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Abstract

The optimal capital income tax rate has been shown to be nonzero in overlapping

generations (OLG) models, as it helps redistribute income between cohorts and

individuals with different labor supply elasticities and individual productivities.

We show in a medium-scale OLG model that the optimal capital income tax

rate is highly sensitive to the assumption of capital–skill complementarity in

production technology. The imposition of the production function of Krusell et al.

(2000) rather than the standard Cobb–Douglas function increases the optimal

capital tax from 9.2% to 27.3% in our benchmark model. We also study the

sensitivity of this result in the context of an aging economy and find that the

optimal capital income tax increases over the upcoming decades depending on

possible pension reforms and debt policies.

1I would like to thank Andreas Irmen and Vito Polito for helpful comments. All

remaining errors are mine.



1 Introduction

Chamley (1986) and Judd (1985) show that the optimal long-run capital tax rate is

zero in the standard neoclassical growth model with infinitely lived agents. The intu-

ition for the result is straightforward. The distortion in the intertemporal consumption

allocation introduced by a capital income tax is compounded over the lifetime and out-

weighs the intratemporal distortion from a labor income tax. In models with finite

lifetimes, however, Alvarez et al. (1992) and Erosa and Gervais (2002) demonstrate

that the Chamley–Judd result does not hold because the distortion in savings is not

compounded infinitely; in addition, workers at different ages are characterized by dif-

ferent labor supply elasticities such that a uniform labor income tax schedule is not

optimal and a capital income tax might help substitute for age-specific labor income

taxes.

A second strand of literature has identified 1) borrowing constraints and 2) uninsurable

income risk as potential reasons why the Chamley–Judd result does not hold, e.g., in

Hubbard and Judd (1987) and Aiyagari (1995). Again, the intuition for their results

is very straightforward. 1) If a borrowing constraint on the household is binding, the

Euler condition for the intertemporal allocation of consumption is violated, and con-

sumption deviates from the Pareto-optimal condition in which the marginal rate of

substitution between consumption in two periods is equal to the gross rate of return

on capital. If fiscal revenue stems from capital rather than labor income taxes, bor-

rowing constraints, particularly in the early periods of life, become less binding as net

labor income increases. 2) In the case of uninsurable stochastic income shocks, capital

income taxes help redistribute income from rich to poor agents and increase aggregate

welfare if society values a more equal distribution, as reflected, for example, in a wel-

fare criterion in the form of ex ante expected lifetime utility.1 To derive a quantitative

1A third strand of literature, e.g., Jones et al. (1997), has noted that the result of a zero optimal

tax rate on capital income need not hold in models with human capital accumulation and innovation.

Gross and Klein (2022) consider endogenous growth through innovation in a model based on Romer

(1990) and find that the optimal capital tax rate is negative and capital taxes should not be used

to raise government revenues. The optimal tax rate on labor versus capital income is also sensitive

to the accumulation technology of human capital. If the opportunity costs of accumulating human

capital accrue in the form of time rather than goods, Grüner and Heer (2000) find an optimal tax rate

on physical capital of 32% in the supply-side model of Lucas (1990). For a survey on optimal capital

income taxes, see Bastani and Waldenström (2020).
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estimate of the optimal capital income tax in life-cycle models with idiosyncratic in-

come uncertainty, Conesa and Krueger (2009) consider a quantitative medium-scale

overlapping-generations (OLG) model. They find that the optimal capital income tax

amounts to 36% and is sensitive to government debt.

As the main contribution of this paper, we consider the effects of production technology

on optimal capital taxes. While the literature cited above considers only the standard

Cobb–Douglas production function, we analyze the production of Krusell et al. (2000)

with capital–skill complementarity. We set up a medium-scale OLG model with pro-

gressive income taxes and public pay-as-you-go pensions and find, in our benchmark

calibrated with the characteristics of the US economy during 1980-2020, an optimal

capital income tax rate of 27%, whereas the optimal tax rate in the corresponding

model with Cobb–Douglas production equals only 9%. We identify two main channels

through which production technology affects the welfare effects of high capital taxes.

1) The marginal product of capital is more sensitive to aggregate capital in the case of

capital–skill complementary production technology than in the case of Cobb-Douglas

technology. Therefore, higher capital taxes imply a stronger decline in net real interest

rates and a stronger adjustment of the allocation of labor over the life cycle. The

flatter labor-supply profile that results is welfare-increasing. 2) The skill premium is

constant for the Cobb–Douglas technology, whereas it decreases with higher capital

taxes in the case of the technology with capital–skill complementarity. Through this

channel, higher capital taxes support redistribution from the rich to the poor and,

given the concave functional form of utility, increase the average lifetime utility. We

subject our analysis to a series of sensitivity analyses and show that the optimal capital

income tax rate is even larger in the case of a flat-rate income tax or with low economic

growth and, in the presence of a progressive income tax, is rather insensitive to the

introduction of stochastic idiosyncratic uninsurable income risk.

As one interesting application, we analyze the effects of demographic change on optimal

capital taxes. We assume that the population characteristics of the US economy are

as predicted by United Nations (2022) for the year 2050. We demonstrate that the

optimal capital income tax increases in an aging economy and reaches 35% in 2050.

In addition, we study two immanent economic policies of the upcoming years. 1) As

many industrialized countries face a problem in terms of the fiscal sustainability of their

pension system (for a cross-country study, see Heer et al. (2020)), many countries may

or must consider a reduction in pensions. 2) In addition, we observe that public debt
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has surged in most industrialized countries, especially since the COVID-19 pandemic.

For the US economy, Congressional Budget Office (2025) projects an increase in US

public debt to 156% of GDP by 2055. We show that the optimal capital income tax

is mildly sensitive to such policies; it decreases with lower pensions and increases with

higher public debt.

The paper is structured as follows. Section 2 presents the medium-scale overlapping

generations model with skilled and unskilled workers and a public social security sys-

tem. Section 3 calibrates the model with the help of observations from the US economy

from 1980-2020. Section 4 presents our results, while Section 5 concludes. Part of the

sensitivity analysis is delegated to the Appendix.

2 OLG Model

The economy is described by a perfect foresight life-cycle model comprising three sec-

tors: households, a representative firm and the government.

2.1 Demographics

In every period t ≥ 0, a new generation of households is born. The age of newborns is

s = 1. All generations retire at the end of age s = TW > 1 and live up to a maximum

age s = T > TW . Population growth varies over time and is denoted as nt. The total

population in a given period t is Nt, and the number of households of age s is Nt(s).

Consequently, the share of the s-year-old cohort in the total population in period t is

defined as µs
t ≡ Nt(s)/Nt. All agents of age s survive until age s + 1 with probability

ϕs
t . Thus, ϕ

0
t = 1 and ϕT

t = 0.

2.2 Households

Each household comprises one individual. Households are heterogeneous with respect

to labor productivity. We distinguish two types of workers, skilled (S) and unskilled

(U). The shares of the household types are denoted by ψi, i ∈ {S, U}, are constant

across cohorts and sum to one, ψS + ψH = 1.
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In every period t, newborn households with skills i ∈ {S,H} maximize the expected

intertemporal lifetime utility:

U i
t =

T∑
s=1

βs−1

(
s−1∏
j=0

ϕj
t+j−1

)
u(cs,it+s−1, l

s,i
t+s−1), (2.1)

where β, cs,it and ls,it denote the household’s discount factor and consumption and labor

supply at age s in period t for workers with skill i ∈ {S,H}.

The instantaneous utility u(.) is specified as in King et al. (1988):

u(c, l) =

(
cγ (1− l)(1−γ)

)1−η

− 1

1− η
,

where η is the inverse elasticity of intertemporal substitution and where γ denotes the

weight of consumption in utility.

The wage rate of the worker at age s and with skill type i, wiȳs, depends on both

the household type i ∈ {U, S} and the age s. In particular, we assume that the age

efficiency ȳs of the household is described by a hump-shaped function, as estimated

by Hansen (1993). Accordingly, total labor income at age s for the efficiency type i

in period t, wi
tȳ

sls,it , is the product of the wage rate per efficiency unit, wi
t, the age-

efficiency factor ȳs, and working hours ls,it :

ys,it = ȳsls,it w
i
t. (2.2)

To model a progressive tax system for labor income, we follow Holter et al. (2019) and

define a household’s total tax burden as

T (ys,it ) = ys,it − θ0,t(y
s,i
t )1−θ1,t , (2.3)

which implies a marginal income tax of

τ(ys,it ) = 1− (1− θ1,t) θ0,t(y
s,i
t )−θ1,t . (2.4)

The parameter θ1,t measures the degree of tax progressivity, whereas θ0,t defines the tax

level in period t. The tax system is progressive for θ1,t ∈ (0, 1), regressive for θ1,t < 0

and linear for θ1,t = 0.

Labor income is also subject to a social security contribution levied at the rate τ pt .

Accordingly, the net labor income ŷit of the worker is presented as follows:

ŷit = θ0,t(y
s,i
t )1−θ1,t − τ pt y

s,i
t . (2.5)
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The pension income received by the household upon retirement is denoted as peni
t and

depends on skill type i ∈ {S, U}. Pension income is not subject to income taxation.

In any period t, the budget constraint of a household of age s = 1, . . . , T with skill

type i is given by:

(1 + τ ct )c
s,i
t =

{
ŷs,it + [1 + (1− τ kt )rt]a

s,i
t + trt − as+1,i

t+1 , s = 1, . . . TW

pens,i
t + [1 + (1− τ kt )rt]a

s,i
t + trt − as+1,i

t+1 , s = TW + 1, . . . , T

(2.6)

where τ ct is the tax rate on consumption, τ kt is the tax rate on capital income, as,it denotes

the stock of assets held by the s-year-old household with skills i at the beginning of

period t, rt is the rate of return on assets, and trt denotes non-pension-related transfers

from the government received by the household in period t. As the household does not

work during retirement, ls,it = 0 for s = TW+1, . . . , T and i ∈ {S, U}. Furthermore,

the household starts and terminates life without assets; thus, a1,it = aT+1,i
t = 0. In

particular, depreciation is tax deductible, which is the standard assumption in the US

calibration of dynamic general equilibrium modeling for the analysis of optimal capital

taxation, as, for example, in Conesa and Krueger (2009).

The household can hold two forms of assets, bonds bs,it and physical capital ks,it ,

ait = bs,it + as,it . In equilibrium, the household is indifferent between holding assets

in the form of either physical capital or government bonds since both yield the same

(certain) after-tax return. With a single household living for two periods, the propor-

tion of asset holdings would be the same at the household and aggregate levels, but

with many periods, the portfolio allocation is indeterminate. Consequently, without

loss of generality, we assume that each household holds the two assets in the same

fixed proportions. This is determined in the aggregate as the share of capital in total

assets Kt/(Kt+Bt), where Kt and Bt denote aggregate capital and government bonds,

respectively.

In every period t, maximization of lifetime utility in (2.1) subject to (2.2)-(2.6) yields

equilibrium conditions for the optimal allocation of consumption, labor and assets given

by:

us,ic,t = λs,it (1 + τ ct ), s = 1, . . . , T, (2.7)

−us,il,t = λs,it

(
1− τ(ys,it )− τ pt

)
wi

tȳ
s, s = 1, . . . , TW , (2.8)

λs,it = βϕs
tλ

s+1,i
t+1 [1 + (1− τ kt+1)rt+1], s = 1, . . . , T − 1, (2.9)
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where us,ic,t and u
s,i
l,t denote the derivatives in period t of the household’s utility at age s

with skill level i ∈ {S, U} with respect to consumption and labor, respectively, whereas

λs,it is the Lagrange multiplier of the budget constraint in equation (2.6).

2.3 Production

We consider two different production technologies. As our benchmark, we analyze

capital–skill complementarities. As an alternative scenario, we consider the model

with the standard Cobb–Douglas production technology.

2.3.1 Benchmark Case: Capital–Skill Complementarity

As our benchmark case, we use the nested CES production function suggested by

Krusell et al. (2000):

Yt = At

[
µ
(
LU
t

)σ
+ (1− µ)

(
αKρ

t + (1− α)
(
LS
t

)ρ)σ
ρ

]1/σ
, (2.10)

where 1
1−σ

and 1
1−ρ

denote the production elasticity of high-skilled labor LS
t and cap-

ital Kt, on the one hand, and the production elasticity of low-skilled labor LU
t and

high-skilled labor LS
t and capital Kt, on the other hand. If σ > ρ, capital is highly

complementary with skilled labor. At denotes total factor productivity.

Aggregate high- and low-skilled labor are simply the sums of the efficient labor supplies

of the two types of households:

Li
t =

Tw∑
s=1

ψiNt(s)ȳ
sls,it , i ∈ {U, S}. (2.11)

Capital depreciates at the rate δ.

Firms maximize profits

Πt = Yt − rtKt − wU
t L

U
t − wS

t L
S
t − δKt (2.12)
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resulting in the first-order conditions

rt + δ = α(1− µ)At

[
µ
(
LU
t

)σ
+ (1− µ)

(
αKρ

t + (1− α)
(
LS
t

)ρ)σ
ρ

]1/σ−1

×
(
αKρ

t + (1− α)×
(
LS
t

)ρ)σ
ρ
−1
Kρ−1

t , (2.13a)

wU
t = µAt

[
µ
(
LU
t

)σ
+ (1− µ)

(
αKρ

t + (1− α)
(
LS
t

)ρ)σ
ρ

]1/σ−1 (
LU
t

)σ−1
, (2.13b)

wS
t = (1− α)(1− µ)At

[
µ
(
LU
t

)σ
+ (1− µ)

(
αKρ

t + (1− α)
(
LS
t

)ρ)σ
ρ

]1/σ−1

×
(
αKρ

t + (1− α)
(
LS
t

)ρ)σ
ρ
−1 (

LS
t

)ρ−1
, (2.13c)

Profits are equal to zero in equilibrium.

2.3.2 Comparison Case: Cobb–Douglas Production Function

As a comparison case, we consider the standard Cobb–Douglas production function

with labor-augmenting technological progress:

yt = Kα
t (AtLt)

1−α, (2.14)

where α is the share of capital in output. In this case, we assume that skilled and

unskilled workers have permanent productivity ϵi, i ∈ {S, U} so that the effective

labor of the worker at age s with skill i in period t is given by ȳsϵils,it . Accordingly, the

aggregate labor in efficiency units Lt is given by:

Lt =
∑

i∈{S,U}

Tw∑
s=1

ψiNt(s)ȳ
sϵils,it . (2.15)

Technology grows over time at the exogenous rate g ≥ 0, which is also equal to the

balanced growth rate of the economy. Since production is perfectly competitive, in

equilibrium, labor and capital are remunerated at their marginal products, that is:

wt = (1− α)Kα
t (AtLt)

−α, (2.16a)

rkt = αKα−1
t (AtLt)

1−α − δ, (2.16b)

with δ denoting the rate of physical capital depreciation, and the wages of skilled and

unskilled workers, wi
t, i ∈ {S, U}, in (2.2) are presented by wi

t = Atwtϵ
i.
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2.4 Government

Government expenditure is allocated to public consumption Gt, aggregate transfers

Trt and interest payments on public debt rbtBt, with r
b
t denoting the after-tax return

on government bonds. Government revenue is increased through taxation Taxt, new

debt issuance Bt+1 −Bt and the confiscation of accidental bequests Beqt. In total, the

government budget constraint is as follows:

Gt + Trt + rbtBt = Taxt +Bt+1 −Bt +Beqt, (2.17)

where tax revenue from the taxation of aggregate consumption Ct, capital Kt and labor

is given by:

Taxt = τ ctCt + τ kt rtKt +
TW∑
s=1

∑
i∈{S,U}

ψiT (ys,it )Nt(s). (2.18)

The government sector also includes a pay-as-you-go pension system. In the aggregate,

pension expenditure is the sum of pension payments made to retired households:

Pent =
T∑

s=TW+1

∑
i∈{S,U}

ψipens,i
t Nt(s) (2.19)

and the social security budget is formulated as:

Pent = τ p
(
wULU + wSLS

)
. (2.20)

2.5 Equilibrium and Aggregate Conditions

At the aggregate level, consumption, assets, transfers and accidental bequests are de-

termined as the sum of the corresponding individual variables; thus:

Ct =
T∑

s=1

∑
i∈{S,U}

ψiNt(s)c
s,i
t , (2.21)

At =
T∑

s=1

∑
i∈{S,U}

ψiNt(s)a
s,i
t , (2.22)

Trt =
T∑

s=1

∑
i∈{S,U}

ψiNt(s)trt, (2.23)

Beqt+1 =
T−1∑
s=1

∑
i∈{S,U}

ψiNt(s)(1− ϕs
t)[1 + (1− τ kt+1)rt+1]a

s+1,i
t+1 . (2.24)
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Equilibrium in the goods market requires that aggregate output is equal to aggregate

demand:

Yt = Ct +Gt +Kt+1 − (1− δ)Kt, (2.25)

whereas equilibrium in the capital market requires that aggregate assets purchased

by the households are equal to the sum of aggregate capital and government bonds

demanded by firms and the government, respectively:

At = Kt +Bt. (2.26)

The no-arbitrage condition implies that in equilibrium, all assets have the same after-

tax rate of return:

rbt = (1− τ kt )rt. (2.27)

3 Calibration

The benchmark calibration is designed to approximate a steady state for the US econ-

omy on the basis of data averages from 1980 to 2020. Table 3.1 summarizes our

parameter choices.2

Demographics A period t in the model corresponds to one year. Newborns are

assumed to have a real-life age of 20, corresponding to s = 1, and live up to a real-life

age of 99; thus, T=80. Retirement ages TW + 1 = 48 (corresponding to the real-life

age of 67) are calculated as the average of the effective age of retirement for the years

2014, 2018 and 2020 obtained from OECD (2021). The population growth rates n are

calculated as the averages of the annual population growth rates from 1980 to 2020,

obtained from United Nations (2022). Survival probabilities ϕs
t are computed from

annual data on life expectancy for both sexes combined (from age 20 to age 99), which

are also obtained from United Nations (2022). The calibration employs the average

survival probabilities from 1980 to 2020.

2The GAUSS computer code for the calibration and all applications is available from the author

upon request.
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Parameter Value Description

Household types

(ψS, ψU) (0.5, 0.5) share of household types i ∈ {S, U}
Preferences

1/η 1/2 intertemporal elasticity of substitution

γ 0.226 utility weight of consumption

β 1.010 discount factor

Production

1/(1− σ) 1.67 substitution elasticity of high-skilled labor

1/(1− ρ) 0.67 substitution elasticity of low-skilled labor

(α, µ) (0.657, 0.261) weight of production factors in (2.10)

δ 8.3% depreciation rate of capital

g 1.529% labor productivity growth rate

Government

(θ̃0, θ1) (0.757, 0.137) income tax parameters

τ k 22.8% tax on capital income

τ c 6.2% tax on consumption

G/Y 19.4% share of government spending in steady-state

production

B/Y 72.8% debt-output ratio

(replS, replU) (32.6%,40.6%) gross pension replacement rate of (un)skilled

workers

Table 3.1: Calibration of parameters for the US economy during 1980–2020

Household Types We set the shares of skilled and unskilled households equal to

ψS = ψU = 0.5, corresponding to the average number of college graduates during

the period 1980-2020 reported by the U.S. Bureau of Labor Statistics.3 The age–

productivity file {ys}47s=1 is taken from Hansen (1993) and extrapolated linearly to the

real-life age of 66.

3The data are taken from Table A-1 of the Historical Time Series Tables. The average share of

those with a college education relative to the total number of households for 1980–2020 was 0.4863.
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Preferences We choose an intertemporal elasticity of substitution, 1/η, equal to 1/2.

We set the weight of utility from consumption, γ = 0.226, to imply average working

hours of 0.25 in this case. The discount factor β = 1.010 implies a real interest rate of

4.0%.4

Production The average growth rate of per capita GDP from 1980–2020 amounts

to g = 1.529%. This is calculated using data obtained from OECD (2022) by scaling

the annual nominal value of the gross domestic product at market prices by the cor-

responding deflator and then dividing by the total population. Capital depreciates at

the annual rate δ = 8.3%.

In production function (2.10), we set σ = 0.401 and ρ = −0.495 as estimated by

Krusell et al. (2000). The remaining production parameters α and µ are calibrated to

simultaneously satisfy the following conditions:

1. The skill premium is set so that skilled workers receive a skill premium of 150%

above the wage of the unskilled workers:5

wS

wU
= 2.50.

2. Total wages are equal to 65% of GDP:

wU
t L

U
t + wS

t L
S
t

Yt
= 0.65.

We find that α = 0.657, µ = 0.261.

In the case of the Cobb–Douglas production function (2.14), we set α = 0.35 and

(ϵS, ϵU) = (1.43, 0.57) to imply the same skill premium and aggregate the labor share

as in the case of the production function (2.10).6

4Hurd (1989) provides an empirical estimate of 1.011 for the discount factor after accounting for

stochastic survival.

5A skill premium of 150% is in accordance with data from the U.S. Bureau of Labor Statistics on

the median weekly earnings of workers with a bachelor’s degree or higher (LEU0252918500) relative

to those with less than a high school diploma (LEU0252916700). Krueger and Ludwig (2007) apply

the same skill premium.

6We also need to recalibrate the parameters (β, γ, θ0) = (1.0095, 0.211, 0.804) that are set with the

help of the steady-state conditions of the model (not presented in Table 3.1).
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Government The government parameters are also chosen as averages from empir-

ical data from 1980–2020. In particular, we follow Brinca et al. (2016) and set the

tax progressivity θ1 = 0.137 to replicate the average tax progressivity in the United

States.7 The average labor income taxes (both income tax and social security) are

21.7%, implying that θ̃0 = θ0,t/At = 0.757, whereas the capital income tax and the

consumption tax are equal to τ k = 22.8% and τ c = 6.2%.8 Government consumption

G is 19.4 % of GDP, whereas the debt–GDP ratio during this period averaged 72.8%.

To calibrate the replacement rate of pensions peni
t with respect to the average gross

income of worker type i ∈ {U, S}, (wi
tl
s,iȳs), we use linear interpolation of the replace-

ment rate with respect to gross income provided by OECD (2021) for men with 50%

and 200% of the average wage, 49.4% and 27.8%, respectively, implying replacement

rates replS = 32.6% and replU = 40.6%.

In the benchmark equilibrium, the social security tax τ p must be set equal to 7.51% to

balance the budget of the social security authority. The share of capital (government

bonds) in total assets amounts to 79.6% (20.4%).

4 Results

In this section, we present our results. First, we demonstrate that the optimal capital

income tax rate is much higher in the case of capital–skill complementarity in pro-

duction than in the case with the standard Cobb–Douglas production function. Next,

we consider the effects of income uncertainty in the form of idiosyncratic uninsurable

productivity shocks and find that the optimal capital tax rate is rather insensitive to

it. Finally, we study the effects of aging on the optimal capital income tax and show

that, owing to the demographic transition, optimal capital income taxes increase over

time. An additional sensitivity analysis of our results is presented in Appendix A.

7Heathcote et al. (2017) apply a slightly higher value of θ1 = 0.18 because they include capital

income as part of taxable income.

8We calculate the average tax rates on income from labor, capital and consumption using the

revision of the method of Mendoza et al. (1994) proposed by Carey and Rabesona (2003).
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4.1 Optimal Capital Taxes

Fig. 4.1 displays the effects of capital income taxes on welfare for the benchmark with

capital–skill complementarity in production (solid blue line ’Krusell’) and the stan-

dard Cobb–Douglas technology (broken black line ’Cobb–Douglas’). As our welfare

criterion, we employ the ex ante expected lifetime utility of the newborn in the steady

state. Thus, the unborn individual does not know her ability type i ∈ {S, U} and forms

expectations with respect to her stochastic survival. Welfare changes relative to the

benchmark with τK = 22.8% are expressed in consumption equivalent changes. The

optimal capital income tax rate is 27.3% in the model with capital–skill complementar-

ity in production technology, as in Krusell et al. (2000), whereas it decreases to 9.2%

in the case of the standard Cobb–Douglas technology.9 The associated welfare gains

needed to move from the present capital tax rate of τK = 22.8% to the new optimal

tax rates amount to 0.01% and 0.25% of total consumption, respectively. If capital

income taxes are reduced to zero, as suggested by the results of Chamley (1986) and

Judd (1985), welfare decreases by 0.28% in the case of capital–skill complementarity

and increases by 0.13% in the Cobb–Douglas case. Table 4.1 summarizes the optimal

capital income taxes and the welfare gains from changing the present capital income

tax of 22.8% to the optimal and zero tax rates (expressed in consumption equivalent

changes) for various scenarios.

To understand these welfare effects, we must consider the different behaviors of factor

prices for the two production technologies. In accordance with Conesa and Krueger

(2009), we find that a change in the capital income tax τK , which is financed by

an adjustment of the labor income tax, has a strong effect on the aggregate capital

stock but a negligible effect on average working hours and the aggregate labor supply.

Table 4.2 presents the effects of abolishing capital income tax τK on aggregate factor

supplies. In both technology cases, the changes in the capital stock are 10–30 times

greater than the changes in the aggregate labor supplies. For example, in the case of

skill-capital complementarity, the capital stock increases by 7.02% if capital taxes τK

are cut from 22.8% to 0%, whereas the average working hours of skilled and unskilled

9Conesa and Krueger (2009) find an optimal capital income tax rate of 36% for the Cobb–Douglas

technology (as presented in the ’Bench’ scenario in Table 4). We replicate their result in a modified

version and calibration of our benchmark model, which is described in the next section. The main

reason why these authors derive a much higher optimal capital income tax rate in comparison with

our benchmark calibration is their assumption of an economic growth rate of zero.

13



Figure 4.1: Welfare effects of capital income taxes τK (in percentage points)

workers adjust by 0.20% and -0.14%, respectively.10 Therefore, to understand the

effects of technology, we first need to analyze how a change in the capital stock affects

factor prices and, subsequently, study how these factor price changes affect individual

behavior.

Fig. 4.2 presents the effects of capital stock on the real interest rate for constant labor

inputs. The capital stock in the steady state with capital income tax rate τK = 22.8%

is normalized to one in both cases with skill–capital complementarity (’Krusell’) and

Cobb–Douglas technology (’Cobb–Douglas’). In the steady state, the real interest rate

before taxes (corresponding to r = ∂Y/∂K − δ in the model) amounts to 4.0% with

both technologies. We consider a change in the capital stock in the range ±20% and

note that the associated changes in the real interest rate are approximately 40% greater

with capital–skill complementarity than in the case of the Cobb–Douglas technology.

For example, for a reduction in the capital stock of 20%, interest rates increase to

6.66% and 5.92%, respectively. This reflects our calibration of the production function

(2.10) with a substitution elasticity of the composite of capital and high-skilled labor,

10The small quantitative response of labor is not surprising. The Frisch labor supply elasticity

amounts to 1−l
l

1−γ(1−η)
η and averages 3.68 in our benchmark model. Frisch elasticity, however, isolates

the substitution effect. As is well known, the uncompensated labor supply elasticity for the Cobb–

Douglas utility in the simple one-period model is zero if nonlabor income is zero and becomes negative

in the presence of positive nonlabor income, such as transfers or capital income. As the income effect

almost offsets or even overcompensates for the substitution effect in our model, aggregate and average

labor do not change much in response to a change in net wages.

14



Case Optimal Welfare effects

τK,∗ τK,∗ τK = 0

Benchmark 27.3% 0.01% -0.28%

Cobb–Douglas technology 9.2% 0.25% 0.13%

Income Uncertainty

– benchmark, g = 1.529% 23.1% 0.12% -1.01%

– Cobb–Douglas, g = 0, η = 4 34.7% 0.65% -3.31%

Population in 2050

– constant pensions 35.2% 0.10% -0.43%

– 30% cut in pensions 31.5% 0.19% -0.63%

– debt-GDP ratio B/Y = 150% 38.4% 0.03% -0.23%

Table 4.1: Optimal tax rate τK,∗

Variable Krusell Cobb–

Douglas

K 7.02 11.39

l̄S -0.14 -0.33

l̄U 0.20 -0.33

LS -0.40 -0.42

LU 0.04 -0.41

Table 4.2: The effects of abolishing capital income taxes τK on factor supplies (per-

centage changes)
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Zt =
(
αKρ

t + (1− α)
(
LS
t

)ρ)1/ρ
, and the labor supply of low-skilled labor, LU

t , below

one, 1/(1 − ρ) = 0.67, which is amplified by a substitution elasticity of high-skilled

labor and capital above one, 1/(1− σ) = 1.67.

Figure 4.2: Capital stock and interest rates

Figure 4.3 presents the life-cycle profiles of labor supply for skilled and unskilled workers

for technology with capital–skill complementarity and for Cobb–Douglas technology.

It compares the case of zero capital taxation (broken black line) with the benchmark,

τK = 22.8% (solid blue line). In all cases, the labor-supply profiles become flatter

as the capital tax increases from 0% to 22.8%, and therefore, the net interest rate

decreases. The quantitative response of the labor supply is much more pronounced in

the case of the skill complementarity of capital than in the case of the Cobb–Douglas

technology, by a factor of approximately 3. For example, the working hours of the 20-

year-olds decline by 3.82% for higher taxes in the ’Krusell’ case but by only 1.01% in

the ’Cobb–Douglas’ case. Similarly, the working hours of the 65-year-olds increase by

7.40% and 2.76% in the two cases, respectively. The stronger response in the ’Krusell’

case follows directly from the stronger decline in the interest rate depicted in Fig. 4.2.

For a lower interest rate, the household reallocates labor intertemporally and increases

labor in old age.11

11İmrohoroğlu and Kitao (2009) consider a related phenomenon. In a life-cycle model similar to

ours, they consider different social security reforms and their effects on the intertemporal allocation of

labor. They find that the privatization of social security has a strong effect on capital but a negligible

effect on aggregate labor; importantly, individuals shift their labor supply from younger to older years

as the real interest rate falls.
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(a) Skilled workers, Krusell technology (b) Unskilled workers, Krusell technology

(c) Skilled workers, Cobb–Douglas (d) Skilled workers, Cobb–Douglas

Figure 4.3: Life-cycle profiles of working hours and capital income taxes

As argued in detail by Erosa and Gervais (2002) in a theoretical analysis and by

Conesa and Krueger (2009) in a quantitative analysis, the intertemporal reallocation

of labor/leisure is the main explanation for the welfare-increasing effects of a (strictly)

positive optimal capital income tax rate. The formal argument has also been advocated

by Erosa and Gervais (2002). If the government could use age-dependent labor income

taxes, it would be efficient in the present model with a declining labor supply over

the life cycle to impose labor taxes that also decline with age.12 If, as in the present

model, labor income rates cannot be conditioned on age, the government can imitate

this age-dependent tax policy by taxing capital income and increasing the net present

value of older workers’ labor income so that the opportunity costs of leisure in old age

increase.

Next, we analyze how a change in the capital stock (while keeping the labor supplies

constant) affects the wages of unskilled and skilled workers for the two different tech-

nologies. Fig. 4.4 presents the wages of skilled and unskilled workers for the ’Krusell’

technology (blue solid line) and the ’Cobb–Douglas’ technology (black broken line).

All wages are normalized to one in the benchmark steady state for ease of comparison.

12To see this point intuitively, consider the Ramsey rule emanating from the classic work of Ramsey

(1927). In our model, the Frisch labor supply elasticity initially decreases with age until the age of 30

and subsequently increases over the life cycle so that, ceteris paribus, the optimal labor income tax

should decline with age (beyond the threshold of 30 years) according to this principle.
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Evidently, the wages of unskilled labor react less strongly to a change in the aggregate

capital stock K in the case of skill–capital complementarity than they do in the case

of the Cobb–Douglas technology, and vice versa for the wages of skilled workers. This

observation follows directly from the production technology of Krusell et al. (2000),

where higher σ and lower ρ amplify the increase in inequality between skilled and un-

skilled workers as capital deepening increases. Therefore, the skill premium decreases

with lower capital stock in the case of skill–capital complementarity, whereas it remains

constant in the Cobb–Douglas case. For example, the skill premium decreases from

150% to 128% with ’Krusell’ technology if the capital stock decreases by 20%.

(a) Unskilled labor wage (b) Skilled labor wage

Figure 4.4: Aggregate effects of capital income taxes τK on wages

In the general equilibrium model with endogenous capital and labor, high capital in-

come taxes reduce savings and, hence, aggregate capital stock, whereas labor remains

rather constant; therefore, wage inequality decreases in the case of ’Krusell’ technol-

ogy but not in the case of Cobb–Douglas technology. As a consequence, the declining

skill premium helps improve the lifetime utility of unskilled workers in comparison to

skilled workers in the case of ’Krusell’ technology. Fig. 4.5 presents the lifetime util-

ities of skilled and unskilled workers as a function of the capital income tax rate τK

for both technology types. For the Cobb–Douglas technology, the lifetime utilities of

both unskilled workers and skilled workers are concave functions of the capital income

tax rate and peak around a tax rate of 10%. The lifetime utilities of workers behave

fundamentally differently in the case of technology with skill–capital complementarity.

In this case, the lifetime utility of the unskilled worker is found to increase with τK

over the whole range considered, τK ∈ [−10%, 60%], whereas it decreases in the case of

the skilled worker. As utility is a concave function of consumption, a redistribution of

income from rich (skilled) workers to poor (unskilled) workers increases average utility

and, hence, welfare as measured by the ex ante expected lifetime utility.

In summary, we find that the skill complementarity of capital provides a rationale for
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(a) Unskilled labor wage (b) Skilled labor wage

Figure 4.5: Lifetime utilities of unskilled and skilled workers

redistribution via capital income taxation both through its redistribution between skill

types of workers and its strong effect on interest rates.

4.2 Income Uncertainty

The various and, to some extent, opposing welfare effects of capital taxes are magnified

in the presence of income uncertainty. On the one hand, stochastic income increases

the need to build up precautionary savings. Therefore, a capital tax that introduces

a wedge in the optimality condition on savings inhibits the individual from insuring

himself against the bad luck of negative idiosyncratic productivity shocks by means

of savings. On the other hand, income uncertainty increases the welfare-improving

effects of redistribution and insurance. In dynamic general equilibrium models with

infinite and finite lifetimes, respectively, Hubbard and Judd (1986) and İmrohoroğlu

(1998) show that the optimal capital income tax is positive if households are subject

to uninsurable idiosyncratic income risk and/or borrowing constraints.

In this section, we introduce income uncertainty, which is standard in the quantitative

analysis of medium-scale OLG models, e.g., as in Huggett (1996), Conesa and Krueger

(2009) or Kitao (2014). In particular, we add a multiplicative stochastic component

ζ to individual productivity so that the gross labor income of the s-year-old worker

with idiosyncratic productivity ζ and permanent productivity i ∈ {S, U} in period t,

yt(s, ζ, j) = ζȳswi
tlt, consists of the product of his idiosyncratic productivity ζ, the age

component ȳs, the wage of the skill type i, wi
t, and his working time lt(s, ζ, i). We

assume that the logarithm of the idiosyncratic component ζ follows a simple AR(1)

process with persistence parameter ρζ and unconditional variance σ2
ζ . We select ρζ =

0.97 and σ2
ζ = 0.02 in accordance with Kitao (2014).13 In the numerical procedure,

13The calibration ρζ = 0.97 constitutes the median value in the three studies cited in the paragraph.
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we discretize the state space for the stochastic component ζ using 7 values and choose

the grid size so that the Gini coefficient of hourly wages is 0.374, as estimated by

Heer and Maußner (2024) using PSID data.14 In addition, we impose a borrowing

constraint at(s, ζ, i) ≥ 0. We find that 23% of the households are credit constrained

in the benchmark economy, which is in accordance with the empirical observations of

Budŕıa Rodŕıguez et al. (2002) and Krueger et al. (2016).

In accordance with Conesa and Krueger (2009), we find that the various effects of

income uncertainty and borrowing constraints on welfare approximately cancel each

other in the presence of progressive labor income taxation. The optimal capital income

tax rate is 23.1% in our model, and the welfare effects of implementing the optimal

tax policy or abolishing the capital income tax amount to 0.12% and -1.01% of total

consumption, respectively (as presented in Table 4.1).

For comparison, we also recalculate the model to replicate the basic elements of the

model in Conesa and Krueger (2009). To do so, we set the parameter η = 4.0 and

the economic growth rate g equal to zero; we assume a Cobb–Douglas production

technology and recalibrate the parameters α, γ and β to imply a wage share of 65%, a

real interest rate of 4% and average working hours of 0.25. The results are presented

in the fourth entry row of Table 4.1. We find an optimal capital income tax rate of

34.7% for this case, whereas Conesa and Krueger (2009) estimate an optimal tax rate

of 36%. The very small remaining difference can be explained by the use of a different

calibration period and slightly different pension and income tax schedules.

4.3 Demographic Change

The demographic transition is likely to affect the capital stock per worker over the

upcoming years. Starting with the seminal paper by De Nardi et al. (1999), studies

For example, Huggett (1996) and Conesa and Krueger (2009) apply values of 0.96 and 0.98 for ρζ .

14The Gini coefficients of gross income, wealth and consumption in the benchmark equilibrium are

0.47, 0.666 and 0.426, respectively. Quadrini and Ŕıos-Rull (2015) present empirical evidence that the

the Gini coefficients of US earnings and wealth in 2010 were 0.65 and 0.85, respectively, according to

data from the Survey of Consumer Finance (SCF), whereas Krueger et al. (2016) find a Gini coefficient

of earnings of 0.43 when using PSID data. Heathcote et al. (2010) presents empirical evidence for the

US economy that the Gini coefficient of nondurable consumption was substantially smaller than the

Gini coefficient of income from 1990–2006, with a Gini coefficient of consumption ranging between

0.32 and 0.40.
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such as Krueger and Ludwig (2007), Kitao (2014) or Heer et al. (2020) have examined

the effects of aging on factor supplies and prices depending on possible pension reforms.

In essence, the projected increase in capital stock relative to working hours implies a

lower real interest rate and a higher wage rate, with the quantitative effect depending

on pension policies. Applying our arguments based on the production technology

described above—that is, higher taxes are associated with lower net real interest rates

and a more equal wage distribution—we find that the higher capital intensity in the

upcoming years increases the optimal capital income tax rate. Considering our model in

the steady state for the benchmark calibration but changing the population parameters,

survival probabilities and population growth rate to the values projected for the year

2050 by United Nations (2022), we find that the optimal capital income tax rate τK,∗

increases strongly, from 27.3% in 2020 to 35.2% in 2050. In addition, the quantitative

welfare effects measured by consumption equivalent changes approximately double in

size, as presented in Table 4.1.

Pension and debt policies affect capital intensity during the demographic transition and

in the long-run equilibrium. An increase in retirement age or a decrease in pensions

will reduce the quantitative effect of aging on capital per worker. In addition, some

of the transition costs can be expected to be financed by higher debt as the baby

boomers retire. Accounting for the debt increase during the COVID-19 pandemic

and the recent changes in the US budget deficit, Congressional Budget Office (2025)

projects an increase in public debt to 156% of GDP by 2055. We study the sensitivity

of our results to pension policies and debt policies using two exemplary cases. First, we

consider a 30% reduction in US pension entitlements. Second, we consider an increase

in the debt-to-GDP ratio from 73% in the benchmark in 2020 to 150% in 2050. Both

policies affect the optimal capital tax only mildly, as it declines by one percentage

point to 47.1% in the case of a pension cut and increases by 1.6 percentage points

in the case of increased debt (see Table 4.1).15 In summary, optimal capital income

taxes increase strongly for an aging economy, whereas pension and debt policies have

a relatively small quantitative impact.

15Our result that the optimal capital income tax rate increases with increased debt is in accordance

with the findings of Conesa and Krueger (2009). These authors also find that, for sufficiently high

negative public debt, the optimal capital income tax rate falls to zero.
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5 Conclusion

The optimal tax rate on capital income is sensitive to the underlying production tech-

nology. We compare the standard Cobb–Douglas technology with the technology of

Krusell et al. (2000), where capital is complementary to skilled work. We find that

the optimal capital tax rate is significantly higher in the case of capital–skill comple-

mentarity and reaches 27% (versus 9% in the Cobb–Douglas case) in our benchmark

economy of the US economy. Importantly, the optimal capital tax rate increases in

an aging economy and is equal to 35% in the US by 2050. There are two properties

of technology with skill–capital complementarity that account for these results. First,

high capital taxes imply a significantly greater decline in the net interest rate under

such technology than in the case of a Cobb–Douglas technology and, therefore, pro-

voke a flatter life-cycle profile of labor. Second, with high capital taxes and low capital

in production, the skill premium declines in the case of skill–capital complementarity.

As a consequence, the distribution of income becomes more equal. Both effects are

welfare-enhancing.

In conclusion, we highlight three directions for future research to extend and improve

upon the assumptions of our model. First, we consider a variation of labor in response

to fiscal policies along the intensive margin. Technological progress is very likely to

affect labor along the extensive margin as well. Robots and automation may be perfect

substitutes for workers. Second, we assume that capital deepening benefits mainly

skilled workers by increasing the skill premium. One of the most dramatic underlying

current trends in production technology, however, is the shift from unskilled to skilled

worker replacement because of AI. As emphasized by Acemoglu and Restrepo (2018),

the net impact of AI depends on the speed and magnitude of the displacement of old

tasks versus the creation of new tasks. We expect the optimal capital tax rate to

be sensitive to the nature and direction of technological change. Third, we neglect

any effect the capital tax rate may have on the growth rate. High capital taxes,

however, reduce the incentives to invest in research and human capital and may harm

technological progress.
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Appendix

A Sensitivity Analysis

In this section, we study the sensitivity of the optimal capital tax rate to the growth rate

g, the intertemporal elasticity of substitution IES, and income tax progressivity θ1. In

particular, we conduct three experiments: 1) no growth (g = 0), 2) η = 4.0, and 3) a

flat-rate income tax with θ1 = 0. All these experiments are likely to increase the optimal

capital income tax rate, as we argue below. As experiments 1) and 3) are counterfactual

assumptions, we keep the benchmark calibration presented in Table 3.1. In case 2,

where the IES lies within the range of empirical estimates from microeconometric

studies, we recalibrate the model. In particular, γ, α and µ are set to imply an average

labor supply of 0.25, a skill premium of 150% and a labor share of 65%.

A.1 Growth rate

The economic growth rate is an important determinant of savings. In the presence of a

public pay-as-you-go system, the incentives to save increase with a lower growth rate,

g = 0, as the return from the pay-as-you-go system falls. As a consequence, savings

are less sensitive to a change in the net real interest rate. This result also appears in

our quantitative analysis, as presented in Table A.1. As the economic growth rate falls

to zero, the optimal steady-state capital tax rate τK,∗ increases from 27.3% to 36.7%,

whereas the quantitative welfare gains of a rise from the present level of 22.8% to the

optimal level of 36.7% are rather small and amount to only 0.03% of total consumption.

Case Optimal Welfare effects

τK,∗ τK,∗ τK = 0

Benchmark 27.3% 0.01% -0.28%

no growth, g = 0 36.7% 0.03% -0.10%

η = 4 38.9% 0.17% -0.44%

flat income tax, θ1 = 0 37.8% 0.15% -0.52%

Table A.1: Optimal capital tax τK,∗: Sensitivity analysis

When we interpret this finding and apply it for policy advice, we need to be careful,
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however. First, we need to ascertain that the economy is dynamically efficient. A posi-

tive welfare effect of increased capital taxes arises trivially in an overlapping-generations

model that is characterized by dynamic inefficiency, ∂Y/∂K−δ < n+g+ng. This con-

dition, however, does not hold in any of the quantitative experiments considered in this

paper and would be at odds with recent empirical evidence provided for the US econ-

omy estimated by Heylen et al. (2024). Second, we must remember that we assume

that technological growth is exogenous. However, in models of endogenous growth,

savings and, therefore, the investment rate may increase the growth rate, and the as-

sumption that the growth rate is independent of the capital tax is not an innocuous

simplification.

A.2 Intertemporal Elasticity of Consumption

With a reduced intertemporal elasticity of substitution, 1/η, savings react less sensi-

tively to a change in the net interest rate. Accordingly, the detrimental welfare effects

of increased capital taxes are reduced, and the welfare-enhancing effects of compen-

satory lower labor income taxes increase in relation to these costs. As a consequence,

it is optimal to tax capital at a higher rate. As presented in Table A.1, the optimal

capital tax rate increases from 27.3% in the benchmark with 1/η = 1/2 to 38.9% in

the case with 1/η = 1/4. In addition, the quantitative welfare gains are magnified. A

decline in the capital income tax rate from its optimal level to zero is associated with

a welfare loss of 0.61% of consumption, whereas the corresponding welfare costs in the

benchmark case amount to only 0.29% of consumption.

A.3 Income Tax Progressivity

With a flat-rate income tax, θ1 = 0, the capital income tax is used as a substitute for the

labor income tax to redistribute income from the rich to the poor. As a consequence,

the optimal capital income tax rate increases from 27.3% to 37.8%. Note that, in this

case, the welfare effects of a long-term change from the optimal capital tax rate to

zero are also much greater than those in the benchmark case and amount to 0.67% of

total consumption. We thus confirm the results of Conesa and Krueger (2009) that the

optimal capital tax depends on the presence of progressive labor income taxes and is

significantly higher in a flat-rate income tax regime.
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