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Abstract

We use machine learning methods to predict firm-specific

stock price crashes and evaluate the out-of-sample predic-

tion performance of various methods, compared to tradi-

tional regression approaches. Using financial and textual

data from10-K filings, our results show that a logistic regres-

sion with financial data inputs performs reasonably well

and sometimes outperforms newer classifiers such as ran-

dom forests and neural networks. However, we find that a

stochastic gradient boosting model systematically outper-

forms the logistic regression, and forecasts using suitable

combinations of financial and textual data inputs yield signif-

icantly higher prediction performance. Overall, the evidence

suggests that machine learning methods can help predict

stock price crashes.

KEYWORDS

machine learning, natural language processing, stock price crash
risk, textual disclosures

1 INTRODUCTION

Stock price crashes are prevalent in international financial markets (An et al., 2018; Jin & Myers, 2006). Stud-

ies extensively show that economic factors, such as financial opacity, agency costs and managerial incentives,

can help explain stock price crashes (Hong et al., 2017; Hutton et al., 2009; Kim et al., 2019; Kim et al.,
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2011a).1 Most studies relate economic determinants to stock price crash risks usingwithin-sample analyses. However,

inferences about the predictability of stock price crashes are still limited. If investors fail to detect potential threats,

stock prices can deviate from their fundamental values, increasing the risk of future price crashes. Hence, methods

that help to identify crash-prone firms would offer significant value to investors.

We usemachine learningmethods to predict firm-specific stock price crashes.2 Specifically, we evaluate the out-of-

samplepredictionperformanceofmachine learning, compared to traditional regressionapproaches.While researchon

machine learning in accounting and finance typically focuses on numerical data as predictors (Bali et al., 2023; Chen

et al., 2022; Gu et al., 2020), we also consider textual disclosures as an integral part of the financial reporting package.

For instance, Lewis and Young (2019) document a substantial increase in textual firm disclosures over time. Machine

learning methods can uncover complex patterns in both financial and textual data that help predict firm outcomes

(e.g., Bertomeu et al., 2021; Bochkay et al., 2023; El-Haj et al., 2020). Hence, our study aims to leverage these empirical

methods and test their performance for out-of-sample stock price crash predictions.

To conduct our analyses, we collect a sample of 39,583 US firm-year observations from the period 1996 to 2018

and calculate a wide set of 37 financial data inputs. We further retrieve the Management Discussion and Analysis

(MD&A) sections of 10-K filings from the SEC’s online EDGAR system to build textual inputs because research finds

that textual disclosures of 10-K filings contain predictive signals of stock price crashes (e.g., Ertugrul et al., 2017; Kim

et al., 2019; Reichmann, 2023).

As a benchmark model, we use a logistic regression (LOGIT) with numerical financial data inputs. This traditional

regression approach is commonly used in both research and practice (Butaru et al., 2016; Jones & Hensher, 2004,

2007). In addition, we consider the support vector machine (SVM; Vapnik, 1998), twomodels based on decision trees,

namely, the random forest (RF; Breiman, 2001) and the stochastic gradient boosting (SGB; Friedman, 2002), and two

neural networks, a dense neural network for numerical inputs (NN) and a convolutional neural network for textual

inputs (CNN) (e.g., Hinton et al., 2006; LeCun et al., 1989, 2015).

While numerals can be directly used as inputs to amachine learningmodel, text represents natural language, which

requires conversion to numerical representations. Our empirical approach is as follows. First, wemimic previous stud-

ies on crash risk. Specifically, we use simple content analyses to estimate high-level textual characteristics that capture

the tone, ambiguity and complexity ofMD&Aanduse those as inputs to a LOGIT (Ertugrul et al., 2017;Kimet al., 2019).

Second, to provide our model with more detailed textual information, we estimate numerical document representa-

tions using term frequency-inverse document frequency (TF-IDF) weights.3 This approach yields large vectors that

contain relative term frequencies for each MD&A, which can be used as inputs to a LOGIT, SVM, RF and SGB. Finally,

we consider a word embedding approach. Word embeddings are vector representations of words and phrases that

capture semantic information. We use word2vec to generate word embeddings (Mikolov, Chen, et al., 2013), which

serve as inputs to a CNN. This is our onlymodel capable of considering sequential dependencies in financial narratives.

To train our models, we employ a rolling sample splitting scheme (e.g., Chen et al., 2022; Gu et al., 2020). For each

year in our test period, 2001–2018, we use the five preceding years to train, validate and estimate themodels that are

then tested in next year’s hold-out-sample. While this approach requires us to freshly train newmodels every year in

the test period, it allows themodels to be continuously trained on recent data (Chen et al., 2022).Moreover, we recode

serial stock price crashes of firms that span both themodel estimation and test set (henceforth: serial crashes) as non-

crash observation in the training set. This approach mitigates concerns that flexible machine learning models identify

crash-prone firms rather than crash-prone firm-years. Consistent with recent work (e.g., Bertomeu et al., 2021; Chen

et al., 2022;Mai et al., 2019), we evaluate ourmodels using the area under the receiver operating characteristic (ROC)

curve (AUC) and a set of catch rates with varying probability cut-offs.

1 The literature defines stock price crashes as extreme negative outliers in the distribution of firm returns (e.g., Hutton et al., 2009; Kim et al., 2019; Kim et al.,

2011a, 2011b).

2 There have been several recent studies using machine learning in accounting and finance, including in the area of earnings prediction (Chen et al., 2022;

Jones et al., 2023), accountingmisstatements (Bertomeu et al., 2021) and distress prediction (Jones et al., 2015, 2017).

3 See Brown and Tucker (2011) for an explanation of TF-IDFweights.
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Our results suggest that a LOGIT with numerical inputs (henceforth: LOGIT(Num)) performs reasonably well and

serves as a strong benchmark (Jones et al., 2015, 2017). The model yields an AUC of 55.30%, significantly higher

than the 50% of a random guess. Moreover, it outperforms the SVM(Num), RF(Num) and NN(Num). However, the

SGB(Num) yields an AUC of 56.26%, which significantly exceeds the AUC of LOGIT(Num), suggesting that machine

learning methods can help improve the prediction of stock price crashes. The SGB is also the best-performing model

with textual inputs from 10-K filings. We find that an SGB that uses TF-IDF weights, SGB(Text), yields an AUC of

56.18%, outperforming the numerical benchmark LOGIT(Num). Moreover, using a LOGIT model with a set of high-

level textual characteristics as commonly employed in within-sample studies on crash risk significantly underperforms

SGB(Text) (Ertugrul et al., 2017; Kim et al., 2019). This finding supports the view that machine learning is powerful to

detect predictive patterns that are difficult to uncover with simple content analyses (e.g., Bochkay et al., 2023; El-Haj

et al., 2019).

We also test whether combining numerical and textual data inputs further improves crash predictions. Therefore,

we test two approaches. First, we concatenate numerical and textual inputs, resulting in a new input vector with com-

bined data inputs. We then retrain our models using these combined inputs. Second, we employ an average ensemble

approach by combining the probability estimates of two separate models using a simple average. We find that the

easy-to-implement average ensemble approach performs better. Combining the probability estimates of SGB(Num)

and SGB(Text) using a simple average leads to a significant improvement in predictive power over using SGB(Num).

This result suggests that textual inputs contain information that is incrementally informative to numerical financial

data for out-of-sample crash predictions. An analysis of the model performance over time reveals that this finding is

systematic during our test period, exists during almost all test years and does not diminish over time.

We then examine the inner workings of our models by identifying meaningful important predictors for both

SGB(Num) and SGB(Text). Specifically, we perform permutation feature importance, a model inspection technique

that observes the degradation of a model’s predictive power when randomly shuffling values of a single predictor.

We find that common numerical financial variables used in the literature, such as firm size, the negative skewness

of returns, return on assets and book-to-market ratios help predict stock price crashes (e.g., Hutton et al., 2009; Kim

et al., 2019). Turning to textual predictors, we find that terms related to firmgrowth such as “growth,” “acquisition” and

“spending” as well as terms signaling threats such as “downgrading” and “may never succeed” help SGB(Text) distin-

guish crash from non-crash observations. These predictors are generally consistent with the literature (Hutton et al.,

2009; Reichmann, 2023).

Finally, we test the sensitivity of our models to recoding serial crashes as non-crash observations. Failing to cor-

rect for serial crashes can lead to inflated model performance if models tend to identify crash-prone firms rather

than crash-prone firm-years. We provide evidence that failing to correct for serial crashes substantially inflates the

model performance of various model architectures. Our findings should caution future research when testing the

out-of-sample predictability of stock price crashes.

This study contributes to prior literature in twoways. First, it extends the broad literature on stock price crash risk.

Adominant theme in the literature is that economic factors, suchas financial opacity, agency costs ormanagerial incen-

tives help explain stock price crashes (e.g., Hong et al., 2017; Hutton et al., 2009; Kim et al., 2011a), but most studies

focus on within-sample analyses to identify the determinants of crash risk. We contribute to the literature by examin-

ing the out-of-sample predictability of stock price crashes using machine learning methods. Further, our results draw

attention to the high prediction power of textual data based on MD&A disclosures. Suitable combinations of finan-

cial and textual data inputs yield significantly higher prediction performance, a finding that shouldmatter to investors

and regulators. For instance, the SEC and other regulators aim to put more emphasis on firms’ narrative disclosures

(Eaglesham, 2013). Our results suggest that machine learningmethods can help uncover signals from disclosures that

are associated with crash risk.

Second, we complement the literature in accounting and finance using machine learning with big data in finan-

cial markets (e.g., Bianchi et al., 2020; Chen et al., 2022; Gu et al., 2020; Jones et al., 2023). For example, Gu et al.

(2020) apply machine learning algorithms to study the behavior of expected stock returns. Chen et al. (2022) use
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TABLE 1 Sample selection.

Data filters Firm-years Firms

Active nonfinancial/nonutility US firms on Refinitiv (1996–2018) 85,584 8,026

Fiscal year-end price≥ 1$ 70,780 7,794

≥ 26weekly returns per year 64,258 6,783

Management Discussion and Analysis (MD&A) data from EDGAR 39,583 3,563

Note: This table presents the data filters of our sample selection.

high-dimensional financial data to predict the direction of one-year-ahead earnings changes.We extend this research

by examining whether machine learning can detect predictive signals in both financial and textual data that help pre-

dict stock price crashes. We find that an SGB systematically outperforms other algorithms in predicting stock price

crashes. Further, our results suggest that the combination of numerical and textual inputs can improvemodel accuracy.

While the literature on stock price crashes predominantly focuses on US capital markets, the use and importance

ofmachine learning to predict stock price crashes in international financial markets is likely to grow in the near future.

Startingwith 2027, certain financial and sustainability-related information of European listed firmswill be filed via the

centralized European Single Access Point (ESAP), which is likely to foster the access and processing of firm disclosures

(e.g., El-Haj et al., 2019; Kaya & Seebeck, 2019). Further, data collection costs are likely to be lower through a central-

ized document depository, such as ESAP, where annual reports will be accessible in a structured, electronic reporting

format (e.g., the European Single Electronic Format).4

2 SAMPLE SELECTION AND MODEL INPUTS

2.1 Sample selection

Our initial sample consists of nonfinancial andnonutilityUS listed firms available onRefinitivDatastreamandRefinitiv

Worldscope (Reichmann & Reichmann, 2022).5 The sample starts in 1996 when all publicly listed US firms had to file

financial reports electronically and ends in 2018. We drop observations with a fiscal year-end share price below $1

and observations with less than 26 available weekly returns in a fiscal year. For each firm, we collect available 10-K

filings from the SEC’s EDGAR system and combine the fileswith the sample.6 We focus on theMD&A sections of 10-K

filings, which prior literature finds to be associated with future crash risk (Reichmann, 2023; Reichmann et al., 2022).

The sample selection is summarized in Table 1. Our final sample consists of 39,583 firm-year observations for 3,563

unique firms.

2.2 Stock price crashes

We follow prior literature to measure stock price crashes and calculate firm-specific weekly returns (Wj,t) by estimat-

ing the following expanded index model for each firm-year (Hutton et al., 2009; Kim et al., 2019; Kim et al., 2011b;

Reichmann & Reichmann, 2022):

rj,𝜏 = 𝛽0 + 𝛽1rm,𝜏−1 + 𝛽2ri,𝜏−1 + 𝛽3rm,𝜏 + 𝛽4ri,𝜏 + 𝛽5rm,𝜏+1 + 𝛽6ri,𝜏+1 + 𝜖j,𝜏.

4 We refer interested readers to El-Haj et al. (2019).

5 We apply the screens and filters proposed by Schmidt et al. (2019) when constructing our initial sample.

6 We use the term “10-K” to refer to the form 10-K and its variants: 10-K405, 10KSB and 10KSB40.
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rj,𝜏 denotes stock returns for firm j in week 𝜏. rm,𝜏 is theweekly return on theCRSP value-weightedmarket indexm and

ri,𝜏 denotes theweekly return on the Fama–French value-weighted index for industry i. To avoid look-ahead biases, we

define a fiscal year as the 12-month period ending three months after the fiscal year-end to account for the reporting

lag of the 10-K (e.g., Kim et al., 2019; Reichmann et al., 2022). The firm-specific weekly return Wj,𝜏 is calculated as

the natural logarithm of 1 plus the regression residual 𝜖j,𝜏 . Finally, the outcome CRASHt+1 is an indicator variable that

equals 1 if a firm-specific weekly returnWj,𝜏 drops 3.09 standard deviations below its yearly mean in the period t + 1

and 0 otherwise (Reichmann&Reichmann, 2022).We chose 3.09 standard deviations to generate a 0.1% frequency in

the log-normal distribution (e.g., Hutton et al., 2009; Kim et al., 2019; Kim et al., 2011a, 2011b).

2.3 Numerical inputs

We compile a list of financial variables that are associated with crash risk (e.g., Chen et al., 2001; Hutton et al., 2009;

Kim et al., 2019; Wu & Lai, 2020). Because the flexibility of machine learning methods enables considering a broader

input set compared to traditional econometric techniques, we further include financial ratios that are influential pre-

dictors in related tasks such as bankruptcy prediction (e.g., Mai et al., 2019; Reichmann & Reichmann, 2022). In total,

we collect a set of 37 numerical financial variables. Table 2, panel A, provides definitions of our numerical inputs. All

numerical inputs are winsorized at the 1% and 99% levels to avoid extreme outliers. We impute missing values with

zeros.

2.4 Textual inputs

We also examine the predictive power of textual data, which cannot be directly fed into a machine learning model.

Hence, we convert text to numerical representations that capture the content of a given document.We consider three

different approaches with an increasing degree of complexity (Reichmann & Reichmann, 2022).

First, we estimate textual characteristics using a simple content analysis. This approach converts text into a score

that represents a textual characteristic such as tone or linguistic complexity. Following previous research, we esti-

mate textual characteristics that are associatedwith future crash risk. For instance, previous research finds that firms

with more ambiguous and complex financial reports are prone to stock price crashes (e.g., Ertugrul et al., 2017; Kim

et al., 2019). Therefore, we calculate the fraction of ambiguous words using the Fin-Unc (UNCERTAIN) andMW-Weak

(WEAK_MODAL) word lists of Loughran and McDonald (2011) and the (modified) FOG index proposed by Kim et al.

(2019) as textual predictors (FOG andMODFOG).

In addition, we proxy for the tone of theMD&Ausing the Fin-Negword list (NEGATIVE) of Loughran andMcDonald

(2011) because disclosure tone is likely to be informative about crash risk (e.g., Fu et al., 2021; Reichmann, 2023).

Finally,weuseproxies for informationquantity by calculating thenatural logarithmof 1plus the total number ofwords

in anMD&A(LOGLENGTH) and its file size inmegabytes (LOGFILESIZE; e.g., Ertugrul et al., 2017; Loughran&McDonald,

2014). Table 2, panel B, provides definitions of textualMD&A characteristics.

Second, we estimate more detailed document representations by computing the term TF-IDF weights for words

and phrases in eachMD&A as follows (Reichmann & Reichmann, 2022):

wi,j =
⎧⎪⎨⎪⎩
tfi,jlog

(
N

dfi

)
, if tfi,j ≥ 1

0 otherwise.

N denotes the total number of documents in a sample; dfi is the number of documents containing the term i; and

tfi,j presents the word count of term i in document j. The TF tfi,j measures the importance of a term within a docu-

ment, whereas the IDF log(
N

dfi
) adjusts for the frequency of a term in the entire sample of documents (see Brown &



1100 KAYA ET AL.

TABLE 2 Variable definitions.

Predictor Definition Predictor Definition

Panel A: Numerical predictors

ACTLCT Current assets/total liabilities LCTSALE Current liabilities/sales

ADJROTA Industry-adjusted return on tangible

assets

LEV Total liabilities/total assets

APSALE Accounts payable/sales LOGAT Log(total assets)

CASHAT Cash and short-term investments/total

assets

LOGMV Log(market value)

CHAT Cash/total assets LOGSALE Log(sales)

CHLCT Cash/current liabilities MTB Market value/book value

CFVOL Standard deviation of cash flow/total

assets over the five preceding fiscal years

NCSKEW Negative skewness of firm-specific

weekly stock returns

DTURN Detrendedmonthly turnover NIAT Net income/total assets

EARNVOL Standard deviation of EBIT/total assets

over the five preceding fiscal years

NISALE Net income/sales

EBITAT EBIT/total assets OPAQUE Three-years moving sum of

discretionary accruals

EBITDAAT EBITDA/total assets RETAT Retained earnings/total assets

EBITSALE EBIT/sales RELCT Retained earnings/current liabilities

FAT Total debt/total assets ROA Operating income/total assets

HHI Herfindahl–Hirschman Index ROS Operating income/sales

INVCHINVT Growth of inventories/inventories ROTA Return on tangible assets

LCTAT Current liabilities/total assets SALESVOL Standard deviation of sales/total

assets over the five preceding fiscal

years

LCTCHAT (Current liabilities—cash)/total assets SIGMA Standard deviation of weekly

firm-specific stock returns

LCTLT Current liabilities/total liabilities

Panel B: TextualMD&A characteristics

LOGLENGTH Log(number of words) NEGATIVE Negative words/total words

WEAK_MODAL Weakmodal words/total words UNCERTAIN Uncertainty words/total words

FOG (words per sentence+ percentage of

complex words) × 0.4

MODFOG (words per sentence+ percentage of

modified complex words) × 0.4

LOGFILESIZE Log(filesize in megabytes)

Note: This table presents variable definitions. Panel A provides the definitions of 37 financial ratios employed in our numerical

models. Panel B provides the definitions of textualMD&A characteristics.

Tucker, 2011, for details). Given a vocabulary of size |V |, a document j is represented as a vector with |V | dimen-

sions. Each dimension represents a word in the vocabulary and its corresponding TF-IDF weight, wi,j. Because our

machine learning models require inputs to have the same lengths, we consider only the 40,000 most common terms

in our sample of MD&A.7 Imposing an upper limit for the dimensionality of document vectors is common in the

7 For our main tests, we employ a rolling sample splitting scheme. Hence, for each rolling split, we estimate new TF-IDF representations for the sample of

documents in a given rolling split.
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literature because it ensures that the dimensionality of document vectors is not driven by extreme outliers (e.g.,

Mai et al., 2019).8

Third, we consider a word embedding approach. Word embeddings are a type of word representation that allows

words to be represented as vectors in a vector space. These vector representations are derived through contextual

analysis of word occurrences within the corpus of MD&A, enabling the capture of semantic relationships between

words. For instance, words that are semantically similar tend to be closer in the vector space. To construct word

embeddings for our sample ofMD&A,we followprevious literature (e.g., Du et al., 2022; Li et al., 2021;Mai et al., 2019)

and use word2vec (Mikolov, Chen, et al., 2013). We estimate 50-, 100-, 200- and 300-dimensional word embeddings

for words occurring in our sample ofMD&A.9

For both the estimations of TF-IDF weights and word embeddings, extensive text preprocessing is performed to

reduce feature dimensionality, improve generalization and form phrases that help ourmodels to differentiate context.

Specifically, we (i) replace named entities such as company names, person, money values or dateswith predefined tags

using named entity recognition; (ii) perform lemmatization to reducewords to their base form; (iii) form phrases using

a data-driven approach that joins words with significant co-occurrence (e.g., Mikolov, Sutskever, et al., 2013); and (iv)

remove stopwords (e.g., Li et al., 2021; Reichmann & Reichmann, 2022; Reichmann et al., 2022).10

2.5 Descriptive statistics

Table 3 provides summary statistics for our sample. We report our main outcome variable, common controls in the

crash risk literature and textual characteristics of ourMD&A sample. The descriptive statistics suggest that 23% of all

firm-years in our sample experience a firm-specific stock price crash.Moreover, our sample is characterized by growth

firms as indicated by amean (median)market-to-book ratio (MTB) of 3.223 (2.229). The average firm-year has financial

leverage of 0.616 (0.475) at the samplemean (median).

We find that anMD&A contains, on average, 1.2% negativewords (NEGATIVE). Only 0.4% ofwords areweakmodal

words (WEAK_MODAL), whereas 1.4% are associated with financial uncertainty (UNCERTAIN), generally consistent

with Loughran and McDonald (2011). Moreover, the mean of the FOG index is 18.378 and adjusting the FOG index

for financial terms that are typically not considered complex by investors yields a substantially lower average score of

13.284 (MODFOG). Collectively, our sample resembles previous ones used in research on crash risk (e.g., Ertugrul et al.,

2017; Kim et al., 2019).

3 APPROACH TO PREDICTION

3.1 Sample partitioning

To train and test our models, we simulate a realistic forecasting scenario. Each model is trained on past data and then

evaluated on next year’s hold-out sample. Specifically, our approach implements a rolling sample splitting scheme, in

which the training and validation samples gradually shift forward in time, but the number of years in each sample is

held constant (Chen et al., 2022).

8 Choosing an upper bound also depends on different aspects such as the number of training samples or the applied text preprocessing steps. When we

consider a rolling split for the test year 2018 that includes the five previous years for model estimation, untabulated results suggest that an upper bound of

40,000 words considers all words that appear more than five times in the sample of documents. This suggests that choosing an upper bound of the 40,000

most frequently occurring words seems reasonable.

9 To trainword2vec, we chose a skip-gram approachwith awindow size of five, 20 iterations over the corpus, aminimumword count of five and negative sam-

pling to accelerate training (e.g., Li et al., 2021; Reichmann & Reichmann, 2022). To ensure the validity of our word2vec embeddings, we perform descriptive

analyses in Appendix A1.

10 To better illustrate our text preprocessing, consider the following sentence: “Gross margins decreased as a result of lower sales in 2003.” After text

preprocessing the sentence reads as follows: “gross_margin decrease result low sale -date-.”
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TABLE 3 Descriptive statistics.

N Mean Std. Q25 Median Q75

Outcome

CRASHt+1 39,583 0.230 0.421 0.000 0.000 0.000

Common Crash Controls

LOGMVt 39,583 12.950 2.363 11.279 13.043 14.581

MTBt 39,583 3.223 9.809 1.206 2.229 4.108

LEVt 39,583 0.616 0.935 0.279 0.475 0.655

ROAt 39,583 −0.004 0.318 −0.014 0.070 0.140

DTURNt 39,583 0.002 0.109 −0.016 0.000 0.026

NCSKEWt 39,583 0.116 0.927 −0.412 0.002 0.519

RETt 39,583 −0.261 0.466 −0.258 −0.101 −0.040

SIGMAt 39,583 0.057 0.045 0.028 0.045 0.072

MD&ACharacteristics

LOGLENGTHt 39,583 3.787 0.324 3.616 3.846 4.012

NEGATIVEt 39,583 0.012 0.005 0.009 0.012 0.015

WEAK_MODALt 39,583 0.004 0.003 0.003 0.004 0.005

UNCERTAINt 39,583 0.014 0.005 0.011 0.014 0.017

FOGt 39,583 18.376 1.711 17.327 18.326 19.338

MODFOGt 39,583 13.284 1.573 12.317 13.224 14.160

LOGFILESIZE 39,583 0.052 0.031 0.028 0.048 0.070

Note: This table presents descriptive statistics of our outcome variable, common numerical crash controls andMD&A charac-

teristics. CRASHt+1 is an indicator variable that equals 1 if a firm-specific weekly return drops 3.09 standard deviations below

its yearly mean in the period t+ 1 and 0 otherwise. All other variables are defined in Table 2.

For each year in the test period from 2001 to 2018 (e.g., 2001), the models are trained in the five preceding years.

The first four years (e.g., 1996−1999) are used for training, and the fifth year is used for validation (e.g., 2000) to tune
model hyperparameters (Chen et al., 2022). The predictionmodel is then estimated on the validation and training sam-

ple (e.g., 1996−2000) (Bertomeu et al., 2021). Finally, we analyze themodel performance on the hold-out-test sample

(e.g., 2011).

Althoughwe acknowledge that using a rolling sample splitting scheme is computationally demanding, it has at least

two benefits. First, it strictly avoids temporal leakage as each model is trained on past data and then tested on next

year’s hold-out sample. Second, it allows themodels to be continuously trained on new data.

3.2 Machine learning models

To provide a comprehensive analysis of the predictability of stock price crashes, we consider a variety of different

models. Specifically, we consider (i) a traditional regression model, (ii) SVMs, (iii) models based on decision trees

and (iv) neural networks. Table 4 provides an overview of the models and their respective data inputs. Moreover,

for each rolling split, we separately tune model hyperparameters using the validation set. Appendix A2 provides the

hyperparameter space used for tuning each of our models.11

11 Formore details on widely usedmachine learningmethods, we refer to Bochkay et al. (2023).
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TABLE 4 Model overview.

Type Model Definition Numerical input Textual input

Regressionmodel LOGIT Logistic regression 37 financials Textual characteristics; term

frequency-inverse document

frequency (TF-IDF) representations

Support vector

machine

SVM Support vector

machine

37 financials TF-IDF representations

Decision tree RF Random forest 37 financials TF-IDF representations

SGB Stochastic gradient

boosting

37 financials TF-IDF representations

Neural network NN Dense neural

network

37 financials –

CNN Convolutional

neural network

– word2vec embeddings

Note: This table presents an overview of themachine learningmodels and their respective input features used in our study.

3.2.1 Regression model

As a benchmark, we consider a logistic regression, LOGIT(Num)with numerical financial data as inputs. LOGITmodels

are extensively employed for binary classification tasks in both financial research and practice (e.g., Baesens et al.,

2003; Butaru et al., 2016;Dechowet al., 2011; Jones&Hensher, 2004, 2007; Shumway, 2001).We implement a LOGIT

with L1 regularization to prevent themodel from overfitting and choose a LOGIT(Num) as a reasonable benchmark an

investor would use to predict stock price crashes.

In addition, we use a LOGIT to implement two models with textual inputs. First, because previous research typi-

cally uses LOGIT tomodel the association between textual characteristics and stock price crashes (e.g., Ertugrul et al.,

2017; Kim et al., 2019), LOGIT(TextChar) denotes a LOGIT model that uses the textual characteristics described in

Section 2.4 as inputs. Second, LOGIT(Text) denotes a LOGIT model that uses TF-IDF representations of MD&A as

inputs.

3.2.2 Support vector machines

We estimate an SVMwith a nonlinear kernel function to transform the training data into a higher dimensional feature

space. SVM(Num) denotes an SVM that uses numerical financial data as inputs, and SVM(Text) is an SVM that uses

TF-IDFweights as inputs.

3.2.3 Decision trees

Following previous literature, we consider the RF and SGB as models based on decision trees (e.g., Chen et al., 2022;

Jones et al., 2023). RF(Num) and SGB(Num) denote models that use financial numerical inputs, whereas RF(Text) and

SGB(Text) use TF-IDFweights as representations ofMD&A.

3.2.4 Neural networks

We consider two separate neural networks for numerical and textual inputs. Feeding numerical data to a neural

network follows a straightforward path. Specifically, we feed the numerical financial data forward to a set of dense
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layers, aiming to forecast whether a firm-year experiences a stock price crash in the subsequent year (Reichmann &

Reichmann, 2022). This specific model is denoted as NN(Num).

For textual inputs, we employ a CNN (LeCun et al., 1989, 2015; Mai et al., 2019; Reichmann & Reichmann, 2022).

Unlike the previousmodels that use TF-IDFweights that do not account forword orderwithin anMD&A, theCNNcan

consider word sequences, potentially revealing further insights into future crashes (Reichmann & Reichmann, 2022).

Therefore, we use the word2vec embeddings to enable the CNN to consider each word in an MD&A as a numerical

representation, capturing the semantic essence of eachword.

Because trainingmachine learningmodels typically requires using equally sized inputs, we perform padding to nor-

malize each MD&A to a length of 10,000 words by truncating longer MD&A and adding vectors of zeros to shorter

MD&A (Mai et al., 2019). 10,000words approximate the 97.5% quantile of input features in our sample ofMD&A sec-

tions after text preprocessing. Hence, this approach captures the full content ofmostMD&Adocuments in our sample

while, at the same time, it does not extend the dimension of vectors for outliers in our sample.We denote a CNNwith

word2vec embeddings as CNN(Text).

Neural networks are commonly initiated with different random seeds that affect the final model fit. Thus, estimat-

ing the same architecture can lead to different results, potentially resulting either in inflated or deflated performance

relative to the true (average) performance of themodel. Therefore, we adopt the approach outlined byGu et al. (2020)

and take the average probability estimate of five models initiated with different random seeds (average ensemble).

3.3 Performance evaluation

We use the AUC as our main metric for out-of-sample performance (e.g., Chen et al., 2022; Cheng et al., 2018; Mai

et al., 2019). The ROC curve aims to graphically represent the trade-off between the true positive rate, also referred

to as the catch rate, and the false positive rate. The catch rate is defined as
True Positive

True Positive+False Negative
and, therefore, rep-

resents the fraction of correctly predicted crashes relative to the total number of crashes in the sample. Conversely,

the false positive rate, defined as
False Positive

False Positive+True Negative
, estimates the fraction of false alarms relative to the total num-

ber of non-crashes in the sample. The AUC is then defined as the area under the ROC curve and spans from 0 and

1. According to Fawcett (2006), the AUC denotes the probability that a model will rank a randomly chosen positive

(crash) observationhigher than a randomly chosennegative (non-crash) observation.With theAUCof a randommodel

set at 50%, anymodel with an AUC above 50% indicates predictive power.

In addition, we also consider catch rates using probability cut-offs in {10%, 20%, . . . , 50%} (e.g., Bertomeu et al.,

2021). For example, assuming a cut-off of 10%, we investigate a model’s 10% highest probability estimates within a

year andestimatehowmany stockprice crashes theseestimateswouldhavedetected relative toall stockprice crashes

in the sample. Since selecting 10% of observations randomly would, on average, yield a catch rate of 10%, we report

the excess catch rate. This metric represents the catch rate exceeding the probability cut-off.

3.4 Serial crashes

Machine learning models are flexible which raises concerns that they fit a firm rather than a firm-year. Hence, obser-

vations of firms that experience consecutive stock price crashes (i.e., serial crashes) spanning both the training and

test samples can inflate the performance. To improve the generalizability of our results, we recode serial crashes in

the training set as zeros if they span both the training and test sets. For instance, let the test year be 2018 and the

model is estimated on the five preceding years from 2013 to 2017. If a firm has a crash observation in 2018 (test)

and in 2017 (train), we recode the 2017 observation as a non-crash observation. Recoding serial crash observations

likely impedes model performance because the training set contains fewer crash observations that enable the model

to detect predictive signals. Therefore, the results reported in our main tests are likely to be conservative.
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TABLE 5 Out-of-sample predictability of stock price crashes.

Panel A: Numericmodels

AUC versus 50%
AUC versus
LOGIT(Num) Excess catch rate

Models AUC Diff. p-val. Diff. p-val. 10% 20% 30% 40% 50%

LOGIT(Num) 55.30% 5.30% <0.01 2.97% 4.00% 4.61% 5.00% 5.16%

SVM(Num) 52.90% 2.90% <0.01 −2.40% <0.01 0.22% −0.14% −0.36% −0.61% −0.28%

RF(Num) 53.42% 3.42% <0.01 −1.88% <0.01 0.55% 1.40% 1.69% 2.23% 2.27%

SGB(Num) 56.26% 6.26% <0.01 0.96% <0.01 3.10% 5.19% 6.01% 6.37% 6.72%

NN(Num) 54.73% 4.73% <0.01 −0.57% <0.01 2.27% 3.38% 4.43% 4.74% 4.94%

Panel B: Textual models

AUC versus 50%
AUC versus
LOGIT(Num) Excess catch rate

Models AUC Diff. p-val. Diff. p-val. 10% 20% 30% 40% 50%

LOGIT(TextChar) 53.11% 3.11% <0.01 −2.19% <0.01 1.09% 0.74% 1.54% 1.62% 1.76%

LOGIT(Text) 52.84% 2.84% <0.01 −2.45% <0.01 9.60% 0.09% 0.83% 1.42% 2.02%

SVM(Text) 49.39% −0.61% 0.081 −5.91% <0.01 −5.72% −7.68% −8.47% −7.17% −5.61%

RF(Text) 56.17% 6.17% <0.01 0.87% 0.023 3.10% 4.43% 5.40% 5.45% 5.43%

SGB(Text) 56.18% 6.18% <0.01 0.88% 0.013 3.00% 4.79% 5.69% 6.07% 6.12%

CNN(Text) 54.77% 4.77% <0.01 −0.53% 0.211 2.63% 4.41% 5.11% 5.38% 5.92%

Note: This table presents the results of predicting one-year-ahead stock price crashes. Panel A reports the results of models

using numerical inputs. Panel B reports the results of models using textual inputs. “Num” denotes the 37 financial variables

defined in Table 2, panel A. “TextChar” denotes textual characteristics defined in Table 2, panel B. “Text” denotes word2vec

embeddings for the CNN and TF-IDF weights for the remaining text models. The table reports the area under the receiver

operating characteristic (ROC) curve (AUC) and excess catch rates for varying cut-offs. Differences between AUC scores are

tested for statistical significance using the DeLong test. The best-performingmodels in each panel are presented in bold.

4 OUT-OF-SAMPLE PERFORMANCE

4.1 Predicting stock price crashes

Panel A of Table 5 reports the out-of-sample performance evaluation for models using 37 numerical data inputs. The

results show that all models yield AUC above 50%. DeLong tests further suggest that differences are statistically

higher than a random guess (p < 0.01; DeLong et al., 1988). Therefore, our results indicate that machine learning

models detect one-year-ahead stock price crashes using financial predictors.

Consistent with previous literature on financial prediction tasks (e.g., Jones et al., 2015, 2017), we find that

LOGIT(Num) performs reasonably well and serves as a strong benchmark for crash prediction. Specifically, it yields

an AUC of 55.30%, which significantly outperforms the SVM(Num), RF(Num) andNN(Num) with AUC of only 52.90%,

53.42%and 54.73%, respectively. However, SGB(Num) has both the highest AUCand the highest catch rates across all

cut-offs. Specifically, it yields an AUC of 56.26%, which is significantly higher than the AUC of LOGIT(Num) (p< 0.01).

In relative terms, this is equivalent to an improvement of (
6.26%

5.30%
− 1=) 18% in accuracy to predict stock price crashes

better than chance.

Panel B shows the classification results of models using textual inputs. Except for SVM(Text), all models yield AUC

above 50% (p< 0.01), suggesting that text is informative about future stock price crashes. The LOGITmodel does not

benefit from using high-dimensional TF-IDF weights as inputs (LOGIT(Text), AUC = 52.84%), compared to using high-

level text characteristics from previous literature (LOGIT(TextChar), AUC = 53.11%). However, RF(Text), SGB(Text)



1106 KAYA ET AL.

and CNN(Text) all have significantly higher AUC compared to LOGIT(TextChar) (p < 0.01). An important implication

is that textual characteristics identified by previous research using basic content analyses are unlikely to capture all

relevant aspects of textual disclosures that are informative about crash risk.

Although CNN(Text) is the most elaborate model architecture (AUC = 54.77%), it underperforms compared to

models based on decision trees.12 The strongest decision tree, SGB(Text), yields a significantly higher AUC of 56.18%

(p < 0.01) and has higher catch rates across all probability cut-offs. Notably, SGB(Text) even outperforms the numeri-

cal benchmarkmodel LOGIT(Num) (p< 0.05) and performs like SGB(Num) (p= 0.845), the best-performing numerical

machine learning model. This finding emphasizes the high information content of textual disclosures for stock price

crash risk.

Collectively, our results suggest that an SGB is the best-performing model for both numerical and textual inputs.

SGB predicts stock price crashes significantly better than chance and outperforms traditional approaches. Our find-

ings support previous literature that machine learning can help investors to improve their decision-making (e.g.,

Bianchi et al., 2020; Gu et al., 2020; Jones et al., 2023).

4.2 Combining numerical and textual inputs

Previous research suggests that combining different information sets can yield higher predictive power (e.g., Mai et al.,

2019; Peat & Jones, 2012). Therefore, we test two approaches to combine numerical and textual inputs. First, we con-

catenatenumerical and textual inputs anduse the resulting featurevector to trainnewmodels. This standardapproach

allows a machine learning model to consider both input sources during training (e.g., Mai et al., 2019).13 Second, we

combine two models using an average ensemble approach. Specifically, given two separate models Model(Num) and

Model(Text), we take the simple average of the models’ probability estimates. Combining forecasts using averages

is easy to implement, needs little probabilistic interpretation and has achieved strong performance in the financial

domain (e.g., Kuncheva et al., 2001; Rapach et al., 2010).

Table 6 presents the results of combining numerical and textual inputs for our best-performing decision tree,

the SGB, the benchmark model LOGIT and the neural networks NN and CNN. Notably, combining numerical and

textual inputs using the simpler average ensemble approach (Panel B) yields consistently higher AUC, compared to

retraining themodels with concatenated inputs (Panel A).When using the concatenated inputs, only SGB(Num+Text)
shows a slight yet statistically insignificant (p = 0.532) increase in AUC and consistently higher catch rates than

using only numerical financial inputs. However, when using an average ensemble approach, both SGB(Num+Text)
and NN-CNN(Num+Text) show statistically significant increases in AUC (p < 0.01), compared to SGB(Num) and NN-

CNN(Num). These results generally suggest that textual data contain incremental information tonumerical inputs that

helps improve out-of-sample predictions.

Collectively, our results suggest that usingmachine learning and textual data can improve crash prediction relative

to traditional approaches such as a LOGIT with numerical inputs. To provide more intuition into the economic signifi-

cance of our results, we consider an investor who, depending on risk profile, monitors the top 20% to 30% predictions

of a predictive model.14 Considering a probability threshold of 20% (30%), the benefit of using LOGIT(Num) relative

to a random guess is equivalent to the detection of an additional 331 (381) stock price crashes during our sample

period. Using SGB(Num+Text) insteadwould result in detecting an additional 436 (557) stock price crashes relative to

12 Mai et al. (2019) also test an average embedding model and find that it outperforms a CNN for bankruptcy prediction. Untabulated tests suggest that an

average embedding model with word2vec embeddings yields an AUC of 54.90%, which is significantly higher than the 50% of a randommodel (p < 0.01) but

statistically indifferent, compared to the performance of the CNN (p= 0.745).

13 For our neural networkmodels, NN(Num) and CNN(Text), this approach is infeasible because both data sources are fed into differentmodel architectures.

Hence, to combine numerical and textual inputs for the neural networks, we followMai et al. (2019) and concatenate the final hidden layers of NN(Num) and

CNN(Text) before feeding the combined neuron layer to a softmax output.

14 Note that 20% to 30% is a reasonable threshold because stock price crashes occur in 23% of all firm-years.
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TABLE 6 Combining numerical and textual inputs.

Panel A: Concatenating inputs

AUC versusModel(Num) Excess catch rate

Models AUC Diff. p-val. 10% 20% 30% 40% 50%

LOGIT(Num+Text) 53.34% −1.96% <0.01 0.02% 0.76% 1.59% 2.09% 2.68%

SGB(Num+Text) 56.46% 0.20% 0.532 3.67% 5.52% 6.76% 7.21% 7.24%

DL-CNN(Num+Text) 54.48% −0.26% 0.572 2.10% 3.28% 4.07% 4.43% 4.53%

Panel B: Average ensemble

AUC versusModel(Num) Excess catch rate

Models AUC Diff. p-val. 10% 20% 30% 40% 50%

LOGIT(Num+Text) 54.63% −0.67% <0.01 0.02% 0.76% 1.59% 2.09% 2.68%

SGB(Num+Text) 57.10% 0.85% <0.01 3.42% 5.27% 6.74% 7.63% 7.97%

DL-CNN(Num-Text) 55.80% 1.07% <0.01 2.10% 3.28% 4.07% 4.43% 4.53%

Note: This table presents the results of combining numerical and textual inputs. Panel A presents the results of training new

models on concatenated inputs. Panel B presents the results of an average ensemble approach that combines two predictions

of two separate models using a simple average. “Num” denotes the 37 financial variables defined in Table 2, panel A. “Text”

denotesword2vec embeddings for theDL-CNNand TF-IDFweights for the remaining textmodels. The table reports theAUC

and catch rates for varying cut-offs. Differences between AUC scores are tested for statistical significance using the DeLong

test. The best-performingmodels in each panel are presented in bold.

a random guess, which translates to an overall increase of 31.76% (46.15%). Overall, we consider these results to be

economically meaningful.

4.3 Additional analyses

4.3.1 Model performance over time

In this section, we provide descriptive evidence on whether the results and differences among the models are sys-

tematic and persistent over time. Figure 1 illustrates the yearly AUC of LOGIT(Num), SGB(Num) and SGB(Num+Text).
The results show that SGB(Num) systematically outperforms LOGIT(Num), supporting the view thatmachine learning

can improve predictions relative to traditional approaches. At the same time, however, SGB(Num+Text) shows consis-
tently higher AUCs compared to SGB(Num), suggesting a systematic improvement due to the consideration of textual

inputs. The results further show that textual data are particularly informative in the years following the 2007–2008

financial crisis. This findingmay suggest that textual data becomemore informative than financial data in times of high

economic uncertainty. Collectively, we conclude that our main results are consistent across almost all test years and

do not diminish over time.

4.3.2 Inner workings of machine learning models

In this section, we seek to better understand the inner workings of our best-performing machine learning model SGB.

We perform permutation feature importance, a model inspection technique that measures the contribution of model

inputs to its out-of-sample performance. This approach randomly shuffles values of single predictors and observes the
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F IGURE 1 Model performance over time. This figure presents yearly area under the receiver operating
characteristic (ROC) curve (AUC) scores of crash predictionmodels. The blue line represents a logistic regression
with numerical inputs (LOGIT(Num)). The orange line represents a stochastic gradient boosting (SGB) model with
numerical inputs (SGB(Num)). The yellow line represents the average ensemble of a SGB that uses numerical inputs
and a SGB that uses textual inputs (SGB(Num+Text)).

F IGURE 2 Feature importance. This figure presents word clouds of themost important input features. Larger
font indicates higher feature importance. The prefix (+) ((−)) indicates that the given feature is significantly more
(less) likely to occur in crash firms, compared to non-crash firms (p< 0.05). The first plot shows numerical features.
The second plot shows textual features.

model’s predictive performance decrease (e.g., Breiman, 2001; Chen et al., 2022). We estimate the importance score

for each sample year and average the importance values for each predictor.

Figure 2 presents word clouds for the most important (i) numerical inputs and (ii) textual inputs for SGB(Num) and

SGB(Text), respectively. A larger font size suggests higher feature importance scores. In addition, we conduct t-tests

between crash andnon-crash firms to identify descriptive differences betweenpredictors. The prefix (+) ((−)) suggests
that a given predictor is significantly more (less) pronounced in crash firms relative to non-crash firms (p< 0.05).

The results suggest that the model SGB(Num) considers most control variables that are commonly used in the lit-

erature to be important predictors of stock price crashes (e.g., Hutton et al., 2009; Kim et al., 2011a, 2011b). Negative

firm-specific return skewness (NCSKEW) and firm size (LOGMV) are the most important numerical predictors. Other

common variables, such as return on asset (ROA), detrended turnover (DTURN) and book-to-market ratios (MTB) are
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also considered important by the SGB(Num). Interestingly, we find that financial opacity (OPAQUE), a standard control

variable in the literature (Hutton et al., 2009), only ranks as the 22ndmost important numerical predictor, suggesting

relatively low importance.

Turning to textual predictors, we consider the most important terms used by SGB(Text) to predict stock price

crashes. We find that the word “growth” is the most important predictor in MD&A text and that firms writing more

about growth are more likely to be crash firms as indicated by the suffix (+). Moreover, terms related to investments

such as “acquisition,” “spending” and “production” help ourmodel predict stock price crashes. This notion is consistent

with the view that high-growth firms are more likely to experience stock price crashes (e.g., Chen et al., 2001; Hutton

et al., 2009). Moreover, in line with previous research suggesting that tone is an important determinant of crash risk

(e.g., Fu et al., 2021; Reichmann, 2023), we find that SGB(Text) also captures terms such as “downgrade,” “may never

succeed” and “unfavorably impact” to distinguish crash from non-crash observations.

Collectively, our results corroborate that our models consider reasonable signals to predict stock price crashes.

However, we caution the reader against interpreting the results as indicative of the causal influence of predictors

(Chenet al., 2022). Instead,weaim to foster transparency andvisualize underlyingdata inputs that drive thepredictive

performance of our mainmodels.

4.3.3 Sensitivity to serial crashes

In our main test, we modify the data used to train the model by setting the values of observations to zero if the same

firm is identified as a crash observation in the following year’s hold-out sample. This design choice mitigates concerns

that our models simply predict firms instead of firm-years, thereby improving the robustness of our main inferences.

In this section, we test the sensitivity of our models to this design choice.

Table 7 shows the results of estimating all mainmodelswithout correcting for serial crashes in the training data. The

results in panel A suggest that failing to correct for serial crashes in the training data inflates model performance for

almost all models. This effect is strongest for RF(Num)—an increase in AUCof 3.76%, almost doubling its performance

relative to a random guess. By contrast, the AUC of SGB(Num) only increases by 1.50%, suggesting that the model is

more likely to identify generalizable patterns in financial data, compared to RF(Num).

Interestingly, turning to textual inputs, the results in panel B suggest that the model performance of less flexible

models like LOGIT(Text) and SVM(Text) significantly increasewhen failing to correct for serial crashes, suggesting that

these models are more likely to identify firm characteristics in text rather than generalizable language that predicts

stock price crashes. SGB(Text) is the only model with textual inputs that is not affected by the correction of serial

crashes. Our results suggest that failing to correct for serial crashes can substantially inflate the performance of var-

ious model architectures. Our results should caution future research that examines the predictability of stock price

crashes.

5 CONCLUSION

In this study, we use machine learning methods drawn from the wider literature in computer science to predict stock

price crashes. We test various models that incorporate numerical and textual inputs from 10-K disclosures. We find

that a LOGIT model as a traditional regression approach serves as a strong benchmark. We further find that a SGB

model based on decision trees systematically improves the prediction of one-year-ahead stock price crashes. Our

machine learning models are most valuable for out-of-sample predictions using suitable combinations of numerical

and textual inputs.We find that themost powerful textual predictors fromMD&Asections are suchwords as “growth,”

“acquisition” and “spending.” The results should be of interest to academics, practitioners and investors who aim to

better understand the predictors of stock price crashes. For instance, machine learning algorithms can help investors
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TABLE 7 Sensitivity to recoding serial crashes.

Panel A: Numericmodels

Models AUC (main test) AUC (w/o recoding) Diff. p-val

LOGIT(Num) 55.30% 55.87% +0.57% <0.01

SVM(Num) 52.90% 53.33% +0.43% <0.01

RF(Num) 53.42% 57.18% +3.76% <0.01

SGB(Num) 56.26% 57.76% +1.50% <0.01

NN(Num) 54.73% 54.97% +0.24% 0.4026

Panel B: Textual models

Models AUC (main test) AUC (w/o recoding) Diff. p-val

LOGIT(TextChar) 53.11% 53.62% +0.51% <0.01

LOGIT(Text) 52.84% 57.32% +4.48% <0.01

SVM(Text) 49.39% 55.61% +6.22% <0.01

RF(Text) 56.17% 57.93% +1.76% <0.01

SGB(Text) 56.18% 56.30% +0.12% 0.7087

CNN(Text) 54.77% 55.44% +0.67% 0.0144

Note: This table presents the results of predicting 1-year-ahead stock price crasheswithout recoding serial crash observations
in the training set for model estimation. Panel A reports the results of models using numerical inputs. Panel B reports the

results ofmodels using textual inputs. “Num” denotes the 37 financial variables defined in Table 2, panel A. “TextChar” denotes

textual characteristics defined in Table 2, panel B. “Text” denotes word2vec embeddings for the CNN and TF-IDF weights for

the remaining text models. The table reports the AUC. Differences between AUC scores are tested for statistical significance

using the DeLong test.

to position their portfolios against future stock price crashes and thus help them make better-informed investment

decisions.

While our study provides early evidence on the use ofmachine learningmethods for predicting stock price crashes,

more evidence is needed. Stock price crashes are prevalent in international financial markets, yet the incremental pre-

dictive power of other (mandatory) firm disclosures and data sources, such as sustainability reports, social media data

and consumer product reviews for future stock price crashes remain largely unexplored (e.g., Al Guindy et al., 2024;

El-Haj et al., 2020; Jin, 2023).
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APPENDIX

A.1 Word2vec validation

In this section, we ensure the validity of our word2vec embeddings (Reichmann & Reichmann, 2022). Specifically, we

provide descriptive evidence on how different word groups occupy different locations in the vector space. Figure A1

shows word2vec embeddings in a three-dimensional scatter plot, which suggests that closely related words such as

“profit,” “margin” and “sales” occupy close locations. Further,word groups related to governance, such as “independent

auditor” and “internal control,” tend to be closer in the vector space. We infer that word2vec embeddings identify

reasonable semantic similarities (Reichmann & Reichmann, 2022).

F IGURE A1 Visualization of word2vec embeddings. This figure presents a visualization of our word2vec
embeddings.We employ t-distributed stochastic neighbor embedding techniques to visualize the 300-dimensional
word2vec embeddings in a three-dimensional scatter plot. The dots represent the reduced vector representations of
words and phrases contained in our sample ofMD&A of 10-K filings (n= 39,583).

A.2 Model hyperparameters

This section presents the hyperparameters tested to train our machine learning models. For the LOGIT and SVM, we

follow the specifications of Mai et al. (2019) without performing further optimization. For the decision trees, RF and

SGB,we choose similar hyperparameters as in Chen et al. (2022) and use grid search to identify optimal hyperparame-

ters. Similar toGu et al. (2020), we test different layer depths and the number of neurons per layer for both theNNand

CNNand implement early-stopping to prevent overfitting during training. In addition,we also test a rangeof activation

functions and hyperparameters that are specific to the CNN. Because training the neural networks is computationally
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expensive, we use the Hyperband approach to tune hyperparameters that aims to speed up random search through

adaptive resource allocation and early-stopping (e.g., Li et al., 2017).

Model Hyperparameters Optimization

Logistic regression (LOGIT) L1 regularization –

Support vector machines

(SVM)

Radial basis function kernel –

Random forest (RF) # trees: 500, 600, 700, . . . , 2,000 Grid search

Max features: 110, 111, 112, . . . , 120

Min. # of obs. in a leaf: 10

Bagging: 0.5

Stochastic gradient boosting

(SGB)

# trees: 500, 600, 700, . . . , 2,000 Grid search

Learning rate: 0.005, 0.01, 0.05

Max. depth: 1, 2, 3, 4

Min. # of obs. in a leaf: 10

Bagging: 0.5

Neural network (NN) # hidden layer: 1,2,3,4,5 Hyperband

# neurons in hidden layers: 50, 100, 200, 300 400, 500

Activation function (every node except final): relu, tanh,

sigmoid

Regularizer: float in [0, 0.0001]

Convolutional neural network

(CNN)

# hidden layer: 1,2,3,4,5 Hyperband

# neurons in hidden layers: 50, 100, 200, 300 400, 500

# filter: 200, 250, 300, . . . , 500

kernel size: 2,4,6,8, . . . , 20

Embedding dimension (word2vec): 50, 100, 200, 300

Activation function: relu, tanh, sigmoid

Regularizer: float in [0, 0.0001]

NN-CNN (concat layer) # neurons in hidden layer: 50, 100, 200, 300 400, 500 Hyperband

Note: This table presents the hyperparameters and optimization techniques used to train ourmachine learningmodels.
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