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1 Introduction

In 2015, nearly every country in the world committed to reducing carbon emissions and limiting

global warming to a maximum of 2°C, with efforts to aim for 1.5°C. Achieving these targets

will require a comprehensive decarbonization of the global energy system in the 21st century

(Kriegler et al., 2014). To rebuild its energy system, Germany has set a target of generating 80%

of its electricity from renewable sources by 2030 (BMJ, 2023). Currently, around 56% of total

electricity generation comes from renewable sources (Destatis, 2024), and especially wind and

solar energy play a key role, since they accounted for 31% and 12% of total electricity production

in 2023 (Destatis, 2024), respectively.

However, substantial efforts are needed to significantly accelerate the energy transition and

meet the 2030 target, and legislation has been passed to set aside 2% of the national land area

for such projects (BMJ, 2023). Despite their environmental benefits, however, wind and PV

installations often face local opposition, primarily due to concerns about visual aesthetics in

the landscape, impacts on the local environment and animal populations, noise, and even neg-

ative health effects (Jensen et al., 2014; Krekel and Zerrahn, 2017; Zerrahn, 2017). Therefore,

understanding the negative externalities of such installations is crucial for policy makers to (i) op-

timally site energy facilities to minimize overall negative externalities, and (ii) potentially design

compensation schemes to mitigate negative local externalities and increase public acceptance.

In this paper, we analyze the local costs and benefits of both onshore wind turbines and large

PV farms by conducting a hedonic price analysis. Our data are the universe of wind turbines

and large PV farms and housing ads from Germany’s largest online real estate platform for the

period spanning from 2009 to 2021. Employing small-scale regional fixed effects at the 1 km2

level allows us to identify the effects of installing a wind turbine or a PV farm in the proximity of

a property in a spatial difference-in-differences framework. Beyond estimating average treatment

effects, we analyze whether the effect varies with the distance to the next energy facility and

whether the effect depends on the number of energy facilities. Moreover, we add to the existing

literature by estimating property price effects not only of the nearest energy facility, that is, the

effect of an installment at distance d conditional on other installments closer or further away

from the property.
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Our findings show that the effects of installing wind turbines and PV farms are locally very

concentrated. Wind turbines within a radius of 1-3 km lower property prices, by roughly 2%.

These effects appear to be the same irrespective of whether other turbines are installed within

a 6 km radius. The property price effects seem to be larger for wind turbines with a higher

capacity and among properties that are located in areas with a low population density and

income. Moreover, we find that a larger number of wind turbines leads to a greater decline

in property prices. However, each additional wind turbine only has a small effect on property

prices. For instance, the installation of one or two wind turbines in the radius of up to 3 km

reduces property prices by roughly 2%, while more than ten wind turbines in the same radius

lead to a cumulated effect of -4.8%. Yet, also for higher numbers of wind turbines we cannot

find significant property price effects beyond a 3 km distance. Regarding PV farms, we find

that the installation lowers property prices by 1.9% in the distance of 1-2 km. We do not find a

cumulative effects of PV farms.

The literature generally finds a negative externality of wind turbines and PV systems (Heintzel-

man and Tuttle, 2012; Lang et al., 2014; Krekel and Zerrahn, 2017; Frondel et al., 2019; Joly

and De Jaeger, 2021). A recent meta-analysis finds an average reduction in property values of

0.68% within a radius of about 2 miles or 3.2 km from the nearest wind turbine (Schütt, 2024).

Using transaction data from the Dutch real estate market, Dröes and Koster (2016) find that the

presence of a wind turbine within 2 km of a property reduces prices by an average of 1.4%. Other

studies use additional data to gain more insights by estimating the effect of visibility rather than

proximity. For example, Gibbons (2015) show that property prices in England and Wales are on

average 5-6% lower for homes with a visible wind turbine within 2 km. Similarly, Jensen et al.

(2014) disentangle different externalities and show that visual pollution reduces the sales price

of a house in Denmark by up to about 3%, while noise pollution reduces the price by between

3% and 7%. The literature therefore suggests that wind turbines may generate notable negative

local externalities. The local externalities, however, remain relatively small in comparison to

industrial plants (Davis, 2011; Currie et al., 2015), and are of similar size compared to noise

pollution from airports (Boes and Nüesch, 2011; Breidenbach and Thiel, 2024) and train traffic

(Thiel, 2022).

With respect to the cumulative effect of wind turbines, Guo et al. (2024) use extensive

3



viewshed data from the US to detect that having at least one wind turbine in a home’s viewshed

of a 10 km radius reduces the sales price of such a property on average by 1.12%. In addition,

the authors show that the capitalization of the disamenity effects increases only marginally with

the number of wind turbines in the viewshed and does not change the overall local externality

notably. To be precise, each additional 10 wind turbines in the viewshed lower sales prices by

0.2%. In contrast to this, Gibbons (2015) finds larger differences in property price effects by the

number of wind turbine for England. His results suggest a 1.6% decrease in property prices due

to 1-10 wind turbines at a 2-4 km distance, while 11-20 (21≤) wind turbines reduce prices by

2.1% (5.3%).

The literature on property price effects of other renewable energy sources, such as solar farms,

is scarcer. Dröes and Koster (2021) show that a solar farm in the Netherlands reduces property

prices in a 2 km radius by 2.6%. In contrast, Maddison et al. (2023) finds a large property

price effect of -5.4% for real estate in England and Wales, but only within less than 750 m south

of a PV farm. Jarvis (2021) finds no statistically significant effect of PV farm construction on

property values in the UK.

We contribute to this literature with new evidence on distance- and intensity-specific property

price effects of wind turbines and PV farms. Most of the existing literature focuses on the

property price effect of wind turbines and PV farms within a certain radius, using distance to

the nearest facility as the treatment definition. In contrast to this, we estimate property price

effects for energy facilities at distance d conditional of other proximate facilities and therefore

account for a property’s exposure to multiple facilities. By allowing properties to be treated at

different distances we are able to estimate treatment effects for facilities other than the nearest

one. In particular, we answer the questions (i) up to what distance do energy facilities other

than the nearest one exert a negative externality, (ii) do externalities vary with the number of

facilities, (iii) and how do distance and intensity effects interact.

The remainder of this paper is structured as follows. Section 2 describes the underlying data

together with some descriptive statistics as well as the used methodology. Section 3 and 4 report

the estimation results for wind turbines and PV farms, respectively. Section 5 concludes.
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2 Data and Methods

2.1 Data

Our analysis is based on two main data sources: real estate data from Germany’s largest online

real estate platform and the universe of all wind turbines and ground-mounted PV farms. The

real estate data comes from the RWI-GEO-RED data set, which includes all properties listed for

sale on the real estate platform ImmobilienScout24 between January 1, 2009 and December 31,

2021. According to the latest estimates by the German Federal Cartel Office, ImmobilienScout24

has a market share of over 70% of all (Federal Cartel Office, 2016) and can therefore be considered

an adequate representation of the German housing market.1 The data includes asking prices,

date of listing, a wide range of property characteristics and exact geo-coordinates (Schaffner

and Thiel, 2023). For our analysis, we only consider properties with a given asking price and

floor area, and exclude observations with implausible or missing geocoordinates. The data set

is cleaned by removing duplicates and keeping only the most recent listing of a property if the

listing has been updated over time, which should best capture the value of the property. We

also exclude unique property types, such as those labelled ’castle’, and drop outliers, which we

define as the top one percent in terms of number of rooms, and the top and bottom one percent

in terms of asking price, floor area and plot size.

The data set on renewable energy facilities includes all planned and installed wind turbines

and ground-mounted PV farms from the Core Energy Market Data Register (CEMDR). This

ensures a full representation of all relevant installations in Germany and eliminates selection bias

and measurement error of treatment (intensity) due to unobserved energy facilities. In addition,

the large number of energy facilities allows for various heterogeneity analyses based on different

facility characteristics. However, we rely on Manske et al. (2022), who have pre-processed and

cleaned this data set and thus provide an updated and improved version of the data collected

by Eichhorn et al. (2019). Compared to the original data, this data set provides more granular

and accurate geocoordinates of energy facilities. However, the data set ends on May 7, 2021,

which is the last date in our observation period. The data set provides the exact coordinates of

1We do not consider property rentals due to the small number of observations. We also exclude apartments,
as they are mostly located in urban areas and not close to wind turbines and PV farms.
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the energy facilities and includes various facility-specific characteristics, such as hub height and

gross capacity, as well as the exact dates of (planned) start of operation.

We combine the two data sets based on the exact geocoordinates of both the properties and

the energy facilities. First, we use the geocoordinates to count the number of energy facilities at

different distances from a property, specifically at distances of 0-1 km, 1-2 km, 2-3 km, 3-4 km, 4-5

km, and 5-6 km for both wind turbines and PV farms. In addition, we merge regional character-

istics at the one square kilometer grid level based on the RWI-GEO-GRID data set (Breidenbach

and Eilers, 2018). The RWI-GEO-GRID dataset contains detailed socio-demographic character-

istics, such as local population, housing composition, income, and unemployment rates. After

merging, we obtain a rich real estate data set linked with information on nearby energy facilities

and small-scale neighborhood characteristics.

2.2 Descriptives

Table 1 presents summary statistics on the windmill and PV farm samples. In total, the sample

includes 31,762 wind turbines, of which 29,561 are installed and operating as of 7th May 2021.

The remaining 2,201 wind turbines are under development and planned for installation after our

observation period. All PV farms in our sample are installed and operational by May 2021. The

first wind turbine and PV farm were installed in 1983 and 1988, respectively. However, the vast

majority was installed after 2000 (Figure A1).

Table 1: Descriptive Statistics: Wind Turbine & PV Farm Sample

Mean Std. Dev. Min Max Obs.
Wind Turbines

(Planned) Installation Year 2008 7.5 1983 2053 31,762
Hub Height (m) 100.6 33.6 18 200 31,176
Rotor Diameter (m) 86.4 32.0 10 200 31,404
Installed Capacity (MW) 2,221 1,289 30 20,000 31,762

PV Farms
(Planned) Installation Year 2013 4.3 1988 2021 6,621
Installed Capacity (MW) 2,085 3,599 30 98,988 6,621
Size (sqm) 34,437 60,709 156 1,871,304 6,621

Note: The sample is based on the Core Energy Market Data Register (CEMDR) (Manske et al.,
2022) and includes 31,762 wind turbines and 6,621 PV farms.

The wind turbines in our sample vary considerably in terms of height, rotor diameter, and
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Figure 1: Spatial Distribution of Wind Turbines and PV Farms in Germany in 2021

(a) Wind Turbines (b) PV Farms

Notes: The maps show the number of installed wind turbines and the area covered by PV farms (in
sqm) in each municipality in 2021. NAs refer to the absence of wind turbines or PV farms in a given
municipality.

installed capacity (Table 1).2 For instance, while the average wind turbine height is around

100 meters, we observe wind turbine heights ranging from 18 to 200 meters. There is a similar

variation in rotor diameter, with an average of 86.4 meters. PV farms appear to vary even more,

both in terms of size in square meters and installed capacity. With 2,085 MW, PV farms have a

similar average capacity as wind farms. However, the largest PV farm has an installed capacity

of around 100,000 MW, enough to meet the average annual consumption of more than 20,000

4-person households.

Figures 1(a) and 1(b) illustrate differences in the spatial distribution of wind turbines and

PV farms in Germany in 2021. We find the highest concentration of wind turbines in northern

2We impute missing values for some wind turbines on the basis of the reported wind turbine type, using the
average characteristic for the type.
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Germany, with a higher number of municipalities with installed wind turbines and more installed

wind turbines in general. These differences in the spatial distribution of wind turbines appear

to be persistent over time and throughout our observation period. We find a similar pattern

in the distribution of wind turbines in 2009 (Figure A2(a)) and a greater expansion of wind

energy between 2009 and 2021 in municipalities that already had installed wind turbines in 2009

(Figure A3(a)). For PV farms, we observe a greater land area covered by PV farms in East

Germany (Figure 1(b)). At the beginning of our observation period in 2009, only a few PV

farms were installed in individual municipalities (Figure A2(b)). Hence, we observe the major

part of installment during our observation period.

Table 2 presents descriptive statistics for the property sample. During our observation period

from 2009 to 2021, about 7 million properties are listed for sale. Of these, 3.4 million properties

are within 6 km of a wind turbine, which is the maximum distance up to which we estimate

distance-specific treatment effects in our main analysis. The remaining 3.7 million properties are

beyond a 6 km distance from a wind turbine and are considered to be untreated. It is noticeable

that properties within a 6 km radius have a significantly lower asking price per square meter

(sqm) and also differ in several other characteristics. Properties located closer to wind turbines

are more likely to be single-family homes, are on average two years older, and have a (slightly)

larger plot size (living space). In addition, properties within a radius of 6 km are more often

located in poorer and rural areas with lower population density, as wind turbines are mostly

located in regions with greater land availability and lower land prices.3

We partially account for differences between treated and untreated properties by restricting

our sample to properties within 8 km of the nearest wind turbine, following Dröes and Koster

(2016, 2021), and Gaur and Lang (2023), to reduce the risk of omitted variable bias in our

analysis.4 This restricted sample leaves us with 4.6 million observations, of which 1.2 million

properties are located beyond 6 km from the nearest wind turbine. For the restricted sample,

the differences in property and neighborhood characteristics are significantly smaller. Except

for asking price (per sqm), we do not observe sizeable differences in property characteristics

3Descriptive statistics for properties within (beyond) 3 km of the nearest wind turbine are presented in Table
A1 in the Appendix. The 3 km distance marks an alternative distance threshold for treatment definition in the
estimation of treatment effects by treatment intensity and the maximum distance up to which we find significant
property price effects of wind turbines.

4We test the robustness of our results to different cut-offs in section 3.
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between properties within and outside a 6 km radius of the nearest wind turbine. However, we

still observe notable differences in neighborhood characteristics. Therefore, we control for the

neighborhood characteristics in our estimations. Moreover, we account for time-constant spatial

differences, such as altitude, by including small-scale regional fixed effects.5

Table A2 presents descriptive statistics for the property sample differentiated by proximity

to the nearest PV farm. Similar to the case of wind turbines, the full sample exhibits differences

between properties within and beyond a distance of 6 km from the nearest PV farm. However,

these differences tend to be smaller than in the case of wind turbines. Properties within a 6

Table 2: Descriptive Statistics: Property Sample

Full Sample Restricted Sample
Nearest WT Nearest WT

All within beyond All within beyond
6 km 6 km 6 km 6 km

Property Attributes
Price (e) 299,489 259,884 335,865 268,404 259,884 291,400
Price per sqm 1,825 1,583 2,046 1,627 1,583 1,744
Year of Construction 1974 1973 1975 1973 1973 1972
Last Modernization 2006 2006 2006 2006 2006 2005
Living Space (sqm) 170.8 172.1 169.6 172.8 172.1 174.8
Plot Area (sqm) 660.9 710.5 615.2 699.5 710.5 669.9
Single House 49.5 54.8 44.6 54.7 54.8 54.5
Serial House 4.6 4.2 5.0 4.5 4.2 5.2
First Occupancy 16.3 15.8 16.8 15.9 15.8 16.3
Refurbished 12.6 11.5 13.6 11.8 11.5 12.6
Clean 17.1 16.2 18.0 16.3 16.2 16.7
Work Required 6.1 5.8 6.3 5.9 5.8 6.2

Neighborhood Attributes
PP (in millions) 36.5 29.8 42.6 31.9 29.8 37.7
Share of Families 32.6 33.4 31.8 33.2 33.4 32.5
Unemployment Rate 5.4 5.8 5.1 5.8 5.8 5.6
Population per km2 1,642.9 1,401.5 1,864.6 1,494.6 1,401.5 1,746.0
Rurality 25.5 30.0 21.5 28.6 30.0 25.1

Obs. 6,998,338 3,350,418 3,647,920 4,591,854 3,350,418 1,241,436
Note: The restricted sample excludes all properties beyond 8 km to the nearest wind turbine. The displayed values
are average values. The mean of the binary variables single house, serial house, first occupancy, refurbished, clean,
and work required are shown as percentage share of properties with the corresponding attribute. Neighborhood
characteristics PP (annual purchasing power), share of families, unemployment rate, and population are on a 1
km2 grid level. Rurality is on the municipality level and defined by the percentage share of inhabitants in a given
municipality that live in a rural area with a population density of less than 150 inhabitants/km2. The index is taken
from the Federal Institute for Research on Building, Urban Affairs, and Spatial Development (BBSR, 2023). All
differences between properties within and beyond a 6 km distance are statistically significant, with the exception of
year of construction and last modernization.

5A visual inspection of the temporal differences in neighborhood characteristics is shown in Figure A4.
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km distance tend to be listed at a lower price (per sqm), have a larger floor area and plot size,

and are more likely to be detached properties. They are also located in more rural areas with

lower average incomes and population densities. In the sample excluding properties located more

than 8 km away, there are no sizeable differences based on observable property characteristics.

However, properties within 6 km of PV farms are still located in slightly poorer and more rural

areas, reflecting a higher concentration of PV farms outside cities and mainly in East Germany.

As in the case of wind turbines, spatial differences are accounted for by including neighborhood

characteristics and regional fixed effects in our analysis.6

Figure 2 illustrates the negative relationship between property prices and proximity to wind

turbines and PV farms. On average, properties within a 10 km distance to the nearest wind

turbine are listed for a price of e1,676 per square meter. The average property at a 0.5 to 1.5

km distance is listed for about e1,400 per sqm and the listing price increases gradually with

distance to almost e2,000 per sqm for properties at a 9.5-10 km distance. Similarly, property

prices increase with distance to the nearest PV farm at a diminishing rate, from about e1,440

per sqm at less than 500 m to more than e1,800 per sqm further than 6.5 km away. Differences

in property prices by distance to the nearest wind turbines and PV farm can be explained by

differences in the spatial distribution shown Figure 1.

Figure 2: Property Prices and Distance to Nearest Energy Facility

(a) Wind Turbines (b) PV Farms

Notes: The figures display the average asking price for properties at different distances to the nearest
wind turbine and PV farm, respectively. The horizontal dashed line represents the average asking price
across all properties within a 10 km distance to the nearest wind turbine or PV farm.

6See Figure A5 for a graphical illustration of the differences over time.

10



2.3 Methodology

We employ a difference-in-differences (DiD) hedonic method to estimate the effect of energy

facilities on property prices. To estimate property price effects based on both distance and

number of facilities, we use two estimation strategies. Both estimation strategies are performed

for both wind turbines and PV farms, respectively.

In a first step, we aim to identify the effect of installing energy facilities on property prices

at distance d. To this end, we distinguish between energy facilities at distances d defined by

0-1 km, 1-2 km, 2-3 km, 3-4 km, 4-5 km, and 5-6 km. Distance-specific treatment dummies

Ditd indicate at least one facility at distance d in the month t a property i is listed for sale.

Properties beyond a distance of 6 km from any energy facility are considered untreated.7 We

choose this categorical definition of treatment instead of the continuous distance to the nearest

wind turbine to estimate the relationship most flexibly and to explicitly account for the fact

that energy facilities are not located on the green meadow. In other words, we are interested in

the average property price effect of new installations at distance d conditional on other facilities

at distance d′. Hence, we allow properties to be treated at different distances, which permits

estimation of treatment effects for facilities other than the nearest one. Our estimates of property

price effects of facilities at distance d are therefore an average effect over properties only affected

facilities at distance d and properties affected by other facilities at distance d′ ̸= d within a 6 km

radius, both closer and further away. Using distance to the nearest facility as treatment does

not allow for this differentiation, and the effect of the nearest facility absorbs the property price

effects of all nearby facilities.

The two-way fixed-effects (TWFE) regression estimating distance specific treatment effects

is defined as follows:

log yirt =
6∑

d=1
βdDitd + λr + θt + γ1Xi + γ2Xrt +

t+4∑
s=t+1

νis + εirt (1)

where yirt is the offer price of property i located in location r listed in time period t, λr are

location fixed effects based on 1 km2 sized grid cells, and θt denotes year times month fixed

7Recall that the sample only includes within a 8 km distance to the nearest planned or installed wind turbine
or PV farm location, respectively.
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effects that capture seasonality and common property price developments, for instance due to

economic fluctuations and inflation effects.8 Xi and Xrt are vectors of property and time variant

neighborhood specific control variables.9 νis is a binary indicator equal to one for properties

listed s years before a wind turbine is installed within a 3 km radius and captures anticipation

effects. We choose the time window of 4 years based on the event study estimates shown in

Figure A6 and the distance threshold based on the maximum distance up to which we detect

significant treatment effects for wind turbines. We do not control for anticipation effects of PV

farms as suggested by Figure A6(b).

Our parameters of interest are βd, which identify the average property price effect of energy

facilities at distance d relative to properties without an energy facility at distance d, that is,

the conditional offer price differences between properties with and without wind turbines or PV

farms at distance d located in the same grid cell.10For the interpretation of βd it is important

to bear in mind that they are conditional on treatment in other distance categories, that is,

βd estimate the average effect of energy facilities at distance d conditional on the existence of

energy facilities at distance d′ ̸= d. Therefore, if a property is exposed to energy facilities at

two distances, the two corresponding coefficients are estimated conditional on each other. In a

robustness check, we estimate βd separately for the cases were no other energy facility is present

at d′ ̸= d, where another facility is present at d′ < d or d′ > d, respectively. Finally, ϵi is an

identically and independently distributed error term. We cluster our standard errors at the local

labor market level to allow for serial correlation in the errors over time and spatial correlation

in the development of property prices across grid cells. We use the definition by Kosfeld and

Werner (2012), which comprises 141 local labor markets and are used as a measure for local

housing markets.

In a second step, we are interested in treatment effects by treatment intensity and estimate

the effect of different numbers of wind turbines (PV farms) located within a 3 km (2 km) radius.

8Singleton observations are omitted in the high-dimensional fixed effect regressions to avoid incorrect inference
and an overestimation of significance levels in the presence of fixed effects nested in clusters. For a more detailed
discussion on the effect of singleton observations in high-dimensional fixed effects regressions refer to Correia
(2015).

9We control for (squared) floor space, (squared) plot size, property type FE, first occupancy and year of
construction FE, and quality of facility FE at the property level. Grid cell controls include purchasing power
(PP), share of foreigner, singles, and families, unemployment rate, and population.

10The effective number of treated units identifying distance-specific coefficients βd, conditional on grid cell and
month fixed effects are reported in Table A3.
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We choose the threshold of 3 km (2 km) based on estimation results from equation (1) and the

maximum distance d̄ up to which wind turbines (PV farms) impact property prices significantly.

To ensure the most flexible estimation of treatment intensity specific effects, we use a categorical

definition of treatment intensity. In case of wind turbines, we use six categories (J = 6), namely

1, 2, 3, 4, 5-9, and 10≤ wind turbines, ensuring a sufficient number of observations for each

level of treatment intensity. For PV farms, we differentiate between four categories (J = 4) due

to a lower prevalence of PV farms at shorter distances, namely between 1, 2, 3, and 4≤.11The

following regression model estimates the intensity specific treatment effects for each intensity

category j ∈ J :

log yirt =
J∑

j=1
βjDitj + γ1Xi + γ2Xrt + λr + θt +

t+4∑
s=t+1

νis + εirt (2)

with βj identifying the average treatment effect of j wind turbines (PV farms) located within a

3 km (2 km) radius in the month in which a property is listed for sale. All the other variables

are analogous to equation (1).

Last, we estimate distance specific effects for different treatment intensities. Yet, we only

choose two intensity categories to ensure a sufficient number of observations at each distance for

each intensity. In particular, we estimate distance specific property price effects of 1-4, and 5≤

wind turbines as well as 1 and 2≤ PV farms per distance band with the following regression:

log yirt =
2∑

j=1

6∑
d=1

βjdDitjd + γ1Xi + γ2Xrt + λr + θt +
t+4∑

s=t+1
νis + εirt (3)

where βjd identifies the effect of j energy facilities at distance d.12

In all regression models (1)-(3), causal identification of the treatment effect requires that

treatment, D, is uncorrelated with unobservables in the error term, i.e., unobserved factors that

explain differences in property prices and make properties more or less likely to be near an energy

facility in the month it is listed for sale. To address this threat to identification, we take the

following steps to allow for causal interpretation. We restrict the full set of properties to those
11The effective number of treated units identifying intensity-specific coefficients βj , conditional on grid cell and

month fixed effects are reported in Table A5.
12The effective number of treated units identifying distance- and intensity-specific coefficients βjd, conditional

on grid cell and month fixed effects are reported in Table A6.
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within a 8 km distance to the nearest wind turbine or PV farm location for the respective analysis,

respectively.13 As described in section 2.2, this reduces differences between treated and untreated

properties and ensures a more homogeneous sample of properties based on observable property

and neighborhood characteristics. Similar strategies to limit the risk of omitted variable bias are

used by Dröes and Koster (2016, 2021) and Gaur and Lang (2023), who also limit their sample

based on properties’ proximity to wind turbine locations. Nevertheless, the sample might still

comprise a large set of potentially different housing markets, heterogeneous price developments,

and heterogeneous treatment probabilities across properties.

We address these concerns by controlling for time invariant differences between property

locations across 1 km2 sized grid cells (λr). Thereby, we capture selection effects and time-

invariant factors that determine the exposure risk of a grid cell to wind turbines and PV farms.

Due to the granular regional fixed effects, we are confident to be able to account for time invariant

location specific factors. Key factors that determine placement of wind turbines are the degree

of urbanization and income (Dröes and Koster, 2016) as well as topographic and meteorological

conditions.

In addition, we control for several property and time variant grid cell characteristics to capture

compositional shifts over time and differences in the probability of treatment between grid cells

and property types. We discuss different robustness checks in section 3 to address additional

threats to identification. For instance, we additionally (i) account for unobserved differences in

treatment timing, (ii) use more conservative fixed effects specifications, and (iii) use different

samples based on the maximum distance between property and energy facility.

3 Results for Wind Turbines

This section presents our estimation results. We first discuss the results for wind turbines and

subsequently show the results for PV farms. As wind turbines are more prevalent, account for a

higher share of the German electricity mix, and have been built for a longer period of time, we

will concentrate on presenting the results for their implementation.

13We test the robustness or our results with respect to this threshold in section 3.
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3.1 Distance specific effect

We begin our analysis by estimating the effect of wind turbines on property prices differentiated

by distance and find a locally concentrated negative externality of wind turbines up to 3 km.

The estimated effects based on equation (1) are shown in Table 3. In our main specification

in column 1 the estimated coefficient for wind turbines less than 1 km away is 0.014% but is

not statistically significant at conventional levels. The large standard errors are due to the small

number of observations within such a short distance of the nearest wind turbine. Moreover, these

properties are located in very rural areas with nearby wind turbines often installed before 2000,

that is before the introduction of minimum distance requirements. Today, minimum distance

requirements are implicitly regulated by noise protection regulations, which do not specify an

exact distance in meters, but implicitly prohibit the installation of wind turbines within 1 km

of residential areas. These regulations where first introduced in 1998 (Immission Control Law,

1998). For a detailed discussion of these regulations and minimum distance requirements, see

Stede et al. (2021).

At 1-2 km and 2-3 km, wind turbines decrease property prices by 1.8% and 1.9%, respectively,

which is equivalent to e48,330 and e51,015 based on the average asking price of properties

between 2009 and 2021. Both effects are statistically significant at the 5 percent level. Beyond

3 km, we find no statistically significant effect of wind turbines on property prices, and the

magnitude of the coefficients is virtually zero. In sum, our results thus show a locally concentrated

negative effect of wind turbines on property prices within a radius of 3 km.

The estimates are robust to different sensitivity checks. First, our results are robust to unob-

served differences in treatment timing, i.e., differences in property price effects of wind turbines

installed at different points in time. In our baseline specification, month and grid cell fixed effects

account for level differences in property price effects between properties exposed to wind turbines

at different times. To account for differences in treatment timing at the property level, we ad-

ditionally include years after or before first treatment fixed effects.14 The estimated coefficients

remain qualitatively and quantitatively unchanged, confirming a negative and significant effect

of wind turbines at a distance of 1-3 km. (column 2).

14First treatment is defined by the installation year of the first energy facility within a 6 km radius of a property.
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Second, we address the risk of omitted variable bias by controlling for different linear price

trajectories between treated properties within a 6 km distance to the nearest wind turbine and

properties without a proximate wind turbine by interacting the corresponding interaction term

with a linear time trend. Again, our results remain robust, which suggests the absences of

unobserved differences in price trends between treated and untreated properties (column 3). In

fact, estimated property price effects tend to be slightly larger conditional on a differential linear

price trend.

Third, the negative effect of wind turbines at a distance of 1-3 km is robust to different sample

restrictions based on the maximum distance between properties and the nearest wind turbine.

In particular, we estimate distance specific treatment effects based on properties within a 7 km

Table 3: Distance-Specific Property Price Effects of WT

Dependent Variable ln(price)
(1) (2) (3) (4) (5)

WT at distance of (Ditd)
0-1 km 0.014 0.017 0.014 0.016 0.017

(0.016) (0.015) (0.016) (0.016) (0.015)
1-2 km -0.018** -0.016* -0.019** -0.016* -0.015*

(0.009) (0.009) (0.009) (0.009) (0.009)
2-3 km -0.019** -0.017** -0.020*** -0.017** -0.015*

(0.008) (0.007) (0.008) (0.008) (0.008)
3-4 km 0.001 -0.001 -0.002 0.002 0.004

(0.006) (0.005) (0.006) (0.006) (0.006)
4-5 km -0.005 -0.007 -0.009 -0.004 -0.002

(0.006) (0.005) (0.006) (0.006) (0.006)
5-6 km -0.002 -0.006 -0.007 -0.000 0.002

(0.006) (0.006) (0.006) (0.006) (0.006)
Max. Distance to Nearest WT 8 km 8 km 8 km 7 km 6 km
Month × Year FE ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓
1 km2 Grid Cell FE ✓ ✓ ✓ ✓ ✓
4 Years Anticipation FE ✓ ✓ ✓ ✓ ✓
Years after/before 1st WT FE - ✓ - - -
Linear Price Trend Differences - - ✓ - -
Observations 4,576,294 4,576,294 4,576,294 4,213,731 3,779,867
R-squared 0.718 0.718 0.718 0.716 0.712
Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest wind
turbine, following equation 1. The dependent variable is log listing prices per sqm in all specifications.
Control variables include (squared) floor space, (squared) plot size, property type FE, first occupancy
and year of construction FE, quality of facility FE at the property level. Time-varying controls at 1
km2 grid cell level include purchasing power, share of foreigners, singles, and families, unemployment
rate, and population. Standard errors clustered at the local labor market level in parentheses.
*** p<0.01, ** p<0.05, * p<0.1
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and 6 km distance to the nearest wind turbine, respectively. This reduces the size of our sample

but improves the comparability of the properties in our sample by excluding properties located

further away from wind turbines. The effects of wind turbines at 1-2 km and 2-3 only decrease

marginally and remain statistically significant, respectively (column 4-5).

The fact that our estimates are robust to various robustness checks even in smaller, more

homogeneous samples supports our claim that we identify the causal property price effect of

wind turbines and supports a locally concentrated property price effect within a 3 km radius.

So far, βd, the estimated property price effect of wind turbines at distance d is conditional on

wind turbines at other distances d′ within a 6 km distance. However, one might expect different

property price effects depending on whether (i) a property is not exposed to wind turbines at

another distance d′ (only at distance d), (ii) a property is also exposed to wind turbines at

a shorter distance d′ < d, or (iii) a property is also exposed to wind turbines at a further

distance d′ > d. To differentiate between these cases and to test if wind turbines other than

the nearest have a significant impact on property prices, we interact treatment dummies Ditd

in equation 1 with an indicator for each case. We do not differentiate between the three cases

for wind turbines at a distance of less than 1 km due to the small number of observations. The

corresponding estimates are presented in Figure 3.

In line with our baseline results (Table 3, column 1), we find no statistically significant

treatment effects beyond a distance of 3 km. Moreover, property prices do not appear to be

affected by wind turbines at distance d if there are no other wind turbines at distance d′ within 6

km. The estimated effect size is close to zero or even positive, and the large standard errors are

explained by a small number of properties with only one wind turbine in the respective radius

(Table A4). For properties with wind turbines at multiple distances, estimated property price

effects do not differ notably depending on whether there are additional wind turbines at shorter

or further distances. Wind turbines at a distance of 1-2 km (2-3 km) reduce property prices by

1.9% (1.8%) conditional on other wind turbines at d′ > d within a 6 km radius. Both effects are

statistically significant at the 5 percent level. Conditional on wind turbines at shorter distance,

the estimated property price effect at a 1-2 km (2-3 km) distance is only marginally smaller and

amounts to 1.9% (1.3%), yet forfeits statistical significant at the 10 percent level.

Our results suggest that property price effects may depend on the number of nearby wind
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Figure 3: Distance-Specific Property Price Effects of (non) nearest WT

Notes: The regression results are reported in Table A7. Distance specific coefficients are based on equation
(1) but differentiated by whether WT are present only at distance d (”only WT”), or whether other WT
exists at shorter (”non closest WT”) or longer distances (”closest WT”). Standard errors are clustered
at the local labor market level, the number of observations is 4,576,294 and the R2 is 0.718.

turbines, as significant effects are only present when properties are exposed to wind turbines at

multiple distances. We explore this in more detail in the following section. In addition, we find

that also wind turbines other than the nearest have a significant impact on property prices.

3.2 Intensity effect

In a next step, we look at the importance of treatment intensity and differences in property

price effects depending on the number of nearby wind turbines. In what follows, we refer to

the number of wind turbines within a 3 km radius of properties as treatment intensity. We

choose the distance threshold of 3 km because we do not observe statistically significant average

effects beyond this threshold in Table 3. The corresponding estimates on property price effects

by treatment intensity are based on equation (2) and are shown in Table 4.

Our intensity specific estimates exhibit two key features: First, the estimated effects of one,

two, and four wind turbines within 3 km are quantitatively comparable and not statistically

different. The estimated effect of three wind turbines is larger but also not statistically different

at the ten percent level. This suggests that small differences in the number of nearby wind

turbines do not affect the level of negative externalities.
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Second, we find a larger negative externality for larger numbers of wind turbines, in line with

the related literature (Gibbons, 2015; Dröes and Koster, 2016; Guo et al., 2024). While a single

wind turbine reduces property prices by 2%, 5-9 (≥10) wind turbines exert a negative effect of

3.6% (4.8%), on average. Hence, our results show that treatment intensity does affect the local

burden, however, only for large differences in the number of wind turbines.

3.3 Distance- and Intensity-Specific Property

So far, we have presented evidence of declining treatment effects with distance and increasing

treatment effects with treatment intensity. Next, we explore the additional effects of adding wind

turbines at different distances and how treatment intensity influences the maximum distance up

to which externalities are identified. To this end, we estimate distance specific treatment effects

for different treatment intensities based on equation 3. This allows us to differentiate between

Table 4: Intensity-Specific Property Price Effects of WT

Dependent Variable ln(price)
(1)

Treatment intensity dummy (≤ 3km) (Ditj)
1 WT -0.020*

(0.011)
2 WT -0.018*

(0.011)
3 WT -0.028**

(0.012)
4 WT -0.019*

(0.011)
5-9 WT -0.036**

(0.014)
≥10 WT -0.048***

(0.015)
Max. Distance to Nearest WT 8 km
Month × Year FE ✓
Controls ✓
1 km2 Grid Cell FE ✓
4 Years Anticipation FE ✓
Observations 4,576,294
R-squared 0.718

Notes: Estimates are based on properties within an 8 km distance to the nearest WT and based on
equation (2). The dependent variable is log listing prices per sqm. Control variables include (squared)
floor space, (squared) plot size, property type FE, first occupancy and year of construction FE, quality
of facility FE at the property level. Time-varying controls at the grid level are purchasing power, share
of foreigners, singles, and families, unemployment rate, and population. Standard errors clustered at
the local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Distance- and Intensity-Specific Property Price Effects of WT

Dependent Variable ln(price)
(1)

WT at 0-1 km distance
1-4 0.017 (0.015)
5≤ -0.031 (0.033)

WT at 1-2 km distance
1-4 -0.016* (0.010)
5≤ -0.020* (0.010)

WT at 2-3 km distance
1-4 -0.017** (0.008)
5≤ -0.023** (0.010)

WT at 3-4 km distance
1-4 0.002 (0.006)
5≤ 0.001 (0.008)

WT at 4-5 km distance
1-4 -0.004 (0.006)
5≤ -0.011 (0.007)

WT at 5-6 km distance
1-4 -0.001 (0.006)
5≤ -0.003 (0.008)

Max. Distance to Nearest WT 8 km
4 Years Anticipation Effects ✓
Controls ✓
1 km2 Grid Cell FE ✓
Month × Year FE ✓
4 Years Anticipation FE ✓
Observations 4,576,294
R-squared 0.718

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest
wind turbine, following equation (3). The dependent variable is log listing prices per sqm in all
specifications. Control variables include (squared) floor space, (squared) plot size, property type
FE, first occupancy and year of construction FE, quality of facility FE at the property level. Time-
varying controls at 1 km2 grid cell level include purchasing power, share of foreigners, singles, and
families, unemployment rate, and population. Standard errors clustered at the local labor market
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

the effects of 1-4 and more than 4 wind turbines at different distances. Using two instead of

five categories for treatment intensity ensures a larger number of observations for each distance

and intensity category and increases estimation precision. Table 5 summarizes the corresponding

estimates.

As before, we only find significant treatment effects up to 3 km distance also for higher

treatment intensities. The estimated point estimates are notably smaller beyond a 3 km distance

across all treatment intensities and statistically insignificant at conventional levels. This shows

that also for higher treatment intensities the effect of wind turbines on property prices is locally
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concentrated within a 3 km radius. When looking at property price effects at a distance of less

than 3 km by treatment intensity, our estimates show a larger property price effect of more wind

turbines. Unsurprisingly, we find the largest point estimate of −3.1% for a high level of treatment

intensity (≥5) at a distance of less than 1 km. The large confidence intervals are likely due to

the small number of observations, leading to reduced estimation imprecision. At 1-2 km and 2-3

km, one to four wind turbines reduce property prices by -1.6% and 1.7%, on average, while five

and more wind turbines have an effect of -2% and -2.3%. respectively. In both cases, a higher

number of wind turbines exert a larger negative effect on property prices but the effect sizes are

not statistically different.

Taken together our distance and intensity specific results show that also for higher treatment

intensity, local externalities from wind turbines are limited to a 3 km radius. Moreover, the

estimates support evidence of a stronger negative property price effect of a higher number of

wind turbines.

3.4 Heterogeneities

Last, we analyze different heterogeneities in the effect of wind turbines on property prices. For

this purpose, we estimate the property price effects of wind turbines within a distance of 3 km and

differentiate the treatment effect with respect to neighborhood and wind turbine characteristics.

The threshold of 3 km marks the maximum distance up to which we observe significant treatment

effects (section 3.1). For simplicity, we do not discuss heterogeneities in distance and intensity-

specific effects.

First, we find notable differences in property price effects across turbine types, with larger

effects for large, high capacity, and wide rotor turbines. However, in contrast to previous findings,

e.g. by Dröes and Koster (2016, 2021), we find only small differences in effect sizes (Table A8).

In particular, while low and medium capacity wind turbines appear not to have a statistically

significant property prices, high capacity wind turbines with more than 1800 MW have an average

effect of -2.5%. The differences in the estimated effects by height and rotor width are very similar,

due to a high correlation between all three turbine characteristics. These findings suggest that

wind turbine characteristics play an important role in terms of local externalities. Smaller wind
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turbines could reduce the local burden, but at the cost of lower energy production.

Second, we find a large heterogeneity in treatment effects across neighborhood characteristics

(Table A9). In our baseline analysis, we control for 1 km2 grid fixed effects. This is also the

regional breakdown of our control variables, except for the degree of urbanity, which is at the

municipality level, based on the Rurality Index developed by the Federal Institute for Research

on Building, Urban Affairs, and Spatial Development (BBSR, 2023).15 Therefore, variation in

neighborhood characteristics only stems from temporal changes, which are generally quite small.

Therefore, we use broader 2 km2 grid cells fixed effects instead to allow for a higher degree

of variation in observed neighborhood characteristics when estimating treatment effects, while

maintaining the grid cell characteristics for each property at the 1 km2 level. This allows for

variation both within a 2 km2 cell and over time and for a comparison of treatment effects by

neighborhood characteristics.

With this setup, we find larger treatment effects in urban municipalities and in areas with

lower population density. Property price effect only differ marginally by local income, measured

by local purchasing power. The estimated heterogeneity of effects with respect to population

density and the rurality of the municipality seems contradictory at first sight. On the one

hand, we find no property price effect of wind turbines in rural municipalities, but a larger and

statistically significant treatment effect of -13.2% in urban municipalities.

On the other hand, we only find statistically significant treatment effects in grid cells with

lower population density, conditional on the rurality of the municipality. This suggests that the

property price effects are larger in urban municipalities, but in grid cells with lower population

density. This can mostly be explained by a higher prevalence of wind turbines in these areas.

Our results show that the local costs of wind turbines vary notably across regions, with higher

costs for rural and low-income neighborhoods.

15The index indicates the share of inhabitants in a given municipality living in a rural neighborhood with a
population density of less than 150 inhabitants/km2. Based on this index, we classify rural municipalities are
those in which all residents live in neighborhoods with a population density of less than 150 inhabitants/km2. In
contrast, we classify urban municipalities as those in which all residents live in areas with a population density of
more than 150 inhabitants/km2. Mixed municipalities include both rural and urban neighborhoods.
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4 Results for PV Farms

This section presents our findings on the estimated property price effect of PV farms. First,

we estimate distance-specific property price effects and find treatment effects of similar size

compared to wind turbines, but locally more concentrated (Table 6). We find a property price

effect of −1.6% for PV farms 1-2 km (column 1) away which is statistically significant at the

one percent level. Beyond a 2 km distance we do not find significant property price effects of

PV farms. This finding is in line with the existing literature, but shows slightly smaller effects

compared to previous estimates, for example by Dröes and Koster (2021). Compared to wind

turbines, the negative impact of PV farms is more locally concentrated, but of similar magnitude.

Our estimates on distance specific property price effects of PV farms are robust to the set of

sensitivity checks already discussed in section 3.1 (Table 6, columns 2-5). The estimated effect

Table 6: Distance-Specific Property Price Effects of PV Farms

Dependent Variable ln(price)
(1) (2) (3) (4) (5)

PV at distance of (Ditd)
0-1 km -0.007 -0.006 -0.006 -0.007 -0.007

(0.007) (0.007) (0.008) (0.007) (0.007)
1-2 km -0.019*** -0.017*** -0.018*** -0.019*** -0.019***

(0.006) (0.006) (0.007) (0.006) (0.005)
2-3 km -0.007 -0.005 -0.006 -0.007 -0.007

(0.006) (0.006) (0.007) (0.006) (0.006)
3-4 km -0.009 -0.007 -0.008 -0.009 -0.009*

(0.006) (0.006) (0.007) (0.006) (0.005)
4-5 km -0.005 -0.003 -0.004 -0.006 -0.006

(0.005) (0.005) (0.007) (0.005) (0.005)
5-6 km -0.004 -0.001 -0.003 -0.005 -0.005

(0.005) (0.005) (0.007) (0.005) (0.005)
Max. Distance to Nearest WT 8 km 8 km 8 km 7 km 6 km
Month × Year FE ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓ ✓
1 km2 Grid Cell FE ✓ ✓ ✓ ✓ ✓
Years after/before 1st WT FE - ✓ - - -
Linear Price Trend Differences - - ✓ - -
Observations 4,456,857 4,456,857 4,456,857 4,038,519 3,529,849
R-squared 0.748 0.748 0.748 0.747 0.745
Notes: Estimates are based on properties within a 8km distance to the nearest PV farm following
equation 1. The dependent variables is log listing prices per sqm in all specification. Control
variables include (squared) floor space, (squared) plot size, property type FE, first occupancy and
year of construction FE, quality of facility FE at the property level. Time varying control at grid level
are purchasing power, share of foreigners, singles, and families, unemployment rate, and population.
Standard errors clustered at local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Intensity-Specific Property Price Effects of PV Farms

Dependent Variable ln(price)
(1)

Treatment intensity dummy (≤ 2km) (Ditj)
1 PV -0.020***

(0.006)
2 PV -0.007

(0.008)
3 PV -0.028*

(0.014)
≥4 PV -0.028*

(0.015)
Max. Distance to Nearest WT 8 km
Month × Year FE ✓
Controls ✓
1 km2 Grid Cell FE ✓
Observations 4,456,857
R-squared 0.746

Notes: Estimates are based on properties within an 8 km distance to the nearest PV farm and based on
equation (2). The dependent variable is log listing prices per sqm. Control variables include (squared)
floor space, (squared) plot size, property type FE, first occupancy and year of construction FE, quality
of facility FE at the property level. Time-varying controls at the grid level are purchasing power, share
of foreigners, singles, and families, unemployment rate, and population. Standard errors clustered at
the local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

of PV farms 1-2 km away varies only slightly between −1.7% and −1.9% across all specifications

and remains statistically significant at the one percent level. Thus, controlling for (i) years

after or before the first treatment fixed effects (column 2), the differential linear time trend

between properties within and beyond a 6 km distance to the nearest PV farms (column 3),

and (iii) excluding properties beyond a 7 km or 6 km distance to the nearest PV farms (column

4&5) does not affect our results in a meaningful way. The robustness of our estimates gives us

confidence that we are indeed estimating the causal effect of PV farms on property prices.

Table 7 shows that property price effects of PV farms only differ by a small extent by the

number of PV farms. A single PV farm within a 2 km radius reduces property prices by 2%,

while three or more PV farms reduce property prices by 2.8%. Yet, the estimated effects are not

statistically different. Our results therefore suggest that the local burden of PV farms on property

prices does not depend on the number of PV farms and associated differences in property price

effects are only small.

Table 8 reports distance and treatment intensity specific coefficients based on equation (3),

distinguishing between 1 and more than 2 PV farms for each distance. We do not differentiate
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at a distance of less than 1 km due to insufficient observations with more than one PV farm.

Consistent with our previous findings, we find significant property price effects only at 1-2 km.

This confirms the absence of negative externalities beyond 2 km, even at higher treatment in-

tensities. However, a limited number of properties with more than one PV farm per distance

category leads to lower estimation precision. Also at a distance of 1-2 km, the effect of two and

more PV farms is statistically insignificant.

Finally, we assess differences in the impact of PV farms on property prices across different

neighborhood and PV farm characteristics (Table A10 & A11). As in the case of wind turbines,

we find a higher property price effects of PV farms in more urban municipalities and no significant

effects in rural municipalities (column 1, Table A10). Within municipalities, however, property

price effects are highest in grid cells with average population density (column 3, Table A10).

Table 8: Distance- and Intensity- Specific Property Price Effects of PV Farms

Dependent Variable ln(price)
(1)

PV at 0-1 km distance -0.007 (0.007)
PV at 1-2 km distance

1 -0.020*** (0.006)
2≤ -0.015 (0.010)

PV at 2-3 km distance
1 -0.008 (0.006)
2≤ -0.006 (0.008)

PV at 3-4 km distance
1 -0.010 (0.006)
2≤ -0.007 (0.008)

PV at 4-5 km distance
1 -0.007 (0.005)
2≤ -0.002 (0.007)

PV at 5-6 km distance
1 -0.006 (0.005)
2≤ -0.001 (0.009)

Max. Distance to Nearest WT 8 km
Month × Year FE ✓
Controls ✓
1 km2 Grid Cell FE ✓
Observations 4,456,857
R-squared 0.748

Notes: Estimates are based on properties within a 8 km distance to the nearest PV farm. The dependent
variables is log listing prices per sqm in all specification. Control variables include (squared) floor space,
(squared) plot size, property type FE, first occupancy and year of construction FE, quality of facility FE
at the property level. Time varying control at grid level are purchasing power, share of foreigners, singles,
and families, unemployment rate, and population. Standard errors clustered at local labor market level in
parentheses. *** p<0.01, ** p<0.05, * p<0.1
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This reflects the higher prevalence of PV farms in semi-urban areas compared to wind turbines,

which are present mostly in rural areas. We do not find significant property price effects of PV

farms in low and high population density grid cells. With respect to income, we find the largest

property price impact of PV farms in medium income grid cells of about -1.9% (column 2, Table

A10. We find no property price effects in high income grid cells and the effect in low-income grid

cells of -1.2% is only statistically significant at the ten percent level.

At last, we find only small differences in property price effects of PV farms by installed

capacity (Table A11). PV farms with less than 1800 MW reduce nearby property prices by

2-2.3%. In contrast, the estimated effect of PV farms with larger capacity is slightly smaller

and statistically insignificant. A potential reason might be that larger PV farms have a larger

land use and are therefore more often located in more rural areas and possibly outside cities or

built-up areas. As a result, they would have a lower impact on the nearby residence.

5 Conclusion

In this paper, we analyze the distance and intensity specific effect of wind turbines and PV farms

on property prices. To this end, we exploit a spatial difference-in-differences setting with regional

fixed effects at a one km2 grid level and employ the universe of energy facilities and housing ads

from Germany’s largest online real estate platform between 2009 and 2021.

Our findings show that the installation of wind turbines and PV farms lowers property prices

in the close proximity. A property with at least one wind turbine within a 1-3 km radius sells

for roughly 2% less than a statistical equal property without a wind turbine at this distance.

The effect for PV farms is similar in magnitude but more concentrated, as the negative impact

is limited to a distance between 1-2km. Beyond these thresholds, we cannot detect further

statistically significant effects. Moreover, we detect some evidence for cumulative effects of wind

turbines but not for PV farms. While a single wind turbine within a 3km distance to a property

reduces its asking price by 2%, the effect amounts to up to 5% for at least 10 wind turbines

in that radius. The price effects seem to be particularly strong for higher wind turbines and

increase with a decreasing population density.

Our analysis theoretically allows for both positive and negative effects of installing renewable
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energy facilities on property prices. It seems that locally the negative effects outdo potentially

positive effects. While negative effects are very salient (e.g. noise, visual pollution, flickering),

positive effects are more opaque and do not necessarily benefit the property directly (e.g. revenues

for the facility operator). Yet, compared to other infrastructure investments like coal and gas

plants (Davis, 2011), airports (Boes and Nüesch, 2011), and rail tracks (Thiel, 2022), the negative

effects are comparable or smaller in magnitude.

Given that renewable energy generation is the major response to the threat of climate change,

the society has to judge whether accepting local costs (in terms of lower property value) is worth

providing the global benefit (in terms of green energy). Yet, as new capacity is required quickly

to meet climate targets, this consideration has to be made timely. One possibility to accelerate

this process could be by socializing the benefits that accrue by renewable energy, e.g. via partial

ownership of the energy facilities, reduced electricity tariffs or lump-sum payments. Moreover,

given that we only find small marginal effects of incrementing the number of wind turbines close

to properties, it could be an accelerating factor to build wind turbines in small clusters rather

than finding new locations.
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Appendix

A Tables and Figures

A.1 Tables

Table A1: Descriptive Statistics: Property Sample II

Full Sample Restricted Sample
Nearest WT

within beyond within beyond
3 km 3 km 3 km 3 km

Property Attributes
Price 244,415 313,879 244,415 279,473
Price per sqm 1,515 1,905 1,515 1,678
Year of Construction 1973 1974 1973 1972
Last Modernization 2006 2006 2006 2005
Living Space 169.6 171.1 169.6 174.3
Plot Area 727.3 643.5 727.3 686.7
Single House 55.6 47.9 55.6 54.3
Serial House 3.7 4.8 3.7 4.8
First Occupancy 15.7 16.5 15.7 16.0
Refurbished 11.1 12.9 11.1 12.1
Clean 15.8 17.4 15.8 16.5
Work Required 5.6 6.2 5.6 6.0

Neighborhood Characteristics
PP (mio) 24.4 39.6 24.4 35.4
Share of Families 34.8 32.0 34.8 32.4
Unemployment Rate 5.7 5.4 5.7 5.8
Rurality 32.0 23.8 32.0 27.1
Population Density 1,159 1,769 1,159 1,649

Obs. 1,449,738 5,548,600 1,449,738 3,142,116
Note: The restricted sample excludes all properties beyond 8 km to the nearest wind turbine.
The displayed values are average values. The mean of the binary variables single house, serial
house, first occupancy, refurbished, clean, and work required are shown as percentage share
of properties with the corresponding attribute. Neighborhood characteristics PP (annual
purchasing power), share of families, unemployment rate, and population are on a 1 km2

grid level. Rurality is on the municipality level and defined by the percentage share of
inhabitants in a given municipality that live in a rural area with a population density of less
than 150 inhabitants/km2. The index is taken from the Federal Institute for Research on
Building, Urban Affairs, and Spatial Development (BBSR, 2023). All differences between
properties within and beyond a 6 km distance are statistically significant, with the exception
of year of construction and last modernization.
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Table A2: Descriptive Statistics: Property Sample III

Full Sample Restricted Sample
within beyond within beyond within beyond within beyond

6 km 6 km 2 km 2 km 6 km 6 km 2 km 2 km
Property Attributes

Price (e) 299,475 303,168 272,447 301,940 285,248 275,170 272,447 287,175
Price per sqm 1,824 1,857 1,667 1,839 1,718 1,654 1,667 1,726
Year of Construction 1974 1974 1973 1974 1973 1972 1973 1973
Last Modernization 2006 2005 2006 2006 2006 2005 2006 2005
Living Space (sqm) 174.1 168.9 173.6 170.5 173.2 172.0 173.6 173.1
Plot Area (sqm) 698.0 639.8 712.1 656.2 685.7 669.7 712.1 681.8
Single House 54.1 46.8 54.1 49.0 54.9 55.9 54.1 54.9
Serial House 4.6 4.8 3.5 4.7 4.4 4.7 3.5 4.6
First Occupancy 17.1 15.9 17.8 16.2 16.1 14.7 17.8 15.8
Refurbished 11.1 13.4 10.1 12.8 11.7 12.4 10.1 11.9
Clean 15.4 18.0 13.8 17.4 15.7 16.1 13.8 16.0
Work Required 5.8 6.2 5.4 6.1 5.8 5.9 5.4 5.9

Neighborhood Characteristics
PP (mio) 36.5 38.9 29.3 37.1 32.6 33.2 29.3 33.1
Share of Families 32.1 32.7 31.1 32.7 32.3 33.0 31.1 33.3
Unemployment Rate 5.4 5.6 5.4 5.4 5.4 5.7 5.4 5.4
Rurality 32.1 21.7 37.8 24.4 32.3 29.5 37.8 29.5
Population Density 1,643 1,743 1,382 1,667 1,498 1,538 1,382 1,515

Obs. 2,533,158 4,466,738 585,049 6,414,847 2,533,158 1,939,095 585,049 3,887,204
Note: The restricted sample excludes all properties beyond 8 km to the nearest PV farm. The displayed values are average values. The mean
of the binary variables single house, serial house, first occupancy, refurbished, clean, and work required are shown as percentage share of
properties with the corresponding attribute. Neighborhood characteristics PP (annual purchasing power), share of families, unemployment
rate, and population are on a 1 km2 grid level. Rurality is on the municipality level and defined by the percentage share of inhabitants in a
given municipality that live in a rural area with a population density of less than 150 inhabitants/km2. The index is taken from the Federal
Institute for Research on Building, Urban Affairs, and Spatial Development (BBSR, 2023). All differences between properties within and
beyond a 6 km distance are statistically significant, with the exception of year of construction and last modernization.
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Table A3: Effective number of treated units by distance

Treated Properties
WT Sample PV Sample

0-1 km 37,881 38,296
1-2 km 103,321 91,948
2-3 km 151,111 128,615
3-4 km 188,775 152,998
4-5 km 216,623 177,780
5-6 km 228,613 202,161

Note: Displayed values refer to the number of treated observations for each
distance threshold conditional on month and 1 km2 grid cell fixed effects.
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Table A4: Effective number of treated units by distance & treatment type

Treated Properties
WT Sample PV Sample

0-1 km 37,881 38,296
1-2 km

only WT 15,078 41,275
closest WT 107,395 70,408
not closest WT 21,497 20,594

2-3 km
only WT 31,581 66,136
closest WT 170,441 74,816
not closest WT 84,370 40,836

3-4 km
only WT 56,941 83,332
closest WT 161,003 60,763
not closest WT 123,379 58,968

4-5 km
only WT 78,857 108,135
closest WT 131,328 44,911
not closest WT 145,043 79,026

5-6 km
only WT 153,904 128,812
closest WT 71,462 26,617
not closest WT 158,148 93,553

Note: Displayed values refer to the number of treated observations for each distance threshold,
differentiated by whether the wind turbine (WT) at distance d is the only WT within a 6 km
radius, or whether other WTs are present at distances d′ < d (”not closest WT”) or d′ > d
(”closest WT”), conditional on month and 1 km2 grid cell fixed effects.

Table A5: Effective number of treated units by treatment intensity

Treated Properties
WT Sample PV Sample
within 3km within 2km
1 77,041 1 116,531
2 52,913 2 41,043
3 44,579 3 16,018
4 32,910 4≤ 8,748

5-9 53,940
10≤ 19,383

Note: Displayed values refer to the number of treated observations for each num-
ber of wind turbines (PV farms) within a 3km (2km) radius, i.e., treatment
intensity category, conditional on month and 1 km2 grid cell fixed effects.
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Table A6: Effective number of treated units by distance & treatment intensity

Treated Properties
WT Sample PV Sample

0-1 km
1-4 WT 35,326 1 PV 31,829
5≤ WT 4,180 2≤ 9,791

1-2 km
1-4 WT 107,799 1 PV 83,328
5≤ WT 36,964 2≤ 31,442

2-3 km
1-4 WT 167,007 1 PV 120,225
5≤ WT 73,251 2≤ 46,255

3-4 km
1-4 WT 222,506 1 PV 142,474
5≤ WT 104,638 2≤ 58,826

4-5 km
1-4 WT 263,296 1 PV 164,642
5≤ WT 126,975 2≤ 76,102

5-6 km
1-4 WT 291,744 1 PV 183,220
5≤ WT 155,690 2≤ 84,945

Note: Displayed values refer to the number of treated observations for each
distance threshold and treatment intensity category conditional on month and
1 km2 grid cell fixed effects.
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Table A7: Distance-Specific Property Price Effects of (non) nearest WT

Dependent Variable ln(price)
(1)

WT at 0-1 km distance 0.016 (0.016)
WT at 1-2 km distance

only WT within 6 km 0.011 (0.024)
other WT at d′ > d within 6 km -0.019** (0.010)
other WT at d′ < d within 6 km -0.019 (0.012)

WT at 2-3 km distance
only WT within 6 km -0.001 (0.018)
other WT at d′ > d within 6 km -0.018** (0.009)
other WT at d′ < d within 6 km -0.013 (0.009)

WT at 3-4 km distance
only WT within 6 km 0.017 (0.013)
other WT at d′ > d within 6 km 0.002 (0.006)
other WT at d′ < d within 6 km 0.003 (0.007)

WT at 4-5 km distance
only WT within 6 km 0.007 (0.011)
other WT at d′ > d within 6 km -0.007 (0.009)
other WT at d′ < d within 6 km -0.001 (0.007)

WT at 5-6 km distance
only WT within 6 km 0.010 (0.009)
other WT at d′ > d within 6 km 0.011 (0.009)
other WT at d′ < d within 6 km -0.006 (0.006)

Max. Distance to Nearest WT 8 km
Month × Year FE ✓
Controls ✓
1 km2 Grid Cell FE ✓
4 Years Anticipation FE ✓
Observations 4,576,294
R-squared 0.718

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest wind
turbine. The distance-specific effects following equation 1 are differentiated whether (i) WT are present only
at distance d, (ii) whether other WT exists at shorter d′ < d, or (iii) whether other WT exist at further
longer distances d′ > d. The dependent variable is log listing prices per sqm in all specifications. Control
variables include (squared) floor space, (squared) plot size, property type FE, first occupancy and year of
construction FE, quality of facility FE at the property level. Time-varying controls at 1 km2 grid cell level
include purchasing power, share of foreigners, singles, and families, unemployment rate, and population.
Standard errors clustered at the local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A8: Regression Results - Heterogeneity WT Characteristics

Dependent Variable ln(price)
(1) (2) (3)

WT within 3 km radius (Ditj)
× Inst. Capacity

lower tercile (≤ 945 MW) -0.010
(0.013)

middle tercile -0.013
(0.014)

upper tercile (≥ 1800 MW) -0.025**
(0.010)

× Hub Height
lower tercile (≤ 54 m) -0.012

(0.013)
middle tercile -0.015

(0.011)
upper tercile (≥ 77 m) -0.025**

(0.008)
× Rotor Diameter

lower tercile (≤ 68 m) -0.001
(0.008)

middle tercile -0.017**
(0.008)

upper tercile (≥ 93 m) -0.016**
(0.009)

Max. Distance to Nearest WT 8 km 8 km 8 km
Controls ✓ ✓ ✓
Grid FE ✓ ✓ ✓
Month FE ✓ ✓ ✓
4 Years Anticipation Effects ✓ ✓ ✓
Observations 4,576,294 4,576,294 4,576,294
R-squared 0.718 0.718 0.718

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest wind
turbine. The dependent variable is log listing prices per sqm in all specifications. Control variables
include (squared) floor space, (squared) plot size, property type FE, first occupancy and year of con-
struction FE, quality of facility FE at the property level. Time-varying controls at 1 km2 grid cell level
include purchasing power, share of foreigners, singles, and families, unemployment rate, and population.
Standard errors clustered at the local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A9: Regression Results - Heterogeneity Area Characteristics WT Sample

Dependent Variable ln(price)
(1) (2) (3)

WT within 3 km radius (Ditj)
× Rurality

rural dummy 0.024
(0.022)

mixed dummy -0.018*
(0.005)

urban dummy -0.132**
(0.051)

× PP
lower tercile (≤ e10,8 mio) -0.027***

(0.011)
middle tercile -0.020*

(0.012)
upper tercile (≥ e33,9 mio) -0.024*

(0.013)
× Population

lower tercile (≤ 504 inh./sqkm) -0.038***
(0.010)

middle tercile -0.015
(0.013)

upper tercile (≥ 1555 inh./sqkm) -0.018
(0.012)

Max. Distance to Nearest WT 8 km 8 km 8 km
Month × Year FE ✓ ✓ ✓
Controls ✓ ✓ ✓
1 km2 Grid Cell FE ✓ ✓ ✓
4 Years Anticipation FE ✓ ✓ ✓
Observations 4,003,108 4,003,108 4,003,108
R-squared 0.704 0.704 0.704

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest wind
turbine. The dependent variable is log listing prices per sqm in all specifications. The rural (urban)
indicator is one for municipalities where all inhabitants live in neighborhoods with less (more) than 150
inhabitants/km2 and zero otherwise. Control variables include (squared) floor space, (squared) plot size,
property type FE, first occupancy and year of construction FE, quality of facility FE at the property
level. Time-varying controls at 1 km2 grid cell level include purchasing power, share of foreigners, singles,
and families, unemployment rate, and population. Standard errors clustered at the local labor market
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A10: Regression Results - Heterogeneity Area Characteristics PV Sample

Dependent Variable ln(price)
Rurality PPP Population

(1) (2) (3)
PV within 2 km radius (Ditj)
× Rurality

rural -0.010
(0.028)

mixed -0.012*
(0.006)

urban -0.083**
(0.035)

× PP
lower tercile -0.012*

(0.007)
middle tercile -0.019***

(0.007)
upper tercile -0.010

(0.009)
× Population

lower tercile -0.009
(0.007)

middle tercile -0.017**
(0.007)

upper tercile -0.013
(0.010)

Max. Distance to Nearest PV 8 km 8 km 8 km
Controls ✓ ✓ ✓
1 km2 Grid Cell FE ✓ ✓ ✓
Month × Year FE ✓ ✓ ✓
Observations 4,456,857 4,441,093 4,441,093
R-squared 0.748 0.748 0.748

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest PV
farm. The dependent variable is log listing prices per sqm in all specifications. The rural (urban)
indicator is one for municipalities where all inhabitants live in neighborhoods with less (more) than 150
inhabitants/km2 and zero otherwise. Control variables include (squared) floor space, (squared) plot size,
property type FE, first occupancy and year of construction FE, quality of facility FE at the property
level. Time-varying controls at 1 km2 grid cell level include purchasing power, share of foreigners, singles,
and families, unemployment rate, and population. Standard errors clustered at the local labor market
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table A11: Regression Results - Heterogeneity PV Characteristics

Dependent Variable ln(price)
(1)

PV within 2 km radius (Ditj)
× Inst. Capacity

lower tercile (≤ 757 MW) -0.023**
(0.009)

middle tercile -0.020**
(0.009)

upper tercile (≥ 1800 MW) -0.013
(0.009)

Max. Distance to Nearest PV 8 km
Controls ✓
1 km2 Grid Cell FE ✓
Month × Year FE ✓
Observations 4,456,857
R-squared 0.748

Notes: Estimates are based on the restricted sample, i.e., properties within 8 km of the nearest PV
farm. The dependent variable is log listing prices per sqm in all specifications. Control variables include
(squared) floor space, (squared) plot size, property type FE, first occupancy and year of construction
FE, quality of facility FE at the property level. Time-varying controls at 1 km2 grid cell level include
purchasing power, share of foreigners, singles, and families, unemployment rate, and population. Stan-
dard errors clustered at the local labor market level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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A.2 Figures

Figure A1: Distribution of the Year of Installation of Energy Facilities

(a) Wind Turbines (b) PV farms

The histogram shows the distribution of the year of (planned) installment years of all wind turbines and PV
farms.

Figure A2: Spatial Distribution of Wind Turbines and PV Farms 2009

(a) Wind Turbines (b) PV Farms

Notes: The maps show the number of installed wind turbines and the area covered by PV farms (in sqm) in each
municipality in 2009. NAs refer to the absence of wind turbines or PV farms in a given municipality.
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Figure A3: Changes in Spatial Distribution of Energy Facilities 2009-2022

(a) Wind Turbines (b) PV Farms

Notes: The map illustrates the change in the number of installed wind turbines and the area covered by PV farms
(in sqm) across municipality between 2009 and 2021. NAs refer to the absence of wind turbines or PV farms in
a given municipality.
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Figure A4: Temporal Differences in Neighborhood Characteristics - WT Sample

(a) Population (b) Rurality

(c) PP (d) Unemployment Rate

Notes: Each figure is based on properties within a 8 km distance to the nearest wind turbine and shows the
difference in mean neighborhood characteristics of properties with and without a wind turbine within a 6
km radius over time. Rurality is defined by the share of inhabitants in a given municipality that live in an
area with a population density of less than 150 inhabitants/km2. All other variables are on the grid level.
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Figure A5: Temporal Differences in Neighborhood Characteristics - PV Sample

(a) Population (b) Rurality

(c) PP (d) Unemployment Rate

Notes: Each figure is based on properties within a 8 km distance to the nearest PV farm turbine and shows
the difference in mean neighborhood characteristics of properties with and without a PV farm within a 6
km radius over time. Rurality is defined by the share of inhabitants in a given municipality that live in an
area with a population density of less than 150 inhabitants/km2. All other variables are on the grid level.

Figure A6: Event Study Estimates

(a) Wind Turbines (b) PV farms

The figures display the event study estimates for both wind turbines and PV farms. based on the following
regression: log yirt =

∑t−9
s=t−1 βsDit +

∑t+9
s=t

βsDit + λr + θt + γ1Xi + γ2Xrt + εirt, where variables are
analogous to equation (1).
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