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Abstract
The vision of a deep learning-empowered non-destructive evaluation technique aligns perfectly with the goal of zero-defect
manufacturing, enabling manufacturers to detect and repair defects actively. However, the dearth of data in manufacturing is
one of the biggest obstacles to realizing an intelligent defect detection system. This work presents a framework for bridging
the data gap in manufacturing using the potential of synthetic datasets generated using the finite element method-based
digital twin. The non-destructive technique under consideration is pulse infrared thermography. A large number of synthetic
thermographic measurements were generated using 2D axisymmetric transient thermal simulations. The representativeness
of synthetic data was thoroughly investigated at various steps of the framework, and the image segmentation model was
trained separately on experimental and synthetic datasets. The study results reveal that when carefully rendered, synthetic
datasets represent the experimental data well. When evaluated on real-world experimental samples, the segmentation model
pre-trained on synthetic datasets generalizes well to the experimental samples. Furthermore, another advantage of synthetic
datasets is the ease of labelling a large amount of data. Finally, the robustness assessment of the model was done on two new
datasets: one where the complete experimental setup was changed, and the other was an open-source infrared thermography
dataset

Keywords Flaw detection · Deep learning · Data augmentation · Pre-training · Zero defect manufacturing · Inline inspection ·
Synthetic data · Finite element method · Image segmentation · Infrared thermography · Non-destructive testing
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Introduction

Under the paradigm of Industry 4.0, digital and automated
manufacturing has gained traction recently. However, as
one might anticipate, the current increment in competitive
manufacturing capabilities also leads to increased waste of
materials, time and energy in the form of defective sam-
ples. Quality management for sustainable manufacturing on
both financial and environmental fronts is the need of the
hour. In a recent publication, V. Azamfirei et al. (2023)
presented an adapted framework for zero-defect manufac-
turing (ZDM), which focuses on waste minimization using
data-driven technologies for enhancing the quality of man-
ufacturing by getting things right in the first try. Although
a varying degree of automation is found in the current pro-
duction lines, this largely depends on the product and the
processes involved in manufacturing. Tasks such as handling
the materials and product fabrication are mainly automated;
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however, human involvement still plays an essential role
in assessing the production line’s reproducibility, reliabil-
ity and quality via quality tests at regular intervals based
on the results from the suitable inspection tool. The draw-
back of manual inspection is its dependency on humans;
the interpretation of the defects is subjective to the skill and
understanding of the person; long production hours also bring
in the factor of human fatigue affecting the interpretation
capabilities of the human, the constant need for human super-
vision around the clock and lack of complete automation
makes the process slow and expensive. A more sustainable
and reliable approach would be to work towards automated
inline checks for traceability and immediate rectification at
the source. The automated inline inspection approach does
not aim to replace the human expert responsible for the
inspection. Instead, it aims to increase efficiency and bring a
standardized approach to the process, thus striking a balance
between automation and human involvement for optimizing
the production line.

Non-destructive testing (NDT) (Shull 2002) helps eval-
uate the sample quality and integrity in a non-destructive
manner such that its functionality for further applications is
not altered or affected. Thus, NDT techniques perfectly align
with the vision of ZDM. This work uses pulse thermography
(PT) as a NDT. However, the spatiotemporal data obtained
from the PT measurement needs post-processing to maxi-
mize the sub-surface defect information spread across the
dataset, and the understanding of obtained post-processing
results relies on expert interpretation.

The quest to automate defect detection in PTmeasurement
has led researchers to tap into the potential of machine learn-
ing (ML) algorithms, be it a conventional fully connected
neural network (FCN) or current state-of-the-art deep learn-
ing (DL) algorithm such as convolutional neural networks
(CNN). Thus, on the one hand, applying defect detection
models for automated defect detection has brought advance-
ments in the field; on the other hand, it has introduced a new
severe problem of dependency on data for training the mod-
els. Thus, the method has only been used in research labs so
far.

The model’s performance depends on the quantity and
quality of the data. However, there is always a dearth of
data in the manufacturing. The reason behind the lack of
data is manifold. To begin with, consider a case when a
respectable amount of data is available from the production
line; the problem, in this case, will be an imbalanced dataset
as a majority of the inspected samples will be non-defective,
and few of them will be defective, thus making the model
ineffective in learning from the dataset. Purposely manu-
facturing large amounts of samples with defects alone will
be inefficient and unsustainable in terms of precious man-
ufacturing time, money and material, also not to forget the
difficulty in surgically inducing defects encompassing awide

variety of scenarios. The requirement for special scientific
equipment further aggravates the problem; for example,well-
controllable and durable excitation sources such as lasers,
high-energy flash lamps and state-of-the-art infrared cam-
eras for PT experiments. Even if all the mentioned hurdles
are passed, labelling such a specialized dataset is challeng-
ing.

As the governing equations for the underlying physical
process of heat transfer in PT experiments are well under-
stood, it is possible to create synthetic data using the finite
element method (FEM) (Strang and Fix 2008). The use of
simulated data not necessarily from FEM can be seen in
works related to automated defect detection using PT and
neural networks (NNs) (Trétout et al. 1995; Maldague et
al. 1998; Saintey and Almond 1997; Manduchi et al. 1997;
Darabi andMaldague 2002; Benitez et al. 2006; Benitez et al.
2007; Saeed et al. 2018; Duan et al. 2019) or state-of-the-art
DL algorithms (Fang and Maldague 2020; Fang et al. 2021).
However, there is scope for considerable improvement in
understanding the generation of large amounts of synthetic
data, their application to bridge the data gap and their role in
automated defect detection using PT and DL algorithms.

To the best of our knowledge, there is a gap in the
literature that provides and systematically examines the com-
plete end-to-end framework (from the generation of large
amounts of synthetic data using FEM to the inference of pre-
trained model on third-party PT dataset) of automated defect
detection using image segmentation models pre-trained on
synthetic data. This research aims to fill this gap in the knowl-
edge. The main contribution of this work is as follows:

1. Generation of hundreds of synthetic PT measurement
data using FEM, based on the previously introduced
(Pareek et al. 2022) concept of defect signatures, thus
addressing and providing a solution for computation time
for transient thermal simulation.

2. Evaluating the representativeness of the synthetic PT
measurements by comparing it with the experiments and
improving the representativeness of the synthetic PT
measurements by a novel noise addition method, thus,
illustrating the legitimacy of the synthetic dataset.

3. Training and validating an image segmentation model
(U-Net) on principal component thermography images
of synthetic PT measurements with and without added
noise and comparing their inference on the experimental
dataset, thus highlighting the advantage of training the
model on a representative and non-redundant synthetic
dataset.

4. Evaluating the usability of the models trained and vali-
dated on the synthetic datasets (with and without noise)
when the same samples are tested on a completely dif-
ferent experimental setup and a third-party open-source
dataset with a different material and experimental setup,
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thus, showcasing the viability of the pre-training the
model on the synthetic datasets.

The paper is divided into five parts. Section “Theory and
literature review” provides the necessary theoretical back-
ground for a better understanding of the methodology and a
detailed literature review of the advancements in automated
defect detection over the years. Section “Methodology”
explains the adopted methodology, i.e. sample preparation
and experimental setup, synthetic data validation, data pre-
processing, the addition of noise, and the image segmentation
algorithm. In Sect. “Segmentation performance on different
datasets: results, discussion and comparison”, the results are
explored and the feasibility of the model is evaluated on new
datasets. The final section discusses the conclusions drawn
and the outlook of the work.

Theory and literature review

Introduction to infrared thermography

Infrared thermography (IRT) is a non-destructive evalua-
tion technique for defect detection based on temperature
and heat flow measurement; it relies on thermal contrast
between the defect and defect-free (sound) regions of the
sample for detecting any possible sub-surface defects in the
sample. Usually, the sample is in thermal equilibrium, i.e.
no thermal contrast exists between the defect and the sound
region. However, the thermal equilibrium can be disturbed
with the help of an external thermal source which induces
thermal waves in the sample for the desired thermal con-
trast for detecting sub-surface defects in the sample. This
approach of actively stimulating the sample with the help of
an external thermal excitation to induce a thermal contrast
is called active thermography (Shepard 1997) and is always
transient in character.

Pulse thermography is one of the most widely used active
thermography approaches for sub-surface defect detection
in samples. In PT, one side of the specimen is subjected to
a short-duration heat impulse from the thermal source; the
thermal source usually consists of single or multiple flash
lamps. The optimal pulse duration ranges from a few ms to
several seconds, depending on the material properties of the
sample and the depth of the sub-surface defects. The result-
ing transient response of the sample to the applied excitation
is recorded with the help of an infrared camera. Due to the
pulse heating of the sample surface, the heat front propagates
into thematerial; as time advances, the surface temperature of
the sample starts decreasing. In an ideal condition (homoge-
neous and defect-free sample), the surface temperature will
uniformly decrease until it reaches the steady state temper-
ature (ambient temperature), leading to no thermal contrasts

on the sample surface. However, in the case of samples with
defects (voids, delamination), the defect region obstructs the
heat flow resulting in higher surface temperatures above the
defect region in contrast to the sound region; the infrared
camera captures this resulting thermal contrast on the sam-
ple surface. Figure1a shows a typical PT setup.

The temperature response of the sample to the heat pulse
can be described using the 1D solution of the Fourier Equa-
tion for a Dirac delta function in a semi-infinite isotropic
solid, which is given as (Carslaw and Jaeger 1986):

T (z, t) = T0 + Q

e
√

π t
exp

(−z2

4αt

)
, (1)

where Q is the energy absorbed by the surface [J/m2]; T0
is the initial temperature [K]; α is the thermal diffusivity
[m2/s], and e is the thermal effusivity (the square root of the
product of density, heat capacity and thermal conductivity).
At the surface of the specimen (z = 0), Eq. (1) can be written
as

T (0, t) = T0 + Q

e
√

π t
. (2)

Thus, ideally, the temperature evolution of the surface
temperature to the applied impulse excitation is inversely pro-
portional to the square root of time (T ∝ t−1/2). However,
in the case of a sub-surface defect, the surface tempera-
ture above the defect area will diverge from this expected
behaviour depending on the material’s thermal properties,
which gives the required thermal contrast detected for identi-
fying the sub-surface defects. The acquired temperature data
is a 3D matrix (Fig. 1b). The i-j dimensions of the matrix are
the spatial temperature values of the surface at a given time,
and the k-dimension corresponds to the temporal evolution
of the surface pixels.

Like in many other data acquisition systems, noise is also
an essential concern in a PT setup. The excitation source
introduces noise in the form of uneven heating of the sample,
i.e. the sample is not uniformly heated, leading to unwanted
temperature gradients on the sample’s surface, which leads
to uncertainty in defect detection due to falsely induced ther-
mal contrasts. Furthermore, the resulting radiation for the
applied excitation from the sample is attenuated via absorp-
tion or scatteringwhile travelling through the atmosphere, the
camera window or the optics (Vollmer andMöllmann 2017).
The components of the infrared camera further degrade the
thermal signal by adding electromagnetic and electronic
noise. Thus, each element shown in Fig. 1a degrades the
thermal signature from the sample under investigation. The
weak and noisy signal from the infrared camera needs to be
processed to reduce noise, enhance the image contrast and
retrieve valuable information from the measurement. Also,
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Fig. 1 a Principle and
experimental arrangement of
pulse thermography: 1. Heat
source, 2. specimen with
sub-surface defects, 3. IR
camera, 4. signal and image
processing system, b recorded
image sequence from an IR
camera as a 3D matrix of shape
NY × NX × NT

a typical PT measurement consists of tens or hundreds of
infrared images, making it challenging to find the image
(or images) with the most optimum information about the
sample’s sub-surface defects. Post-processing of the PTmea-
surement also helps find images with valuable information
about the sample defects relatively efficiently. Some of the
prominent post-processing techniques for PT measurements
are pulse phase thermography (PPT), thermographic signal
reconstruction (TSR), principal component thermography
(PCT), slope and correlation coefficient. PPT (Maldague
and Marinetti 1996; Ibarra-Castanedo and Maldague 2004;
Ibarra-Castanedo et al. 2004; Castanedo 2005) is a tech-
nique based on the Fourier transforms (FT); here, an FT
is calculated for the temporal evolution of each pixel, and
the resulting amplitude and phase plots provide the sub-
surface defect information of the sample. TSR (Shepard
2001; Shepard et al. 2002, 2003) is based on reconstruct-
ing the measurement data using an Nth order polynomial fit
and taking the first and second-order derivative of fitted data,
the reconstructed images have less noise compared to the raw
measurement data; thus, aiding in defect detection. As shown
in Eq. (2), a defect-free region will have a slope of −0.5 for
ln(�T ) vs ln(t); any deviation from this ideal slope will help
to identify the underlying anomalies in the sample. The devi-
ation in slope can be measured with the help of the square of
the correlation coefficient R2, which quantifies the degree of
linear correlation between the observed and expected values.
Thus, the defect can be detected using two new parame-
ters, slope and R2 (Palumbo and Galietti 2016). PCT (Rajic
2002a; 2002b;Marinetti et al. 2004; Parvataneni 2009; Brun-
ton and Kutz 2019; Kaur et al. 2020; Milovanović et al.
2020) uses the singular value decomposition algorithm; here,
the infrared dataset is decomposed into empirical orthogonal
functions, which help decode underlying defect information
more clearly. Thus, different post-processing techniques are
available, each with advantages and disadvantages, and a
comparison between them is provided in (D’Accardi et al.
2018). The ease of finding the best image with the objective
of their application in deep learning algorithm is provided in
(Pareek et al. 2022).

Application of neural networks for defect detection
in infrared thermography

The application of NNs for defect detection in IRT requires
a holistic approach that focuses on the correct experimental
setup for data acquisition, tailoring the spatiotemporal data
for input to the NNs and the architecture of the NNs.

Preliminary processing of the input data affects the NNs
performance (Trétout et al. 1995; Chulkov et al. 2019).
Initially, the input for NNs was either the temperature evo-
lution of the pixels over time (Prabhu and Winfree 1993)
or pixel-wise thermal contrast curves, i.e. the subtraction of
temperature evolution of the sound region from that of the
defect region. The information associated with the thermal
contrast curves was further enriched by either supplement-
ing the contrast curves with some measurable values from
the contrast curves, for example, maximum contrast value
and the time ofmaximum contrast (Bison et al. 1994; Saintey
and Almond 1997) or in the form of normalized thermal con-
trast curves (Manduchi et al. 1997), thermal running-contrast
curves (Darabi andMaldague 2002). However, the drawback
of using thermal contrast curves is their dependency on the
selection of sound region for the contrast calculation, which
is difficult due to the uneven heating of the samples. The
dependency of thermal contrast curves on the sound region
selection was circumvented by changing the input data to
PPT phase data (Maldague et al. 1998), modified differential
absolute contrast (DAC) (Benitez et al. 2008; Benitez et al.
2006) and TSR coefficients (Benitez et al. 2006; Duan et al.
2019).

In terms of the NNs architecture, many initial studies used
multilayer perceptron (MLP) to automate defect detection
and characterization. The studies showed that the lack of data
is one of themost critical limiting factorswhen it comes to the
training of theNNs, and theNNs fail to generalizewhen there
is a change of material and experimental setup (Trétout et al.
1995; Manduchi et al. 1997; Benitez et al. 2008). The use of
synthetic data was proposed to address the dearth of data, and
thermal models were used to generate synthetic temperature
curves. Furthermore, it was demonstrated that the represen-
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tativeness of the synthetic data to the actual test conditions
plays an essential role in the classification accuracy of the
network (Darabi and Maldague 2002). The application of
modern-day neural network architecture for defect detection
in IRT has been researched intensively by Q. Fang et al.
Considering the time series continuity of the acquired ther-
mal sequence, Q. Fang et al. (2020) quantified defects using
gated recurrent units (GRU).Thenetworkwasonly trainedon
thermal contrast curves from simulated data (FEM). Q. Fang
et al. (2020) evaluated different deep-learning algorithms for
defect detection in infrared thermography. The images were
sampled from the experiments without post-processing for
training different networks. The study concluded that Mask-
RCNN, an instance segmentation approach, was the most
promising. Also, a pixel-based marking is better when com-
pared to the bounding box approach as it extracts non-defect
areas along with defective ones, possibly introducing multi-
ple errors. Addressing the lack of data availability, Q. Fang et
al. (2021) adopted a data augmentation strategy based on syn-
thetic images from FEM. Here, a Mask-RCNN network was
trained on filtered raw IRT images. The network performed
better on the validation data set when trained on synthetic
and experimental images than on experiments alone.

A common theme in the presented research is the lack
of data in manufacturing which hinders the development
of an intelligent defect detection system based on state-of-
the-art deep learning algorithms. Although there were some
efforts towards using synthetic data tomake up for the lack of
data, the actions lacked a concrete approach or a framework
to tackle the problem. For example, in most of the studies
which used simulated data, the training and testing of the
NNs were done on the synthetic datasets alone, thus lack-
ing performance evaluation on actual measurement data; in
a few studies, when the network trained on the synthetic data
was evaluated on the actual measurement dataset, the net-
work failed to detect defects in the new distribution. Also, a
comparative analysis of the representativeness of the gener-
ated synthetic data is lacking. Furthermore, only a handful of
simulations are done, insufficient to bridge the data gap. Like-
wise, the choice of input data to theNN is not consistent, with
each method either having some selection parameters or is
affected by uneven heating; for example, the thermal contrast
curve requires the selection of sound regions whose selection
is affected by uneven heating, modified DAC has its depen-
dency on the selection of time t ′, changes in the temperature
curves due to uneven heating affects the TSR coefficients.
Training the network on raw thermal images sampled at reg-
ular intervals from the raw data set would be inefficient as
the information about the defects would be spread through-
out the dataset, and manually inspecting a large number of
frames from the measurement dataset and annotating them
would be tedious.

This work aims to address these shortcomings by propos-
ing an end-to-end framework to bridge the data gap. Hun-
dreds of synthetic PT measurements are generated using
2D axisymmetric transient thermal simulations, which helps
reduce the simulation’s computation time. As the success of
generated synthetic dataset in bridging the data gap depends
on its fidelity towards the actual measurement data, the rep-
resentativeness of the generated synthetic data is audited in
detail at each step of the proposed framework. A novel noise
addition technique further improves the representativeness
of the synthetic data. The segmentation model is trained on
orthogonal images obtained fromPCT,which helps condense
the important information in the measurement dataset into a
few images. The ability of segmentation models pre-trained
on the synthetic dataset to generalize on actual measure-
ment data is showcased, and the model’s viability is checked
beyond the experimental setup it was trained on and on an
open-source dataset.

Methodology

The proposed development pipeline can be divided into the
following subsections:

1. Sample preparation and experimental setup
2. Validating the FEM against IRT experimental setup
3. Synthetic data generation and data pre-processing
4. Experimental noise approximation and addition to syn-

thetic data
5. Dataset labelling and segregation
6. Training and evaluation of image segmentation model

(U-Net)

This section will explain the mentioned subsections in detail.

Samples and experimental setup

The samples are made up of resin-bonded cellulose laminate
with artificially induced defects in the form of flat bottom
holes (Fig. 2a). The material properties of the sample are
shown in Table 1. The low thermal conductivity, even surface
emissivity and ease ofmachinabilitymake it a suitable choice
for experiments and fundamental research. Flat bottom holes
as defects provide precision and control while artificially
inducing defects of different sizes at different depths. The
sample dimensions are 50mm×50mm×3.9mm. The diam-
eter of the flat bottom hole varies from 1mm to 7mm, and
the depth varies from 0.1mm to 0.5mm. A total of 20 such
samples were manufactured.

The experimental setup (Fig. 2b) consists of an InfraTec
ImageIR 8300® infrared camera with an detector resolution
of 640×512 IR pixels and a thermal resolution of 20mK, two
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Fig. 2 a Rear side of a sample with four defects (Top) along with its
CAD diagram (Bottom), b the experimental setup

Table 1 Material properties of the sample

Thermal conductivity κ 0.3Wm−1 K−1

Density ρ 1350 kg/m3

Specific heat capacity cp 1250 Jkg−1 K−1

flash lamps with a total energy of 2.4kJ synchronised using
the same power source. As the material has low thermal con-
ductivity, thermal changes occur slowly but over an extended
period. Thus, a relatively moderate frame rate of 62.5Hz and
a sufficiently long acquisition period of 16s was chosen. The
acquired thermographic data was flattened to a 2D matrix
(Fig. 3) for optimal post-processing of the acquired measure-
ments; here, the columns represent the flattened image at a
given time t and the rows represent the temperature evolution
of the pixels over time.

Finite element modelling: model creation, boundary
condition estimation and validation

A detailed description of the finite element model creation,
boundary condition extraction and validation of the results
has been provided had been provided by Pareek et al. (2022).
This section provides a brief overview of the key points of
this paper.

In the paper, the authors aim to model a digital twin of
the experimental setup for the samples under consideration.
The sample description is the same as in Sect. “Samples and
experimental setup”. The objective of the digital twin is to
determine how the surface temperature of the sample under
given boundary conditions varies over time, thus, aiding in
generating synthetic PT measurements for a wide variety of
synthetic samples. The paper implements the digital twin
using transient thermal simulations in ANSYS (Ansys 2022)
and PyAnsys (Kaszynski et al. 2021). A Digital twin imple-

mented using transient thermal finite element simulations
helps determine the sample’s cooling behaviour after being
excited by the flash source. The resulting data obtained from
the FEM simulation is similar to that obtained by the experi-
mental setup. In the paper, the FEMsimulation provides 1000
images of the sample top surface temperature as it would be
seen by the IR camera (frame rate of 62.5Hz with an acqui-
sition time of 16s) used in the experimental setup.

For transient thermal analysis, there is discretisation of
both the temporal and the spatial domain, which makes the
simulations resource-intensive in terms of time and computa-
tional requirements. In order to reduce the computation time
and resources, the paper introduces the concept of defect sig-
natures. A defect signature is the characteristic temperature
evolution of a defect of radius rD [mm] at depth zD [mm]
in the sample. The 2D axisymmetric simulations are used to
create defect signatures of different radii at different depths
and surrounding sound (defect-free) regions. Simplifying the
3D simulations of the samples to 2D axisymmetric simula-
tions of the defects reduces the number of nodes in the FEM
model and, thus, improves the computational efficiency.

For a given time t, a 2D PT image can be generated from
a 2D axisymmetric FEM data in five steps; in the first step,
the temperature data of the top surface from the 2D axisym-
metric FE model is extracted, the second step consists of the
creation of a polar mesh centred at the origin, the polar mesh
represents the defect signature data, for the third step an
empty rectangular grid that represents the sample is created,
the number of points in the rectangular grid depends on the
resolution of the IR camera, in the fourth step the polar mesh
(representing the defect) is moved to its cartesian coordinate
on the rectangular grid (representing the sample), the polar
mesh temperature data is interpolated onto the empty rectan-
gular grid, finally in the fifth step rest of the defects are placed
and interpolated onto the rectangular grid. The paper com-
prehensively explains the complete procedure of generating
2D PT images from the 2D axisymmetric simulation.

Achieving promising results from a FEM model requires
a fair estimation of the boundary conditions. Boundary con-
ditions for the FEM model of a PT experiment comprise of
thermal properties of thematerial, parameters describing heat
exchange with the surroundings, and knowledge of the heat
flux imparted from the excitation source to the surface of
the sample. The authors use the material properties from the
data sheet for the sample and temperature-dependentmaterial
properties for the air underneath the flat bottom holes. The
authors estimate the heat flux from the temperature evolution
of the sound region of the sample. The heat flux is obtained by
a non-linear least square fit of the analytical equation defin-
ing the surface temperature for a rectangular pulsed surface
heating of a semi-infinite solid (Jaeger 1953) onto the sound
region.
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Fig. 3 Reshaping the 3D matrix
of shape (NY , NX , NT ) to a 2D
matrix of shape (NY NX , NT ).
The numbers in the images
represent the pixel position

Fig. 4 Generation of a 2D PT image from axisymmetric FEM data: a nodal temperatures along the top surface of the axisymmetric model, b polar
mesh centred at the origin, c rectangular grid representing the sample and d polar mesh interpolated on the rectangular grid (Pareek et al. 2022)

Fig. 5 Schematic representation
of a an axisymmetric FE model
and b the applied boundary
conditions for a defect signature
with defect radius rD [mm] at
depth zD [mm] from the
sample’s top surface where the
heat flux q ′′(t) [W/m2] is
applied, rS [mm] represents the
radius of the axisymmetric
model, and zS [mm] represents
the sample width. Nodal
temperatures are read from the
top surface between the points
T 1(t) and T 2(t) (Pareek et al.
2022)

Finally, the FEM model is validated against the exper-
imental results based on the temperature evolution of the
sound and the defect regions, the thermal contrast, and
the obtained surface temperature distribution of the surface
images. Figure7 and Fig. 8 show a few of the validation
results from the study. The validation results from the paper
are promising for the objective placed by the authors in the

beginning, i.e. to generate the data for the training of an image
segmentation algorithm.

Synthetic data: generation and pre-processing

Based on the FEM model described in the previous Sect.
“Finite element modelling: model creation, boundary con-
dition estimation and validation”, 2D axisymmetric simu-
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Fig. 6 Flowchart explaining the
procedure of development of the
FEM model

Fig. 7 a Experiment and b simulated PT measurement at time t = 8.06 s (Pareek et al. 2022)

lations were done to generate defect signatures. The range
of defect diameters described in Sect. “Samples and exper-
imental setup” was discretized into steps of 0.5mm (1mm,
1.5mm, …, 6.5mm, 7mm) and defect depth into steps of
0.05mm (0.1mm, 0.15mm, …, 0.45mm, 0.5mm). All the
possible combinations of defect signatures were simulated,
i.e. defects with thirteen different diameters at nine varied
depths leading to a total of 117 2D axisymmetric simula-
tions.

The next step is to generate synthetic samples for which
synthetic PT measurements need to be done. Layouts for
synthetic samples are generated with different numbers of

defects. A layout consists of information about the defect,
i.e. the defect of radius rD [mm] at depth zD [mm] has its
centre located at position (x mm, y mm). A synthetic sample
may consist of varying defects (from one to five) placed ran-
domly on the grid. A python script was used to generate the
layouts; the script generates layouts by randomly selecting n
defects (where n = 1, 2, 3, 4, 5) from the 117 generated defect
signatures and placing them randomly on the synthetic sam-
ple at a given coordinate. A total of 517 layouts were created.
Table 2 summarises the synthetic samples with the different
numbers of defects. Later, synthetic PT measurements were
created for the generated synthetic samples using the sam-

123



Journal of Intelligent Manufacturing (2025) 36:1879–1905 1887

Fig. 8 Comparison of temperature curves between experiments (Exp) and simulations (FEM) for a sound region and b defect of diameter 3mm at
a depth of 0.5mm (Pareek et al. 2022)

ple’s layout information and placing the associated defect
signature on the grid as described in Sect. “Finite element
modelling: model creation, boundary condition estimation
and validation”.

Thus, for 517 synthetic samples, there are 517 syntheticPT
measurements. Each PT measurement has 1000 images with
the sample’s top surface temperature information. To find the
needed defect information from the 1000 images of a given
measurement, PCT was performed. The philosophy behind
the PCT can be understood by looking at the PTmeasurement
data set as a space-time dataset, i.e. the measurement images
are the time series (temperature evolution) collected at spa-
tial locations (pixels of the image), consider Fig. 3; here, the
columns represent the temperature value at different spatial
locations, i.e., pixels values of the image at a given time t,
and the rows represent the time series, i.e., temperature evo-
lution of the pixel over time. Even though each time series,
in principle, represents the cooling behaviour of the sam-
ple after external excitation, the cooling behaviour between
the time series may vary, i.e., the cooling curve of a defect
region will be different from that of a sound region, defects
with different aspect ratios will have varying cooling curves.
However, there is some dependency between these different
time series, i.e., they carry some replicated information. PCT
helps to find the relationship in the spatial domain that shares
the same temporal variability by combining them into spatial
patterns sharing the common temporal variability.

PCT is an eigenvector analysis tool that helps decom-
pose the PTmeasurement dataset into natural spatial patterns
or empirical orthogonal functions (EOFs) - functions with
no standard mathematical representation (Martinson 2018)
present in the PT measurement dataset. Each identified EOF
(the spatial patterns) has associated temporal variation,which
shows how the particular EOF change over time; this tem-

poral series is called principal component (PC). The EOF
and its PC are called a mode. This decomposition of the data
matrix into EOFs and the associated PCs is done using singu-
lar value decomposition SVD, which decomposes a matrix
X of shape m × n (m > n) as:

Xmn = UmmSmnVT
nn, (3)

where U, VT are orthogonal and S is a diagonal matrix.

X =
⎡
⎣ | | |
u1 u2 . . . um
| | |

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣

σ1
...

. . . 0

σr
...

. . . 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

− vT1 −
− vT2 −

...

− vTn −

⎤
⎥⎥⎥⎦ . (4)

The columns of U represent the EOFs, and the rows of VT

represent the corresponding PCs and diagonal values of S are
the singular values of the X arranged in descending order.

X = σ1u1vT1 + σ2u2vT2 + · · · + σrurvTr ,

= σ1(mode1) + σ2(mode2) + · · · + σr (moder).
(5)

Thus, the original data matrix X can be reconstructed as the
sum of the r rank one matrices or modes weighted by the
singular values. For the PT measurement, the steps for cal-
culating the PCT are as follows:

1. Wrap the acquired 3D data matrix into a 2D raster-like
matrix (Fig. 3).

2. Discard the cold frames (frames before the trigger of the
flash) as they contain no defect information and flash
frames (frames during the flash region) due to saturation
or non-linear effects during the flash. This step ensures
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Table 2 Synthetic samples
numerics Total number of defect diameters 13 (1mm to 7mm) in steps of 0.5mm

Total number of defect depths 9 (0.1mm to 0.5mm) in steps of 0.05mm

Total number of defect signatures 117

Number of defects with one defect 117

Number of defects with two defect 100

Number of defects with three defect 100

Number of defects with four defect 100

Number of defects with five defect 100

Total number of synthetic samples 517

that only the cooling curves are considered for the com-
putation.

3. Normalise the images by the first image (after discarding
frames in step 2) to reduce the effects of the possible
uneven heating patterns.

4. Subtract the mean image, i.e. mean column, from other
columns.

5. Take the SVD of the matrix. In this work, SVDwas com-
puted using NumPy (Harris et al. 2020).

Figure9 shows the first four EOFs and their corresponding
PCs multiplied by their singular values for an experimental
sample with three defects of varying diameters at varying
depths. For each time step, EOFi is multiplied by PCi for
that time step to give the contribution of modei for that time
step. The obtained EOFs and PCs can correlate to the sam-
ple’s physical cooling phenomena after external excitation.
For example, consider EOF1 and the corresponding PC1.
The EOF1 has negative values, with values for the defects
being lower than the sound region. Also, shallower defects
have higher values compared to deeper defects. PC1 resem-
bles an inverted cooling curve with zero crossing at around t
= 4s. Thus,mode1 gives information about themean temper-
ature decay of the sample, i.e., the temperature of the sample
being above the mean initially and then decaying to temper-
atures below the mean. Also, mode1 is the dominant mode
or the significant contributor to the sum in the Eq. (5). In the
case of higher EOFs, the sound region has values near zero
compared to the defects; thus, higher modes focus more on
the defect’s characteristics. ThePCs are similar to the thermal
contrast. Also, it can be seen that the PC4 has higher noise
compared to its predecessors. Thus, higher modes describe
noise in the dataset.

The percentage of variance retained by the first k singular
values for a rank r matrix is given as:

Variance retained =
∑k

i=1 σi∑r
i=1 σi

× 100. (6)

Figure10 shows the first 20 singular values and the per-
centage of variance they retained. As can be seen, significant

variance is retained by the first four singular values. After
the fourth singular value, the increment in the percentage
of variance retained by the inclusion of successive singular
values is incremental as the singular values become smaller
and smaller. Thus, each PT measurement was reduced from
1000 images to a set of the first four EOF images (each EOF
reshaped into a 2D array), whichwere used to train the U-Net
convolutional neural network.

When extending the proposed methodology of using PCT
to extract the most relevant information from the original PT
dataset in actual application, a prior variance study, as shown
in Fig. 10, helps determine the relevant number of EOFs for
model predictions. An elbow point cutoff (in this example
at EOF 4), after which the singular values tend to level out,
helps identify EOFs that explain the most variance. Thus, the
final defect detection results are on these selected EOFs, and
the corresponding predictions are displayed to the end users.

Noise: analysis, extraction and addition

The synthetic PT measurement data generated using tran-
sient thermal simulations lacks noise which is present in the
IRT experimental setup.Adding awell-approximated experi-
mental noise to the synthetic PTmeasurements helps capture
more nuances of the experimental measurements and, thus,
helps create a robust synthetic measurement dataset which
is a better representation of the experimental dataset and can
be used as a substitute for the training of the neural network.

In the case of the IRT setup, the noise source can be briefly
categorised into two parts: high-frequency noise in the cool-
ing curve due to the nonlinearity of the camera or background
radiation and noise due to the uneven heating of the sample.
Thus, the aim is to construct a noise matrix which approxi-
mates the experimental noise profile for each pixel at all the
time steps and add the resulting noise matrix to the synthetic
PT measurement. For this purpose, the IRT measurement
of a defect-free sample is examined and analysed for noise
extraction. A pristine defect-free sample helps understand
the uneven heating in the experimental setup, as the surface
temperature field is not disturbed due to a sub-surface defect.
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Fig. 9 From left to right, the first four PCs (top row) and their corresponding EOFs (bottom row) for a sample with three defects. PCs are weighted
by their respective singular values, i.e. σ1vT1 , σ2v

T
2 , σ3v

T
3 and σ4vT4

Fig. 10 a Singular values and b percentage variance retained

It also helps understand high-frequency noise in the recorded
surface cooling curves.

The high-frequency noise from the measurement dataset
can be extracted using the polynomial fitting similar to that
in TSR (Shepard 2001; Shepard et al. 2002, 2003). TSR is
based on the assumption of one-dimensional heat flow. As
a result, the one-dimensional heat diffusion equation (Eq.
(2)) can be used to accurately describe the response of a

defect-free sample to the pulse excitation. Equation (2) can
be rewritten as:

�T = Q

e
√

π t
, (7)

where�T = T−T0. Taking natural logarithms on both sides
helps separate the input energy Q and the thermal diffusivity
e from the time dependency t .
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ln(�T ) = ln

(
Q

e

)
− 1

2
ln(π t). (8)

Thus, from Eq. (8), it can be seen that a defect-free pixel
should follow a straight line in a logarithmic scale with a
slope of−0.5. This logarithmic time dependency of the pixel
can be approximated with the help of a low-order polynomial
function as:

ln(�T ) =
N∑

n=0

an[ln(t)]n, (9)

where an is the nth coefficient of the polynomial fit to the
measurement data. Typically, the order of the polynomial fit
is between 5 and 7, as higher-order polynomial fit leads to
overfitting and adding noise in themeasurement data. Finally,
the denoised pixel can be reconstructed from the polynomial
fit as:

�T = exp

(
N∑

n=0

an[ln(t)]n
)

. (10)

Now, the associated noise can be extracted for the corre-
sponding pixel by subtracting the polynomial fit of each pixel
from the measurement thermographic data of the pixel.

Figure11b shows the extracted high-frequency noise from
a representative pixel. It was observed that the extracted
high-frequency noise for each pixel had a zero mean (μ),
and the standard deviation (σ ) varied between 0.025 and
0.065. Furthermore, a histogram analysis of the noise shows
the underlying normal distribution (Fig. 11c). Thus, the
high-frequency noise discussed can be modelled as random
samples drawn from a normal distribution of μ = 0 and σ

within a specific range (0.025 and 0.065).
LetX represent the flattened 2Dmeasurement data matrix

of shape NY NX × NT , then the denoised measurement data
matrix (polynomial fit matrix) XF is given as

XF =

⎡
⎢⎢⎢⎣

− f (X[1, :]) −
− f (X[2, :]) −

...

− f (X[NYNX, :]) −

⎤
⎥⎥⎥⎦ , (11)

where X[i, :] is the i th row of matrix X, and f (X[i, :])
represents the denoised temperature response using the poly-
nomial fit function applied to that row (Eq. (10)). Finally, the
associated Gaussian noise matrix NGN is calculated as:

NGN = X − XF. (12)

The reconstructed denoised measurement matrixXF from
Eq. (11) can be further used for studying the uneven heating

of the sample. Ideally, each pixel should have an identical
cooling curve for a defect-free sample, provided the heat-
ing was uniform. However, in reality, this is not the case.
Depending on the lamp’s position in the experimental setup,
the sample has non-uniform heating, i.e. different pixels have
different cooling curves. In the given experimental setup, the
effect of uneven heating is more prominent on the edges of
the sample due to the flash position, leading to relatively
higher temperatures for the edge pixels when compared to
pixels away from the edge (Fig. 12a).

In order to approximately quantify the effect of uneven
heating, the mean cooling curve (the mean temporal pro-
file) is subtracted from the temperature evolution of each
pixel. As shown in Fig. 12b, the mean cooling curve is a
good approximation of the FEM model with uniform heat-
ing. The discrepancies in the temperature values in the initial
time steps immediately after the flash are due to the satura-
tion region resulting from the flash pulse application, which
causes inaccurate measurements in this region. Thus, in this
case, themean cooling curve of a defect-free sample is a good
approximation of the temperature response of the defect-free
sample if the pulse excitation had been uniform, and subtract-
ing it from the temperature evolution of individual pixels
gives a measure of how much the pixel deviated from this
assumed ideal cooling curve. The measured difference can
then be added to the noise matrix, thus completing the noise
extraction process.

If xFmean is the 1 × NT row vector which is the mean
cooling curve of the XF, e is a NY NX × 1 column vector
of all ones, then the uneven heating matrix NUEH captures
the deviation of each pixel sequence from the mean cooling
curve as:

NUEH = XF − exFmean , (13)

and the final noise matrix N is calculated as:

N = NGN + NUEH. (14)

The calculated noise matrix is added to the synthetic PT
measurements to create a synthetic measurement dataset that
includes noise similar to the experimental setup.

Network architecture

The U-Net convolutional neural network was introduced by
Ronneberger et al. (2015) in their paper titled “U-Net: Con-
volutional Network for Biomedical Image Segmentation”.
Unlike typical CNNs, where a single label is assigned to
a whole image, U-Net provides a more localized approach
where each pixel in the image is provided with a class label.
The context or the “what?” of the input is captured by the con-
tracting path of the U-Net architecture, and the location or
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Fig. 11 a Raw (Data) and the reconstructed sequence (Fit) using a 7th order polynomial for a single pixel in the IRT measurement, b extracted
noise from the sequence and c its associated histogram along with normal distribution fit

Fig. 12 a Example of uneven heating of the sample; (Top) Px_1 is a
pixel near the edge of the sample, and Px_2 is a pixel near the centre of
the sample; the difference in the temperature is shown at the bottom. b

Comparison of experiment and simulation for temperature evolution of
defect-free sample averaged over the sample surface

the “where?” is enabled by the symmetric expanding path of
the architecture. U-Net strongly relies on data augmentation
techniques which helps it to utilize the available annotated
samples more efficiently, thus, overcoming the problem of
a traditional deep neural network where a large amount of
annotated samples are required for the successful training of
the network.

A layer in the contracting path follows the typical archi-
tecture of a CNN, i.e., convolution followed by activation
function and max pooling for downsampling. Each max-
pooling reduces the spatial dimension of the image and
increases the number of channels.

The spatial information lost in the contracting path is
recovered by supplementing the contracting path with an
expansive path. A layer in the expansive path consists of up-
convolution, which upsamples the feature map and reduces
the number of channels, thus opposite of downsampling in
the contraction path; furthermore, the upsampled featuremap
is concatenated with the corresponding feature map from the
contraction path, which is followed by convolution and acti-

vation function. The concatenation of the feature maps from
the corresponding layer in the contraction path helps to prop-
agate the context information to the higher-resolution feature
maps in the expansive path. There are no fully connected lay-
ers in the network.

Here, the conventional CNN architecture in the contract-
ing path is replaced with a ResNet34 architecture (He et al.
2016) initialized by the ImageNet pre-trained weights.The
ImageNet dataset (Russakovsky et al. 2015) consists of mil-
lions of labelled images from several categories, thus using a
model pre-trained on such a large dataset helps leverage bet-
ter feature extraction from new samples by transferring the
model’s learning onto the new task; also, it provides a good
basemodelwhich can be fine-tuned for the segmentation task
at hand. The loss function used in this work combines binary
cross entropy (LBCE ) and Jaccard loss (L J L ). The binary
cross entropy measures the pixel-wise difference between
the predicted mask and the ground truth. It is expressed as:

LBCE = −1

N

i=N∑
i=1

y(i)
true log(y

(i)
pred)+ (1− y(i)

true) log(1− y(i)
pred),
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Fig. 13 U-Net architecture, as
proposed by Ronneberger et al.
(2015)

(15)

where N represents the total number of pixels in the segmen-
tation mask, ytruth represents the ground truth for the pixel,
with 0 representing the sound region and 1 representing the
defect region, ypred is the predicted probability that the pixel
belongs to the defect region. On the other hand, the Jaccard
loss evaluates the overlap between the predicted and ground
truth mask. It is calculated as:

L J L = 1 − IoU, (16)

where IoU is the Intersection over Union between the pre-
dicted and the ground truth mask, calculated as:

IoU = Intersection

Union
=

∑N
i=1 y

(i)
true ∧ y(i)

pred∑N
i=1 y

(i)
true ∨ y(i)

pred

, (17)

where ∧ denotes “logical and” operation between the pixel’s
ground truth and prediction and ∨ denotes “logical or” oper-
ation. Thus, the final loss function (L) is

L = LBCE + L J L . (18)

Combining these two loss functions helps improve pixel-
level predictions and better align the predicted and truemask.
The evaluation metric used is IoU, and the average IoU is
calculated for the validation samples. Table 3 provides all
the details related to the model implementation.

Datasets

As discussed in the previous section, the data for training and
evaluating the model stem from FEM and experiments. The
dataset consists of EOFs and their corresponding masks. A

dataset sourcing from synthetic PT measurement comprises
2068 synthetic EOF images, i.e., the first four EOFs from
each of the 517 synthetic PT measurements and their cor-
responding masks. A dataset sourcing from PT experiments
comprises 80 measurement EOF images, i.e. first four EOFs
from each of the 20 samples and their corresponding mask.

In the case of the syntheticEOFs, as the location and size of
the defects are known, the annotation process was automated
using Python code, thus, providing precise and reliable labels
for the synthetic EOFs (Fig. 14b). The ease of generating pre-
cise labels for large amounts of images is one of the most
significant advantages of synthetic PT measurements. The
measurement EOFs were labelled manually (Fig. 14a) using
the image annotation software “Labelme: Image Polygonal
Annotation with Python” (Wada 2018). As the number of
defects in a sample and their locations are known, the manu-
ally generated labels can be considered reliable regarding the
defect being present at a marked location. However, the lat-
eral heat diffusion in the measurements makes it difficult to
precisely label the defect boundaries, i.e., the actual diameter
of the defect.

Three different datasets are created:measurement dataset
(total size of 80 EOFs from experiments), synthetic dataset
w/o noise (total size of 2068 EOFs from synthetic PT mea-
surements without noise) and synthetic dataset with noise
(total size of 2068 EOFs from synthetic PT measurements
with noise). Three U-Net models with the same implemen-
tation details as in Sect. “Network architecture" were trained
on three different configurations of these datasets. Model 1
was trained and evaluated on the measurement dataset alone,
with themeasurement EOFs randomly divided into a training
set (56 EOFs) and a validation set (24 EOFs). For model 2,
the EOFs in the synthetic dataset w/o noise were randomly
divided into a training set (1758 EOFs) and a validation set
(310 EOFs; referred to as “val syn w/o noise”). Model 2 was
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Table 3 Detailed summary of
all the parameters related to the
DL model

Architecture U-Net

Backbone ResNet34 (Pre-trained on ImageNet dataset)

Data source PT experiments and synthetic dataset (FEM)

Epochs 100 or 200

Loss function Combination of binary cross entropy and Jaccard loss

Evaluation metric IoU

Network input EOFs from PCT

Network output Segmentation masks

Image size 352×352 pixels

Batch size 16

Optimizer Adam (alpha: 0.001, beta1: 0.9, beta2: 0.999, epsilon: 1e-07)

Fig. 14 From left to right: EOF
image, the mask for the image,
and overlay of the mask on the
original image to show the
labelled defects. The masks are
for the third EOFs from a the PT
measurement of a sample with
three defects and b its
corresponding FEM simulations
without added noise

also validated after each epoch on the measurement EOFs
(“val exp”). Lastly, for model 3, the synthetic dataset with
noise was randomly divided into a training set (1758 EOFs)
and a validation set (310 EOFs; referred to as “val syn with
noise”). Model 3 was also validated after each epoch on the
measurement EOFs (“val exp”). Model 1 was trained for a
total of 200 epochs, and models 2 and 3 were trained for
a total of 100 epochs each. Validating models 2 and 3 on
the measurement dataset helps monitor and understand how
well the models trained on synthetic datasets perform on the
actual samples. Finally, to increase the diversity of the train-
ing dataset in all three models, traditional data augmentation
techniques were also applied; this includes random trans-
formations in the form of flipping, rotation, translation and
cropping. Later, a global threshold of 0.8 was applied to the
predicted segmentation masks, i.e. if the predicted value of

a pixel was greater than or equal to 0.8, it was classified as a
defect pixel (value of 1) or else as a sound pixel (value of 0)
to convert it into a binary mask.

Segmentation performance on different
datasets: results, discussion and comparison

Comparative analysis of the data

As discussed in the previous sections, the goal of the syn-
thetic dataset is to bridge the data gap that plagues real-world
applications. The representativeness of the synthetic data to
the actual data is critical to the model’s success. This sec-
tion compares a sample from the measurement samples with
three defects to its corresponding simulated synthetic version
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Table 4 Summary of the dataset source and the distribution for the three models

Model Training Set Validation Set

Model 1 56 measurement EOFs 24 measurement EOFs

Model 2 1758 synthetic EOFs w/o noise 310 synthetic EOFs w/o noise; 80 measurement EOFs

Model 3 1758 synthetic EOFs with noise 310 synthetic EOFs with noise; 80 measurement EOFs

without andwith noise (referred to in this section as synthetic
w/o noise and synthetic with noise).

Figure16 shows the raw unprocessed measurement image
from all three cases. The synthetic PT measurement image
(Fig. 16b) shows the same temperature distribution as the
experiment (Fig. 16a) but lacks noise as in the experimental
images. However, with the addition of noise (Fig. 16c), it is a
better representation of the experimental image, i.e., uneven
heating can be observed on the sample surface, especially the
edges and the defect signal blurring.

As the deep learning model will be trained on the EOFs
obtained from the PCT, the measurement and the synthetic
EOFs and PCs were analyzed.

Figure17 compares the first four PCs and EOFs for the
measurement and the synthetic versions. Consider the com-
parison of the first EOF and PC (Fig. 17a); the first EOF for
all three cases has negative values with the value of defects
being lower than the sound region, first EOF when looked at
in conjunction with its corresponding PC also reveals that all
three cases have a similar dominant mode of cooling and the
time of zero crossing is identical.

While comparing the second EOF and PC (Fig. 17b), one
can notice how, in contrast to the first EOF, the sound region
has the lowest value in the second EOF, and the defect has
the highest value in all three cases. The second EOF focuses
on the characteristics of the defects. The second EOF for the
synthetic w/o noise shows the idealized case of the sound
region being ideally zero, which is not the case for the other
two cases due to noise. Also, the second PC for all three
versions shows a similar trend for the temporal evolution of
the second EOF.

In the case of the third and the fourth PCs and EOFs
(Fig. 17c and 17d), the sound region has values near zero,
and the defect marks and radially outwards heat dispersion
around the defect are visible. The variation range of PCs
reduces, and the EOFs are noisier when compared to the
first and second EOFs. Thus, in higher EOFs and PCs, the
effect of noise is seen more prominently (compare synthetic
w/o noise with measurement and synthetic with noise). An
interesting observation is in the case of the fourth PC and
EOF (Fig. 17d) for the case of synthetic with noise where an
inversion in defect values for the EOF can be observed when
compared to the fourth EOF for experiment and synthetic
w/o noise. This inversion in the fourth EOF value has been
compensated by the corresponding inversion of the fourth

PC for synthetic with noise compared to the fourth PC for
experiment and synthetic w/o noise; as a result, mode4, i.e.
the matrix σ4u4vT4 has similar contribution in all three cases.

The singular values for all three cases are shown in Fig. 18.
The first four singular values for all three cases are similar. In
the case of synthetic w/o noise, all the information is retained
in the first 18 singular values; i.e., the matrixX in Eq. (5) can
be reconstructed entirely with the first 18 modes. However,
this is not the case for the actual measurement, where each
singular value adds incremental value to the whole sum. This
discrepancy between the singular values is due to the absence
of noise in the synthetic measurement generated via FEM.
As a result, when the noise matrix is added to the synthetic
measurements, the obtained singular values are similar to the
measurement singular values.

The above-discussed points show that the FEM-generated
synthetic data (synthetic w/o noise) can be representative of
the actual measurement. However, in the higher EOFs and
PCs of the measurement, the effects of noise present can be
noticed. The representativeness of the synthetic data can be
improved by adding the extracted system noise, as explained
in Sect. "Noise: analysis, extraction and addition". With the
addition of noise (synthetic with noise), more nuances of
the measurement setup can be captured, thus making the
synthetic dataset even more robust and encompassing more
details of the measurement dataset.

Segmentation results

This section discusses the segmentation results of the U-Net
model trained on three different datasets (Table 4) for the set
of hyperparameters shown in Table 3.

To begin with, consider Model 1 (Fig. 19a), which was
trained and validated solely on the small dataset of the mea-
surement EOFs. For the first 50 epochs, the model fails to
generalize its learning from the training data onto the unseen
validation data. The validation IoU gradually improves from
around the 50th epoch and eventually lingers around 0.75.
As the dataset was labelled manually and the ground truth
was verified with the actual sample defect positions, it is
safe to say that the highest achievable performance for this
task (human-level performance) is around 0.95 IoU (taking a
conservative estimate). The deficit between the training IoU
and the highest achievable performance indicates that the
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Fig. 15 Summary of the
suggested methodology
framework

Fig. 16 PT images for the sample with three defects at time t = 8.06 s for a experiment, b synthetic w/o noise and c synthetic with noise
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Fig. 17 Comparison of the EOFs and PCs from the PCT for a mea-
surement sample with three defects with the corresponding simulations
results (with and without noise). Row description from top to bottom: a
first PC and EOF, b second PC and EOF, c third PC and EOF and lastly,

d fourth PC and EOF. Column description from left to right: PCs for all
three cases weighed by their respective singular values (σivTi ), EOFs
for the experiment, synthetic w/o noise and the last column is synthetic
with noise

model is unable fully to tap into the potential of the data and
can improve its performance if more data is available for its
training. Furthermore, consider the difference between the
training and validation IoUs, which shows that the model
is not generalizing well to the unseen data of the validation
set, indicating overfitting, i.e., good performance on the train
set but not on the validation set, which is a common prob-
lem when dealing with small datasets. The above-discussed

points emphasize the need for a larger representative dataset,
which, as discussed before, is the biggest challenge.

Synthetic data can help overcome this inherent lack of
data, and to evaluate their effectiveness,Model 2 andModel 3
were trained purely on a large portion of synthetic EOFs (w/o
and with noise, respectively) and validated on the remain-
ing synthetic EOFs and measurement EOFs. Validating the
model performance on the measurement dataset helps under-
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Fig. 18 Comparison of the first 20 singular values obtained from the
PCT on the experiment and the corresponding simulated PT measure-
ments. For synthetic w/o noise, the first 18 singular values retain all the
information, but in the case of experiment and synthetic with noise, it
is spread out across all the singular values

stand how well the learning on the synthetic data generalizes
to real-world scenarios, i.e. how representative the synthetic
data is to the real data. To evaluate the effectiveness of syn-
thetic EOFw/o noise, considerModel 2. In contrast toModel
1, the improvements in the validation IoU (Fig. 19b, “val
syn w/o noise” and “val exp”) can be seen within the first
ten epochs, indicating that increasing the training data with
more diverse examples to learn from leads to an earlier per-
formance improvement and faster performance convergence.

Table 5 Best average IoU on measurement validation dataset

Model Average IoU Validation Set Size

Model 1 0.78 24 EOFs

Model 2 0.74 80 EOFs

Model 3 0.81 80 EOFs

Also, the training IoU has improved and is above 0.95.When
comparing training and validation IoU for the model, the
model generalizes well to the unseen data from the same dis-
tribution, i.e. synthetic EOFsw/o noise (“val synw/o noise”).
However, it struggles to generalize well on the measurement
EOFs, this can be observed in the chaotic validation curves
for themeasurementEOFs (“val exp”). This phenomenoncan
be attributed to the absence of noise in the synthetic dataset
on which the model was trained. In the case of Model 2, the
synthetic dataset does not encapsulate all the characteristics
of the real-world data, i.e. it does not consist of artefacts
such as measurement noise present in the measurement data.
Figure21b shows a few predictions of Model 2 on the mea-
surement EOFs; it can be seen that the false positives by the
model are due to noise present in the measurement EOFs.

Model 3 showcases themodel’s performancewhen trained
on synthetic EOFswith noise (Fig. 19c). It has characteristics
similar to Model 2, such as early performance improvement,
convergence, and higher train IoU. However, the highlight
of Model 3 is its improvement in the measurement valida-
tion set, where its performance convincingly converges at
around 0.79 IoU. This improvement in performance on an

Fig. 19 IoU (first row) and Loss (second row) performance for a Model 1, bModel 2 and cModel 3
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Fig. 20 Visualization of the
segmentation results for Model
1. The pink masks represent the
segmentations, and the black
contours represent the ground
truth boundary. a Few
measurement EOFs from the
validation dataset; b obtained
segmentation results

unseen real-world dataset indicates that the synthetic data on
whichModel 3 was trained is sufficiently diverse and a better
representative of the actual measurement dataset. Figure21c
shows a few predictions of Model 3 on the measurement
EOFs; it can be seen that the model is robust to the noise
present in the measurement EOFs.

Further dissecting the performance ofModel 3 on themea-
surement EOFs, it was observed that the loss in the IoU of the
model on the measurement dataset is mainly on the defect
boundaries (Fig. 21c); this is because of difficulties in the
precise annotation of the defect boundaries for the measure-
ment dataset. In the case of annotation of the synthetic data,
the precise location and boundary of the defects are well
known. As a result, the masks generated are accurate and
precise. However, this is not true for masks generated for
the measurement dataset, where lateral heat diffusion makes
it difficult to mark the defect boundaries consistently. This
issue of precise annotation of the defect boundaries for the
measurement dataset also explains why the IoU performance
of Model 3 on the measurement validation set plateaus at
around 0.79 (Fig. 19c) despite all defects being detected and
improved performance in the presence of noise. Thus, IoU,
as the evaluation metric, does not fully capture the model
performance where the annotation of the defect boundary is
challenging.

Robustness assessment: inference on new images

The feasibility of the trained models on the new PT dataset
was evaluated using two new datasets. Here, the previously
trained models (Table 4) are used to make predictions on two
new datasets covering two scenarios: (1) when the previously
used experimental samples are measured on an entirely dif-
ferent experimental setup and (2) when both the samples and
the experimental setup are different.

To begin with, consider the first scenario where the previ-
ously used experimental samples are measured on a different
experimental setup. Figure22 shows the schematic of the new
experimental setupwhere the infrared camera (OptrisXi 400)
is placed coaxially with the single flash ring directly above
the sample. The detector resolution of the new infrared cam-
era is 382 × 288 IR pixels, and the thermal resolution of
80mK. The sampling rate of the camera was 80Hz with an
acquisition time of 12.5 s. Table 6 lists changes between the
previously used experimental setup in Sect. “Samples and
experimental setup” and the new experimental setup. As the
experiment aimed to examine if the models could still detect
defects when the experimental setup changes considerably,
no new ground truth masks were created for the dataset. PCT
was performed on the new measurements as described in
Sect. “Synthetic data: generation and pre-processing”. The
first four EOFs were used for inference. Figure23 shows a
few of the predictions on the new EOFs from all three mod-
els. All three models showed good immunity to the change in
the experimental setup, i.e., the defects in the samples were
detected successfully, and the performance was consistent
with the measurement from the previous experimental setup.
Model 2 did struggle with the noise in the EOF image, as
experienced in the previous sections.

The second dataset is the Fraunhofer IZFP dataset from
Wei et al. (2023), which consists of 19 PTmeasurements and
masks for samples made up of PVC with artificially induced
defects in the form of cylindrical holes. In the paper, the
authors have the following dataset split: 13 samples for the
training set, 3 for the validation and 3 for the test set. The
measurement sampling rate is 10Hz with a total acquisition
time of 181s.

Figures 24 and 25 show the segmentation results of the
models on the test set of the Fraunhofer IZFP dataset. Infer-
ence was made on the first 10 EOFs of the test samples, and
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Fig. 21 Visualization of the segmentation results for Model 2 and
Model 3. The pink masks represent the segmentations, and the black
contours represent the ground truth boundary. aFewof themeasurement
EOFs for samples with varying numbers of defects. b Segmentation
results for Model 2 (Top) and the absolute difference between ground

truth and segmentation where false positives can be seen due to present
noise (Bottom). c Segmentation results for Model 3 (Top) and the abso-
lute difference between ground truth and segmentation (Bottom) show
improvements over Model 2

Fig. 22 Schematic of the new
experimental setup with single
flash source and the IR camera
placed directly above the sample

the EOF with the highest IoU is presented here. In the paper,
the authors reported an average IoUof 0.638on the validation
dataset for the U-Net model trained on PCT; no information
on the average IoU score for the test set was provided for
the U-Net model trained on PCT. Table 7 shows the average
IoU score of each model on the provided test set. From Table
7, and Figs. 24 and 25, show that all three models can gen-
eralize well on the unseen dataset indicating that they have
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Table 6 Comparison between the previously used experimental setup
(Setup 1) as described in Sect. “Samples and experimental setup” and
the new experimental setup (Setup 2). The robustness of the trained
models against the change in the experimental setup is assessed based on
their prediction performance on themeasurement data from the changed
experimental setup (Setup 2)

Parameters Setup 1 Setup 2

Infrared camera InfraTec ImageIR 8300® optrix Xi 400

Detector resolution (IR pixels) 640 × 512 382 × 288

Thermal resolution 20mK 80mK

Frame rate 62.5Hz 80Hz

Acquisition period 16sec 12.5 sec

Number of flash lamps 2 1

Flash lamp position Oblique Orthogonal

with respect to the sample

learned the useful features for defect detection. Model 1 and
Model 3 have marginal differences in their IoU scores, and
both performed better than Model 2. It can also be seen that
even though most of the defects were detected, the loss in
the IoU score is mainly around the defect boundaries, further
showcasing the difficulty in marking the defect boundaries
precisely due to lateral heat dispersion around the defect.

Thus, the performance of the models on these unseen
datasets, especially Model 2 and Model 3, demonstrate that
models trained on representative synthetic data generalize
well on new datasets. Thus, further strengthing the stand of
physics-based synthetic datasets as a valuable resource in
data deprived real world.

Lastly, to demonstrate the effectiveness of the proposed
methodology, consider the predictions on the EOFof an inde-
pendently simulated sample with added noise as shown in
Fig. 26a. The sample helps examine the defect pattern not
present in the training set distribution. At the edges of the
sample, where the effect of uneven heating is dominant, there
are two defects: D1, a relatively smaller diameter (1.5mm)
at a deeper depth (0.3mm) and a quarter defect, D4 (depth
= 0.1mm). Furthermore, two contrasting defects in size and
depth are positioned close to each other: D2 (diameter =
7mm, depth = 0.1mm) and D3 (diameter = 2mm, depth =
0.3mm).

From the predictions, it can be seen that Model 1 fails to
detect defects D1 and D3; this can be attributed to the limited
training dataset of Model 1. As a result, Model 1 cannot
generalize well on the new unseen data. Although Model
2 detects all the defects, its underperformance in detecting
D4 due to noise can be seen. Finally, Model 3, trained on a
large and representative dataset, convincingly detects all the
defects. This performance aligns with the conclusions drawn
from Fig. 19.

Conclusions and outlook

The presented work begins with its sight set on sustain-
able and reliable zero-defect manufacturing using automated
defect detection based on PT setup. However, the lack of
meaningful data in manufacturing is the biggest challenge in
realizing an intelligent defect detection system. The research
taps into the potential of physics-based synthetic data gen-
eration using FEM to bridge the data gap. The proposed
end-to-end framework was thoroughly investigated at each
step, from generating synthetic data to evaluating the model
performance. With 20 experimental samples and 517 repre-
sentative synthetic samples, the PT dataset in this research is
more extensive than any of the previously used PT datasets.

Inherently synthetic datasets generated using FEM are
noise-free, and their representativeness can be improved by
adding noise intrinsically present in the experimental setup.
Noise from the experimental setup was extracted using the
temperature response of a defect-free sample to the exper-
imental setup. To answer the important question of how
representative is the synthetic dataset of the real-world data,
three different datasetswere generated: experiment, synthetic
w/o noise and synthetic with noise. A comparative analysis
of the dataset was carried out by comparing: surface tem-
perature distribution from the time series PT measurement
set, the obtained PC, EOFs and singular values and lastly,
the performance of the U-Net model when trained on these
datasets separately. The comparative analysis revealed that
the synthetic dataset with noise was a better representative
of the experiment dataset.

The U-Net model was trained individually on each of the
three datasets. Analysis of the performance curves of Model
1, which was trained and validated on the limited exper-
imental EOFs, revealed the need for more data for better
performance. Investigation of performance curves for Model
2, which was trained on a large portion of synthetic EOFs
w/o noise and validated on the remaining synthetic EOFsw/o
noise and experimental EOFs, motivated the improvement in
the representativeness synthetic datasets by the addition of
noise to encapsulate more characteristics of the real-world
data. Exploration of the performance curves for Model 3,
which was trained on a large portion of synthetic EOFs
with noise and validated on the remaining synthetic EOFs
with noise and experimental EOFs, shows that the synthetic
dataset with noise is sufficiently diverse and a better repre-
sentative of the actual measurement dataset.

The robustness assessment of the models on two new
datasets highlights the effectiveness of the synthetic datasets
and the potential benefits they provide when real data is not
readily available or is expensive to procure.

Having reached the current milestone, one of the focuses
for the upcoming iteration of this work will be on improv-
ing the annotation approach for the defect. The aim will be
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Fig. 23 Visualization of the segmentation results when the samples
are measured on an entirely different experimental setup. a Few of
the EOFs from the measurement dataset followed by inference results

(pink masks) from bModel 1, cModel 2 and dModel 3. All the models
showed good immunity against the change in experimental setup

to acknowledge the difficulties in precisely annotating defect
boundaries in themeasurement data due to lateral heat disper-
sion. One of the potential solutions is to reduce the emphasis

on pixel-perfect annotation and allow some tolerance in exact
defect boundaries. Thus, a more nuanced representation of
defects, accounting for the lack ofwell-defined defect bound-
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Fig. 24 Visualization of the segmentation results on EOFs with the
highest IoU from the Fraunhofer IZFP test dataset (Wei et al. 2023).
Column description from left to right: EOF, inference on the EOF from

Models 1, 2, and 3. The pink masks represent the segmentations, and
the black contours represent the ground truth boundary. a Second EOF
of sample Z004 and b fourth EOF of sample Z009

Fig. 25 Visualization of the
segmentation results on the EOF
with the highest IoU of the
sample Z013 from the
Fraunhofer IZFP test dataset
Wei et al. (2023); a Second EOF
of Z013 (Top), Model 1
inference (Bottom); b fourth
EOF of Z013, Model 2
inference (Bottom); c second
EOF of Z013 (Top), Model 3
inference (Bottom)
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Fig. 26 a EOF of noise added simulated sample with four defects and the corresponding predictions from b Model 1, c Model 2 and d Model 3.
The example demonstrates the effectiveness of training on a diverse and representative dataset

Table 7 Results on the test set
of Fraunhofer IZFP dataset

Model Average IoU

Model 1 0.664

Model 2 0.611

Model 3 0.650

aries due to lateral heat dispersion, would help improve the
evaluation metrics. Furthermore, the aim is to adapt the
proposed framework for samples with more complicated
structure and defects, such as delamination, voids and cracks
between the interface of two materials, and to evaluate the
performance of other segmentation algorithms.
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