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Abstract

Data fusion techniques typically aim to achieve a complete data file from dif-

ferent sources which do not contain the same units. Traditionally, this is done on

the basis of variables common to all files. It is well known that those approaches

establish conditional independence of the specific variables given the common vari-

ables, although they may be conditionally dependent in reality. We discuss the

objectives of data fusion in the light of their feasibility and distinguish four levels

of validity that a fusion technique may achieve. For a rather general situation, we

derive the feasible set of correlation matrices for the variables not jointly observed

and suggest a new quality index for data fusion. Finally, we present a suitable and

efficient multiple imputation procedure to make use of auxiliary information and to

overcome the conditional independence assumption.

Key words: Correlation matrix, data fusion, multiple imputation, missing data,

missing by design, observed-data posterior, statistical matching.

JEL classification: C11, C15, C81.

1 Introduction

Statistical matching techniques typically aim to achieve a complete data file from different

sources that do not contain the same units. On the contrary, if samples are exactly

matched using identifiers such as social security numbers or name and address, this is

called record linkage. Traditionally, statistical matching is done on the basis of variables

common to all files. Statistical twins, i. e., donor and recipient units that are similar

according to their common variables, are usually found by means of nearest neighbor or

hot deck procedures. The specific variables of a donor unit which are observed only in

one file are added to the record of the recipient unit to finally create the matched sample.

We like to note that in our sense statistical matching is not restricted to the case of

1Acknowledgment: The authors want to thank Friedrich Wendt, who was one of the first and most
engaged persons to develop data fusion techniques in Europe. Moreover, we are grateful to Donald B.
Rubin and Fritz Scheuren for giving us lots if insights and stimulating discussions.
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merging different samples without overlap. Also one single file may contain some records

with observations on more variables than others, then, these records can be matched with

those containing less information based on the variables common to all units. Basically,

there are a couple of different situations, when statistical matching can be applied. Figure

1 gives an overview of these occasions. The white boxes represent the missing variables.

Figure 1: Different situations for statistical matching

In this paper we refer to the situation of picture no. 3 in Figure 1 which we call data

fusion. This figure illustrates that only in the case of data fusion there are groups of

variables that are never jointly observed, say X and Y . In all other cases we assume that,

at least, every pair of variables has been jointly observed in one or the other data set. The

fusion of data sets with the aim of analyzing the unobserved relationship between X and
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Y and addressing quality of data fusion is done, e.g., by National Statistical Institutes

such as Statistics Canada or the Italian National Institute of Statistics, see, e.g., Liu and

Kovacevic (1997) or D’Orazio et al. (2003). The focus often is on analyzing consumers’

expenditures and income, which are in detail only available from different surveys. In

the U.S., e.g., data fusion is used for microsimulation modeling, where “what if” analyses

of alternative policy options are carried out using matched data sets, see Moriarity and

Scheuren (2001, 2003). Especially in Europe and among marketing research companies,

data fusion has become a powerful tool for media planning, see, e.g., Wendt (1986). Often

surveys concerning the purchasing behavior of individuals or households are matched to

those containing valuable information about print, radio and television consumption.

Our article is organized as follows. Section 2 reviews the crucial identification problem

inherent in data fusion. With this in mind, we define in Section 3 four different levels

of validity a data fusion can achieve. Investigating further the most promising of these

levels in Section 4, we present a new result on the calculation of feasible correlations

between variables not jointly observed. In Section 5 a multiple imputation algorithm for

assessing the impact of different correlation structures is developed, which is validated by

a simulation study in Section 6.

2 Data Fusion and its Identification Problem

2.1 Traditional Fusion Algorithms

The general benefit of data fusion is the creation of one complete data source containing

information about all variables. Without loss of generality, let the (X,Z) sample be the

recipient sample B of size nB and the (Y, Z) sample the donor sample A of size nA.

The traditional matching procedures determine for every unit i, i = 1, 2, . . . , nB, of the

recipient sample with the observations (xi, zi) a value y from the observations of the donor

sample. Thus, a composite data set (x1, ỹ1, z1), . . . , (xnB
, ỹnB

, znB
) with nB elements of

the recipient sample is constructed. The main idea is to search for a statistical match,

i. e., for a donor unit j with (yj, zj) ∈ {(y1, z1), (y2, z2), . . . , (ynA
, znA

)} whose observed

data values of the common variables zj are identical to those zi of the recipient unit

i for i = 1, 2, . . . , nB. Notice that ỹi is not the true y-value of the i-th recipient unit

but the y-value of the matched statistical twin. In the following, all density functions

(joint, marginal, or conditional) and their parameters produced by the fusion algorithm

are marked by the symbol ˜. The variable Ỹ is called fusion or imputed variable.

A typical matching algorithm chooses randomly among all possible statistical matches
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for each recipient unit i (i. e. among all (yj, zj) with zj = zi); we shall call this the ideal

case thereafter. In reality, not every recipient allows for an exact match in the common

variables; therefore some nearest neighbor rules are usually imposed. There are very

sophisticated fusion techniques in practice; for an overview see Rässler (2002).

In order to judge the quality of any data fusion procedure, it is essential to study how the

true (only partially known) distribution f(x, y, z) and the fusion distribution f̃(x, y, z)

are related. In the ideal case, it can be shown that the joint distributions of X and Z

and of Y and Z are unaltered by the matching algorithm. The overall joint distribution

satisfies

f̃X,Y,Z(x, y, z) = fX,Z(x, z) · fY |Z(y|z);

see Rässler (2002) for technical details. Obviously, the fusion distribution equals the true

distribution if and only if fY |X,Z = fY |Z , i. e., if Y and X are conditionally independent

given Z. This implicit assumption of traditional algorithms was first pointed out by Sims

(1972); see also Rodgers (1984) for an enlightening discussion.

Rässler and Fleischer (1998) show that in the ideal case, the fusion covariance between

X and Y is given by

c̃ov(X, Y ) = cov(E(X|Z), E(Y |Z)).

Because in general,

cov(X, Y ) = E(cov(X, Y |Z)) + cov(E(X|Z), E(Y |Z))

holds, the fusion covariance c̃ov(X, Y ) equals the true covariance, if and only if

E(cov(X,Y |Z)) = 0, i. e., if X and Y are on the average conditionally uncorrelated

given Z. Notice that variables which are conditionally independent are also condi-

tionally uncorrelated and, of course, on the average conditionally uncorrelated, but

not vice versa in general. If f is multinormally distributed, however, these concepts

coincide, since in this case the conditional covariance cov(X,Y |Z = z) is given by

cov(X,Y )− cov(X,Z) var(Z)−1 cov(Z, Y ), which is independent of z.

With small sample sizes, the ideal case is seldom observed. However, simulation stud-

ies have shown that these derivations are even approximately valid, if nearest neighbor

algorithms are applied (see Rässler 2002).

Summing it up: Traditional algorithms produce fusion data sets which reflect the true

joint distribution only in the case of conditional independence of X and Y given Z. The

true covariance structure is retained in the fused file only in the case of X and Y being

on the average conditionally uncorrelated given Z. The question that naturally arises, is:

can we learn from the data, whether these assumptions are met?
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2.2 The Identification Problem of Data Fusion

2.2.1 Joint Distributions

Data fusion initially is connected to an identification problem concerning the joint distri-

bution and the association of the specific variables that are never jointly observed.

For every pair of specific variables (Xi, Yj), the marginal joint cumulative distribution

function FXi,Yj
(x, y) is bounded by the Fréchet-Hoeffding inequality, although it is usually

not very informative:

max
{
FXi

(x) + FYj
(y)− 1, 0

} ≤ FXi,Yj
(x, y) ≤ min

{
FXi

(x), FYj
(y)

}
(1)

With common variables Z these bounds can be slightly improved, since the same inequal-

ities are valid for the conditional distributions either (Ridder and Moffitt 2006):

max
{
FXi|Z=z(x|Z = z) + FYj |Z=z(y|Z = z)− 1, 0

}

≤ FXi,Yj |Z=z(x, y|Z = z) ≤ min
{
FXi|Z=z(x|Z = z), FYj |Z=z(y|Z = z)

}
.

Taking expectations over Z, we have

E
(
max

{
FXi|Z(x|Z) + FYj |Z(y|Z)− 1, 0

})

≤ FXi,Yj
(x, y) ≤ E

(
min

{
FXi|Z(x|Z), FYj |Z(y|Z)

})
. (2)

While FXi
and FYj

might be estimated with sufficient accuracy from the samples, this is

probably not always true for the expectations in (2), especially in the case of continuous

Z. Thus, in practice the unconditional bounds might be the more reliable choice, although

the lower and upper bounds are usually quite far apart and therefore rather useless in

reality. The lesson to be learned is, by means of the observed data we are not able to

decide which joint distribution (given that it lies within the Fréchet-Hoeffding bounds)

could have generated the data.

2.2.2 Correlation Structure

Consider, for example, a univariate common variable Z determining another variable X

which is only observed in one file. Suppose first that X and Z be linearly dependent, i. e.,

let the correlation ρZX = 1, and thus X = a+bZ for some a, b ∈ R2, b 6= 0. The correlation

between this common variable Z and a variable Y in a second file may be ρZY = 0.8.

It is easy to see that the unconditional correlation of the two variables X and Y which

are not jointly observed is determined by Z with ρXY = ρa+bZ Y = ρZY = 0.8. If the
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correlation between X and Z is less than one, say 0.9, we can easily calculate the possible

range of the unconditional association between X and Y by means of the determinant

of the covariance matrix which has to be positive semidefinite; i. e., the determinant of

the covariance matrix cov(Z, Y, X) must be positive or at least zero, see, e.g., Cox and

Wermuth (1996).

Given the above values and setting the variances to one without loss of generality, the

covariance matrix of (Z, Y,X) is

cov(Z, Y, X) =




1 0.9 0.8

0.9 1 cov(X, Y )

0.8 cov(X,Y ) 1


 with

det(cov(Z, Y, X)) = − cov(X, Y )2 + 2 · 0.72 cov(X, Y )− 0.45.

Calculating the roots of det(cov(Z, Y,X)) = 0, we get the two solutions cov(X, Y ) =

0.72±√0.0684. Hence we find the correlation bounded between [0.4585, 0.9815]; i. e., every

value of the unknown covariance cov(X, Y ) greater than 0.4585 and less than 0.9815 leads

to a valid and thus feasible covariance structure for (Z, Y, X). By means of the observed

data we are not able to decide which covariance matrix could have generated the data,

provided that it is positive semidefinite.

Bearing these identification problems in mind, note that traditional data fusion algorithms

make specific implicit assumptions (conditional independence or at least conditional un-

correlatedness on average) about the data. The need for alternative approaches that

overcome these assumptions is obvious, although little research has been done in the

literature so far.

Only few approaches, basically three different procedures, have been published to assess

the effect of alternative assumptions about the inestimable correlation structure. One

approach is due to Kadane (2001) (reprinted from 1978), generalized by Moriarity and

Scheuren (2001). The next approach dates back to Rubin and Thayer (1978), it is used

to address data fusion explicitly by Rubin (1986), and generalizations are presented by

Moriarity and Scheuren (2003). Both approaches use regression based procedures to pro-

duce synthetic data sets under various assumptions on this unknown association. Finally,

a full Bayesian regression approach using multiple imputations is first given by Rubin

(1987, p. 188), and then generalized by Rässler (2002).
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3 Validity Levels of Data Fusion

With the need for alternative data fusion algorithms, we have to make clear how to

judge the quality of a data fusion procedure, i. e. we have to focus on the validity of the

fusion process. We suggest to distinguish four levels of validity a fusion procedure may

achieve. The term validity rather than efficiency will be used, because efficiency usually

refers to a minimum mean squared error criterion as it is common, for example, in survey

sampling theory and not to different levels of reproduction and preservation of the original

associations and distributions.

3.1 First Level: Preserving Marginal Distributions

We shall say that a data fusion procedure attains the first (and lowest) level of validity,

if the marginal and joint distributions of the variables in the donor sample are preserved

in the fused file. Then f̃Y = fY and f̃Y,Z = fY,Z are expected to hold, if Y is imputed in

the (X, Z) sample.

In the ideal case as described in Section 2, this level of validity is always attained. However,

with small sample sizes or different sampling designs in the two samples, this need not

be the case. In practice, the preservation of the distributions observed in the separate

samples is usually required. Analysis concerning the marginal distributions based on the

fused file should provide the same valid inference when based on the separate samples.

Therefore, the empirical distributions of the common variables Z as well as the imputed

variables Y in the resulting fused file are compared with their empirical distributions in

the donor sample to evaluate the similarity of both samples. The empirical distributions
̂̃
fY and

̂̃
fY,Z should not differ from f̂Y and f̂Y,Z more than two random samples drawn

from the true underlying population. Notice that this implies the different samples being

drawn according to the same sampling design.

In the typical fusion situation (with traditional algorithms) only this level can be con-

trolled for. Therefore, often data fusion is said to be successful, if the marginal and joint

empirical distributions of Z and Y , as they are observed in the donor sample, are “nearly”

the same in the fused file.

In common approaches, first of all, averages for all common variables Z between the donor

and the recipient sample are compared. Then the average values between the imputed

variables Ỹ and the corresponding variables Y in the donor sample are compared. Often

the preservation of the relation between variables is measured by means of correlations.

Therefore, for each common variable Z, the correlation with every original variable Y and

imputed variable Ỹ is computed, both for the fused data set and the donor sample. The

9



mean difference between common-fusion correlations in the donor versus the fused data

set are calculated and empirically evaluated, see, e.g., van der Putten et al. (2002).

The German association for media analysis2, for example, still postulates the following

data controls after a match has been performed.

• First the empirical distributions of the common variables Z in the recipient and the

donor sample are compared to evaluate whether their marginal distributions are the

same in both samples.

• Next the empirical distributions of the imputed variables Ỹ in the recipient and Y

in the donor sample are compared.

• Finally the joint distribution fZ,Y as observed in the donor sample is compared to

the joint distribution f̃Z,Y as observed in the fused file.

All these comparisons are done using different tests such as χ2-tests or t-tests to com-

pare empirical distributions or their moments. A successful match should lead to similar

relationships between common and specific variables in the donor and the fused file; dis-

crepancies should not be larger than expected between two independent random samples

from the same underlying population. In particular, often each pair of variables Y and Z

in the donor sample is tested at a significance level α for positive or negative association

by, for example, a χ2-test or a t-test (depending on the scale of the variables). Then the

same test of association between Ỹ and Z is performed for each pair in the fused file. If

the results of the tests only differ in about α percent of the possible (Y, Z) combinations,

then the fusion procedure is regarded as successful, although this means accepting the

Null hypotheses rather than discarding them. Among others, nonparametric tests and

multiple regression models may be used in the same manner.3

3.2 Second Level: Preserving Correlation Structures

If additionally the correlation structure is preserved after data fusion, i. e. c̃ov(X,Y, Z) =

cov(X,Y, Z), the second level of validity is achieved. In that case, the fusion data set

2“Media Analysis Association” called in German Arbeitsgemeinschaft Media Analyse, for short,
AG.MA. The AG.MA is a media association, i. e., publishing houses, radio and TV stations, and many
advertising agencies, as well as a certain number of advertisers.

3If the samples have different structures, e.g., due to oversampling in one survey or differing sampling
designs, weights can be applied accounting for differing selection probabilities of the units in the separate
samples. Also, samples drawn according to different sampling designs could be made “equal” by using
propensity scores according to an idea by Rubin (2002) before performing the final match. However, this
is beyond the scope of this article.

10



might not reflect the true joint distribution of all variables, but it could be considered as

randomly generated from an artificial population which has, at least, the same moments

and correlation structure as the actual population of interest. Thus any analysis which is

based on covariances or correlations only, will produce reliable outcomes.

Traditional fusion algorithms achieve this level only, if the specific variables are on average

conditionally uncorrelated, an assumption that cannot be validated with the given data.

To overcome this assumption, two steps of research are needed: We first have to determine,

which correlation structure the original data set might have. After that, we must design

algorithms that are able to create fused data sets with prescribed correlation structures,

so that we can assess the quality of a data fusion process by comparing analyses based

on different fused files with different feasible correlation structures.

3.3 Third Level: Preserving Joint Distributions

If the overall joint distribution is preserved after data fusion, the true joint distribution

of all variables is reflected in the fused file, i. e. f̃X,Y,Z = fX,Y,Z . We will call this the third

level of validity.

We usually assume that the units of both samples are drawn independently within and

between the two samples and the fused file can be regarded as a random sample from the

underlying fusion distribution f̃X,Y,Z . The most important objective of data fusion is the

generation of a complete sample that can be used as a single-source sample drawn from

the underlying distribution fX,Y,Z . It is less the reconstruction of individual values but

the possibility of making valid statistical inference based on the fused file.

With traditional algorithms, this level of validity is only achieved, if the specific variables

Y and X are conditionally independent given the common variables Z, an assumption

that cannot be tested with the given data in the case of data fusion. Unless the common

variables have extremely high explanatory power (resulting in tight Fréchet-Hoeffding

bounds), it is unrealistic to expect that a data fusion process might attain this level of

validity.

3.4 Forth Level: Preserving Individual Values

The individual values are preserved when the true but unknown values of the (multivari-

ate) Y variable of the recipient units are reproduced; i. e., ỹi = yi for i = 1, 2, . . . , nB. If

all individual values were preserved, that would be the highest level of validity a fusion

algorithm can achieve. But obviously it is totally out of reach to reproduce all true values

11



with certainty. We might call the preservation of an individual value a “hit” for any unit

in the recipient sample and may calculate some kind of “hit rate”. However, you should

keep in mind that this hit rate is not as useful as it seems at first sight.

Within continuous distributions the probability of drawing a certain value y is zero; count-

ing the hits is meaningless then. In the case of discrete or classified variables Y a hit rate

may be calculated for the purpose of demonstration, counting a hit for the imputation of

a p-dimensional variable Y when the whole imputed vector equates the original vector;

i. e.,

(ỹ1i, ỹ2i, . . . , ỹpi) = (y1i, y2i, . . . , ypi)

for i = 1, 2, . . . , nB. Notice that the calculation of a single hit rate for each variable may

mislead the interpretation because it does not ensure that the joint distributions are well

preserved. One should always remember that imputations are not meant to exactly reflect

the real values and that their microdata interpretation is usually meaningless; emphasis

should be placed on marginal or joint distributions and correlation structures.

Any discussion of validity of a data fusion technique can now be based on these four levels.

Besides so-called split half or simulation studies, all tests actually applied in practice only

indicate the first-level validity. While the third and forth level are out of reach or even

potentially misleading, it seems promising to further explore the predictive power of the

common variables for bounding the set of valid correlation structures.

4 Calculation of Feasible Correlations

To ease notation, we again set all variances equal to 1. Consider again the correlation

matrix Σ := cov(Z, Y, X) of all observed variables. Recall that Z is the vector of variables

observed in both samples; Y and X are the vectors of variables which are only observed

in sample A and B, respectively. The matrix Σ and its inverse can be partitioned corre-

sponding to the partition of the complete data vector (Z, Y, X), to give

Σ =




ΣZZ ΣZY ΣZX

ΣY Z ΣY Y ΣY X

ΣXZ ΣXY ΣXX


 Σ−1 =




ΣZZ ΣZY ΣZX

ΣY Z ΣY Y ΣY X

ΣXZ ΣXY ΣXX




In the case of data fusion, ΣY X consists of the correlations between variables that are never

jointly observed and may therefore not be directly estimated from the data. However, as

we will discuss below, there is information in the data about their feasible values.
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Correlation matrices have to be positive semidefinite; apart from the case of exact linear

dependence they are positive definite. We will ignore this distinction and assume positive

definiteness, since an exact linear relationship never occurs in sample data (or can be

easily detected and removed).

All other submatrices of Σ apart from ΣY X can be estimated from the two samples.

Therefore, Σ is only partially determined; since we know that it has to be positive definite,

Σ is called a partial positive definite matrix. Finding the set of feasible correlation matrices

in this case is a special application of what is called matrix completion problems in matrix

theory; we are interested in positive definite completions of Σ.

Due to the special structure of Σ, a positive definite completion of Σ always exists.4

Moreover, there is a unique positive definite completion, whose determinant is maximal,

and this matrix is the unique one whose inverses has zeros in those positions corresponding

to the unspecified entries in Σ, i. e. ΣY X = 0 (see Grone et al. 1984).

Consider now the matrix Σ?
Y X|Z of partial covariances of X and Y given Z, i. e., the co-

variance matrix of the residuals of linear least squares regression of every component of

X and Y on all components of Z. (Notice that partial covariances and conditional covari-

ances are different concepts. In case of multivariate normality these matrices coincide,

whereas in general the two concepts produce different results.)

Σ?
Y X|Z can be easily derived from the simple correlation matrix as the Schur complement

of ΣZZ in Σ (see e.g. Whittaker 1990, p.135):

Σ?
Y X|Z =

(
ΣY Y |Z ΣY X|Z
ΣXY |Z ΣXX|Z

)
=

(
ΣY Y ΣY X

ΣXY ΣXX

)
−

(
ΣY Z

ΣXZ

)
Σ−1

ZZ (ΣZY ΣZX) . (3)

There is an interesting relationship between the partitioned inverse of Σ and the partial

covariance matrix: The term ΣY X = 0 if and only if the partial correlations between X

and Y given Z vanish, i. e. ΣY X|Z = 0 (Whittaker 1990, p. 144). Hence zero partial cor-

relations given Z maximize the determinant of Σ among all feasible correlation matrices;

the corresponding simple correlations being ΣY X = ΣY ZΣ−1
ZZΣZX . Notice that in case of

normality, this is the correlation matrix of the fused data set that traditional algorithms

create.

Positive definiteness places restrictions on the feasible correlations between X and Y . In

4It should be noted, that since the correlations are not known but estimated from different samples,
the estimates might be inconsistent in the sense that no positive definite completion of Σ exists. This
problem will disappear in large samples; in general however, this condition has to be checked. If it
turns out that Σ ist not partial positive definite, one should look for the nearest partial positive definite
approximation (w.r.t. some matrix norm); see Higham (2002) for details.
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general it is a difficult task to describe the set of feasible values in closed form. Kadane

(2001) and Moriarity and Scheuren (2001) provide formulae for univariate X and uni-

variate Y with multivariate Z. For multivariate X or multivariate Y , no closed form yet

exists in the literature. One way to numerically tackle this problem is via grid search over

all possible completions of Σ and deciding for every value if the completion is positive

definite; see Rässler (2002) for an example of this approach.

In the following, we show that even in case of either multivariate X or multivariate Y

(though not both), one can derive the range of all feasible solutions analytically.

Let (w.l.o.g.) X be univariate, i. e. ΣXX = 1, so that ΣZX and ΣY X are column vectors.

Since all leading principal submatrices of Σ are fully specified and (by assumption of con-

sistency) positive definite, the positive definiteness of Σ is equivalent to the determinant

of Σ being positive, i. e. det (Σ) > 0. Partitioning Σ and using a standard argument on

the determinant of a partitioned matrix leads to the following condition:

(Σ′
ZX Σ′

Y X)

(
ΣZZ ΣZY

Σ′
ZY ΣY Y

)−1 (
ΣZX

ΣY X

)
< 1. (4)

The inverse can be written in closed form:
(

ΣZZ ΣZY

Σ′
ZY ΣY Y

)−1

=

(
Σ−1

ZZ

(
I + ΣZY CΣ′

ZY Σ−1
ZZ

) −Σ−1
ZZΣZY C

−CΣ′
ZY Σ−1

ZZ C

)
=:

(
A B

B′ C

)

with C := (ΣY Y − Σ′
ZY Σ−1

ZZΣZY )−1.

After straightforward calculation (4) evolves into

Σ′
Y XCΣY X + 2Σ′

ZXBΣY X + Σ′
ZXAΣZX < 1. (5)

From this inequality, the geometric shape of the set of feasible correlations can be deter-

mined. Since C is positive definite, the set of possible vectors ΣY X satisfying (5) is the

interior of an n-dimensional ellipsoid (n being the dimension of vector Y ).

Transforming (5) into the normal form of an ellipsoid in order to be able to calculate its

centre and axes, we get

(
ΣY X + C−1B′ΣZX

)′
C̃

(
ΣY X + C−1B′ΣZX

)
< 1

with C̃ := (1 + Σ′
ZX(BC−1B′ − A)ΣZX)

−1
C.

Thus, the centre of the ellipsoid is −C−1B′ΣZX . Plugging in the formulae for B and C

yields

−C−1B′ΣZX = ΣY ZΣ−1
ZZΣZX ; (6)
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from this it can be seen that the correlation vector providing zero partial correlation

(which maximizes the determinant) is the center of the ellipsoid.

Final calculations give 1+Σ′
ZX(BC−1B′−A)ΣZX = 1−ΣXZΣ−1

ZZΣZX , from which C̃ can

be computed:

C̃ =
(
1− ΣXZΣ−1

ZZΣZX

)−1 · (ΣY Y − ΣY ZΣ−1
ZZΣZY

)−1
. (7)

The semi-axes of the ellipsoid are in the direction of the eigenvectors of C̃ (or C), the

lengths of the semi-axes are given by 1/
√

λi, where λi is the i-th eigenvalue of C̃ (i =

1, . . . , n).

The volume of the ellipsoid of feasible correlations (which is proportional to the product

of the lengths of its semi-axes) might be considered as a new quality index for a data

fusion process: the less volume the ellipsoid has, the greater is the explanatory power of

the common variables and the less uncertainty remains for creating the fused data set.

In some cases, the marginal distributions might restrict the set of feasible correlation

matrices even further. To see this, consider again the Fréchet-Hoeffding inequality (1).

The upper and lower bounds are valid bivariate distributions, whose correlation coeffi-

cients are upper and lower bounds of possible correlations given the marginals (Tchen

1980). Thus, for every pair (X,Yj) of specific variables, this inequality might place an

additional restriction to the feasible correlations (in case of normality every correlation

can be achieved with any marginal distributions, therefore no further restriction can be

imposed).

If there are lots of ordinal variables in the samples, it is appropriate not to consider

Bravais-Pearson correlation coefficients but to use association measures based on ranks.

Frequently Spearman’s ρ or Kendall’s τ are measures of interest, even in metric settings.

Since correlation matrices based on these measures also have to be positive definite (note

that they can be expressed as Bravais-Pearson correlations for recoded variables), the

results of this section remain valid, if consideration is upon matrices of Spearman or

Kendall correlations rather than upon Bravais-Pearson correlation coefficients.

5 A Multiple Imputation Algorithm

In the cases pictured in Figure 1 (at least in nos. 2 to 4), it is assumed that the data are

missing completely at random or, at least, missing at random because the missingness is

induced by design. Thus, the fusion task can be viewed as a typical imputation problem.

In the presence of missing data, the theory of multiple imputation, initially introduced by

Rubin (1978) and extensively described in Rubin (1987), provides very flexible procedures
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for imputation with good statistical properties from a Bayesian as well as a frequentist

view. We follow this approach and suggest a non-iterative Bayesian multiple imputation

procedure, called NIBAS, especially suited for data fusion.

Let us assume a multivariate normal data model for (X, Y |Z = z) = (X1, X2, . . . , Xq,

Y1, Y2, . . . , Yp|Z = z) with expectation µXY |Z and covariance matrix ΣXY |Z is denoted by

ΣXY |Z =

(
ΣXX|Z ΣXY |Z
ΣY X|Z ΣY Y |Z

)
.

(Note that due to the assumption of normality, no distinction between conditional and

partial covariance matrices is necessary.)

Moreover, the general linear model for both data sets is applied with

(file A) Y = ZAβY Z + UA, UA ∼ NpnA
(0, ΣY Y |Z ⊗ InA

),

(file B) X = ZBβXZ + UB, UB ∼ NqnB
(0, ΣXX|Z ⊗ InB

),

with ZA and ZB denoting the corresponding parts of the common derivative matrix Z.

This data model assumes that the units can be observed independently for i = 1, 2, . . . , n.

The correlation structure refers to the variables X1i, X2i, . . ., Xqi, Y1i, Y2i, . . ., Ypi for

each unit i = 1, 2, . . . , n. For abbreviation we use the Kronecker product ⊗ denoting that

the variables Xi and Yi of each unit i, i = 1, 2, . . . , n, are correlated but no correlation of

the variables is assumed between the units.

As a suitable noninformative prior we assume prior independence between β and Σ choos-

ing

fβY Z ,βXZ ,ΣXX|Z ,ΣY Y |Z ,RXY |Z ∝ Σ
−( q+1

2
)

XX|Z Σ
−( p+1

2
)

Y Y |Z fRXY |Z .

The joint posterior distribution for the fusion case can be factored into the prior and

likelihood derived by file A and file B, respectively, see Rässler (2002). Then the joint

posterior distribution can be written with

f
βXZ ,βY Z ,ΣXX|Z ,ΣY Y |Z ,RXY |Z

∣∣X,Y
= c−1

X L(βXZ , ΣXX|Z ; x)fΣXX|Z |RXY |Z

c−1
Y L(βY Z , ΣY Y |Z ; y)fΣY Y |Z |RXY |ZfRXY |Z .

Thus, our problem of specifying the posterior distributions reduces to standard deriva-

tion tasks described, for example, by Box and Tiao (1992, p. 439). ΣXX|Z and ΣY Y |Z
given the observed data each are following an inverted-Wishart distribution. The condi-

tional posterior distribution of βXZ (βY Z) given ΣXX|Z (ΣY Y |Z) and the observed data is
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a multivariate normal distribution. The posterior distribution of RXY |Z equals its prior

distribution. Having thus obtained the observed-data posteriors and the conditional pre-

dictive distributions a multiple imputation procedure for multivariate variables X and Y

can be proposed with the following algorithm:

Algorithm NIBAS

• Compute the ordinary least squares estimates β̂Y Z = (Z ′
AZA)−1Z ′

AY and β̂XZ =

(Z ′
BZB)−1Z ′

BX from the regression of each data set. Note that β̂Y Z is a k × p

matrix and β̂XZ is a k × q matrix of the OLS or ML estimates of the general linear

model.

• Calculate the following matrices proportional to the sample covariances for each

regression with

SY = (Y − ZAβ̂Y Z)′(Y − ZAβ̂Y Z),

SX = (X − ZBβ̂XZ)′(X − ZBβ̂XZ) .

• Choose a value for the correlation matrix RXY |Z or each ρXiYj |Z for i =

1, 2, . . . , q, j = 1, 2, . . . , p

(a) from its prior according to some distributional assumptions, i. e., uniform over

the set of feasible values, or

(b) several arbitrary levels, or

(c) estimate a value from a small but completely observed data set.

The latter might be the most realistic case in many practical situations.

• Perform random draws for the parameters from their observed data posterior dis-

tribution according to the following scheme.

Step 1: ΣY Y |Z |y ∼ W−1
p (vA, S−1

Y ) vA = nA − (k + p) + 1

ΣXX|Z |x ∼ W−1
q (vB, S−1

X ) vB = nB − (k + q) + 1

Step 2: βY Z |ΣY Y |Z , y ∼ Npk(β̂Y Z , ΣY Y |Z ⊗ (Z ′
AZA)−1),

βXZ |ΣXX|Z , y ∼ Nqk(β̂XZ , ΣXX|Z ⊗ (Z ′
BZB)−1),

Step 3: Set ΣXY |Z = {σXiYj |Z} with σXiYj |Z
= ρXiYj |Z

√
σ2

Xi|Zσ2
Yj |Z

with σ2
Xi|Z , σ2

Yj |Z derived by Step 1

for i = 1, 2, . . . , q, j = 1, 2, . . . , p .
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Step 4: X|y, β, Σ ∼ NqnA

(
ZAβXZ + (Y − ZAβY Z)Σ−1

Y Y |ZΣY X|Z ;

(ΣXX|Z − ΣXY |ZΣ−1
Y Y |ZΣY X|Z)⊗ InA

)

Y |x, β, Σ ∼ NpnB

(
ZBβY Z + (X − ZBβXZ)Σ−1

XX|ZΣXY |Z ;

(ΣY Y |Z − ΣY X|ZΣ−1
XX|ZΣXY |Z)⊗ InB

)
.

The predictive power of the common variables Z especially affects the last step.

6 Simulation Study

6.1 Data Model

Let (Z1, Z2, Y1, Y2, X) each be univariate standard normally distributed variables with

their joint distribution

(Z1, Z2, Y1, Y2, X) ∼ N5(0, Σ) (8)

and

Σ =




1.0 0.2 0.8 0.5 0.5

0.2 1.0 0.6 0.6 0.5

0.8 0.6 1.0 0.4 ρY1X

0.5 0.6 0.4 1.0 ρY2X

0.5 0.5 ρY1X ρY2X 1.0




=




ΣZZ ΣZY ΣZX

ΣY Z ΣY Y ΣY X

ΣXZ ΣXY ΣXX


 .

Assume that file A contains (Z1, Z2, Y1, Y2) and file B (Z1, Z2, X), thus X and Y = (Y1, Y2)
′

are never jointly observed. Thus, the partial correlations of X and Y1 and X and Y2,

respectively, cannot be estimated from the observed data. Also the simple covariance

matrix ΣXY does not have a unique estimate, however, there is information in the data

about their admissible values, as was shown in Section 4.

6.2 Calculation of the feasible correlations

Since X is univariate in the example above, we can calculate the admissible correlations

via the formulae in Section 4. According to (6) the center of the corresponding ellipse is

given by

(
ρY1X

center

ρY2X
center

)
= ΣY ZΣ−1

ZZΣZX =

(
0.8 0.6

0.5 0.6

)
·
(

1.0 0.2

0.2 1.0

)−1

·
(

0.5

0.5

)
=

(
0.5833

0.4583

)
.
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This is the vector of unconditional correlations which is the result of traditional matching

techniques in the case of normality (zero conditional correlations given Z).

Next we compute matrix C̃ according to (7):

C̃ =
(
1− ΣXZΣ−1

ZZΣZX

)−1 · (ΣY Y − ΣY ZΣ−1
ZZΣZY

)−1

=


1− ( 0.5 0.5 ) ·

(
1.0 0.2

0.2 1.0

)−1

·
(

0.5

0.5

)

−1

·

·



(
1.0 0.4

0.4 1.0

)
−

(
0.8 0.6

0.5 0.6

)
·
(

1.0 0.2

0.2 1.0

)−1

·
(

0.8 0.5

0.6 0.6

)

−1

=

(
33.571 15.714

15.714 10.857

)
.

The eigenvalues of C̃ are 41.603 and 2.826, thus the lengths of the semi-axes are 0.155 and

0.595, respectively. Recall that the product of these lengths might be seen as a quality

index for data fusion.

The first (normed) eigenvector of C̃ is (0.890 0.455), the other being orthogonal. With

these values in mind, the ellipse representing the set of feasible correlations ρY1X and

ρY2X can be displayed. Since the relationship between the unconditional and the partial

covariances is linear according to (3), the feasible set of partial correlations can easily be

derived; obviously it has an analogous elliptical form. Both sets of correlations are shown

in Figure 2.
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Figure 2: Admissible combinations of conditional/unconditional correlations
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6.3 Simulation setup

From the data model of (8) we simulate k = 200 complete data sets of size nA+nB = 5000

and part them into two separate files A with nA = 3000 and nB = 2000 observations.

Then the Y values of file A are matched or imputed in file B according to the following

algorithms

• NN; i. e., a nearest neighbor match (always assuming conditional independence),

• RI; i. e., a regression imputation under different conditional correlations,

• RIEPS; i. e., a regression imputation with stochastic residual under different condi-

tional correlations, and

• NIBAS; i. e., the proposed MI algorithm assuming different prior conditional corre-

lations.

For details of the formulae used in RI and RIEPS see Rässler (2002). Notice that NN

and RI are single imputation procedures whereas RIEPS and NIBAS create more than

one imputed data set. However, imputations produced by RIEPS are expected to under-

estimate variability because they lack from additional random draws of the parameters.

Finally, small 1% and 5% complete auxiliary files are created according to the data model

and used with the multiple imputation algorithm NORM (standalone software NORM

2.03) that is provided by Schafer (1997). With NORM it is not possible to use a real

informative prior for the unknown correlations, therefore, NORM is applied herein for

the data fusion situation when some auxiliary data are available containing information

about all variables X, Y , and Z.

This procedure of creating the data, dividing and matching them is carried out 200 times.

Relevant point and interval estimates are stored and tabulated. For the MI procedures

m = 5 imputations are used. The MI estimates are calculated according to θ̂MI =
1
m

∑m
t=1 θ̂(t), as well as the within-imputation variance W = 1

m

∑m
t=1 v̂ar(θ̂(t)), and the

between-imputation variance B = 1
m−1

∑m
t=1(θ̂

(t)− θ̂MI)
2. The 95% MI interval estimates

are calculated with θ̂MI ±
√

T t0.975,ν , T = W + (1 + m−1)B, and degrees of freedom

v = (m − 1)
(
1 + W

(1+m−1)B

)2

. According to the MI principle we assume that based on

the complete data the point estimates θ̂ are approximately normal with mean θ and

variance v̂ar(θ̂).5 Therefore, some estimates should be transformed to a scale for which

the normal approximation works well. For example, the sampling distribution of Pearson’s

5Notice that Barnard and Rubin (1999) relax this assumption of a normal reference distribution to
allow a t-distribution for the complete-data interval estimates and tests.
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correlation coefficient ρ̂ is known to be skewed, especially if the corresponding correlation

coefficient of the population is large. Thus, usually the multiple imputation point and

interval estimates of a correlation ρ are calculated by means of the Fisher z-transformation

z(ρ̂) = 0.5 ln(1+ρ̂
1−ρ̂

), which makes z(ρ̂) approximately normally distributed with mean z(ρ)

and constant variance 1/(n−3), see, e.g., Schafer (1997, p. 216). By back transforming the

corresponding MI point and interval estimates of z(ρ) via the inverse Fisher transformation

the final estimates and confidence intervals for ρ are achieved.

6.4 Results

The following tables show the estimated expectations of some point estimates. In addition,

the tables give the simulated actual coverage, i. e., the number of times out of 200 that

cover the true parameter value. To ease the reading we display the percentage. Also the

average length of the confidence intervals is reported (ALCI). The following Tables 1, 2,

and 3 concentrate on the most important results.

Table 1 shows the preservation of the prior values of the conditional correlation between

X and Y1 or Y2, respectively. As it was to be expected, the nearest neighbor match always

establishes conditional independence. Thus, this matching procedure only works, when

the conditional independence assumption is satisfied. Even with slight derivations from

it, see block 4 in Table 1, the simulated actual coverage is far beyond its true nominal

value. Also the single regression imputation does not reflect the correct coverage and typ-

ically leads to a strong overestimation of the true population correlation. The regression

imputation with random residual performs quite well as long as the true unconditional

correlation is not too high. Best in all cases is the new procedure NIBAS. In every setting

it preserves the prior correlation with a higher nominal coverage than expected.6

Moreover, its average confidence intervals are only a little bit larger than those produced

by RIEPS. Also Table 1 demonstrates that the multiple imputation procedure NORM

very efficiently allows to use auxiliary data. With an additional file of size 5%, i. e., a

file of only 250 observations completely observed in X,Y , and Z, the simulated actual

coverage in most of the cases is higher than its nominal value. For NIBAS and RIEPS we

could also use auxiliary information to estimate the potential prior correlations therefrom,

but other simulations have shown that NORM is more powerful here, see Rässler (2002).

With NORM the confidence intervals are typically much larger than with NIBAS. Thus,

when prior information has to be used, NIBAS is the best choice at hand.

6Notice that according to classical and current formal definition of confidence intervals such conser-
vative intervals are valid.
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Ê(ρ̂XY1) ALCI Cvg. Ê(ρ̂XY2) ALCI Cvg.

Procedure ρXY1|Z = −0.6032, ρXY1 = 0.4 ρXY2|Z = 0.6393, ρXY2 = 0.8

NN 0.5810 0.0581 0.000 0.4566 0.0694 0.000

RI 0.4204 0.0722 0.805 0.9480 0.0089 0.000

RIEPS 0.4054 0.0771 0.960 0.8496 0.0328 0.000

NIBAS 0.3984 0.0819 0.985 0.7989 0.0467 1.000

NORM 1% 0.4201 0.1256 0.890 0.7824 0.1330 0.785

NORM 5% 0.3948 0.0985 0.960 0.8010 0.1372 1.000

Procedure ρXY1|Z = −0.2742, ρXY1 = 0.5 ρXY2|Z = 0.2651, ρXY2 = 0.6

NN 0.5828 0.0579 0.000 0.4584 0.0692 0.000

RI 0.5415 0.0620 0.265 0.8125 0.0298 0.000

RIEPS 0.5029 0.0730 0.960 0.6108 0.0764 0.980

NIBAS 0.5003 0.0753 0.995 0.6000 0.0815 1.000

NORM 1% 0.5331 0.1626 0.865 0.5604 0.2704 0.820

NORM 5% 0.4931 0.1084 0.960 0.6102 0.1963 0.970

Procedure ρXY1|Z = 0, ρXY1 = 0.5833 ρXY2|Z = 0, ρXY2 = 0.4583

NN 0.5817 0.0580 0.970 0.4579 0.0693 0.940

RI 0.6354 0.0523 0.025 0.6410 0.0517 0.000

RIEPS 0.5828 0.0664 0.995 0.4589 0.0941 1.000

NIBAS 0.5830 0.0664 0.995 0.4581 0.0993 1.000

NORM 1% 0.6018 0.1741 0.920 0.4310 0.3184 0.920

NORM 5% 0.5732 0.1033 0.955 0.4702 0.2033 0.950

Procedure ρXY1|Z = 0.0548, ρXY1 = 0.6 ρXY2|Z = 0.078, ρXY2 = 0.5

NN 0.5818 0.0580 0.765 0.4590 0.0692 0.345

RI 0.6540 0.0502 0.015 0.6981 0.0450 0.000

RIEPS 0.5999 0.0646 0.975 0.5014 0.0914 1.000

NIBAS 0.5998 0.0648 0.960 0.5006 0.0934 1.000

NORM 1% 0.6286 0.1891 0.940 0.4536 0.3275 0.905

NORM 5% 0.5921 0.0984 0.905 0.5063 0.1831 0.945

Procedure ρXY1|Z = 0.7129, ρXY1 = 0.8 ρXY2|Z = −0.6705, ρXY2 = 0.1

NN 0.5821 0.0580 0.000 0.4578 0.0693 0.000

RI 0.8331 0.0268 0.030 0.1168 0.0864 0.850

RIEPS 0.8156 0.0316 0.535 0.1055 0.0965 0.975

NIBAS 0.7999 0.0385 0.965 0.1008 0.1202 0.995

NORM 1% 0.7993 0.0888 0.945 0.1012 0.1986 0.970

NORM 5% 0.7972 0.0559 0.990 0.1063 0.1339 0.980

Table 1: Results for preserving the correlation structure
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Ê(µ̂Y1) Cvg. Ê(µ̂Y2) Cvg. Ê(σ̂2
Y1

) Cvg. Ê(σ̂2
Y2

) Cvg. Ê(ρ̂Y1Y2) Cvg.

Procedure ρXY1|Z = −0.6032, ρXY1 = 0.4 and ρXY2|Z = 0.6393, ρXY2 = 0.8

NN 0.0032 0.93 -0.0025 0.880 0.9903 0.910 0.9972 0.855 0.3975 0.885

RI 0.0019 0.96 -0.0009 0.935 0.8986 0.090 0.7116 0.000 0.6532 0.000

RIEPS 0.0019 0.98 -0.0014 0.980 0.9668 0.820 0.8863 0.055 0.4994 0.000

NIBAS 0.0009 0.99 0.0001 1.000 0.9998 0.980 1.0025 0.985 0.3995 0.995

NORM 1% 0.0066 0.97 -0.0023 0.995 0.9978 0.985 1.0052 1.000 0.4065 0.990

NORM 5% 0.0022 0.99 -0.0002 1.000 0.9906 0.960 1.0187 0.995 0.3964 0.990

Procedure ρXY1|Z = −0.2742, ρXY1 = 0.5 and ρXY2|Z = 0.2651, ρXY2 = 0.6

NN 0.0006 0.920 -0.0016 0.890 0.9917 0.915 0.9956 0.875 0.3988 0.815

RI 0.0000 0.925 -0.0005 0.880 0.8540 0.000 0.5464 0.000 0.8925 0.000

RIEPS 0.0003 0.965 -0.0009 0.985 0.9890 0.965 0.9687 0.945 0.4288 0.825

NIBAS -0.0001 0.955 -0.0006 1.000 1.0018 0.980 1.0006 1.000 0.3996 0.985

NORM 1% 0.0019 0.935 0.0040 0.980 0.9999 0.995 1.0014 1.000 0.4069 0.995

NORM 5% -0.0008 0.990 0.0026 1.000 0.9929 0.985 1.0180 0.985 0.3953 0.980

Procedure ρXY1|Z = 0, ρXY1 = 0.5833 and ρXY2|Z = 0, ρXY2 = 0.4583

NN 0.0027 0.920 -0.0017 0.930 0.9897 0.915 0.9925 0.870 0.3995 0.895

RI 0.0015 0.955 0.0012 0.920 0.8428 0.000 0.5112 0.000 0.9600 0.000

RIEPS 0.0013 0.975 0.0010 0.995 1.0008 0.980 1.0003 0.990 0.4012 1.000

NIBAS 0.0013 0.970 0.0011 1.000 1.0006 0.995 1.0013 0.995 0.4009 0.995

NORM 1% 0.0014 0.975 0.0092 0.985 1.0017 1.000 0.9983 1.000 0.4061 0.995

NORM 5% 0.0005 0.995 0.0046 1.000 0.9931 0.990 1.0179 0.990 0.3964 0.990

Table 2: Results for preserving the moments of the fused/imputed variable (1)
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Ê(µ̂Y1) Cvg. Ê(µ̂Y2) Cvg. Ê(σ̂2
Y1

) Cvg. Ê(σ̂2
Y2

) Cvg. Ê(ρ̂Y1Y2) Cvg.

Procedure ρXY1|Z = 0.0548, ρXY1 = 0.6 and ρXY2|Z = 0.078, ρXY2 = 0.5

NN 0.0028 0.910 0.0021 0.880 0.9914 0.935 0.9973 0.910 0.3969 0.885

RI 0.0017 0.925 0.0035 0.835 0.8414 0.000 0.5150 0.000 0.9582 0.000

RIEPS 0.0015 0.950 0.0041 0.985 0.9998 0.985 0.9994 0.990 0.3987 0.990

NIBAS 0.0021 0.970 0.0032 1.000 0.9990 0.995 1.0038 1.000 0.3996 0.995

NORM 1% 0.0014 0.950 0.0107 0.970 0.9994 0.995 1.0018 1.000 0.4058 1.000

NORM 5% 0.0007 0.980 0.0068 0.995 0.9916 0.985 1.0198 0.995 0.3948 0.990

Procedure ρXY1|Z = 0.7129, ρXY1 = 0.8 and ρXY2|Z = −0.6705, ρXY2 = 0.1

NN -0.0033 0.935 0.0015 0.920 0.9891 0.880 0.9922 0.845 0.3970 0.890

RI -0.0017 0.935 0.0005 0.910 0.9205 0.235 0.7303 0.000 0.6033 0.000

RIEPS -0.0018 0.940 0.0009 0.965 0.9604 0.775 0.8963 0.115 0.4968 0.005

NIBAS -0.0017 0.960 0.0005 0.980 0.9975 0.985 1.0019 0.995 0.3993 0.995

NORM 1% -0.0014 0.955 0.0075 0.970 0.9944 0.990 1.0122 0.990 0.4025 1.000

NORM 5% -0.0003 0.965 0.0000 0.985 0.9867 0.960 1.0108 1.000 0.4005 0.995

Table 3: Results for preserving the moments of the fused/imputed variable (2)
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The preservation of the distributions of the matched or imputed variables Y1 and Y2 is

displayed in Tables 2 and 3. Again the nearest neighbor match leads to similar results

regardless of the true correlations between X and Y1 or Y2. Always the coverage is too

low and the variances are underestimated as it is typical for single imputation approaches.

Regression imputation also typically underestimates the variances even more, the coverage

often is 0. As before, adding a random residual improves the regression imputation

considerably but not in all cases. The best preservation again provides NIBAS, throughout

the coverage is higher than its nominal value. Using auxiliary data works fine for NORM

also if only 1% (i. e., 50 observations) are completely observed.

7 Summary

In this paper we structure the validity a data fusion procedure may achieve by four

levels. It is shown that the forth level is meaningless, and only the first level typically

is controlled for when traditional techniques of data fusion are applied. Provided that

one of the vectors of specific variables is univariate, we derive bounds for the correlations

between variables not jointly observed and suggest a new quality index of data fusion

which is built upon these bounds. Then, the preservation of the joint distribution and the

correlation structure of the variables not jointly observed can be evaluated by using the

non-iterative multiple imputation procedure NIBAS. Since data fusion can be viewed as

a problem of missing data, MI procedures are applicable in general. Auxiliary data can

be easily and efficiently used by standard MI procedures such as NORM. In a simulation

study, we find the multiple imputation approaches superior to the traditional matching

techniques.
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