability. Together with the convergence of (𝜑𝑛
Λ(𝜎𝑖

1
)
1{𝑋

Λ(𝜎𝑖
1
)
>0})𝑛∈ℕ established in Step 7,

we conclude with Equation (77) that ((𝜑𝑛)+1
𝐼
𝑓
𝑖

∙ 𝑆 − (𝜑𝑛)−1
𝐼
𝑓
𝑖

∙ 𝑆′)𝑛∈ℕ is 𝑑𝕊-Cauchy (and since
𝑆 and 𝑆′ are càdlàg (𝑡)𝑡∈[0,𝑇]-semimartingales, the sequence is also 𝑑𝕊-Cauchy). This means that
although at the end of the frictionless interval, the spread can be positive, we have established a
correspondingCauchy sequence in a purely frictionlessmarket. ByMémin’s theorem (seeMémin,
1980, Theorem V.4), there exists a predictable process 𝜑 such that 𝜑+1𝑓

𝑖

∈ 𝐿(𝑆), 𝜑−1𝑓
𝑖

∈ 𝐿(𝑆′),
and

𝑑𝕊((𝜑
𝑛)+1𝑓

𝑖

∙ 𝑆 − (𝜑𝑛)−1𝑓
𝑖

∙ 𝑆′, 𝜑+1𝑓
𝑖

∙ 𝑆 − 𝜑−1𝑓
𝑖

∙ 𝑆′) → 0 𝑛 → ∞. (78)

In fact, it only follows the existence of a limiting strategy in 𝐿((𝑆, 𝑆′)), the set of two-dimensional
predictable processes which are integrable with respect to (𝑆, 𝑆′). But, by (𝜑𝑛)+(𝜑𝑛)− = 0, the
proof (that argues with2 ⊗) shows the stronger assertion above. We can and do assume that

𝜑 = lim
𝑛→∞

𝜑𝑛 on the set { lim
𝑛→∞

𝜑𝑛 exists in ℝ} ∩ 𝑓
𝑖
∈  . (79)
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To see this, define 𝜑 ∶= lim𝑛→∞ 𝜑𝑛 if this limit exists in ℝ and 𝜑 ∶= 𝜑 otherwise. Then,
using that {𝜑 ≠ 𝜑} = ∪𝑘∈ℕ{|𝜑𝑛| ≤ 𝑘 ∀𝑛 ∈ ℕ} ∩ {𝜑 ≠ 𝜑} it follows that the process 1{𝜑+≠𝜑+} ∙ 𝑆 −
1{𝜑−≠𝜑−} ∙ 𝑆′ must be evanescent by Equation (78) and the dominated convergence theorem for
stochastic integrals.
Step 9: Putting together the partial constructions of the previous steps, we have a candidate for

a global limiting strategy. Summing up:

𝜑 ∶=

⎧⎪⎪⎨⎪⎪⎩
according to Equation (78) on {𝑋− = 0}

according to Equation (74) on ]](𝜏𝑖1){𝑋𝜏𝑖
1
=0}, Γ(𝜏

𝑖
1)]] ⧵ [[(Γ(𝜏

𝑖
1)){𝑋Γ(𝜏𝑖

1
)−
=0}]], 𝑖 ∈ ℕ

according to Equation (76) on ]](Λ(𝜎𝑖1)){𝑋Λ(𝜎𝑖
1
)
>0}, Γ(Λ(𝜏

𝑖
1))]] ⧵ [[(Γ(Λ(𝜏

𝑖
1))){𝑋Γ(Λ(𝜏𝑖

1
))−
=0}]], 𝑖 ∈ ℕ.

(80)

We note that by Equation (79), one has that 𝜓𝑖 = 𝜑Λ(𝜎𝑖
1
)1{𝑋Λ(𝜏𝑖

1
)
>0} a.s. for all 𝑖 ∈ ℕ in Equation (76).

Using the process 𝑉 from Lemma 3.13 that is the semimartingale limit in the coarser 𝔽-model
and the processes from Equation (75), we define the (𝑡)𝑡∈[0,𝑇]-adapted process 𝑉 by

𝑉𝑡 ∶= 𝑉𝜏𝑖
1
+ 𝑉1,𝑖

𝑡 for 𝑡 ∈ (𝜏𝑖1, Γ(𝜏
𝑖
1)), 𝑋𝜏𝑖

1
= 0

𝑉𝑡 ∶= 𝑉Λ(𝜎𝑖
1
)− + 𝜑+

Λ(𝜎𝑖
1
)
Δ𝑆Λ(𝜎𝑖

1
) − 𝜑−

Λ(𝜎𝑖
1
)
Δ𝑆′

Λ(𝜎𝑖
1
)
+ 𝑉2,𝑖

𝑡 for 𝑡 ∈ [Λ(𝜎𝑖1), Γ(Λ(𝜎
𝑖
1))), 𝑋Λ(𝜎𝑖

1
) > 0

𝑉𝑡 ∶= 𝑉𝑡 otherwise.

By Steps 6 and 7, we have that 𝑉 satisfies (6), (7), and the corresponding “optimal” sequences
satisfy Equation (8). Let 𝑉𝑟 be the “càdlàg part” of 𝑉 as defined in Lemma 3.11. Since 1𝑐

𝑖
∙ 𝑉 =

Δ+𝑉𝜏𝑖
1
1{𝑋

𝜏𝑖
1
=0}1]]𝜏𝑖

1
,𝑇]] and 1𝑓𝑐

𝑖

∙ 𝑉 = 1𝑓𝑐
𝑖

∙ 𝑉𝑟 both on {𝑋 = 0}, and 𝑓𝑐
𝑖
is 𝔽-predictable, it follows

from the continuity of the integral with respect to𝑉 (see Lemma 3.11 and its proof) that𝑉 satisfies
Equation (5). We arrive at 𝜑 ∈ 𝐿(𝑋,𝑋).
Step 10: Finally, we observe that by Equation (68) and 𝜑𝑛

Λ(𝜎𝑖
1
)
→ 𝜑Λ(𝜎𝑖

1
) a.s. on {𝑋Λ(𝜎𝑖

1
) > 0},

Lemma 3.6 is applicable, and thus (Π(𝜑), 𝜑) is𝑀-admissible. This completes the proof.
To construct𝜑, it was necessary to pass to forward convex combinations of the sequence (𝜑𝑛)𝑛∈ℕ

introduced in Equation (35) at several places in the proof. Let us look at the whole picture.
Once we pass to forward convex combinations in Lemma 3.13. Once again we do it for the

cost value processes. Then, we pass to these combinations for each excursion (Step 4) and each
end time of a frictionless interval (Step 7). For the latter two, one again applies a diagonalization
argument to obtain a joint sequence of forward convex combinations. □

We reformulate the implication (𝑖) ⇒ (𝑖𝑖) of Delbaen and Schachermayer (1994, Theorem 4.2)
to make it directly applicable to our two-dimensional setting:

Theorem 3.15. If a cone 0 ⊆ 𝐿0(Ω, , 𝑃; ℝ2) is Fatou-closed (in the sense of Theorem 2.23), then
 ∶= 0 ∩ 𝐿∞(Ω, , 𝑃; ℝ2) is 𝜎(𝐿∞, 𝐿1)-closed with respect to the measure space Ω̃ ∶= Ω × {0, 1},
̃ ∶=  ⊗ 2{0,1}, 𝜇 ∶= 𝑃 ⊗ (𝛿0 + 𝛿1), where 𝛿0, 𝛿1 denote Dirac measures.

Theorem 3.16 (2-dimensional version of Kreps-Yan). Let  be a 𝜎(𝐿∞, 𝐿1)-closed convex cone
in 𝐿∞(Ω, , 𝑃; ℝ2) containing 𝐿∞(Ω, , 𝑃; ℝ2

−) and such that  ∩ 𝐿∞(Ω, , 𝑃; ℝ2
+) = {0}. Then,
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there exists (𝐺0, 𝐺) ∈ 𝐿1(Ω, , 𝑃; (ℝ+ ⧵ {0})
2) with 𝐸(𝐺0) = 1 such that 𝐸(𝐶0𝐺0 + 𝐶𝐺) ≤ 0 for all

(𝐶0, 𝐶) ∈ .
Of course, Theorem 3.16 is completely standard. One may again consider the measure space

Ω̃ ∶= Ω × {0, 1}, ̃ ∶=  ⊗ 2{0,1}, 𝜇 ∶= 𝑃 ⊗ (𝛿0 + 𝛿1) and apply the one-dimensional proof of “⇒”
in Delbaen and Schachermayer (2006, Theorem 5.2.2) (noting that only 𝐺0 is normalized).

Proof of Theorem 2.22. (i) By Theorems 2.23, 3.15, and 3.16, there exists (𝐺0, 𝐺) ∈ 𝐿1(Ω, , 𝑃; (ℝ+ ⧵

{0})2) with 𝐸(𝜑0𝑇𝐺
0 + 𝜑𝑇𝐺) ≤ 0 for all (𝜑0, 𝜑) ∈ . For the convenience of the reader, we repeat

and adjust the arguments in Schachermayer (2014,Definition 4.1 andProposition 4.2). One defines
càdlàg 𝑃-martingales by 𝑍0𝑡 = 𝐸(𝐺0|𝑡), 𝑍𝑡 = 𝐸(𝐺|𝑡), and sets 𝑑𝑄∕𝑑𝑃 ∶= 𝑍0𝑇 > a.s., 𝑆 ∶= 𝑍∕𝑍0.
By construction, 𝑆 is a (true)𝑄-martingale. Let us show that𝑋 ≤ 𝑆 ≤ 𝑋. Assume by contradiction
that there exists a stopping time 𝜏with𝑃(𝜏 < ∞) > 0 and𝑍𝜏∕𝑍0𝜏 > 𝑋𝜏 on {𝜏 < ∞}.We consider the
strategy (𝜑0, 𝜑) ∶= (−(𝑋𝜏 ∧ 1), 1 ∧ (1∕𝑋𝜏))1]]𝜏,𝑇]] that is bounded in both components and satisfies

𝐸(𝜑0𝑇𝑍
0
𝑇 + 𝜑𝑇𝑍𝑇) = 𝐸((𝜑0𝜏+𝑍

0
𝜏 + 𝜑𝜏+𝑍𝜏)1{𝜏<∞}) > 0,

a contradiction. Analogously, for 𝑍𝜏∕𝑍0𝜏 < 𝑋
𝜏
, one considers the bounded strategy (𝜑0, 𝜑) ∶=

(𝑋
𝜏
∧ 1, −(1 ∧ (1∕𝑋

𝜏
)))1]]𝜏,𝑇]].

(ii) Let 𝑄 ∼ 𝑃, 𝑆 be a 𝑄-martingale, and 𝑆 = 𝑆 = 𝑆. The martingale property implies that 𝑋 =

𝑋 = 𝑆. Thus, Assumptions 2.3 and 2.18 are automatically satisfied. It remains to show that the
model with bid price 𝑆 and ask price S satisfiesNA𝑛𝑓 andNUPBR𝑝𝑠. The 1-admissibility condition
boils down to 𝜑0 + 𝜑𝑆 ≥ −(1 + 𝑆). By Kallsen (2004, Lemma 3.3 and Proposition 3.1), 𝑉 = 𝜑 ∙ 𝑆

has to be a 𝑄-supermartingale for any admissible strategy. This means that for every (𝜑0, 𝜑) ∈ 
either 𝑃(𝜑0𝑇 + 𝜑𝑇𝑆𝑇 = 0) = 1 or 𝑃(𝜑0𝑇 + 𝜑𝑇𝑆𝑇 < 0) > 0. Together with the condition 𝑃(𝑆𝑇 > 0) =

1, compare Equation (1), we obtain NA𝑛𝑓 .
For (𝜑0, 𝜑) ∈ 1

0 and 𝑎 ∈ ℝ+, we define 𝜏𝑎 ∶= inf {𝑡 ≥ 0 ∶ 𝑉𝑡(𝜑) > 𝑎}. Since 𝑆 is a𝑄-martingale
and 𝑉 is a 𝑄-supermartingale, one has

𝑎𝑄(𝜏𝑎 < ∞) ≤ 𝐸𝑄(𝑉𝜏𝑎∧𝑇(𝜑)
+) ≤ 𝐸𝑄(𝑉𝜏𝑎∧𝑇(𝜑)

−) ≤ 1 + 𝐸𝑄(𝑆𝜏𝑎∧𝑇) = 1 + 𝑆0.

Since theRHSdoes not depend on𝜑, themarket satisfies Equation (11). Sincewehave a frictionless
market satisfying NFLVRwith numéraire 1 + 𝑆, we can apply (Delbaen and Schachermayer, 1994,
Proposition 3.2 and Lemma 4.5) and any “maximal” sequence of wealth processes is 𝑑𝑢𝑝-Cauchy.
This implies condition (12), and we arrive at NUPBR𝑝𝑠. □
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APPENDIX A
Proposition A.1. There exists a càdlàg process 𝑋 with 𝑋

𝑡
= essinf𝑡 sup𝑢∈[𝑡,𝑇] 𝑆𝑢 a.s. for all 𝑡 ∈

[0, 𝑇], where

essinf𝑡 sup
𝑢∈[𝑡,𝑇]

𝑆
𝑢
∶= esssup{𝑍 ∶ Ω → ℝ ∶ 𝑍 is 𝑡-measurable and 𝑍 ≤ sup

𝑢∈[𝑡,𝑇]
𝑆
𝑢
a.s.}. (A.1)

Proof. Let 𝐷 be a dense countable subset of [0, 𝑇] with 𝑇 ∈ 𝐷. Let 𝑋𝑡, 𝑡 ∈ 𝐷, be versions
of essinf𝑡 sup𝑢∈[𝑡,𝑇] 𝑆𝑢 (for existence and uniqueness up to null sets cf., e.g., He et al. (1992,
Definition 1.12 and Theorem 1.13)) and

𝐴 ∶= {𝑋𝑡1 ≤ 𝑋𝑡2 + sup
𝑢∈[𝑡1,𝑡2]

𝑆
𝑢
− 𝑆

𝑡2
for all 𝑡1, 𝑡2 ∈ 𝐷 with 𝑡1 < 𝑡2}.

For every 𝑡1 -measurable random variable 𝑍 with 𝑍 ≤ sup𝑢∈[𝑡1,𝑇] 𝑆𝑢, the random variable 𝑍′ ∶=
𝑍 + 𝑆

𝑡2
− sup𝑢∈[𝑡1,𝑡2] 𝑆𝑢 is an 𝑡2 -measurable lower bound of sup𝑢∈[𝑡2,𝑇] 𝑆𝑢. This implies that

𝑃(𝐴) = 1, and by the usual conditions, we can define the adapted process 𝑋 (up to evanescence)
by

𝑋
𝑡
(𝜔) ∶=

{
lim𝑞∈𝐷,𝑞>𝑡,𝑞→𝑡 𝑋𝑞(𝜔) for 𝜔 ∈ 𝐴 and 𝑡 < 𝑇

𝑆
𝑡
(𝜔) otherwise.

https://arxiv.org/pdf/1802.08628
https://doi.org/10.1111/mafi.12453
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Namely, for 𝜔 ∈ 𝐴, the above limit exists by the right-continuity of 𝑆. The existence of finite
left limits carries over from 𝑆 to 𝑋, and the process 𝑋 is càdlàg. It remains to show that for
every 𝑡 ∈ [0, 𝑇), 𝑋

𝑡
is a version of essinf𝑡 sup𝑢∈[𝑡,𝑇] 𝑆𝑢 =∶ 𝑋𝑡. The estimate 𝑃(𝑋𝑡 ≤ 𝑋

𝑡
) = 1 fol-

lows from the same arguments which lead to 𝑃(𝐴) = 1 combined with the right-continuity of
𝑆. For the opposite estimate, we follow an argument from Larsson (Preprint, Lemma 2.8(iv)):
for a sequence (𝑞𝑛)𝑛∈ℕ ⊆ 𝐷 with 𝑞𝑛 > 𝑡 and 𝑞𝑛 → 𝑡, one has inf𝑛∈ℕ essinf𝑞𝑛 sup𝑢∈[𝑡,𝑇] 𝑆𝑢 = 𝑋𝑡

a.s., since ∩𝑛∈ℕ𝑞𝑛 = 𝑡. Together with 𝑋𝑞𝑛 ≤ essinf𝑞𝑛 sup𝑢∈[𝑡,𝑇] 𝑆𝑢, we arrive at 𝑃(𝑋𝑡 = 𝑋
𝑡
) =

1. □

Proposition A.2. Let 𝑋 be a càdlàg process. Then, there exists a unique (up to evanescence) pre-
dictable process𝑌 with𝑌𝜏 = essinf𝜏−𝑋𝜏 a.s. for all predictable stopping times 𝜏 (where essinf𝜏− …
is defined analogously to (A.1) with the 𝜎-algebra 𝜏−).
Proof. The set {Δ𝑋 ≠ 0} is thin, that is, there exists a sequence of stopping times with {Δ𝑋 ≠ 0} =⋃

𝑛∈ℕ
[[𝑇𝑛]] (cf., e.g., He et al., 1992, Theorem 3.32). For each 𝑛 ∈ ℕ, let (𝜎𝑛,𝑚)𝑚∈ℕ be a maximal

sequence of predictable stopping times that access the accessible part of the graph of 𝑇𝑛 (in the
sense of He et al., 1992, proof of Theorem 4.20). This means that [[𝑇𝑛]] ⧵

⋃
𝑚∈ℕ

[[𝜎𝑛,𝑚]] cannot be
overlapped by the graph of a predictable stopping time with positive probability. We pass to a
single sequence (𝜎𝑘)𝑘∈ℕ and obtain the same property for {Δ𝑋 ≠ 0} ⧵

⋃
𝑘∈ℕ

[[𝜎𝑘]]. We can and do
choose the sequence such that 𝑃(𝜎𝑘1 = 𝜎𝑘2 < ∞) = 0 for all 𝑘1 ≠ 𝑘2. Let us define the process

𝑌 ∶=

{
𝑋− on (Ω × [0, 𝑇]) ⧵

⋃
𝑘∈ℕ

[[𝜎𝑘]]

essinf𝜎𝑘−𝑋𝜎𝑘 on [[𝜎𝑘]] for some 𝑘 ∈ ℕ
(A.2)

that is obviously predictable. Now, let 𝜏 be a predictable stopping time. We have that

𝑌𝜏 = 𝑋𝜏−1{𝜏≠𝜎𝑘 ∀𝑘∈ℕ} +
∑
𝑘∈ℕ

essinf𝜎𝑘−𝑋𝜎𝑘1{𝜏=𝜎𝑘} a.s. (A.3)

In Equation (A.3), 𝑋𝜏− can be replaced by 𝑋𝜏 or essinf𝜏−𝑋𝜏 since the sequence (𝜎𝑘)𝑘∈ℕ is maxi-
mal which implies that𝑋 does not jump on this set with positive probability. On {𝜏 = 𝜎𝑘} ∈  ,we
have that essinf𝜎𝑘−𝑋𝜎𝑘 = essinf𝜏−𝑋𝜏 a.s. (we leave it to the reader to check this “local property”
of essinf ). Together, we obtain that 𝑌 satisfies the properties of the proposition. Almost-sure-
uniqueness along predictable stopping times follows in the same way. Then, an application of
a section theorem for predictable sets (see, e.g., He et al., 1992, Theorem 4.8) shows uniqueness of
the predictable process up to evanescence. □

Proposition A.3. (a) Let 𝜀1, 𝜀2, 𝜀3 > 0 and 𝑌 be a supermartingale starting at zero with −1 ≤
𝑌 ≤ 𝜀1 and 𝑃(𝑌𝑇 < −𝜀2) ≤ 𝜀3. Then, the Doob–Meyer decomposition 𝑌 = 𝑀 −𝐴 (i.e.,𝑀 is a mar-
tingale, and 𝐴 is a nondecreasing, predictable process with 𝑀0 = 𝐴0 = 0) satisfies 𝐸(𝐴2

𝑇) ≤ (𝜀1 +

1)(𝜀2 + 𝜀3) and𝐸(𝑀2
𝑇) ≤ 𝜀21 + 𝜀2 + 𝜀22 + 2𝜀3 + 3𝜀1𝜀2 + 3𝜀1𝜀3, that is, the secondmoments are of order

max(𝜀1, 𝜀2, 𝜀3).
(b) There exists a 𝐶 ∈ ℝ+ such that for all 𝜀 > 0 and all supermartingales 𝑌 starting at zero with

−1 ≤ 𝑌 and 𝑃(sup𝑡∈[0,𝑇] |𝑌𝑡| > 𝜀) ≤ 𝜀, one has 𝑑𝕊(𝑌, 0) ≤ 𝐶
√
𝜀.
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Proof. Step 1: We show assertion (a) for the discrete time Doob(-Meyer) decomposition along a
finite deterministic grid, w.l.o.g. 0, 1, … , 𝑇 − 1, 𝑇 with 𝑇 ∈ ℕ. For the first moment of𝐴𝑇, we have
𝐸(𝐴𝑇) = 𝐸(−𝑌𝑇) ≤ 𝜀2 + 𝜀3. Following the proof of Meyer (1972, Theorem II.45), we use this for an
estimate of the second moment:

𝐸(𝐴2
𝑇) ≤ 2𝐸(

𝑇∑
𝑠=1

𝑇∑
𝑡=𝑠

(𝐴𝑠 − 𝐴𝑠−1)(𝐴𝑡 − 𝐴𝑡−1)) = 2

𝑇∑
𝑠=1

𝐸((𝐴𝑠 − 𝐴𝑠−1)(𝐴𝑇 − 𝐴𝑠−1))

= 2

𝑇∑
𝑠=1

𝐸((𝐴𝑠 − 𝐴𝑠−1)𝐸(𝐴𝑇 − 𝐴𝑠−1 | 𝑠−1))
=

𝑇∑
𝑠=1

𝐸((𝐴𝑠 − 𝐴𝑠−1)𝐸(𝑌𝑇 − 𝑌𝑠−1 | 𝑠−1))
≤

𝑇∑
𝑠=1

𝐸((𝐴𝑠 − 𝐴𝑠−1)(𝜀1 + 1)) = (𝜀1 + 1)𝐸(𝐴𝑇) ≤ (𝜀1 + 1)(𝜀2 + 𝜀3),

where for the second equation, it is used that 𝐴𝑠 − 𝐴𝑠−1 is 𝑠−1-measurable. This yields 𝐸(𝑀2
𝑇) ≤

𝐸((𝑌−
𝑇 )

2) + 𝐸((𝐴𝑇 + 𝜀1)
2) ≤ 𝜀22 + 𝜀3 + (𝜀1 + 1)(𝜀2 + 𝜀3) + 2(𝜀2 + 𝜀3)𝜀1 + 𝜀21 .

Step 2: The continuous time extension follows by an inspection of the proof of Beiglböck et al.
(2012, Theorem 1.1) in which the mesh of the grid in Step 1 tends to zero. The arguments are
easier than in the original proof since we know from the estimate in Step 1 that the sequence of
terminal values of the discrete time martingales is 𝐿2(𝑃)-bounded. Thus, it is sufficient to apply
the Komlós theorem for Hilbert spaces, and one obtains 𝐿2-convergence to the terminal value
of the continuous time martingale part (cf. Beiglböck et al., 2012, Equation 6). This implies 𝐿2-
convergence of the terminal values of the drift parts, and the estimates from Step 1 also hold for
the continuous time Doob–Meyer decomposition. This yields (a).
Step 3: Let 𝜉 ∶= inf {𝑡 > 0 ∶ 𝑌𝑡 > 𝜀}. Consider the (pre-)stopped process 𝑌𝑡 ∶= 𝑌𝑡1(𝑡<𝜉) +

𝑌𝜉−1(𝑡≥𝜉). Since 𝑌 is a supermartingale and Δ𝑌𝜉 ≥ 0, 𝑌 has to be a supermartingale as well. The
process 𝑌 is bounded from above by 𝜀 and we have that 𝑃(𝑌𝑇 < −𝜀) ≤ 𝑃(sup𝑡∈[0,𝑇] |𝑌𝑡| > 𝜀) ≤ 𝜀.
This allows us to apply part (a) with 𝜀1 = 𝜀2 = 𝜀3 = 𝜀 to 𝑌, and we obtain for its Doob–Meyer
decomposition that 𝐸(𝑀2

𝑇) ≤ 3𝜀 + 8𝜀2 and 𝐸(𝐴2
𝑇) ≤ 2𝜀 + 2𝜀2. By the corollary to Protter (2004,

Theorem 24 of Chapter IV), we have sup𝐻∈𝐛 ,||𝐻||∞≤1
√
𝐸(sup𝑡∈[0,𝑇] |𝐻 ∙ 𝑌𝑡|2) ≤ 3

√
𝐸(𝑀2

𝑇) +

3
√
𝐸(𝐴2

𝑇), which implies that 𝑑𝕊(𝑌, 0) ≤
√
27𝜀 + 72𝜀2 +

√
18𝜀 + 18𝜀2. Since the paths of𝑌 and𝑌

coincide at least with probability 1 − 𝜀, we have that 𝑑𝕊(𝑌, 𝑌) ≤ 𝜀, and (b) followswith the triangle
inequality of 𝑑𝕊. □
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