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Abstract
We consider linear models with scalar responses and covariates from a separable
Hilbert space. The aim is to detect change points in the error distribution, based on
sequential residual empirical distribution functions. Expansions for those estimated
functions are more challenging in models with infinite-dimensional covariates than
in regression models with scalar or vector-valued covariates due to a slower rate
of convergence of the parameter estimators. Yet the suggested change point test is
asymptotically distribution-free and consistent for one-change point alternatives. In
the latter case we also show consistency of a change point estimator.

Keywords Change-points · Functional data analysis · Regularized function
estimators · Regression · Residual processes

Mathematics Subject Classification Primary 62R10; Secondary 62G10 · 62G30

1 Introduction

We consider a functional linear model Y = α + 〈X , β〉 + ε with scalar response Y
and covariates X from a separable Hilbert space, e.g. L2([0, 1]). Structural changes
in the distribution can appear, even when the parameters α and β do not change.
For this reason we focus on detecting changes in the error distribution. If the errors
were observable one could use the classical test (and change point estimators) based
on the difference of the sequential empirical distribution functions of the first �nt�
and the last n − �nt� error terms from a sample of n observations, see Csörgö et al.
(1997), Picard (1985), Carlstein (1988), Dümbgen (1991), Hariz et al. (2005) and
Hariz et al. (2007). In a regression model those tests have to be based on estimated
residuals ε̂ = Y − α̂ − 〈X , β̂〉. Similar tests have been considered by Bai (1994) in
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the context of ARMA-models, by Koul (1996) in the context of nonlinear time series,
by Ling (1998) for nonstationary autoregressive models, and by Neumeyer and Van
Keilegom (2009) and Selk and Neumeyer (2013) for nonparametric independent and
time series regression models. Typically the asymptotic distribution is derived using
asymptotic expansions of residual-based empirical distribution functions. For models
with functional covariates those expansions can be problematic because inner products
〈X , β̂ − β〉 appear and those can have a slow rate of convergence [see Cardot et al.
(2007), Shang and Cheng (2015), Yeon et al. (2023)]. However, we show that under
very simple non-restrictive assumptions those terms cancel for the suggested change
point test statistic and thus the asymptotic distribution is the same as based on true
(unobserved) errors.

Change point testing and estimation for functional data, and for the parameter in
functional linear models have been considered in the literature, but not for the error
distribution. Tests for changes in the functional mean and in the parameter function of
autoregressive models are considered in chapters 6 and 14 in Horváth and Kokoszka
(2012). Berkes et al. (2009) propose a CUSUM testing procedure to detect a change in
the mean of functional observations. They apply projections on principal components
of the data to estimate the mean. Aue et al. (2009) extend this result and introduce an
estimator for the change point in this model and derive its limit distribution. Aston and
Kirch (2012) consider the same type of model with epidemic changes and dependent
data. Aue et al. (2018) consider how to detect and date structural breaks in the mean
of functional observations without the application of dimension reduction techniques
(as functional principal component analysis). Aue et al. (2014) propose a monitoring
procedure to detect structural changes in functional linear models with functional
response, allowing for dependence in the data, including functional autoregressive
processes. They test for a change in the regression operator, which is the analogue to
our β, based on functional principal component analysis. A linear regression model
with scalar response is considered in Horváth et al. (2024) who propose a tests for
the detection of multiple change points in the regression parameter. The regressors in
their model can be functional and can include lagged values of the response.

The paper is organized as follows. In Sect. 2 we define the test statistic and present
model assumptions to obtain the asymptotically distribution-free hypothesis test. In
Sect. 3 we discuss the assumptions on the parameter estimators and some examples.
In Sect. 4 consistency of the test as well as of a change point estimator is considered
in the context of one change point. Finite sample properties are shown in Sect. 5.
Section6 concludes the paper, in particular with an outlook on goodness-of-fit testing.
The proofs are given in the appendix.

2 Model, test statistic andmain result under the null

LetH be a separable Hilbert space with inner product 〈·, ·〉, corresponding norm ‖ · ‖
and Borel-sigma field. Let (Xi ,Yi ), i = 1, . . . , n, be an independent sample of (H ×
R)-valued random variables defined on the same probability space with probability
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measure P. The data are modeled as functional linear model

Yi = α + 〈Xi , β〉 + εi , i = 1, . . . , n,

with scalar response Yi andH-valued covariate Xi , andwith parameters α ∈ R, βinH .
The covariates X1, . . . , Xn are assumed to be iid with E‖Xi‖ < ∞, and the errors
ε1, . . . , εn are independent, centered, and independent of the covariates. Our aim is
to test for change-points in the error distribution. In this section we consider the test
statistic under the null hypothesis, where the errors are identically distributed.

Let α̂ and β̂ denote estimators for the parameters α ∈ R and β ∈ H. We build
residuals ε̂i = Yi − α̂ − 〈Xi , β̂〉, i = 1 . . . , n. The test statistic

Tn = sup
t∈[0,1]

sup
z∈R

|Ĝn(t, z)|

based on the process

Ĝn(t, z) = �nt� (n − �nt�)
n3/2

(
F̂�nt�(z) − F̃�nt�(z)

)
,

compares for each k = 1, . . . , n − 1 the empirical distribution functions

F̂k(z) = 1

k

k∑
i=1

I {ε̂i ≤ z}, F̃k(z) = 1

n − k

n∑
i=k+1

I {ε̂i ≤ z}

of the first k and last n − k residuals, respectively. Note that one can write

Ĝn(t, z) = �nt�
n1/2

(
F̂�nt�(z) − F̂n(z)

)
.

For the asymptotic distribution of the test statistic under the null hypothesis we
assume the following conditions. Let P denote the distribution of (X1, ε1).

(a.1) |α̂ − α| = oP(1), ‖β̂ − β‖ = oP(1)
(a.2) Let ε1, . . . , εn be independent and identically distributed with cdf F that is

Hölder-continuous of order γ ∈ (0, 1] with Hölder-constant c.
(a.3) P

(
β̂ − β ∈ B)→ 1 as n → ∞ for a class B ⊂ H such that the function class

F = {(x, e) �→ I {e ≤ v + 〈x, b〉} | v ∈ R, b ∈ B}

is P-Donsker.

Remark 2.1 The assumptions are verymild and in particular less restrictive than typical
assumptions for asymptotic distribution of residual-based empirical processes, even
for finite-dimensional covariates. In assumption (a.1) only consistency is needed, no
rates of convergence. Typically in the literature about residual-based procedures a
bounded error density is assumed, see e.g. Akritas and Van Keilegom (2001). Then
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(a.2) is fulfilled for γ = 1, but (a.2) is less restrictive in the cases γ ∈ (0, 1). Suitable
conditions for the general assumption (a.3) are discussed in Sect. 3. One possibility
for H = L2([0, 1]) is to assume smoothness of β which is a typical assumption. If
γ ∈ ( 12 , 1] in assumption (a.2), and β is in a Sobolev-space with third derivatives,

(a.2) holds for the estimator β̂ from Yuan and Cai (2010). This estimator can also be
applied for smaller γ in (a.2) if higher smoothness of β is assumed.

Define the process Gn as Ĝn , but based on the true errors instead of residuals, i.e.

Gn(t, z) = �nt�
n1/2

(
F�nt�(z) − Fn(z)

)

with

F�nt�(z) = 1

�nt�
�nt�∑
i=1

I {εi ≤ z}. (2.1)

Further let G be a completely tucked Brownian sheet, i.e. a centered Gaussian process
on [0, 1]2 with covariance structure

Cov(G(s, u),G(t, v)) = (s ∧ t − st)(u ∧ v − uv).

Theorem 2.2 Under the assumptions (a.1)–(a.3),

sup
t∈[0,1]

sup
z∈R

|Ĝn(t, z) − Gn(t, z)| = oP(1), (2.2)

and thus the process (Ĝn(t, z))t∈[0,1],z∈R converges weakly to (G(t, F(z)))t∈[0,1],z∈R.

The proof of (2.2) in the theorem is given in the appendix. Theweak convergence ofGn

is a classical result, see Bickel andWichura (1971), Shorack andWellner (1986). With
the continuous mapping theorem one obtains the asymptotic distribution of the test
statistic Tn under the null hypothesis of no change-point, which is the distribution of
T = supt,u∈[0,1] |G(t, u)| because F is continuous. The test statistic is asymptotically
distribution-free with the same limit distribution as for corresponding changepoint
tests based on iid observations (not residuals). Let ᾱ ∈ (0, 1) and q be the (1 − ᾱ)-
quantile of T . Then the test that rejects the null hypothesis if Tn > q has asymptotic
level ᾱ. Consistency is considered in Sect. 4.

Remark 2.3 The choice of Tn as a Kolmogorov–Smirnov type test statistic is not
mandatory. In principle, any continuous functional of the process Ĝn can be con-
sidered. The most common ones, besides Tn , are of Cramér-von–Mises type, e. g.
Tn,2 = supt∈[0,1]

∫
R

|Ĝn(t, z)|2dF(z) or Tn,3 = ∫ 1
0

∫
R

|Ĝn(t, z)|2dF(z)dt . The
asymptotic distribution of these test statistics under the null hypothesis also follows
from Theorem 2.2 and with

∫

R

|Ĝn(t, z)|2dF(z) →
∫

R

|G(t, F(z))|2dF(z) =
∫ 1

0
|G(t, x)|2dx,
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and thus these test statistics are asymptotically distribution-free as well. However,
Tn,2 and Tn,3 contain the unknown quantity F and must therefore be modified in
order to be applied. This can be done by replacing the integral with the sample mean:
T̃n,2 = supt∈[0,1] 1

n

∑n
i=1 |Ĝn(t, ε̂i )|2 and T̃n,3 = ∫ 10 1

n

∑n
i=1 |Ĝn(t, ε̂i )|2dt .

3 Discussion of assumptions and examples

To show validity of the Donsker-class assumption (a.3) there are sufficient conditions
on covering numbers or bracketing numbers. We discuss some specific conditions on
the class B, examples for Hilbert spacesH, and estimators for the parameter function
β that fulfill the conditions.

3.1 VC-class condition

Assumption (a.3) can be derived from a VC-function class condition formulated as
follows. Assume that P

(
β̂ − β ∈ B)→ 1 as n → ∞ for a class B ⊂ H such that the

class of maps

{H → R, x �→ 〈x, b〉 + v | b ∈ B, v ∈ R} (3.1)

is a VC-subgraph class. By definition then

{{(x, e) ∈ H × R | e ≤ 〈x, b〉 + v} | b ∈ B, v ∈ R}

is a VC-class of sets. The classF from (a.3) is the class of the corresponding indicator
functions and (a.3) is fulfilled by Theorems 8.19 and 9.2 in Kosorok (2008).

Example 3.1 We consider the Hilbert space H = L2([0, 1]) with inner product
〈g, h〉 = ∫ 10 g(t)h(t) dt and norm ‖g‖ = (

∫ 1
0 g2(t) dt)1/2. For the parameter function

β we assume sparsity as in Lee and Park (2012). Let (φ j ) j∈N be a basis of H and
assume β = ∑

j∈J β jφ j for some finite, but unknown index set J . Lee and Park

(2012) consider the estimator β̂ =∑k
j=1 β̂ jφ j with

(β̂1, . . . , β̂k) = arg min
b1,...,bk∈R

⎛
⎝ 1

n

n∑
i=1

(
Yi − Yn −

k∑
j=1

b j 〈Xi − Xn, φ j 〉
)2 +

k∑
j=1

ŵ j |b j |
⎞
⎠
2

,

where k is a chosen dimension-cut-off, ŵ j are suitable weights based on initial esti-
mators, and Yn = 1

n

∑n
i=1 Yi , Xn = 1

n

∑n
i=1 Xi . Further, α̂ = Y n − 〈β̂, Xn〉. Under

suitable assumptions, in particular E‖X‖2 < ∞, and k is larger than the largest index
in J , Lee and Park (2012) show in their Theorem 2 that P(β̂ j = 0 for j /∈ J ) → 1 for
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n → ∞. Thus we can set

B =
⎧⎨
⎩
∑
j∈J

b jφ j

∣∣∣ b j ∈ R∀ j ∈ J

⎫⎬
⎭

and obtain P(β̂ − β ∈ B) → 1 for n → ∞. Further, the class of maps in (3.1), i.e.

⎧
⎨
⎩H → R, x �→

∑
j∈J

b j 〈x, φ j 〉 + v

∣∣∣ b j ∈ R∀ j ∈ J , v ∈ R

⎫
⎬
⎭

is a finite dimensional vector space and thus a VC-class, see Lemma 2.6.15 in van
der Vaart and Wellner (1996). Then as discussed above validity of (a.3) follows. Fur-
thermore, from Theorem 2 in Lee and Park (2012) it also follows that our assumption
(a.1) is fulfilled, and thus under assumption (a.2) the assertion of Theorem 2.2 holds.

3.2 Bracketing number condition

In this subsection we assume that H is a separable Hilbert space of real-valued func-
tions (or vectors with real components) and the inner product is increasing in the sense
that from h ≤ g (pointwise for functions; componentwise for vectors) it follows that
〈h, x〉 ≤ 〈g, x〉 for all x ∈ H with x ≥ 0. Then assumption (a.3) can be replaced by
the condition in the next lemma.

Lemma 3.2 Assume (a.1), (a.2) and P
(
β̂ − β ∈ B) → 1 as n → ∞ for a function

class B ⊂ H such that the bracketing number fulfills log N[ ](B, ε, ‖ ·‖) ≤ K/ε1/k for
some k > 1/γ . Here γ is the Hölder-order from assumption (a.2). Then assumption
(a.3) holds.

The proof is given in the appendix.

Example 3.3 We consider the Hilbert space H = L2([0, 1]) with inner product
〈g, h〉 = ∫ 1

0 g(t)h(t) dt and norm ‖g‖ = (
∫ 1
0 g2(t) dt)1/2. We assume β ∈

Wm
2 ([0, 1]) for some m > 2 and the Sobolev-space

Wm
2 ([0, 1]) = {b : [0, 1] → R | b( j) is absolutely continuous for j = 0, . . . ,m − 1,

and ‖b(m)‖ < ∞},

where b(0) = b, and b( j) denotes the j-th derivative of b, j ≥ 1. We consider the
regularized estimators in Yuan and Cai (2010), i.e.

(
α̂, β̂

) = arg min
a∈R,b∈Wm

2 ([0,1])

{
1

n

n∑
i=1

(
Yi − (a + 〈Xi , b〉

))2 + λn
∥∥b(m)

∥∥2
}
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for a suitable positive sequence λn converging to zero. Convergence rates of β̂ and
its derivatives can be found in Corollaries 10 and 11 in Yuan and Cai (2010). Under
suitable assumptions one obtains

∥∥β̂( j) − β( j)
∥∥ = oP(1) for j = 0, 1, 2, and thus

P(β̂ − β ∈ B) → 1 for the function class

B = {b ∈ W2
2

([0, 1]) : ‖b‖ + ‖b(2)‖ ≤ 1
}
.

By Corollary 4.3.38 in Giné and Nickl (2021) and Lemma 9.21 in Kosorok (2008) the
class B fulfills the bracketing number condition in Lemma 3.2 for k = 2. Thus the
assumptions (a.1)–(a.3) are fulfilled if F isHölder-continuous of orderγ ∈ ( 12 , 1]. Less
restrictive assumptions on F , i.e. γ ≤ 1

2 , require for this concept higher smoothness
of β.

4 Fixed one-change point alternative: consistency of the test and
change point estimator

In this section we consider fixed alternatives with one change point at index k∗
n =

�nϑ∗� with ϑ∗ ∈ (0, 1). We write the functional linear model as in Sect. 2 under the
following assumption.

(a.2)’ Assume ε1, . . . , εk∗
n
are iid with cdf F1, and εk∗

n+1, . . . , εn are iid with cdf
F2 �= F1. Let F1 and F2 be Hölder-continuous of order γ1, γ2 ∈ (0, 1] with
Hölder-constant c1, c2, respectively.

Let further P1 denote the distribution of (X1, ε1) (before the change) and P2 denote
the distribution of (Xn, εn) (after the change). For the empirical distribution functions
F̂k and F̃k as in Sect. 2 we obtain the following asymptotic result.

Lemma 4.1 Under assumptions (a.1) and (a.2)’ and if (a.3) is valid for P = P1 and
P = P2, it holds that

sup
z∈R

|F̂k∗
n
(z) − F1(z)| = oP(1) and sup

z∈R
|F̃k∗

n
(z) − F2(z)| = oP(1).

The proof is given in the appendix. Now note that

Tn
n1/2

≥ k∗
n(n − k∗

n)

n2
sup
z∈R

∣∣∣F̂k∗
n
(z) − F̃k∗

n
(z)
∣∣∣ ,

and by Lemma 4.1 the right hand side converges in probability to the positive constant

ϑ∗(1 − ϑ∗) sup
z∈R

|F1(z) − F2(z)| .

From this it follows that tests that reject the null hypothesis of no change-point if
Tn > q for some q > 0 (see Sect. 2) are consistent.
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The estimator for the change point ϑ∗ is based on the process Ĝn and is defined as

ϑ̂n = min
{
t : sup

z∈R
|Ĝn(t, z)| = sup

t ′∈[0,1]
sup
z∈R

|Ĝn(t
′, z)|

}
.

Lemma 4.2 Under assumptions (a.1), (a.2)’ and if (a.3) holds for P = P1 and P = P2,
the change point estimator is consistent, i. e.

|ϑ̂n − ϑ∗| = oP(1).

The proof is given in the appendix.

5 Finite sample properties

We consider the Hilbert space H = L2([0, 1]). For i = 1, . . . , n the functional
observations Xi (t), t ∈ [0, 1], are generated according to

Xi (t) = 1

2

5∑
l=1

(
Bi,l sin

(
t(5 − Bi,l)2π

)− Mi,l − E[Bi,l sin
(
(5 − Bi,l)2π

)− Mi,l ]
)
,

where Bi,l ∼ U[0, 5] and Mi,l ∼ U[0, 2π ] for l = 1, . . . , 5, i = 1, . . . , n. U stands
for the (continuous) uniform distribution. The functional linear model is built as

Yi =
∫

Xi (t)γ3, 13
(t)dt + εi ,

where the coefficient function γa,b(t) = ba/�(a)ta−1e−bt I {t > 0} is the density of
the Gamma distribution. Furthermore, we assume that each Xi is observed on a dense,
equidistant grid of 300 evaluation points.

The parameter estimators are the regularized estimators described in Example 3.3
with m = 3 and a data-driven tuning parameter λn chosen by generalized cross-
validation as described in Yuan and Cai (2010).

We model three similar types of change points, such that

ε1, . . . , ε� n
2 � ∼ N (0, 1), ε� n

2 �+1, . . . , εn ∼ F̃1,δ (respectively F̃2,δ, F̃3,δ),

where F̃1,δ , F̃2,δ , F̃3,δ have in common that the mean remains zero and the variance
remains one. In particular

• F̃1,δ is the distribution function of a random variable that isN (−2δ, 1) distributed
with probability 0.5 and N (2δ, 1) distributed with probability 0.5.

• F̃2,δ is the distribution function of a random variable that is N (0, (1 − δ)2) dis-
tributed with probability 0.5 and N (0, 2 − (1 − δ)2) distributed with probability
0.5.
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Fig. 1 Rejection probabilities with a change in the error distribution from N (0, 1) to F̃1,δ (left), to F̃2,δ
(middle) and to F̃3,δ (right). The dotted line marks the 5% level

• F̃3,δ is the “skew-normal”-distribution

SN

⎛
⎝−
√√√√ 2π

(
(10δ)2 + (10δ)4

)

π2 + (2π2 − 2π
) · (10δ)2 + (π2 − 2π

) · (10δ)4
,

√
π
(
1 + (10δ)2

)

π + (π − 2) · (10δ)2
, 10δ

⎞
⎠ .

A random variable Z is distributed SN (λ1, λ2, λ3) if Z = λ1 + λ2 · Z0 and Z0
has the density 2φ(x)
(λ3x), where φ is the density and 
 is the distribution
function of the standard normal distribution [see Azzalini and Capitanio (1999)].

The expectedvalueof such a randomvariable Z is calculated asλ1+λ2

√
2
π
· λ3√

1+λ3
2

and the variance as λ2
2
(
1 − 2

π
· λ3

2

1+λ3
2

)
. This results in the parameters for the

distribution after the change point, such that the the expected value of the errors
remains 0 and the variance remains 1.

So δ = 0 represents the null hypothesis of no change point, and the difference between
the distribution before and after the change point grows with δ in all three cases.

In Fig. 1 the rejection probabilities for 500 repetitions, level 5% [critical value
tabled in Picard (1985)] and sample sizes n ∈ {100, 200} are shown. In all three cases
it can be seen that the level is approximatedwell and the power increases for increasing
parameter δ aswell as for increasing sample size n. In the case of a change in skewness,
the increase with δ is not as pronounced as in the other two cases. This is because the
distributions for different values of δ become more similar as δ increases. The same
types of changes (from N (0, 1) to F̃1,δ and to F̃2,δ) were also simulated in Selk and
Neumeyer (2013) for a real-valued nonparametric autoregression model with lag 1.
The results are comparable with an even higher power in the paper at hand.

In addition, we model a more distinct change, that is

ε1, . . . , ε� n
2 � ∼ N (0, 0.52), ε� n

2 �+1, . . . , εn ∼ N (0, (0.5 + δ)2).

As expected for a change in the variance the power grows faster with increasing δ

than in the other three cases, especially for small δ. The results are shown in Fig. 2.
This kind of change point was also simulated in Neumeyer and Van Keilegom (2009)
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33 Page 10 of 17 N. Neumeyer, L. Selk

Fig. 2 Rejection probabilities
with a change in the error
distribution from N (0, 0.52) to
N (0, (0.5 + δ)2). The dotted
line marks the 5% level
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for a nonparametric regression model with one-dimensional regressor. The results are
similar.

Next to the Kolmogorov–Smirnov type test with test statistic Tn , we also applied
Cramér-von-Mises type tests with test statistics Tn,2 and Tn,3. The results are very
similar and are not presented here for the sake of brevity.

6 Concluding remarks

Todetect structural changes in functional linearmodels,we considered the classical test
by Bickel and Wichura (1971) for a change in the distribution, but based on estimated
errors.We gave simple assumptions under which the asymptotic distribution of the test
statistic under the null is the same as for iid data. The test as well as the corresponding
change point estimators are consistent in one-change point models. The same test can
be considered in more complex regression models with functional covariates, e.g. a
quadratic model as in Boente and Parada (2023) or nonparametric models, see Ferraty
and Vieu (2006). We only consider independent data, but testing for change points in
the innovation distribution in times series models that include functional covariates
is a very interesting topic. However, the proofs for asymptotic distributions will be
more complicated. In future work we are planning to consider a time series model
Yt = m(Xt ) + εt , where Yt and εt are real-valued and Xt contains a functional part,
but can also contain past values Yt−1, . . . ,Yt−p. We presume that the proofs as in Selk
and Neumeyer (2013) (for nonparametric autoregression time series with independent
errors) and of Sect. 4.2 in Neumeyer and Omelka (2025) (for linear models with finite-
dimensional covariates and beta-mixing errors) can be combined with the proofs in
the paper at hand to consider change-point tests for the innovation distribution under
the assumption that (Xt , εt ), t ∈ Z, is a strictly stationary beta-mixing time series.
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In the proof of Theorem2.2wederive an expansion for the sequential residual-based
empirical distribution function,

F̂�nt�(z) = F�nt�(z) + Rn(z) + oP(n−1/2)

uniformly in t ∈ [0, 1], z ∈ R, where F�nt� is defined in (2.1), and the term

Rn(z) = EX [F(z + α̂ − α + 〈X , β̂ − β〉)] − F(z)

appears from estimating the parameters [see (A.1) in the appendix]. Here EX denotes
the expectationwith respect to X , which has the same distribution as Xi , but is indepen-
dent of α̂, β̂. For change-point testing the remainder term Rn cancels when considering
the test statistic Tn . For other testing procedures, e. g. goodness-of-fit tests for the
error distribution, this typically nonnegligible term is of relevance, see Koul (2002)
and Neumeyer et al. (2006) for linear models and Akritas and Van Keilegom (2001)
for nonparametric regression. Under more restrictive assumptions one can further
expand the remainder term as follows. Assume that F is twice differentiable with
density F ′ = f and bounded f ′ and further |α̂ − α| + ‖β̂ − β‖ = oP(n−1/4), and
E‖X‖2 < ∞. Then by Taylor’s expansion one obtains

F̂�nt�(z) = F�nt�(z) + f (z)
(
α̂ − α + 〈E[X ], β̂ − β〉

)
+ oP(n−1/2).

In models with intercept α, where the estimator for α is chosen as α̂ = Yn − 〈Xn, β̂〉
the remainder term is

Rn(z) = f (z)
(
εn + 〈Xn − E[X ], β̂ − β〉

)
+ oP(n−1/2).

(Here, Xn = n−1∑n
i=1 Xi and analogous for Y n and εn .) By Cauchy–Schwarz-

inequality and the central limit theorem for n1/2(Xn − E[X ]) one obtains that the
dominating part of the remainder term is f (z)εn . This is the same as in homoscedastic
finite-dimensional linear models with intercept and nonparametric regression models.
Note that α and β are identifiable if the kernel of the covariance operator of the
covariate X is {0}. But often functional linear models without intercept are considered
in the literature. So in our model assume α = α̂ = 0. Then the remainder term is

Rn(z) = f (z)〈E[X ], β̂ − β〉 + oP(n−1/2),

and 〈x, β̂ −β〉 for fixed x ∈ H typically has a slower rate than n−1/2, see Cardot et al.
(2007), Shang and Cheng (2015), Yeon et al. (2023). If one assumes E[X ] = 0, then
this problematic term cancels [similar as e.g. for centered ARMA-processes, see Bai
(1994)], but otherwise f (z)〈E[X ], β̂ − β〉 will dominate the asymptotic distribution
of the process (F̂�nt�(z) − F(z))t∈[0,1],z∈R. For our change-point test this dominating
term vanishes. The same holds when estimating the conditional copula of the response
in multidimensional functional linear models, given the covariate, see Theorem 5 in
Neumeyer and Omelka (2025). But e.g. for goodness-of-fit testing the remainder term
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33 Page 12 of 17 N. Neumeyer, L. Selk

would be of relevance. We consider goodness-of-fit tests for the error distribution
in the different cases explained above in future work. With the derived expansion
for residual empirical distribution functions one can also develop other tests for the
error distribution as e.g. for symmetry, or equality of error distributions in different
models, see e.g. Pierce and Kopecky (1979), Neumeyer et al. (2005), Pardo Fernandez
(2007), among many others, in the cases of regression models with finite-dimensional
covariates.

A Proofs

For ease of notation let (X ,Y , ε) be some generic random variable with the same
distribution as (X1, Y1, ε1) under the null, but independent from the sample (Xi ,Yi ),
i = 1, . . . , n. Let P denote the distribution of (X , ε). Further let EX denote the
expectationwith respect to X , which in the context below is the conditional expectation
given (Xi ,Yi ), i = 1, . . . , n.

The proofs of Theorem 2.2 and Lemma 3.2 are similar as a part of the proof of
Theorem 5 in Neumeyer and Omelka (2025), but under less restrictive assumptions.

A.1 Proof of Theorem 2.2

From the Donsker-property in assumption (a.3) and Corollary 9.31 in Kosorok (2008)
it follows that

{(x, e) �→ I {e ≤ z + a + 〈x, b〉} − I {e ≤ z} | z ∈ R, a ∈ R, b ∈ B}

is also P-Donsker. FromTheorem2.12.1 in van derVaart andWellner (1996) it follows
that also the centered sequential process

Hn(t, z, a, b) = 1√
n

�nt�∑
i=1

(
I {εi ≤ z + a + 〈Xi , b〉}

−I {εi ≤ z} − E[F(z + a + 〈X , b〉] + F(z)
)
,

indexed in t ∈ [0, 1], z ∈ R, a ∈ R, b ∈ B, converges weakly to a centered Gaussian
process. Thus the process Hn is asymptotically stochastic equicontinuous with respect
to the semi-metric

ρ((t1, z1, a1, b1), (t2, z2, a2, b2)) = |t1 − t2| + Var(I {ε ≤ z1 + a1 + 〈X , b1〉}
−I {ε ≤ z2 + a2 + 〈X , b2〉}),

see van der Vaart and Wellner (1996), problem 2, p. 93, and Sect 2.12. In particular
we need

ρ((t, z, a, b), (t, z, 0, 0)) = Var (I {ε ≤ z + a + 〈X , b〉} − I {ε ≤ z})
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≤ |E [F(z + a + 〈X , b〉) − F(z)]|
≤ cE

[|a + 〈X , b〉|γ ] ≤ c
(|a| + ‖b‖E‖X‖)γ

byCauchy–Schwarz and Jensen’s inequality. Now setting a = α̂−α and b = β̂−β we
obtain convergence to zero in probability by assumption (a.1). Thus from asymptotic
stochastic equicontinuity of the process Hn , and Hn(t, z, 0, 0) = 0 we obtain that

sup
t∈[0,1],z∈R

|Hn(t, z, α̂ − α, β̂ − β)| = oP(1),

which means that

�nt�√
n
F̂�nt�(z) = �nt�√

n
F�nt�(z) + �nt�√

n

(
EX [F(z + α̂ − α + 〈X , β̂ − β〉)] − F(z)

)

+oP(1) (A.1)

uniformly in t ∈ [0, 1], z ∈ R, where F�nt� was defined in (2.1) and is based on the
true errors. In particular for t = 1 we have

F̂n(z) = Fn(z) +
(
EX [F(z + α̂ − α + 〈X , β̂ − β〉)] − F(z)

)
+ oP(n−1/2)

uniformly in z ∈ R. From those expansions we obtain

Ĝn(t, z) = �nt�√
n
F̂�nt�(z) − �nt�√

n
F̂n(z)

= �nt�√
n
F�nt�(z) − �nt�√

n
Fn(z) + oP(1)

= Gn(t, z) + oP(1) (A.2)

uniformly in t ∈ [0, 1], z ∈ R. ��

A.2 Proof of Lemma 3.2

Let ε > 0 and let

[
bLi , bUi

]
, i = 1, . . . , N (ε) = O

(
exp(ε−2/(kγ ))

)

be brackets for B of ‖ · ‖-length ε2/γ [see assumption (a.3)]. Now for b ∈ [bLi , bUi ]
the indicator function I {e ≤ v + 〈x, b〉} is contained in the bracket

[
I {e ≤ v + 〈x I {x ≥ 0}, bLi 〉 + 〈x I {x < 0}, bUi 〉}, I {e ≤ v + 〈x I {x ≥ 0}, bUi 〉
+〈x I {x < 0}, bLi 〉}]
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for each v ∈ R. Further the above bracket has L2(P)-length

(
E
[
I {ε ≤ v + 〈X I {X ≥ 0}, bUi 〉 + 〈X I {X < 0}, bLi 〉}

−I {ε ≤ v + 〈X I {X ≥ 0}, bLi 〉 + 〈X I {X < 0}, bUi 〉}]2
)1/2

≤
(
E
[
F
(
v + 〈X , bUi 〉)− F

(
v + 〈X , bLi 〉)]

)1/2

≤
(
E
[
c|〈X , bUi − bLi 〉|γ ]

)1/2

≤ c1/2(E‖X‖)γ /2‖bUi − bLi ‖γ /2

= O(ε),

by assumption (a.2), Cauchy–Schwarz and Jensen’s inequality. Similar to the proof
of Lemma 1 in Akritas and Van Keilegom (2001) one obtains an upper bound
O(ε−2 exp(ε−2/k)) for the L2(P)-bracketing number of the class F . Thus F is P-
Donsker by the bracketing integral condition in Theorem 19.5 of van der Vaart (1998).

��

A.3 Proof of Lemma 4.1

To show the assertion for F̂k∗
n
we use the arguments as in the proof of Theorem 2.2

for the process Hn , but based on the iid sample (X1,Y1), . . . , (Xk∗
n
,Yk∗

n
) before the

change. Then as in the proof of Theorem 2.2 asymptotic stochastic equicontinuity of
the process Hk∗

n
holds and thus

sup
t∈[0,1],z∈R

|Hk∗
n
(t, z, α̂ − α, β̂ − β)| = oP(1).

Here, α̂ and β̂ depend on the whole sample and assumption (a.1) is used. Thus as in
Eq. (A.1) we obtain

F̂k∗
n
(z) = Fk∗

n
(z) + EX1 [F1(z + α̂ − α + 〈X1, β̂ − β〉)] − F1(z) + oP

( 1√
n

)

uniformly in z ∈ R. By the classical Glivenko–Cantelli result Fk∗
n
converges uniformly

almost surely to F1. By assumptions (a.1), (a.2)’ and E‖X1‖ < ∞ the remainder
term is oP(1) and the assertion for F̂k∗

n
follows. The assertion for F̃k∗

n
can be shown

analogously. ��
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A.4 Proof of Lemma 4.2

First note that

ϑ̂n ∈ arg max
t∈[0,1]

(
sup
z∈R

|Ĝn(t, z)|
)

= arg max
t∈[0,1]

(
sup
z∈R

∣∣∣∣∣
Ĝn(t, z)

n1/2

∣∣∣∣∣
)

.

Further it holds

Ĝn(t, z)

n1/2
= �nt� (n − �nt�)

n2

( 1

�nt�
�nt�∑
i=1

I {ε̂i ≤ z} − 1

n − �nt�
n∑

i=�nt�+1

I {ε̂i ≤ z}
)

= �nt�(n − �nt�)
n2

(
1

�nt�
�nt�∧�nϑ∗�∑

i=1

I {ε̂i ≤ z} + I {t > ϑ∗} 1

�nt�
�nt�∑

i=�nϑ∗�+1

I {ε̂i ≤ z}

− 1

n − �nt�
n∑

i=�nt�∨�nϑ∗�+1

I {ε̂i ≤ z} − I {t < ϑ∗} 1

n − �nt�
�nϑ∗�∑

i=�nt�+1

I {ε̂i ≤ z}
)

= �nt� (n − �nt�)
n2

( �nt� ∧ �nϑ∗�
�nt� F1(z) + I {t > ϑ∗} �nt� − �nϑ∗�

�nt� F2(z)

− n − �nt� ∨ �nϑ∗�
n − �nt� F2(z) − I {t < ϑ∗} �nϑ∗� − �nt�

n − �nt� F1(z)

)
+ oP(1),

since we have

sup
t∈[0,ϑ∗]

sup
z∈R

�nt�
n

∣∣∣∣
1

�nt�
�nt�∑
i=1

I {ε̂i ≤ z} − F1(z)

∣∣∣∣

≤ sup
t∈[0,ϑ∗]

sup
z∈R

�nt�
�nϑ∗�

∣∣∣∣
1

�nt�
�nt�∑
i=1

I {ε̂i ≤ z} − 1

�nϑ∗�
�nϑ∗�∑
i=1

I {ε̂i ≤ z}
∣∣∣∣

︸ ︷︷ ︸
= 1

�nϑ∗�1/2 G̃�nϑ∗�(t,z)

(A.3)

+ �nt�
�nϑ∗�

∣∣∣∣
1

�nϑ∗�
�nϑ∗�∑
i=1

I {ε̂i ≤ z} − F1(z)

∣∣∣∣ (A.4)

= oP(1).

Here we have used Lemma 4.1 for the term (A.4). Further G̃�nϑ∗� is defined as Ĝn

based on the iid-sample (X1,Y1), . . . , (Xk∗
n
,Yk∗

n
), but where the residuals are built

with α̂, β̂ based on the whole sample. With the same argument as in the proof of
Theorem 2.2 it holds that

G̃�nϑ∗�(t, z) = G�nϑ∗�(t, z) + oP(1)

uniformly in t ∈ [0, 1], z ∈ R, see (A.2), and thus the term (A.3) is oP(1).
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Analogously one can show that supt∈[ϑ∗,1] supz∈R
n−�nt�

n

∣∣ 1
n−�nt�

∑n
i=�nt�+1 I {ε̂i ≤

z} − F2(z)
∣∣ = oP(1).

Thus, it holds uniformly in t ∈ [0, 1]

Ĝn(t, z)

n1/2
= I {t > ϑ∗}

(�nϑ∗�(n − �nt�)
n2

(F1(z) − F2(z))
)

+ I {t ≤ ϑ∗}
(�nt�(n − �nϑ∗�)

n2
(F1(z) − F2(z))

)
+ oP(1)

=
(
I {t > ϑ∗}ϑ∗(1 − t) + I {t ≤ ϑ∗}t(1 − ϑ∗)

)
(F1(z) − F2(z)) + oP(1).

The assertion then follows by Theorem 2.12 in Kosorok (2008) as ϑ∗ is well-separated
maximum of t �→ I {t > ϑ∗}ϑ∗(1 − t) + I {t ≤ ϑ∗}t(1 − ϑ∗). ��
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