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ABSTRACT
The present paper shows that product-specific spatial price variation usually causes the Country-Product-Dummy (CPD) method
to be biased. In cases where it is not, the CPD method is still inefficient and statistical inference is invalid. The paper develops
a non-linear generalization of the CPD method. Even for product-specific spatial price variation, this NLCPD method remains
unbiased and allows for inference. A comprehensive simulation reveals that the NLCPD method’s root mean squared error is
smaller than that of the Gini-Eltetö-Köves-Szulc (GEKS) index and the CPD method. Finally, this paper applies the NLCPD method
to spatial price information derived from Germany’s consumer price index micro data of 2019. Price levels of the 401 German
districts are computed.
JEL Classification: C43, E31

1 | Introduction

Important areas of economic theory and economic policy utilize
subnational indicators of regional economic activity. Well-known
examples of these are regional real wages and output levels. How-
ever, the high demand for such indicators is not matched by the
available supply. The reasons for this gap in economic statistics
are not hard to find. The production of regional real indicators
requires reliable information on regional price levels, while sta-
tistical offices’ primary task is tracking intertemporal price level
changes. The latter requires a very broad sample of different
products. Thus, for pasta products, say, in different regions,
prices of different types of pasta are recorded. By contrast, spatial
price comparisons would benefit from a more selective sample in
which the same type of pasta is recorded in all regions. However,
it is laborious and costly to establish and maintain a sample that
serves the needs of both intertemporal and spatial price compar-
isons. Therefore, only very few countries publish regional price
levels (Weinand and Auer 2020, 416-418).
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Matters are made worse by the methodological challenges of spa-
tial price comparisons. While intertemporal price comparisons
usually apply bilateral index theory, spatial price comparisons
require a multilateral approach. A wide spectrum of multilat-
eral methods are available and have been applied in subnational
case studies of countries from all over the world (surveyed by
Majumder and Ray 2020, 111-113 and Weinand and Auer 2020,
416-419). The choice between the various methods also depends
on the available data set. Some subnational studies cover only
parts of a country. Others cover the complete country, but the
regions within this country are very large. Another distinguish-
ing feature is the number and range of products for which prices
are available. For example, housing costs are not always included.
Usually, the data have been collected for other purposes. Micro
price data are rarely available.

Unfortunately, large data gaps are the rule rather than the
exception. This is true for subnational as well as international
price level comparisons. For the latter case, Summers (1973)
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introduced the Country-Product-Dummy (CPD) method. This
method is equally applicable to subnational price level com-
parisons. The same is true for the analysis of the present study.
Both, its theoretical findings and its simulation results apply to
subnational as well as to international price level comparisons.
It is primarily for illustrative purposes that this paper is framed
as an analysis of subnational price level comparisons, where
“regions” stands for districts or other spatial entities within a
country. Accordingly, this study concludes with a subnational
empirical application.

The CPD method is a linear regression approach that allows
for statistical inference. This advantage rests on the implicit
assumption that the products’ spatial price variation is uni-
form. However, economic models (e.g., Tabuchi 2001, p. 105) as
well as empirical studies (e.g., Weinand and Auer 2020, p. 430;
Rokicki and Hewings 2019, p. 94; Aten 2017, 132-134) show
that spatial price variation usually differs across products. The
higher the level of aggregation and the more heterogeneous
the included products (e.g., pasta vs. shoes), the less plausi-
ble the CPD method’s assumption of a uniform spatial price
variation.

Accordingly, in applied work the CPD method is primarily used
for the computation of the regional price levels of products with
a common consumption purpose (e.g., pasta products). At this
initial stage of the aggregation process, often denoted as “be-
low basic heading level”, no expenditure information is avail-
able and the unweighted variant of the CPD method must be
used. However, it cannot be ruled out that the included prod-
ucts’ spatial price variation is heterogeneous (e.g., the regional
pricing policy of large pasta brands deviates from the pricing
policy of smaller regional competitors) which would constitute
a violation of the CPD method’s underlying assumption. A vio-
lation is even more likely when the price levels of the various
basic headings are aggregated into the overall regional price lev-
els (aggregation “above basic heading level”). Therefore, this sec-
ond stage of aggregation usually applies an alternative method.
As a consequence, the final result involves a mix of different
methods.

The above considerations raise several fundamental questions.
What are the statistical consequences if the CPD method is
applied even though the spatial price variation is not uniform, but
product-specific? Do the estimated regional price levels remain
unbiased? Is inference still valid? If not, is there a practical way
to check whether a set of products exhibits a uniform spatial price
variation? Are there alternative estimation methods that remain
unbiased even when the products’ spatial price variation is not
uniform, but product-specific?

The present paper answers all of these questions. With
product-specific spatial price variation, the CPD method’s
statistical inference is invalid. The CPD estimates of the regional
price levels remain unbiased as long as the set of price data is
complete (a situation in which the CPD method is rarely used) or
data gaps occur completely at random (a situation that is difficult
to achieve in real-world price data samples). In other words,
statistical offices normally process data sets with systematic data
gaps and for such data sets the CPD estimates of the regional
price levels are biased.

As a solution to these problems, this paper introduces the NLCPD
method, a non-linear generalization of the CPD method. Below
basic heading level, the unweighted NLCPD method can be
applied, while above basic heading level the weighted NLCPD
method is preferable.

In multilateral comparisons, any direct comparison between
two regions should give the same price levels as an indirect
comparison of these two regions via a third one. In index num-
ber theory, this requirement is called transitivity (e.g., Rao and
Banerjee 1986, p. 304). Both the CPD and the NLCPD method
produce transitive regional price levels. In addition, these mul-
tilateral methods compute the general values of the individual
products. However, only the NLCPD method also provides esti-
mates of the spatial price variation of the individual products.
These estimates indicate whether the assumption of a uniform
spatial price variation would be justified. Even more important,
the paper shows that the regional price levels estimated by the
NLCPD method remain unbiased even when the price data
exhibit product-specific spatial price variation and systematic
data gaps exist. In addition, the variance of the estimators can be
estimated, providing a basis for valid statistical inference. Even
if the data set were complete or the data gaps were completely
at random, the NLCPD method would still outperform the CPD
method. Thus, the CPD method should be avoided unless all
products included have exactly the same spatial price variation.

The rest of the paper is organized as follows. Section 2 provides
an intuitive explanation for the source of the CPD method’s bias.
How the NLCPD method addresses this problem is explained in
Section 3. A more formal treatment of the NLCPD method is
presented in Section 4. Section 5 provides a comprehensive sim-
ulation that confirms and complements the theoretical predic-
tions and makes a strong case for the use of the NLCPD method.
Section 6 applies this method to a large data set of regional prices.
Section 7 concludes.

2 | Problem

To illustrate the problems of the CPD method, we use a highly
stylized example of a subnational price comparison. In empirical
studies of subnational price comparisons, the prices of man-
ufactured goods are found to be rather uniform across space,
while the cost of housing varies considerably (e.g., Weinand
and Auer 2020, 430-431, for Germany; Aten 2017, 130-131, for
the United States). The prices of services take an intermediate
position. Table 1 shows the same features. It lists the prices of
three products,  = {𝑖 ∶ 𝑖 = goods, housing, services}, in four
different regions,  = {𝑟 ∶ 𝑟 = A, B, C, D}. For simplicity, it is
assumed that no expenditure information is available.

TABLE 1 | Prices of goods, housing, and services in four regions (gray
prices may be missing).

A B C D

1: Goods 2.9 3.0 3.0 2.9
2: Housing 3.5 5.6 6.7 10.1
3: Services 7.0 8.3 11.7 14.8
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In Section 2.1, we describe the CPD method. In Section 2.2, we
graphically illustrate the CPD regression with our highly stylized
example of price data. Why the CPD regression may lead to biased
estimates of the regional price levels is explained in Section 2.3.
Further issues of the CPD method are sketched out in Section 2.4.

2.1 | CPD Method

The CPD method has been originally developed by Sum-
mers (1973) for international price comparisons. It can also be
used in subnational comparisons to derive the general price lev-
els of the regions within a country. The CPD regression assumes
that the price of product 𝑖 in region 𝑟, 𝑝𝑟𝑖 , can be explained by the
linear relationship

ln 𝑝𝑟𝑖 = ln𝜋𝑖 + ln𝑃 𝑟 + 𝑒𝑟𝑖 (1)

where 𝑃 𝑟 is the price level of region 𝑟, 𝜋𝑖 is the general value
of product 𝑖, and 𝑒𝑟𝑖 ∼ 𝑁

(
0, 𝜎2) is a normally distributed distur-

bance term with zero mean and variance 𝜎2 (see Summers 1973,
p. 10).

The term (𝑃 𝑟∕𝑃 𝑠 − 1) indicates the percentage change in expen-
ditures when the basket of products defined by  is purchased
in region 𝑟 instead of region 𝑠. Equation (1) implies that the fol-
lowing relationship exists between the price level ratio𝑃 𝑟∕𝑃 𝑠 and
the price ratios of the products, 𝑝𝑟𝑖∕𝑝

𝑠
𝑖 (𝑖 = 1, . . . , 𝑁):

ln 𝑃 𝑟

𝑃 𝑠
= 𝔼

(
1
𝑁

∑
𝑖∈

ln
𝑝𝑟𝑖
𝑝𝑠𝑖

)
(2)

where 𝔼 is the expectation operator.1 The term in brackets cor-
responds to the logarithm of the Jevons (1865) index formula.
For the plausibility of the CPD model (1), this is an appealing
property.

To obtain the ordinary least squares estimates of the unknowns
ln𝑃 𝑟 and ln𝜋𝑖, the CPD model (1) must be transformed into a
regression equation with a set of dummy variables that represent
the regions and the products.2 In Section 2.2, this regression is
applied to the prices listed in Table 1.

The CPD regression approach, however, has a significantly
understated drawback. It implicitly assumes that the products
included in the comparison have the same (spatial) price vari-
ation. The prices in Table 1 violate this assumption. The cost
of housing and the prices of services considerably vary across
regions, while the prices of goods are all but constant. In
Section 2.3, we demonstrate that, with product-specific price
variation, the CPD regression produces biased estimates of the
regional price levels (as formally shown in Online Appendix A.3),
barring two cases that are rarely satisfied in real-world measure-
ment problems. Even if those two exceptional cases applied, the
CPD regression would still be inefficient and inference would
become invalid (see Section 2.4 and Online Appendix A.4.2).

2.2 | Graphical Illustration

For the complete data set of Table 1, the CPD regression yields
the three products’ estimated logarithmic general values, l̂n𝜋𝑖, as
well as the estimated logarithmic price levels, l̂n𝑃 𝑟, of the four
regions. Taking anti-logs gives the following regional price levels:

𝑃A = 0.74, 𝑃 B = 0.92, 𝑃 C = 1.10, 𝑃D = 1.34 (3)

where the price levels have been normalized such that 𝑃A ⋅ 𝑃 B ⋅
𝑃 C ⋅ 𝑃D = 1.3

A graphical illustration of this CPD regression is provided in
the upper left panel of Figure 1 (the other panels should be
ignored for the moment). The panel shows on the vertical axis
the observed values of the dependent variable, ln 𝑝𝑟𝑖 , and on

FIGURE 1 | CPD and NLCPD regressions for the price data of Table 1, respectively, either with complete price data (top panels) or with missing
prices for “goods” (bottom panels).
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the horizontal axis the unknown regional logarithmic price
levels, ln𝑃 𝑟. For each region 𝑟, three price observations exist.
In the diagram, these three observations are depicted by a circle
(goods), a square (services), and a triangle (housing). The three
observations are positioned along a dashed vertical line. The
position of that line is the outcome of the CPD regression. More
specifically, the intersection of each line with the horizontal axis
is the estimated value l̂n𝑃 𝑟. Thus, the four intersection points
are the logarithms of the price levels listed in (3).

Another element in the upper left panel are the colored straight
lines. Each line relates to a different product 𝑖 and, by definition,
has slope one. The intersections of these lines with the vertical
axis define the estimated values l̂n𝜋𝑖. Our normalization of the
regional price levels in (3) implies that the logarithmic prices of
product 𝑖 observed in regions A to D, ln 𝑝𝑟𝑖 , fluctuate around l̂n𝜋𝑖.

Changing the estimated value l̂n𝜋𝑖 causes a parallel vertical shift
of the colored solid line relating to product 𝑖. Changing the esti-
mated value l̂n𝑃 𝑟 causes a horizontal shift of the dashed vertical
line of region 𝑟 and, therefore, of the three observations relating
to that region. Both types of shifts would alter the vertical dis-
tance between the observations and their respective solid line.
This vertical distance is the residual, 𝑒 𝑟𝑖 . Graphically speaking,
the CPD regression simultaneously shifts the solid lines and the
dashed vertical lines (together with their three observations) such
that the sum of the squared residuals is minimized. The upper
left panel of Figure 1 depicts the solution to this minimization
problem, resulting in the price levels listed in (3).

2.3 | Biased Price Levels

Next, we turn to the consequences of incomplete data. Let x𝑟
𝑖 rep-

resent the regressor vector of product 𝑖 in region 𝑟, that is, the
values of the two sets of dummy variables. Irrespective of the
set of missing price observations, the CPD regression assumes
that the conditional expected value of the disturbance term is
zero: 𝔼(𝑒𝑟𝑖 |x𝑟

𝑖 ) = 0. However, the left panels of Figure 1 illustrate
that missing prices usually lead to 𝔼(𝑒𝑟𝑖 |x𝑟

𝑖 ) ≠ 0 (the panels on the
right-hand side of Figure 1 should be still ignored).

The upper left panel’s two outer vertical dashed lines indicate
the estimated logarithmic price levels of regions A and D, respec-
tively. Clearly, region A is the cheapest region, while region D is
the most expensive one. Now suppose that there is a systematic
pattern of missing observations. An example is given in Table 1
when the two gray prices are missing. This scenario is depicted in
the lower left panel of Figure 1. The product “goods” is observed
in regions B and C, but missing in regions A and D. Thus, the red
circles corresponding to the latter two regions need to be deleted.
As a consequence, in region A the large positive disturbance in
the upper left panel of Figure 1 vanishes, that is, 𝔼(𝑒A

𝑖 |xA
𝑖 ) < 0. To

reduce the sum of squared residuals of region A’s remaining two
price observations, the CPD regression moves the vertical dashed
line of region A to the left (see lower left panel of Figure 1). More
generally, when a product with a low price variation is missing
in the cheapest region, the CPD method’s estimated price level
of that region always decreases below the level with complete
data—in other words, downward bias arises. Similarly, the miss-
ing observation in region D leads to 𝔼(𝑒D

𝑖 |xD
𝑖 ) > 0. The dashed

vertical line of that region moves to the right, that is, the estimated
price level of region D is upward biased (see lower left panel of
Figure 1).

The corresponding price level estimates are

𝑃A = 0.64, 𝑃 B = 0.92, 𝑃 C = 1.09, 𝑃D = 1.57

They can be compared to the price levels derived from complete
price data. These price levels were reported in (3). The data gaps
reduce the price level of region A by 14% while they raise the price
level of region D by 17%. The price levels of regions B and C barely
change. If the price observations missing in regions A and D were
related to “housing” (the product with the largest price variation)
instead of “goods” (the product with the lowest price variation),
bias in the opposite direction would arise.

2.4 | Further Issues

The previous section showed that systematic gaps in the price
data cause biased CPD estimates of the regional price levels
(lower left panel of Figure 1). By contrast, if no prices were miss-
ing, the CPD regression would be unbiased (upper left panel of
Figure 1). The same would be true if the prices were missing com-
pletely at random. However, even if these two exceptional cases
applied, the CPD regression would be inefficient and inference
would be invalid because the residuals would be both correlated
and heteroskedastic.

This can be seen in the upper left panel of Figure 1. The correla-
tion arises from the systematic relationship between the residuals
and the general price levels of the regions. For example, there is a
very strong negative correlation between the residuals 𝑒 𝑟1 (goods)
and the estimated values of the general price levels, ln𝑃 𝑟. This
correlation is caused by the uniform prices of goods. Similarly,
there is a strong positive correlation between the residuals 𝑒 𝑟3
(housing) and the estimated values of ln𝑃 𝑟 because the differ-
ences in housing costs are more pronounced than the differences
in the general price levels. Only the price variation of services is
similar to that of the general price levels. As a consequence, the
CPD regression’s residuals related to services vary less than those
related to goods and housing. Thus, heteroskedasticity arises.

The residuals’ correlation and heteroskedasticity imply that the
CPD regression is inefficient and that the estimation of the
disturbances’ standard deviation is biased. Therefore, inference
is invalid. These conclusions are formally proven in Online
Appendix A.4.2. Theoretically, the issue of invalid inference could
be remedied along the lines proposed by Crompton (2000, p. 368),
who advocates White’s heteroskedasticity-robust specification of
the variance matrix for the CPD regression. However, this remedy
requires unbiased estimates of the price levels ln𝑃 𝑟, that is, either
complete price data (as in the upper left panel of Figure 1) or data
gaps that arise completely at random. Real-world data rarely sat-
isfy these requirements.

Therefore, a novel approach would be desirable that can han-
dle missing observations regardless of their structure. The
present paper introduces such an approach. It is a non-linear
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generalization of the CPD model (1) and can be applied in
weighted or unweighted form.

3 | Solution

This section introduces the NLCPD method. In Section 3.1, we
sketch out its basic concept and explain why this estimation
approach requires an additional restriction. Section 3.2 applies
the NLCPD method to the example of the previous section and
discusses its advantages in comparison to the CPD method. The
formal exposition of the NLCPD method is deferred to Section 4
and Online Appendix A.

3.1 | NLCPD Method

Again, we start with the case of complete data and
product-specific price variation. In this case, the CPD regression
is unbiased, but inefficient and inference is invalid. The three
colored solid lines in the upper left panel of Figure 1 have a slope
of one. The residuals could be markedly reduced if each solid
line had its individual slope. This is accomplished when, instead
of CPD model (1), the following relationship is estimated:

ln 𝑝𝑟𝑖 = ln𝜋𝑖 + 𝛿𝑖 ln𝑃 𝑟 + 𝑢𝑟𝑖 (4)

where 𝑢𝑟𝑖 ∼ 𝑁
(
0, 𝜎2) is a normally distributed disturbance term

with zero mean and variance 𝜎2. The parameter 𝛿𝑖 determines
the slope of product 𝑖’s colored line in the upper right panel of
Figure 1. We denote the non-linear relationship (4) as the NLCPD
regression model.

From an economic perspective, the parameters 𝛿𝑖 are the elas-
ticities of prices 𝑝𝑟𝑖 with respect to regional price levels 𝑃 𝑟. As a
consequence, a one percent increase in the regional price level
𝑃 𝑟 increases the price of product 𝑖 in region 𝑟 by 𝛿𝑖 percent.
Products with price level elasticity 𝛿𝑖 > 1 react more sensitively
to changes in the regional price level 𝑃 𝑟 than the average of all
products.4 In Table 1, this applies to the products “housing” and
“services”. They exhibit a stronger spatial price variation than the
product “goods”. Products with prices that are all but invariant
with respect to the regional price levels have a slope parameter,
𝛿𝑖, close to 0.

The NLCPD model (4) extends the CPD model (1) by the price
level elasticities, 𝛿𝑖. However, the NLCPD model (4) is not iden-
tified because 𝛿𝑗 ln𝑃 𝑟 = 𝛿𝑖 ln𝑃 𝑟, with 𝛿𝑖 =

(
𝛿𝑗∕𝜆

)
and 𝑃 𝑟 = 𝑃 𝑟𝜆.

Thus, without any restriction on the 𝛿𝑖-values, the regional price
level ratios, 𝑃 𝑟∕𝑃 𝑠 = (𝑃 𝑟∕𝑃 𝑠)𝜆, could be arbitrarily scaled up or
down by the parameter 𝜆. Consequently, an infinite number of
solutions would exist.

To remove this ambiguity, the specification of the NLCPD model
must be complemented by a restriction on the 𝛿𝑖-values. This
restriction arises quite naturally from an appealing property of
the CPD method that the NLCPD method should also possess:
The logarithm of the price level ratio of any pair of regions,𝑃 𝑟∕𝑃 𝑠,
is equal to the expected value of the logarithm of the Jevons index
formula; see Equation (2). However, the price level ratios implied
by the NLCPD model (4) are

ln 𝑃 𝑟

𝑃 𝑠
= 𝔼

(
(1∕𝑁)∑

𝑖∈ (1∕𝑁)𝛿𝑖

∑
𝑖∈

ln
𝑝𝑟𝑖
𝑝𝑠𝑖

)
(5)

Thus, the 𝛿𝑖-values in Equation (5) must be such that∑
𝑖∈ (1∕𝑁)𝛿𝑖 = 1.5 Accordingly, the estimation of the NLCPD

model (4) must be accompanied by the restriction∑
𝑖∈

(1∕𝑁)𝛿𝑖 = 1 (6)

where 𝛿𝑖 is the estimator of 𝛿𝑖.

3.2 | Graphical Illustration, Unbiased Price
Levels, and Further Advantages

To obtain the non-linear least squares estimates of the unknowns
ln𝑃 𝑟, ln𝜋𝑖, and 𝛿𝑖 in the NLCPD model (4), this model is trans-
formed into a regression equation with the same set of dummy
variables as the regression equation corresponding to the CPD
model (1). In other words, the NLCPD method requires no addi-
tional information.

For the complete price data listed in Table 1, the outcome of
the NLCPD estimation is depicted in the upper right panel of
Figure 1. The estimates of the slopes of the colored regression
lines are 𝛿1 = 0.00, 𝛿2 = 1.71, and 𝛿3 = 1.29. They satisfy restric-
tion (6). The estimated price levels are

𝑃A = 0.74, 𝑃 B = 0.92, 𝑃 C = 1.09, 𝑃D = 1.35 (7)

Because no price data are missing, they are very similar to those
obtained from the CPD regression listed in (3).

The lower right panel of Figure 1 depicts the NLCPD estimation
for the incomplete data set of Table 1 (the prices of “goods” are
missing in regions A and D). In contrast to the CPD regression,
these data gaps cause hardly any change in the estimated NLCPD
price levels 𝑃A to 𝑃D. They are almost identical to those reported
in (7). In other words, incomplete data no longer lead to estima-
tion bias.

Another major advantage of the NLCPD regression is a better
model fit. In the case of complete data (upper panels of Figure 1),
the sum of squared residuals divided by the degrees of freedom
falls from 0.055 (CPD regression) to 0.004 (NLCPD regression).6
Furthermore, in contrast to the CPD regression, the NLCPD
method provides meaningful estimates of the standard errors of
all estimated parameters (formally shown in Online Appendix
A.4.1). Thus, the statistical significance of the coefficients l̂n𝑃 𝑟,
l̂n𝜋𝑖, and 𝛿𝑖 can be examined. When in the NLCPD regression at
least one coefficient 𝛿𝑖 significantly deviates from one, the CPD
model is misspecified (see Section 4.3 on model specification).

4 | Method

The NLCPD model (4) is a generalization of the linear CPD
model (1). The model function is non-linear in its parame-
ters. Consequently, parameter estimates must be derived by
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a non-linear regression approach. This approach is formally
described in Sections 4.1 and 4.2 and compared to the CPD esti-
mators. In contrast to the previous sections, we now allow for
weighting information in the estimations. Section 4.3 expounds
on the issues of weighting and inference. A short discussion of the
limitations and possible generalizations of the NLCPD method is
presented in Section 4.4.

4.1 | Model Identification

Let  = {𝑟 ∶ 𝑟 = 1, 2, . . . , 𝑅} denote the set of regions. In subna-
tional price comparisons “region” relates to some sort of “dis-
trict”, while in international price level comparisons “region”
means “country”. The set of products included in the price
comparison is denoted by  = {𝑖 ∶ 𝑖 = 1, 2, . . . , 𝑁}. Further-
more, 𝑟 denotes the set of products for which a price is avail-
able in region 𝑟. Analogously, 𝑖 defines the set of regions
in which product 𝑖 is priced. The set’s number of products is
denoted by 𝑅𝑖.

In both the CPD model (1) and the NLCPD model (4), per-
fect multicollinearity would arise. To avoid this problem, one of
the l̂n𝜋𝑗 -values or l̂n𝑃 𝑠-values can be set equal to 0. Alterna-
tively, the normalizations

∑
𝑖∈ l̂n𝜋𝑖 = 0 or

∑
𝑟∈ l̂n𝑃 𝑟 = 0 can

be applied. The l̂n𝑃 𝑟-values reported in (3) and (7) were based on
the latter variant of normalization. Then, one of the values l̂n𝑃 𝑟

is derived as a residual instead of being estimated by the regres-
sion. Any of the l̂n𝑃 𝑟-values can be selected for this purpose. In
the following, we use l̂n𝑃 1, that is,

l̂n𝑃 1 = −
∑

𝑠∈⧵{1}
l̂n𝑃 𝑠 (8)

Above basic heading level, expenditure shares are usually avail-
able. Let 𝑤𝑟

𝑖 denote the expenditure share of product 𝑖 within
region 𝑟. Thus, the average expenditure share of product 𝑖 is

𝑤𝑖 =
1
𝑅

∑
𝑟∈

𝑤𝑟
𝑖 (9)

Note that
∑

𝑖∈ 𝑤𝑖 = 1.7

The CPD model (1) and the NLCPD model (4) had one princi-
ple in common: When no weights are available, the logarithm of
the price level ratio of any pair of regions, 𝑃 𝑟∕𝑃 𝑠, is equal to the
expected value of the logarithm of the Jevons index formula. For
the NLCPD model, this principle resulted in restriction (6). The
same principle can be adapted to weighted variants of the CPD
and NLCPD models. Then, the logarithm of the price level ratio
of any pair of regions should be equal to the expected value of the
logarithm of a weighted Jevons index formula, where the weights
are given by 𝑤𝑖.8 For the NLCPD method, this principle leads to
a generalized version of restriction (6).

To derive this generalized restriction, we transform the weighted
NLCPD model into the following relationship:9

ln 𝑃 𝑟

𝑃 𝑠
= 𝔼

(
1∑

𝑖∈ 𝑤𝑖𝛿𝑖

∑
𝑖∈

𝑤𝑖 ln
𝑝𝑟𝑖
𝑝𝑠𝑖

)
(10)

To turn the term in brackets into the logarithm of a weighted
Jevons index formula (with weights 𝑤𝑖), we need the restriction∑

𝑖∈ 𝑤𝑖𝛿𝑖 = 1.

Accordingly, the NLCPD estimation must be accompanied by the
restriction ∑

𝑖∈

𝑤𝑖𝛿𝑖 = 1 (11)

Substituting in Equations (10) and (11) the weights 𝑤𝑖 by 1∕𝑁 ,
gives Equations (5) and (6). In other words, restriction (6) is
merely a special case of restriction (11).

The previous considerations imply that the weighted estimation
of the NLCPD regression model (4) must be accompanied by
restriction (11). Therefore, one 𝛿𝑖-value is residually computed.
Any 𝛿𝑖-value can be used for this purpose. We choose 𝛿1, that is,

𝛿1 =
1 −

∑
𝑖∈⧵{1} 𝑤𝑖𝛿𝑖

𝑤1
(12)

4.2 | Estimators

The residuals û𝑟
𝑖 of the NLCPD regression model (4) are defined

by û𝑟
𝑖 = ln 𝑝𝑟𝑖 − 𝛿𝑖 l̂n𝑃 𝑟 − l̂n𝜋𝑖. Accordingly, the weighted sum of

squared residuals, 𝑆û𝑟
𝑖 û

𝑟
𝑖
, can be written as

𝑆û𝑟
𝑖 û

𝑟
𝑖
=
∑
𝑟∈

∑
𝑖∈𝑟

𝑤𝑖

(
ln 𝑝𝑟𝑖 − 𝛿𝑖 l̂n𝑃 𝑟 − l̂n𝜋𝑖

)2

=
∑
𝑖∈

∑
𝑟∈𝑖

𝑤𝑖

(
ln 𝑝𝑟𝑖 − 𝛿𝑖 l̂n𝑃 𝑟 − l̂n𝜋𝑖

)2
(13)

where 𝛿1 and l̂n𝑃 1 are defined by normalization (8) and restric-
tion (12). The NLCPD-estimators can be derived by minimizing
𝑆û𝑟

𝑖 û
𝑟
𝑖

with respect to l̂n𝜋𝑖 (𝑖 = 1, . . . , 𝑁), 𝛿𝑖 (𝑖 = 2, . . . , 𝑁), and
l̂n𝑃 𝑟 (𝑟 = 2, . . . , 𝑅). In the following we state and discuss these
estimators (they are derived in Online Appendix A.1). The values
of l̂n𝑃 1 and 𝛿1 are residually derived from Equations (8) and (12).

The NLCPD estimator of the logarithmic general value of product
𝑖, ln𝜋𝑖, is

l̂n𝜋𝑖 =
1
𝑅𝑖

∑
𝑟∈𝑖

(
ln 𝑝𝑟𝑖 − 𝛿𝑖 l̂n𝑃 𝑟

)
(14)

In this NLCPD estimator, each region receives the same weight,
1∕𝑅𝑖, because in the weighted sum (13) the weights 𝑤𝑖 are
uniform across regions. Setting 𝛿𝑖 = 1 for all products 𝑖 ∈ 𝑟,
the NLCPD estimator (14) simplifies to the corresponding CPD
estimator:

l̂n𝜋′
𝑖 =

1
𝑅𝑖

∑
𝑟∈𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝑃 𝑟′

)
(15)

where l̂n𝑃 𝑟′ is the CPD estimator of the regional price lev-
els as defined in Equation (17), below. For a product 𝑖 that is
priced in all regions

(
𝑅𝑖 = 𝑅

)
, both the NLCPD estimator (14)

and the CPD estimator (15) simplify to the CPD formula in
Diewert (2004, p. 7):
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l̂n𝜋𝑖 = l̂n𝜋′
𝑖 =

1
𝑅

∑
𝑟∈

ln 𝑝𝑟𝑖

The NLCPD estimator of the logarithmic price level of region 𝑟,
ln𝑃 𝑟, is

l̂n𝑃 𝑟 =

∑
𝑖∈𝑟

𝑤𝑖𝛿𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
∑

𝑖∈𝑟
𝑤𝑖

(
𝛿𝑖

)2 (16)

The numerator is the covariation (across products) of(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
and the elasticity 𝛿𝑖. The denominator is the

variation (across products) of 𝛿𝑖. The same formula would
be applied in a weighted least squares regression where the
dependent variable

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
is a linear function of the

independent variable 𝛿𝑖. A negative value, l̂n𝑃 𝑟, indicates a
relatively cheap region. It arises when the numerator is negative,
that is, when in region 𝑟 prices, ln 𝑝𝑟𝑖 , below the general value,
l̂n𝜋𝑖, dominate in the sense that they are either more frequent
and/or more often arise for products with a large elasticity, 𝛿𝑖.
In expensive regions

(
l̂n𝑃 𝑟 > 0

)
, prices above the general level

dominate.

Setting 𝛿𝑖 = 1 for all products 𝑖 ∈ 𝑟, the NLCPD estimator (16)
simplifies to the corresponding CPD estimator:

l̂n𝑃 𝑟′ =

∑
𝑖∈𝑟

𝑤𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝜋′

𝑖

)
∑

𝑖∈𝑟
𝑤𝑖

(17)

When in region 𝑟 no data gaps occur, we have
∑

𝑖∈𝑟
𝑤𝑖 = 1 and

the resulting estimator (17) simplifies to the well-known CPD for-
mula (e.g., Rao 2005, p. 577; Rao and Hajargasht 2016, p. 417):

l̂n𝑃 𝑟′ =
∑
𝑖∈𝑟

𝑤𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝜋′

𝑖

)
The parameter 𝛿𝑖 represents the price elasticity of product 𝑖 with
respect to the general price level, ln𝑃 𝑟. The parameter’s estima-
tor is

𝛿𝑖 =

∑
𝑟∈𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
l̂n𝑃 𝑟

∑
𝑟∈𝑖

(
l̂n𝑃 𝑟

)2 (18)

The numerator is the covariation (across regions) of the logarith-
mic regional price levels, l̂n𝑃 𝑟, and

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
. The denomi-

nator is the variation (across regions) of the logarithmic regional
price levels. Therefore, the estimator (18) can be viewed as the
ordinary least square estimator of the slope parameter of a sim-
ple linear model where

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
is regressed on l̂n𝑃 𝑟. The

covariation represented by the numerator is usually positive. The
larger this covariation, the stronger the elasticity of the prices
ln 𝑝𝑟𝑖 with respect to the price levels l̂n𝑃 𝑟. If some product 𝑖 has
a uniform price, then l̂n𝜋𝑖 = ln 𝑝𝑟𝑖 and, therefore, the fraction
becomes 0.

For the derivation of the non-linear least squares formulas (14),
(16), and (18), the expenditure share weights,𝑤𝑖, were used. They
are uniform across regions and add up to unity. This is in line
with the weighting information usually available for subnational

price comparisons. In other contexts, however, one may want
to apply NLCPD estimators with expenditure share weights that
vary across regions (𝑤𝑟

𝑖 instead of 𝑤𝑖) or/and one may want to
apply weights that do not necessarily reflect expenditure shares.
This general case is considered in Online Appendix A.1.10

Below basic heading level, no weighting information exists. Even
in such cases, the products’ elasticities, 𝛿𝑖, may be heterogeneous.
For these cases, the unweighted NLCPD method can be used. Its
estimators can be derived by minimizing the unweighted sum of
squared residuals under restriction (6). The resulting estimators
of ln𝜋𝑖 and 𝛿𝑖 are identical to the weighted NLCPD-estimators
(14) and (18). The l̂n𝑃 𝑟-estimator (16) simplifies to

l̂n𝑃 𝑟 =

∑
𝑖∈𝑟

𝛿𝑖

(
ln 𝑝𝑟𝑖 − l̂n𝜋𝑖

)
∑

𝑖∈𝑟

(
𝛿𝑖

)2

The non-linear least squares formulas (14), (16), and (18) do not
provide explicit solutions for the coefficients l̂n𝜋𝑖, l̂n𝑃 𝑟, and 𝛿𝑖.
Instead, an iterative optimization routine with appropriate start
values is necessary. For l̂n𝜋𝑖 and l̂n𝑃 𝑟, such start values can be
obtained from the CPD method. Their insertion into formula (18)
yields start values for 𝛿𝑖. Further details on this strategy can be
found in Online Appendix B, which also discusses two alternative
strategies along with the applied optimization approach.

4.3 | Weighting, Inference, and Model
Specification

For the weighted least squares approach to yield consistent esti-
mators, Gorajek (2022, 86-87) stresses that the weights should be
explicitly incorporated in the econometric model.11 Accordingly,
the following discussion considers the weights 𝑤𝑖 as part of the
error terms of the CPD and NLCPD models.

The weights 𝑤𝑖 were defined in the previous sections as the
products’ average expenditure shares. For the weighted least
squares approach in Equation (13), this is not necessarily the
most appropriate form of weighting. Generally, the weight of
an observation can represent its economic importance (e.g.,
Diewert 2005, 562-563; Rao 2005, 574-575) and/or it can reflect
the econometric reliability of the observation’s information for
estimating the regional price levels. A natural measure of an
observation’s economic importance is the product’s expendi-
ture share, while the observation’s reliability of information is
inversely related to the variance of the disturbance term 𝑢𝑟𝑖 . Thus,
the economic and the econometric motivation for weighting may
lead to different sets of weights. This complicates the estimation
of standard errors for the CPD and NLCPD methods.

In the NLCPD model (4), the disturbance term, 𝑢𝑟𝑖 , can be
homoskedastic or heteroskedastic. The latter case implies that the
reliability of the observations’ information is not uniform. How-
ever, Clements and Izan (1987) argue that a product’s expendi-
ture share usually is a reasonable approximation to the product’s
reliability of information. More specifically, they assume that the
variance of the disturbance term, 𝑢𝑟𝑖 , is given by 𝜎2∕𝑤𝑖 where 𝜎2

is a constant and
∑

𝑖∈ 𝑤𝑖 = 1. Weighting each observation by
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the square root of the product’s expenditure share,
√
𝑤𝑖, yields

a homoskedastic weighted disturbance term,
√
𝑤𝑖𝑢𝑖. If, at the

same time, product 𝑖’s expenditure share 𝑤𝑖 is considered an
appropriate measure of its economic importance, no contradic-
tion arises between the economic and the econometric motiva-
tion for weighting.

This coincidence simplifies the derivation of the NLCPD estima-
tors’ standard errors. In non-linear regression models, approx-
imations of these standard errors can be computed from the
Jacobian matrix evaluated at final parameter estimates. These
approximations are derived in Online Appendix A.4.1. In Online
Appendix A.4.2 it is shown that the estimates of the CPD estima-
tors’ standard errors are biased.

Clements and Izan (1987) argue that the weight 𝑤𝑖 correctly
addresses product 𝑖’s economic importance and that the weighted
disturbance term

√
𝑤𝑖𝑢

𝑟
𝑖 is homoskedastic because the weight 𝑤𝑖

is negatively related to the variance of the disturbance term 𝑢𝑟𝑖 .
Clements et al. (2006) give two justifications for this negative rela-
tionship. First, statistical offices spend more effort on the collec-
tion of correct prices when the products are of greater relevance
to the budget. Second, by definition, the true price level is closer
to the prices of the products with larger budget shares.

However, this justification is not always backed by empirical evi-
dence (Diewert 1995, p. 20). For example, when all observations
can be considered as equally reliable, the unweighted disturbance
term, 𝑢𝑟𝑖 , is homoskedastic and the weighted disturbance term,√
𝑤𝑖𝑢

𝑟
𝑖 , is heteroskedastic. Rao (2004, 17-18) and Hajargasht and

Rao (2010, S44-S46) describe how this should be accounted for
when, in a CPD regression, the standard errors of the estimated
parameters are to be computed.

The upper left panel of Figure 1 revealed that product-specific
elasticities 𝛿𝑖 result in a heteroskedastic disturbance term. In this
case, the NLCPD regression model is preferable. If its unweighted
disturbance term, 𝑢𝑟𝑖 , is homoskedastic, the weighted disturbance
term,

√
𝑤𝑖𝑢

𝑟
𝑖 , is heteroskedastic and the standard errors of the

estimated parameters must be computed using a formula that
resembles the CPD formula stated in Hajargasht and Rao (2010,
S45). If both, the unweighted disturbance term, 𝑢𝑟𝑖 , and the
weighted disturbance term,

√
𝑤𝑖𝑢

𝑟
𝑖 , are heteroskedastic, an even

more general formula is required (see Online Appendix A.4.1).

Unbiased estimates of the standard errors are a prerequisite for
meaningful 𝑡- and 𝐹 -tests. Since the CPD model is nested in
the NLCPD model, a two-sided 𝐹 -test of the null hypothesis
𝐻0 ∶ 𝛿1 = 𝛿2 = . . . = 𝛿𝑁 = 1 directly indicates whether the CPD
model is misspecified. The examination could be refined by indi-
vidual 𝑡-tests of the null hypotheses 𝐻0 ∶ 𝛿𝑖 = 1 for all 𝑖 ∈  .

4.4 | Limitations and Generalizations

The only drawback of the NLCPD method as compared to
the CPD method is its non-linear specification. As a conse-
quence, iterative estimation procedures are required. When
regional price levels are similar and a product has only very few

observations, the iterative estimation of the product’s elasticity
might not converge. To avoid such problems, one may treat
such a product in the same way it would have been treated in
a CPD regression. That is, instead of estimating the product’s
elasticity, one can impose the restriction 𝛿𝑖 = 1. Recall that the
CPD method imposes this restriction on all products. Further-
more, for products that are known to be sold everywhere at
the same price, one can impose the restriction 𝛿𝑖 = 0. Such a
restricted NLCPD regression would clearly outperform the CPD
regression.

The CPD regression assumes that each price can be explained
by the linear relationship ln 𝑝𝑟𝑖 = ln𝜋𝑖 + ln𝑃 𝑟 + 𝑒𝑟𝑖 , while the
NLCPD method amends the logarithmic price level ln𝑃 𝑟 in
this relationship by the price level elasticity 𝛿𝑖. Is it possible to
make an additional extension of the CPD relationship? More
specifically, can we complement the logarithmic general value
ln𝜋𝑖 by the parameter 𝜇𝑟? This parameter would represent the
elasticity of the price of product 𝑖 in region 𝑟 with respect to
changes of this product’s general value 𝜋𝑖. This elasticity would
be region-specific (just as 𝛿𝑖 is product-specific). Notwithstanding
that the region-specific general value elasticity, 𝜇𝑟, appears less
relevant than the product-specific price level elasticity, 𝛿𝑖, one can
show that the additional inclusion of 𝜇𝑟 would lead to a singular
regressor matrix.

Cuthbert and Cuthbert (1988, p. 55) point out that the price of
some product 𝑖 tends to be negatively related to its degree of rep-
resentativeness in region 𝑟. For the NLCPD model (4) to correctly
capture the impact of representativeness on product prices, it
would be necessary that a product’s degree of representativeness
is correlated with the regional price level, 𝑃 𝑟. However, such a
correlation is quite unlikely. Therefore, the issue of represen-
tativeness requires a separate treatment. Cuthbert and Cuth-
bert (1988) propose to extend the CPD model (1) by 𝑁 dummy
variables, each relating to a different product. The dummy vari-
able of product 𝑖, say, takes on the value 1 only if the observation
relates to product 𝑖 and, at the same time, this product is not
representative in the region to which the observation relates. For
the NLCPD model (4), the same extension is conceivable.

5 | Simulation

Imposing the restriction 𝛿𝑖 = 1 for all products 𝑖 in the NLCPD
model (4) yields the CPD model (1). However, the restriction
is quite unrealistic as the elasticities 𝛿𝑖 can be expected to vary
across basic headings and sometimes even within basic headings.
Hence, the NLCPD method should theoretically provide more
accurate price level estimates than the CPD method. To examine
this hypothesis in a statistical context, we perform a Monte Carlo
simulation, which compares the performances of the CPD and
NLCPD methods. A popular alternative to the CPD method is the
GEKS approach, named after its authors Gini (1924, 1931), Eltetö
and Köves (1964), and Szulc (1964). Therefore, we also include
the GEKS approach in our simulation study.

Section 5.1 provides a few remarks on the GEKS approach. The
simulation setting is described in Section 5.2, while the results are
provided in Section 5.3.
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5.1 | GEKS Approach

The GEKS approach is used in the International Comparison
Program (World Bank 2020) and in various national studies
(surveyed in Majumder and Ray 2020, 105-109; Weinand and
Auer 2020, 416-418). Most commonly, the GEKS approach
derives the ln𝑃 𝑟-estimates from geometric averages of chained
Fisher indices (e.g., Rao and Hajargasht 2016, p. 416). We refer
to this variant as the GEKS index in the rest of the paper. The
GEKS-Törnqvist index uses the Törnqvist index instead of the
Fisher index (e.g., Caves et al. 1982, Selvanathan and Rao 1994).
If no weighting information is available, the GEKS-Jevons index
can be applied (e.g., World Bank 2013, 100-105). It replaces the
Fisher index by the Jevons index.

In the literature, it is well known that the unweighted CPD
method and the GEKS-Jevons index provide identical results
when the data set is complete (e.g., World Bank 2013, p. 108).
Weinand and Auer (2019, 35-37) show that the weighted CPD
method and the GEKS-Törnqvist index coincide for the expen-
diture share weights 𝑤𝑖. Even when data gaps are present, there
is a close relationship between the two methods (Weinand 2022).
Consequently, we suspect that any issue of one approach is likely
to also apply to the other one.

5.2 | Setting

In the simulation, we consider four different scenarios. They dif-
fer with respect to the number and structure of missing observa-
tions and with respect to the variance of the 𝛿𝑖-values. The first of
the four scenarios is the most artificial one, while the fourth sce-
nario is the most realistic one. The other two scenarios allow us to
identify the separate effects of missing observations and varying
𝛿𝑖-values. In all scenarios, we consider 𝑁 = 15 products or basic
headings available in 𝑅 = 20 regions.

Scenario 1: We assume that the price data are complete, that
is, there is exactly one price per product and
region. This gives 𝑁𝑅 = 300 observations. The
true 𝛿𝑖-parameters are 1 for all 𝑁 products. Note
that this corresponds to the CPD model (1).

Scenario 2: We still assume that the price data are complete.
Now, however, the true 𝛿𝑖-parameters are allowed
to differ from 1.

Scenario 3: We assume that every third price is missing. This
gives a total of 200 remaining observations. The
missing prices are chosen completely at random.
All other parameters are the same as in the second
scenario.

Scenario 4: We keep the setting of the third scenario but intro-
duce the missing prices in a systematic manner:
The larger the 𝛿𝑖, the smaller the probability that
prices for product 𝑖 are missing.

For each scenario, we perform the following steps. First, we gen-
erate artificial price data by inserting randomly sampled values of
ln𝑃 𝑟, ln𝜋𝑖, 𝛿𝑖, 𝑤𝑖, and 𝑢𝑟𝑖 into the data generating process defined
in Equation (4). The sampling of these values is described in

Online Appendix C. Second, we order the regions according to
their true price levels ln𝑃 𝑟 and then label the regions by their
rank. In other words, region 𝑟 = 1 always denotes the cheapest
region and region 𝑟 = 20 the most expensive one. Similarly, we
arrange the products according to their 𝛿𝑖-parameter. Thus, prod-
uct 𝑖 = 1 always exhibits the lowest elasticity. Third, we apply the
(weighted) NLCPD method, the (weighted) CPD method, and the
GEKS index to the price data generated during the first step.12

For the starting values of the NLCPD method, we use the CPD
method’s estimates for ln𝑃 𝑟 and ln𝜋𝑖 as starting values. These
values are also used to calculate the starting values of all 𝛿𝑖 using
formula (18).

We repeat these three steps 𝐿 = 2000 times (with iterations
𝑙 = 1, 2, . . . , 𝐿) and obtain for each region, 𝑟, 2000 vectors of
l̂n𝑃 𝑟-values for the NLCPD method, 2000 vectors of l̂n𝑃 𝑟′ -values
for the CPD method, and 2000 vectors of l̂n𝑃 𝑟′′ -values for the
GEKS index. Afterwards, we compare the performance of the
three methods. To this end, we use the NLCPD results of the
𝐿 iterations to compute for each region 𝑟 the absolute value of
the bias, |Bias

(
l̂n𝑃 𝑟

)|, and also the root mean squared error,

RMSE
(

l̂n𝑃 𝑟
)

. Then, we take the average of these numbers
across all regions:

Bias (l̂n𝑃 ) = 1
𝑅

∑
𝑟∈

||||Bias
(

l̂n𝑃 𝑟
)||||

= 1
𝑅

∑
𝑟∈

||||||
1
𝐿

𝐿∑
𝑙=1

(
l̂n𝑃 𝑟

𝑙
− ln𝑃 𝑟

𝑙

)|||||| (19a)

RMSE (l̂n𝑃 ) = 1
𝑅

∑
𝑟∈

RMSE
(

l̂n𝑃 𝑟
)

= 1
𝑅

∑
𝑟∈

√√√√ 1
𝐿

𝐿∑
𝑙=1

(
l̂n𝑃 𝑟

𝑙
− ln𝑃 𝑟

𝑙

)2
(19b)

where l̂n𝑃 𝑟
𝑙

denotes the estimated parameter of region 𝑟’s price
level obtained in iteration 𝑙 by the NLCPD method, while ln𝑃 𝑟

𝑙

is the corresponding true parameter. Following the same strat-
egy, we derive for the CPD method the values of Bias

(
l̂n𝑃 ′

)
and

RMSE
(

l̂n𝑃 ′
)

and for the GEKS index the values of Bias
(

l̂n𝑃 ′′
)

and RMSE
(

l̂n𝑃 ′′
)

.

For Scenarios 1–3, we expect all methods to produce unbiased
estimates for ln𝑃 𝑟. However, when data gaps are introduced in
a systematic manner, as in Scenario 4, ln𝑃 𝑟-estimates of the
CPD method are expected to be biased (see Section 2). The
ln𝑃 𝑟-estimates of the GEKS index are derived from geometric
averages of chained Fisher indices. Since systematic data gaps can
lead to biased Fisher indices, the GEKS index is also susceptible
to bias.

Although the degrees of freedom in the NLCPD method are lower
than in the CPD method, we expect that the NLCPD model’s
higher flexibility results in higher accuracy. Consequently, the
RMSE should be lower for the NLCPD method in all simulation
scenarios. The only exception should be the first scenario where

9 of 16



the true 𝛿𝑖-values are equal to 1, as implicitly assumed in the CPD
method.

5.3 | Discussion of Results

Table 2 shows the simulation results for the mean absolute bias
and the mean RMSE of the ln𝑃 𝑟-estimates.13 Regional price
level estimates seem to be unbiased for all three methods if
price data are complete or if gaps occur completely at ran-
dom (Scenarios 1–3). The mean absolute bias over all regions
is all but zero. However, if data gaps occur systematically (Sce-
nario 4), the ln𝑃 𝑟-estimates of the CPD method are—in absolute
terms—biased by more than 1% and those of the GEKS index by
more than 2% on average. By contrast, the NLCPD method’s esti-
mates are still unbiased.

In general, a lower RMSE indicates higher accuracy. Since
regional price levels are measured on the logarithmic scale, even
small differences in the RMSE significantly impact accuracy. In
Scenarios 2–4, the computed mean RMSE of ln𝑃 𝑟-estimates
is lower for the NLCPD method than for the CPD method
and the GEKS index (see Table 2). If the price data are com-
plete, the difference in the mean RMSE is relatively small. With
missing prices, however, this difference noticeably increases.
In Scenario 1, the RMSE of the NLCPD method is (almost) as

small as that of the CPD method and the GEKS index. In other
words, when the true 𝛿𝑖-values are equal to 1, the efficiency loss
of the NLCPD method is negligible.

The NLCPD method’s better performance is not only valid on
average, but can be observed for each region and each scenario.
This is shown in Figure 2. Its structure is similar to Table 2 but it
depicts the bias and RMSE for each region 𝑟. The regions are listed
on the horizontal axis. They are ordered with respect to their true
price level.

The top row of Figure 2 reveals that in all regions the NLCPD
method, the CPD method, and the GEKS index are unbiased as
long as the data are complete or missing completely at random
(Scenarios 1–3), but that the CPD method and the GEKS index
are biased when the data gaps are systematic (see the red and
green dots in Scenario 4). More specifically, the more a region’s
true price level deviates from the average price level of all regions,
the larger the bias will be. As predicted in Section 2, in the cheap
regions, downward bias arises, while the expensive regions
exhibit upward bias. Consequently, the CPD method overesti-
mates the price level spread between the most expensive region
and the cheapest region. The bias is even more pronounced for
the GEKS index. Recall that in Scenario 4, the number of data
gaps is negatively correlated with the product’s true elasticity,
𝛿𝑖. Switching to a positive correlation, one would observe the

TABLE 2 | Mean absolute bias and mean RMSE of the NLCPD estimates, l̂n𝑃 𝑟, the CPD estimates, l̂n𝑃 𝑟′ , and the GEKS estimates, l̂n𝑃 𝑟′′ .

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Bias RMSE Bias RMSE Bias RMSE Bias RMSE

NLCPD 0.000 0.010 0.000 0.008 0.000 0.011 0.001 0.010
CPD 0.000 0.010 0.000 0.010 0.000 0.020 0.013 0.025
GEKS 0.000 0.010 0.000 0.010 0.000 0.020 0.024 0.033

FIGURE 2 | Bias and RMSE of the NLCPD estimates, l̂n𝑃 𝑟, the CPD estimates, l̂n𝑃 𝑟′ , and the GEKS estimates, l̂n𝑃 𝑟′′ , for the four simulation
scenarios.

10 of 16 Review of Income and Wealth, 2025



opposite effects, that is, cheap regions appear too expensive,
expensive regions appear too cheap and, therefore, the regional
price level spread is underestimated. The NLCPD method avoids
all these problems. In Scenario 4, the blue dots remain close to
the horizontal baseline.

The NLCPD method also outperforms the CPD method and the
GEKS index with respect to the RMSE. This is shown in the bot-
tom row of Figure 2. The blue dots are closer to the baseline than
the red and green dots. As long as the data are complete (Scenario
2), the advantage of the NLCPD method does not depend on a
region’s true price level. However, when data gaps occur (Scenar-
ios 3 and 4), the accuracy problems of the CPD method and the
GEKS index become more pronounced. The u-shape of the red
and green dots implies that the largest inaccuracies arise for the
cheapest and the most expensive regions.

6 | Empirical Application

In the following, we apply the NLCPD method to regional price
levels above the basic heading level, compiled from German offi-
cial consumer price index (CPI) micro data. This is of particu-
lar interest because price level elasticities, 𝛿𝑖, can be expected
to vary between basic headings (e.g., rents vs. manufactured
goods), while the CPD method assumes that these elasticities are
uniform. Therefore, we also compare the results of the NLCPD
method to those we would obtain from the CPD method. In addi-
tion, we report the results of the GEKS index. The estimated price
levels are transformed into a regional price index for Germany.14

6.1 | Price Data and Aggregation Approach

We have the privilege to work with German CPI micro data from
May 2019. These data were provided to us by the Research Data
Center of the Federal Statistical Office and Statistical Offices of

the Länder. In total, the data contain more than 400,000 price
observations for goods, services, and rents, which were collected
in the 401 districts of Germany (henceforth, we speak of regions).
Because the prices of few items are collected in all regions, the
micro price data exhibit gaps.

The observations of the German CPI are classified into 12 divi-
sions (see Table 3) and further into 783 basic headings. This
classification follows the United Nations’ Classification of Indi-
vidual Consumption by Purpose (COICOP). In the German CPI,
the expenditure weights of the basic headings are uniform across
regions.

Due to methodological reasons, 70 basic headings with centrally
collected prices cannot be exploited in a regional analysis.15 They
represent a combined expenditure weight of 13.44%. Thirty-six
other basic headings with a combined weight of 1.45% were too
fragmentary to convey useful information for the subnational
price comparison.16 As can be seen from Table 3, the largest prob-
lems are in division “09: Recreation and culture”, where 2.66 per-
centage points of the 4.75% reported can be attributed solely to
the basic heading of package holidays. By contrast, the divisions
01 to 03 (food, beverages, and clothing) are almost fully covered
in the regional price comparison.

This leaves us with 677 basic headings for which the price infor-
mation can be included in the regional price comparison. For
each of these basic headings, we assume that the spatial price
variation of the items within a basic heading is identical. Thus,
the set of regional price levels of a given basic heading can be
estimated with the CPD method. Since the expenditure weights
of the individual items are not known, a weighted estimation is
not feasible. Principally, we apply the CPD method to each basic
heading (except for rents). Apart from a few improvements, the
data preparation and aggregation have been very similar to the
process documented in Weinand and Auer (2020).

TABLE 3 | Number of basic headings included in the price level estimation (“#BH”) and their expenditure weights in the German CPI (as a per-
centage, base year 2015). Usable and unusable weights add up to 100%.

ID Division #BH

Expenditure weight

Usable Unusable

01 Food and non-alcoholic beverages 172 9.69 0.00
02 Alcoholic beverages, tobacco, and narcotics 18 3.78 0.00
03 Clothing and footwear 62 4.45 0.08
04 Housing, water, electricity, gas, and other fuels 38 29.95 2.52
05 Furnishings, household equipment, and maintenance 93 4.50 0.50
06 Health 31 3.92 0.69
07 Transport 53 11.29 1.62
08 Communication 1 0.05 2.62
09 Recreation and culture 100 6.58 4.75
10 Education 7 0.90 0.00
11 Restaurants and hotels 36 3.60 1.07
12 Miscellaneous goods and services 66 6.39 1.03

677 85.11 14.89
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There are almost 300 basic headings that also contain prices
related to the outlet type “internet and mail-order business”.
These prices are constant across regions. Their combined expen-
diture weight is 2.96%. Furthermore, the prices of 56 other basic
headings (weight 10.18%) are uniform across Germany (e.g.,
cigarettes). We combine all prices that are constant across regions
in two separate price level vectors. Together, they account for
13.14% of the total expenditure weight.

In the German CPI, five basic headings represent rents (weight
19.63%). The rent data are collected by the Federal Statistical
Office. The sample includes the qualitative features of the flats.
Therefore, we do not use a CPD regression, but estimate the
regional rent levels by means of a hedonic regression that takes
into account the individual characteristics of each flat. The details
of this procedure are documented in Weinand and Auer (2020,
423-424, see second aggregation stage). As a result, the five basic
headings are aggregated into one basic heading. However, this
basic heading covers mainly existing tenancies. Therefore, we add
another basic heading featuring the rent levels of new contracts.
These rent levels were provided to us by the Federal Office for
Building and Regional Planning (BBSR) for the second quarter
of 2019.

The prices of fuels collected by the Federal Statistical Office rep-
resent four different basic headings. We replace them with two
basic headings computed from a full sample that was collected by
the German Market Transparency Unit for Fuels in May 2019.17

In total, our compilation procedures yield 618 price level vec-
tors, one for each basic heading. They cover 85.11% of the total
expenditure weight. The remaining 14.89% of total expenditure
weight is proportionally assigned to these 618 basic headings.
This set of weights and price level vectors forms the database for
the NLCPD and CPD methods as well as for the GEKS index.
The weighted NLCPD and CPD estimations are conducted as
described in Section 4. The empirical results not only provide us
with a reliable regional price index for Germany but also allow us
to verify the theoretical predictions made in the previous sections.

6.2 | Discussion of Empirical Results

The NLCPD and CPD methods as well as the GEKS index pro-
vide estimates of the overall logarithmic price levels of the 401
German regions, l̂n𝑃 𝑟, l̂n𝑃 𝑟′ , and l̂n𝑃 𝑟′′ (𝑟 = 1, . . . , 401), respec-
tively. The NLCPD and CPD methods also estimate the basic
headings’ general values, l̂n𝜋𝑖 and l̂n𝜋′

𝑖 (𝑖 = 1, . . . , 618), respec-
tively. Only the NLCPD method additionally provides estimates
of the basic headings’ elasticities, 𝛿𝑖 (𝑖 = 1, . . . , 618).

Except for very few outliers, the NLCPD method’s estimates
𝛿𝑖 appear highly plausible. For the two basic headings with

constant regional price levels, the NLCPD method yields an
estimated elasticity of 𝛿𝑖 = 0. For rents (existing tenancies) and
for new lease rents we get 𝛿𝑖 = 3.23 and 𝛿𝑖 = 4.82, respectively.
On average, the 𝛿𝑖-values of goods are the smallest ones. The
𝛿𝑖-values of rents are among the largest ones, while most of the
𝛿𝑖-values of services take a middle position. The results clearly
confirm that the elasticities vary between the basic headings.
The 𝐹 -test (1% significance level) between the CPD and NLCPD
models rejects the null hypothesis that all price level elasticities
are equal to one. Thus, the implicit working hypothesis of the
CPD method is falsified by our results.

The logarithmic price level estimates of the CPD and NLCPD
methods are found to be highly correlated (Pearson correla-
tion: 0.97).18 The estimated logarithmic price levels obtained
from the NLCPD method, l̂n𝑃 𝑟, range between −0.09 and 0.22,
while those of the CPD method, l̂n𝑃 𝑟′ , exhibit a much larger
spread ranging from −0.17 to 0.31. This empirical finding is per-
fectly in line with the theoretical predictions made in Section 2.
There, it was argued that a negative correlation between a prod-
uct’s number of data gaps and its elasticity 𝛿𝑖 results in an upward
biased estimate of the spread of the estimated regional price lev-
els. In the present case, the Spearman correlation of the number
of data gaps and the NLCPD’s estimates 𝛿𝑖 is−0.13. Consequently,
the CPD method produces biased price level estimates. The bias
inherent in the GEKS index is even more pronounced. The loga-
rithmic price levels, l̂n𝑃 𝑟′′ , range between −0.17 and 0.33.

In order to transform the logarithmic price level estimates into a
regional price index, they are expressed in relation to their respec-
tive population-weighted averages. For the NLCPD method, the
transformation is

𝑃 𝑟 = 100 ⋅ exp
(

l̂n𝑃 𝑟 − ln𝑃Ger
)

where ln𝑃Ger =
∑401

𝑟=1𝑔
𝑟 l̂n𝑃 𝑟 and 𝑔𝑟 is the population share of

region 𝑟. The same transformation is applied to the CPD price
level estimates l̂n𝑃 𝑟′ and the GEKS price level estimates l̂n𝑃 𝑟′′ .
Summary statistics of the resulting price index numbers are
reported in Table 4.

As can be seen from Table 4, the price level of the cheapest
region is 10.8% below the population-weighted average when the
NLCPD method is applied. The most expensive region exceeds
that average by 21.8%. The spread between the most expensive
and the cheapest region is (121.8 − 89.2)∕89.2 = 36.5%. These
numbers are more pronounced for the CPD method, resulting in
a regional price spread of 61.9%. The GEKS index generates an
even larger spread: 64.5%. For all three methods, the unweighted
mean is below the population-weighted mean, indicating that a
region’s price level tends to increase with its population.

TABLE 4 | Price index numbers in relation to their population-weighted average (= 100).

Min. 1st Qu. Median Mean 3rd Qu. Max. Sd.

NLCPD 89.2 94.3 96.9 98.0 100.4 121.8 5.2
CPD 82.2 92.5 95.9 97.5 101.2 133.1 7.6
GEKS 82.0 91.4 95.1 97.1 101.0 134.9 8.3
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The spatial pattern of the price index numbers of the 401 Ger-
man regions is depicted in Figure 3. As expected, the price
level dispersion estimated by the CPD method is much larger
than that estimated by the NLCPD method. The seven biggest
cities in Germany all exhibit price index numbers above the
population-weighted average. The NLCPD method ranks Munich
as the most expensive region. Its price level is 21.8% above
the population-weighted average. The numbers for Stuttgart and
Frankfurt are 14.7%, Hamburg 12.1%, Cologne 9.2%, Dusseldorf
7.1%, and Berlin 5.6%. In the CPD method and the GEKS index,
the same ranking of the seven cities arises.

7 | Concluding Remarks

Spatial price comparisons often suffer from incomplete price
data. To deal with such situations, Summers (1973) introduced
the CPD method. This regression approach provides estimates of
the regional price levels along with their standard errors.

The present paper focused primarily on situations in which data
gaps occur and the spatial price variation of the individual prod-
ucts is different. It was shown that in such situations the CPD
estimates of the standard errors are biased. Even worse, the esti-
mates of the regional price levels are biased, unless the data gaps
are completely at random.

As a solution, this paper introduced the NLCPD method, a
non-linear generalization of the CPD method. To properly
address product-specific spatial price variation, the NLCPD
method adds parameters to the CPD model. The new parame-
ters represent the price level elasticities of the individual prod-
ucts. The estimates of these new parameters indicate whether the
implicit CPD assumption of uniform elasticities would have been
reasonable.

In a simulation, the superiority of the NLCPD method over the
CPD method was shown. Furthermore, the GEKS index per-
formed even worse than the CPD method.

In the theoretical parts as well as in the simulation, it was irrele-
vant whether the spatial price comparison is subnational or inter-
national. Thus, the issues of the CPD method and the GEKS index
are likely to be relevant also in international price comparisons
such as the International Comparison Program.

Finally, in a price level comparison of the 401 German districts,
the practical applicability of the NLCPD method was demon-
strated. In the available data set, the data gaps were negatively
correlated with the products’ price level elasticities. Therefore,
the CPD method and the GEKS index overestimated the spread
in the price levels of the German districts.

The CPD method’s drawbacks in the presence of product-specific
elasticities are of relevance not only for spatial but also for
intertemporal price comparisons. Here, the dummy variables
of the regions in the CPD regression model are replaced with
dummy variables for the time of price collection. Therefore,
this regression is denoted as the Time-Product-Dummy (TPD)
method (e.g., de Haan et al. 2021). The TPD method provides
estimates of the price level change over time. While the prices of

some products decline or remain constant over time, other prices
increase, and some products exhibit seasonal patterns in their
price movements. Thus, it is unlikely that the variation of prices
over time is uniform across products. Consequently, the TPD
method has the same statistical issues as the CPD method. By
contrast, the non-linear TPD (NLTPD) method estimates for each
individual product the elasticity of its prices with respect to the
general price level. High elasticities indicate inflation-sensitive
products. Ongoing research is examining the NLTPD method in
this intertemporal context (Auer and Weinand 2024).
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Endnotes
1 The derivation of Equation (2) is described in Footnote 9.
2 When expenditure shares or other indicators of the products’ impor-

tance are available, it is recommended that weighted least squares be
used instead (e.g., Clements and Izan 1981, 745-746; Selvanathan and
Rao 1992, 338-339; Diewert 2005, 562-563; Rao 2005, 574-575; Hajar-
gasht and Rao 2010, p. S39).

3 Dividing the price levels in expression (3) by 0.74 renormalizes them
such that the price levels of regions B, C, and D are measured relative
to region A’s price level 𝑃A = 1. Of course, the price level ratios (e.g.,
𝑃 B∕𝑃 C) would not be affected by such a renormalization.

4 We deliberately speak of “price level elasticity” instead of “price elas-
ticity” because the name of an elasticity usually relates to the variable
that causes the change in the other variable. In our context, a change
in the regional price level causes a change in the product price.

5 The derivation of Equation (5) is described in Footnote 9. The CPD
model (1) implicitly assumes that all 𝛿𝑖-values are equal to one. Then,
Equation (5) simplifies to Equation (2).

6 When all 𝛿𝑖-values are close to 1, the NLCPD method “waists” informa-
tion for estimating these parameters. Then, the sum of squared resid-
uals divided by the degrees of freedom may be larger for the NLCPD
method than for the CPD method.

7 The weights, 𝑤𝑖, are “democratic” in the sense that regions with large
total expenditures are not more influential than regions with small
total expenditures.

8 If only two regions are involved (𝑅 = 2) in the weighted NLCPD price
level comparison, the weights 𝑤𝑖 are defined as 𝑤𝑖 = (𝑤𝑟

𝑖 +𝑤𝑠
𝑖 )∕2.

Then, the weighted Jevons index becomes the Törnqvist index (Diew-
ert 1995, 11-12; 2005, 564-565). If instead of an arithmetic mean of the
expenditure shares 𝑤𝑟

𝑖 and 𝑤𝑠
𝑖 , a geometric mean were used, the index

formula would turn into the Walsh-Vartia index. With a logarithmic
mean, the Sato-Vartia index would result.

9 The parameters ln𝑃 𝑟, ln𝜋𝑖, and 𝛿𝑖 in Equation (4) are unknown con-
stants. Furthermore, the model assumes that 𝔼(𝑢𝑟𝑖 ) = 0. Thus, to derive
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Equation (10), we take expectations on both sides of Equation (4) and
multiply by 𝑤𝑖. Next, we solve for 𝛿𝑖 ln𝑃 𝑟 and sum over all products in
 . We factor out ln𝑃 𝑟 and divide by

∑
𝑖∈ 𝑤𝑖𝛿𝑖. Afterwards, we derive

the same equation for region 𝑠. Subtracting the latter equation from the
former, yields Equation (10). Equations (2) and (5) are special cases of
Equation (10). Replacing in Equation (10) the weights 𝑤𝑖 by 1∕𝑁 gives
Equation (5). The additional assumption 𝛿𝑖 = 1 leads to Equation (2).

10 To express restriction (11) in terms of region-specific expenditure
weights, 𝑤𝑟

𝑖 , one merely has to substitute 𝑤𝑖 with the right-hand side
of Equation (9).

11 In the words of Gorajek (2022, p. 86), “ . . . the expenditure shares in
the weights are endogenous; they are functions of prices and thus the
error terms in the price equation.” We agree with this statement but
add that, in practice, the expenditure shares and, thus, their underlying
prices often refer to an earlier period than the one under consideration.

12 Conducting the simulation without expenditure share weights,𝑤𝑖, and
applying the unweighted NLCPD and CPD methods as well as the
GEKS-Jevons index does not change any of the results presented in the
next section.

13 In Online Appendix C, mean absolute bias and mean RMSE are also
reported for the estimates of ln𝜋𝑖 and 𝛿𝑖, respectively.

14 The price index numbers for the German districts are available in the
online supplemental material.

15 For example, prices of package holidays are collected from a big sam-
ple (e.g., Egner 2019, p. 97). However, this sample of prices is already
aggregated by the Federal Statistical Office into a single index number
in the micro data set.

16 For example, the priced items of the basic heading “gloves” were not
identical and, therefore, not comparable.

17 The data were downloaded from https://creativecommons.
tankerkoenig.de/ where historical fuel prices are provided on a
daily basis.

18 This correlation is 0.96 for the ln𝜋𝑖-estimates of the two methods. For
the CPD method, the ln𝜋𝑖-estimates range from −1.33 to 0.64, while
this range is −1.33 to 0.90 for the NLCPD method.
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