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Abstract
We propose a gradient-based method to solve quasiconvex optimization problems 
through decomposed optimization and prove local superlinear convergence under 
mild regularity assumptions at the optimal solution. A practical implementation 
further provides global convergence while maintaining the fast local convergence. 
In numerical examples from generalized cone programming, the proposed method 
reduced the number of iterations to 18 to 50% compared to bisection.

Keywords  Quasiconvex optimization · Decomposed optimization · Newton’s 
method · Generalized cone problems

1  Introduction

A function f ∶ C → ℝ is said to be quasiconvex on a convex set C ⊂ ℝ
n if and only 

if f has convex sublevel sets Sf (t) = {x ∈ C | f (x) ≤ t} or, equivalently, there exists a 
family of convex functions �t ∶ C → ℝ such that

for all (t, x) ∈ ℝ × C . Several problems in economics, dynamic systems, or machine 
learning can be cast as optimizing quasiconvex objective and constraint functions 
[1–3, and references herein]. An important subclass of quasiconvex optimization is 
the class of generalized cone problems, which include the generalized eigenvalue 
problem and quasiconvex sum-of-squares programming problems. These problems 
often arise in the analysis of linear, switching, or polynomial dynamic systems, 
for example, estimating the maximal decay rate of a stable system or the largest 

(1)f (x) ≤ t ⟺ �t(x) ≤ 0
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invariant sublevel set of a local Lyapunov function [4]. Quasiconvex optimization 
problems can be solved via interior-point or proximal-point methods [5] as well 
as subgradient descent [6], but perhaps most popular are bisection techniques [3]. 
Bisection exhibits robust convergence with guaranteed logarithmic bounds on the 
number of iterations needed for a specified accuracy. However, these methods rely 
heavily on a compact confidence interval provided by the user that must contain the 
optimal value; moreover, its local convergence rate is below the superlinear or even 
quadratic convergence of gradient-based methods [7].

At the core of the bisection method for quasiconvex programming is a convex 
optimization problem parametrized in the value t which is feasible if and only if Sf (t) 
is nonempty. Parametrized optimization problems have been studied extensively, 
e.g., by [8, 9], to assess continuity and differentiability of the optimal value as a 
function of the parameter, often through variational analysis [10]. These results play 
a prominent role in decomposition techniques [11], which solve large-scale optimi-
zation problems by decomposition into smaller, more tractable programs.

This letter proposes a decomposed quasiconvex optimization scheme in form of a 
gradient-based decomposition method for quasiconvex programs.1 Our main contri-
butions are to prove that minimizing a quasiconvex function is equivalent to finding 
the unique root of a parametrized optimization problem and to show that the latter 
is convex for the class of generalized cone problems. Newton’s method for solving 
an equation—rather than optimization—only requires first-order derivatives, which 
we compute by variational analysis under some regularity assumptions. We then 
develop a practical algorithm that robustly converges to a desired accuracy in finite 
time yet provides superlinear and even quadratic convergence rates locally.

The remainder of the paper is organized as follows: In Sect. 2, we formally state 
the problems of quasiconvex optimization and generalized cone programs as well 
as briefly describe previous approaches. Section 3 provides the mathematical back-
ground. Our decomposed quasiconvex optimization scheme is described in Sect. 4 
where we prove wellposedness, local convergence, and applicability to generalized 
cone problems. We present an implementation in Sect. 5 and analyze termination, 
accuracy, and complexity of the algorithm. Numerical examples in Sect. 6 demon-
strate the usefulness of the approach.

2 � Problem statement

Let C ⊂ ℝ
n be a convex set and f ∶ C → ℝ be a quasiconvex function which is con-

tinuous on C; the quasiconvex programming problem is

for some nonempty closed convex set X ⊂ C . The set X may be described by convex 
or quasiconvex constraints (e.g., Equation (2) in [3]).

(2)t⋆ = inf f (x) s.t. x ∈ X

1  The term decomposed quasiconvex optimization refers to the proposed decomposition method for qua-
siconvex optimization and is different from the notion of decomposed quasiconvex functions in [12].
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Assumption 1  The problem in (2) attains an optimal solution x⋆ ∈ X , that is, 
f (x⋆) = t⋆.

We introduce generalized cone problems next, which are instances of quasicon-
vex optimization, and briefly review the two most prominent approaches to solve 
(2), namely bisection and subgradient descent.

2.1 � Generalized cone problems

Generalize cone programs are quasiconvex optimization problems defined by

where a ∶ ℝ
n
→ ℝ

m and b ∶ ℝ
n
→ ℝ

m are affine functions, K ⊂ ℝ
m is a closed 

convex cone, K′ ⊆ K is a convex subset, and X ⊂ ℝ
n is a closed convex set. In the 

generalized eigenvalue problem, K and K′ correspond to the cones of positive sem-
idefinite and positive definite matrices, respectively, whereas in quasiconvex sum-
of-squares problems, K = K

� is the cone of sum-of-squares polynomials.
Define the set C = {x ∈ ℝ

n | b(x) ∈ K
�} as well as the function

for all x ∈ C , and observe that infx∈X∩C f (x) = t⋆ by construction. Denote by 
dom f ⊆ C the set of all points x ∈ C such that (4) attains a finite value. For the 
remainder of this paper, we assume, without loss of generality, that X ⊆ C.

Proposition 1  The function defined in (4) is quasiconvex on dom f .

The proof follows the ideas of [4, Proof of Theorem 2] for the cone of sum-of-
squares polynomials and is given here for completeness.

Proof  Without loss of generality, pick any t ∈ ℝ such that Sf (t) ≠ ∅ ; that is, 
b(x) ∈ K

� for any x ∈ Sf (t) and there exists tx ≤ t such that txb(x) − a(x) ∈ K and 
hence,

since K is a convex cone. To prove that Sf (t) is convex, let x1, x2 ∈ Sf (t) and 
� ∈ (0, 1) ; then

(3)
t⋆ = inf

t∈ℝ, x∈X
t subject to tb(x) − a(x) ∈ K

b(x) ∈ K
�

(4)f ∶ x ↦ inf t s.t. tb(x) − a(x) ∈ K

tb(x) − a(x) = (t − tx)b(x) + (txb(x) − a(x)) ∈ K

tb(�x1 + (1 − �)x2) − a(�x1 + (1 − �)x2)

= �(tb(x1) − a(x1)) + (1 − �)(tb(x2) − a(x2)) ∈ K
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since a and b are affine and K is convex. Moreover, by a similar argument, 
b(�x1 + (1 − �)x2) = �b(x1) + (1 − �)b(x2) ∈ K

� . Hence, f (�x1 + (1 − �x2)) ≤ t , 
proving convexity of Sf (t).

To conclude the proof, dom f  is the union of all (convex) sets Sf (t) with t ∈ ℝ , 
satisfying Sf (t1) ⊆ Sf (t2) for any t1 ≤ t2 , and therefore a convex set. 	�  ◻

Remark 1  In the proof we established an important property, namely that, for all 
(t, x) ∈ ℝ × C , we have x ∈ Sf (t) if and only if tb(x) − a(x) ∈ K.

2.2 � Related work

In order to solve (2) or (3), most previous authors either employed bisection or sub-
gradient descent methods.

Bisection methods Let t̂ ∈ ℝ and recall that Sf (t̂) contains all points x ∈ C such that 
f (x) ≤ t̂ . Bisection methods make use of the simple observation that t̂ is a lower 
(upper) bound for t⋆ if and only if Sf (t̂) ∩ X is (not) empty. Suppose now that the 
optimal value t⋆ is contained in the compact interval I ⊂ ℝ and pick t ∈ I  . Since the 
sets in question are convex, checking nonemptiness of Sf (t) ∩ X amounts to a convex 
feasibility problem. If feasible, we obtain a new, compact interval I ∩ (−∞, t] which 
is guaranteed to contain t⋆ ; otherwise, we have that t⋆ ∈ I ∩ [t,+∞) . Choosing suit-
able test points for t, we obtain a sequence of shrinking intervals that approximate 
the optimal value t⋆ with some accuracy � after a finite number of steps [3]. How-
ever, bisection methods are sensitive to the choice of the first interval and do not 
benefit from a good initial guess for t⋆.

Subgradient methods Extending the idea of projected gradient descent to a nondif-
ferential or even semicontinuous functions f, subgradient methods use some initial 
guess x0 ∈ X to obtain an iteration of the form

for all k ≥ 0 , where 𝜕f (x) is a subdifferential of f at x and ΠX(⋅) denotes the projec-
tion onto the closed convex set X. In [6], suitable subdifferentials as well as condi-
tions on the sequence {�k}k≥0 are derived such that (5) yields a sequence which con-
verges to an optimal solution of (2).

3 � Preliminaries

We recall a few results on the sensitivity of optimization problems that we are going 
to use for our decomposed optimization method.

Normal cone and set-valued maps The normal cone of a (not necessarily convex) 
set Ω ⊂ ℝ

m at some point z ∈ Ω is

(5)xk+1 = ΠX(xk − 𝛼kdk), dk ∈ 𝜕f (xk), ‖dk‖ = 1, 𝛼k > 0
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and we define NΩ(z) = ∅ for any z ∉ Ω . The normal cone can be considered 
as a set-valued mapping. For a set-valued mapping F ∶ ℝ

n
⇉ ℝ

m , we define 
domF = {x ∈ ℝ

n |F(x) ≠ ∅} and graphF = {(x, y) ∈ ℝ
n ×ℝ

m | y ∈ F(x)} . Moreo-
ver, F is said to be Lipschitz continuous (in a set-valued sense) around x̄ ∈ domF if 
and only if there exist a constant � > 0 and a neighbourhood D ⊂ domF of x̄ such 
that F(⋅) has closed values on D and

for all x1, x2 ∈ D , where B(r) ∶= {� ∈ ℝ
n � ‖�‖ ≤ r} is a ball in ℝn of radius r ≥ 0.

Functions, selections, and localizations If F is single-valued on some D ⊂ domF , 
that is, F(x) = {f (x)} for all x ∈ D with f ∶ ℝ

n
→ ℝ

m , then (6) corresponds to the 
classical notion of Lipschitz continuity of f around x̄ for functions. In addition, we say 
that f is calm at x̄ if and only if F ∶ x ↦ {f (x)} satisfies (6) for x1 ∈ D but x2 = x̄ fixed.

Definition 1  Take F ∶ ℝ
n
⇉ ℝ

m with (x̄, ȳ) ∈ graphF and let D ⊂ domF be a 
neighbourhood of x̄ ; a function r ∶ D → ℝ

m is

•	 a single-valued localization of F around x̄ for ȳ if and only if {r(x)} = F(x) ∩ Y;
•	 a selection of F around x̄ for ȳ if and only if {r(x)} ∩ F(x) ≠ ∅;

for all x ∈ D , where Y ⊂ ℝ
m is a neighbourhood of ȳ . [10, p. 77 and p. 125]

 Subdifferentials for nonsmooth functions For a function f ∶ ℝ
n
→ ℝ , we define the 

Fréchet subdifferential as

and the basic subdifferential as [13, Definition 1.77]

at x̄ ∈ dom f  . The basic subdifferential is equivalent to the Fréchet subdiffer-
ential for convex functions [13, Theorem  1.93], satisfies �f (x) = {∇f (x)} if f is 
strictly differentiable at x [13, Corollary 1.82], and is nonempty for Lipschitz con-
tinuous functions in finite-dimensional spaces [13, Corollary  1.81 together with 
Proposition 1.76].

Remark 2  If f is a quasiconvex function, other notions of generalized subdifferentials 
have been developed [14–16]; for the parametrized convex problems considered in 
this paper, however, the basic subdifferential is more suitable.

NΩ(z) = {v ∈ ℝ
m �∀z� ∈ Ω, ⟨v, z� − z⟩ ≤ 0}

(6)F(x1) ⊂ F(x2) + �B(‖x1 − x2‖)

𝜕̂f (x̄) =
�
v ∈ ℝ

n � lim inf
x→x̄

f (x̄) − f (x) − ⟨v, x̄ − x⟩
‖x̄ − x‖ ≥ 0

�

𝜕f (x̄) = {v ∈ ℝ
n |∃xk → x̄, vk → v, with f (xk) → f (x̄) and vk ∈ 𝜕̂f (xk)}



272	 T. Cunis 

4 � Decomposed quasiconvex optimization

We are going to combine the idea of solving a convex problem for a candi-
date level t̂ with a gradient-based approach. To that extent, consider the function 
� ∶ (t, x) ↦ �t(x) and recall that �(t, ⋅) is a convex function for all t ∈ ℝ . We intro-
duce the parametrized convex optimization problem

which takes values on the extended real line ℝ ∪ {−∞} . Indeed, the optimization in 
(7) may be unbounded in which case we set �(t) ∶= −∞.

Assumption 2  The problem in (7) obtains an optimal solution for any t ∈ �−1(0).

This assumption is satisfied, e.g., if for all t < t⋆ there exists a lower bound 𝜖t > 0 
such that �t(x) ≥ �t for all x ∈ X ; or if X is a compact set. The following definition 
extends on the concept of indicator functions in (1).

Definition 2  A signed metric for a closed set Ω ⊂ ℝ
m is a function � ∶ ℝ

m
→ ℝ sat-

isfying 𝜆(z) < 0 if and only if z ∈ intΩ and 𝜆(z) > 0 if and only if z ∉ Ω for all 
z ∈ ℝ

m.

An example of a signed metric is the signed distance function.2

4.1 � Properties of parametrized optimization

We derive conditions under which �(⋅) is monotonically nonincreasing and has a 
unique root in t⋆.

Lemma 2  If �(⋅, x) is nonincreasing for all x ∈ C , then the optimal value �(⋅) is non-
increasing as well.

Proof  Let t, t� ∈ ℝ satisfy t ≤ t′ , suppose that �(⋅, x) is nonincreasing, and 
t ∈ dom � , that is, 𝜗(t) > −∞ . By optimality, for any v > 𝜗(t) there exists x ∈ X 
such that 𝜓(t, x) < v . Assume now that � is increasing between t and t′ , that is, 
𝜗(t�) > 𝜗(t) ; but then 𝜓(t�, x) ≤ 𝜓(t, x) < 𝜗(t�) contradicting that �(t�) is the optimal 
value.

On the other hand, if �(t) = −∞ , that is, for any r ∈ ℝ there exists x ∈ X such that 
𝜙t(x) < r ; then 𝜓(t�, x) ≤ 𝜓(t, x) < r as well and, to complete the proof, �(t�) = −∞ 
by definition. 	�  ◻

(7)� ∶ t ↦ inf
x∈X

�(t, x)

2  For a closed set Ω ⊂ ℝ
m , the signed distance to Ω is defined as

where dist(⋅;Ω) is the classical distance function, and �(⋅;Ω) is a convex function if Ω is a convex set.

�(x;Ω) =

{
+dist(x; bndΩ) if x ∉ Ω

−dist(x; bndΩ) if x ∈ Ω



273Decomposed quasiconvex optimization with application to…

Note that we have not made any other assumptions about the family �t other than 
monotonicity of �(t, ⋅) ≡ �t . For the following result, which is a major part of our 
approach, we assume that � is a signed metric function for the graph of the sublevel 
set mapping Sf ∶ t ↦ {x ∈ C | f (x) ≤ t}.

Lemma 3  Let Assumptions 1 and 2 be satisfied; if � ∶ ℝ × C → ℝ is a signed metric 
function for graph Sf  , then t⋆ is the optimal value of (2) if and only if the optimal 
solution of (7) satisfies 𝜓(t⋆, x⋆) = 0.

Proof  Let x⋆ ∈ arg inf x∈Xf (x) and t⋆ = f (x⋆) ; that is, 𝜗(t⋆) = 𝜓(t⋆, x⋆) ≤ 0 . Sup-
pose now that 𝜓(t⋆, x

�) < 0 for some x� ∈ X , then (t⋆, x�) ∈ int graph Sf  by defi-
nition of a signed metric function and hence, there exists (t�, x�) ∈ graph Sf  with 
t′ < t⋆ , that is, f (x�) ≤ t� < t⋆ . This contradicts the optimality of t⋆.

Let now 𝜗(t⋆) = 𝜓(t⋆, x⋆) = 0 for some x⋆ ∈ X and hence, f (x⋆) ≤ t⋆ . Suppose 
that f (x�) < t⋆ for some x� ∈ X and define � ∶ (t, x) ↦ f (x) − t ; then 𝜆(t⋆, x�) < 0 
and by upper semicontinuity of f (thus of � ) we have that 𝜆(t, x) < 0 for all (t,  x) 
around (t⋆, x�) . Hence, (t⋆, x�) ∈ int graph Sf  , that is, 𝜓(t⋆, x

�) < 0 in contradiction 
to the optimality of x⋆ . 	�  ◻

We later propose a signed metric function �(t, x) for generalized cone problems 
which is convex in x, but whether such a function exists for any quasiconvex func-
tion must remain an open question. It should be noted, however, that convexity is 
merely a convenience when solving the problem in (7) but not needed in the subse-
quent analysis.

4.2 � Decomposed Newton’s method

Having established that, if � is a signed metric function for graph Sf  , solving (2) is 
equivalent to finding the root of (7), we propose a gradient-based algorithm to solve 
�(t) = 0 and analyse its convergence to t⋆ . In order to be able to compute gradients 
for � we need the following assumption for �.

Assumption 3  The mapping � ∶ (t, x) ↦ �t(x) is differentiable around 
(t0, x0) ∈ ℝ × C and the partial derivatives ∇t� and ∇x� are Lipschitz continuous 
around (t0, x0).

Note that continuous differentiability (a fortiori, Lipschitz continuity) of � 
together with closedness of X implies that �(t) is Lipschitz continuous around 
t0 ; this is a common fact in mathematical programming (see, e.g., [10, Exer-
cise 4.6]). Lipschitz continuity, on the other hand, implies that �(⋅) is differen-
tiable almost everywhere on a neigbourhood of t0 . The following result from 
[9] allows us to compute gradients of � . To that extent, define the solution map 
Σ(t) = {x ∈ X |�(t, x) = �(t)}.
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Theorem 4  Let Assumption 3 be satisfied and suppose that Σ(⋅) has a calm selection 
around t0 ∈ ℝ for x0 ∈ Σ(t0) ; then � is strictly differentiable around t0 with gradient 
∇�(t0) = ∇t�(t0, x0).

Proof  Since X is closed and convex, � has Lipschitz-continuous derivatives, Σ has a 
calm selection around t0 for x0 , and the parameter t only enters into the objective of 
(7), the basic subgradient of �(t0) satisfies

by virtue of [9, Theorem 3.1].
Since � is continuously differentiable, ��(t0, x0) = {∇�(t0, x0)} and ��(t0) con-

tains at most one element. On the other hand, since � is a locally Lipschitz continu-
ous function on a finite-dimensional space, ��(t0) is nonempty [13, Corollary 1.81 
together with Proposition  1.76], that is, ��(t0) = {�} where � = ∇t�(t0, x0) ; and 
� = ∇�(t0) by [13, Theorem 3.54], the desired result. 	� ◻

Combining the results above we can employ Newton’s method to solve (2).

Proposition 5  Let Assumptions 1–3 be satisfied, suppose that Σ(⋅) is Lipschitz con-
tinuous (in a set-valued sense)

around the optimal value t⋆ of (2) for some x⋆ ∈ Σ(t⋆) , and consider the sequence 
generated by

with t0 ∈ ℝ and k ∈ ℕ0 ; if ∇t𝜓(t⋆, x⋆) ≠ 0 as well as ∇t�(tk, xk) ≠ 0 along 
{(tk, xk)}k∈ℕ0

 and the initial condition t0 is sufficiently close to t⋆ , then {tk}k∈ℕ0
 con-

verges Q-superlinearly to t⋆.

Proof  Let Σ(⋅) be Lipschitz continuous on some neighbourhood T ⊂ ℝ , that is, 
T ⊂ dom𝜗 ; then Σ(t) has a calm selection around t for any xt ∈ Σ(t) and all t ∈ T  
and by virtue of Theorem 4, �(t) is strictly differentiable at t (hence continuously 
differentiable around t⋆ ) with gradient ∇�(t) = ∇t�(t, xt) . If ∇t�(tk, xk) ≠ 0 for all 
k ∈ ℕ0 , then the sequence {(tk, xk}k∈ℕ0

 generated by (8) is well defined and, if t0 is 
sufficiently close to t⋆ , that is, {tk}k∈ℕ0

⊂ T  , corresponds to Newton’s method. Not-
ing that ∇𝜗(t⋆) = ∇t𝜓(t⋆, x⋆) ≠ 0 by assumption, {tk}k∈ℕ0

 converges Q-superline-
arly to a root of �(⋅) by [17, Theorem 11.2] (also [7, Theorem 2.2(b)]) and hence, the 
optimal value t⋆ (Lemma 3). 	�  ◻

To satisfy the assumptions in Theorem 4, we need Σ(⋅) to have a calm selec-
tion around any (tk, xk) generated by (8). A sufficient condition is that Σ(⋅) has the 
Aubin property (see [10, Section 4] for a definition) at tk for xk for all k ∈ ℕ0 . If 
all xk lie in a neighbourhood of x⋆ , then it is sufficient for Σ(⋅) to have the Aubin 
property at t⋆ for x⋆ . This is satisfied if the Karush–Kuhn–Tucker condition 

��(t0) = {� |∃(�, �) ∈ ��(t0, x0), � +NX(x0) ∋ 0}

(8)tk+1 = tk − ∇t�(tk, xk)
−1�(tk), xk ∈ Σ(tk)
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system of (7), viz. ∇x𝜙t⋆ +NX , is metrically regular at x⋆ for 0 [10, Theorem 4.3]. 
Now, if X is a polyhedral set, then metric regularity is equivalent to strong metric 
regularity and implies that Σ(⋅) has a Lipschitz continuous single-valued graphi-
cal localization3 [10, Theorem  9.7 together with Theorem  8.8]. We then obtain 
the following improvement of Proposition 5.

Proposition 6  Let Assumptions 1–3 be satisfied; if, in addition to Lipschitz continu-
ity, Σ(⋅) is single-valued around t⋆ and ∇t𝜓(t⋆, x⋆) ≠ 0 , where Σ(t⋆) = {x⋆} , then 
the sequence generated by (8) has local Q-quadratic convergence.

Proof  Let � ∶ T → C be a Lipschitz continuous single-valued localization of 
Σ(⋅) for some neighbourhood T ⊂ ℝ of t⋆ , that is, Σ(t) = {�(t)} for all t ∈ T  ; 
then, by continuity of ∇t� and � , there exists a neighbourhood T ′ ⊆ T  of t⋆ 
such that ∇t�(t, �(x)) ≠ 0 for all t ∈ T � . Moreover, for all t ∈ T  , the gradient 
∇�(t) = ∇t�(t, �(t)) exists and is Lipschitz continuous at any t ∈ T  by Theorem 4. 
Following the proof of Proposition 5, the sequence {tk}k∈ℕ0

 converges to the optimal 
value t⋆ and the convergence is Q-quadratic by [17, Theorem 11.2] (also [7, Theo-
rem 2.2(c)]). 	�  ◻

We conclude the analysis with an illustrating example.

Example 1  The function f (x) =
√
�x� is quasiconvex on ℝ with signed metric func-

tion �(t, x) = |x| − t|t| for graph Sf  . The problem (7) obtains its optimum at the ori-
gin for all t ∈ ℝ , hence �(t) ≡ �(t, 0) and ��(t) = −2|t| . Newton’s method converges 
to the approximation t⋆ < 1 × 10−3 with accuracy below 1 × 10−3 in 12 iterations. 
For comparison, a subgradient descent algorithm, using f �(x) = (2x)−1

√
�x� if x ≠ 0 

and �f (0) ∋ 0 else, with backtracking took 51 iterations to converge to the approxi-
mation f (xf ) < 0.125 with same accuracy. (Both methods were initialized at x0 = 10 
and t0 =

√
x0 , respectively.)

4.3 � A signed metric for generalized cones

We propose to solve generalized cone programming problems using the gradient-
based approach presented in the previous section. In particular, we introduce a 
signed metric function for (3) that has favourable properties for Newton’s method. 
Namely, define

for all x ∈ C , that is, b(x) ∈ K
� ; where �K ∶ ℝ

m
→ ℝ is a continuous convex signed 

metric function for K . Recall that K∗ is the dual cone of K.

(9)�K ∶ (t, x) ↦ �K(tb(x) − a(x))

3  Note that since Σ(⋅) has convex values, a single-valued graphical localization is equivalent to Σ(⋅) being 
unique.



276	 T. Cunis 

Assumption 4  The problem in (3) obtains an optimal solution (t⋆, x⋆) ∈ ℝ × X and 
there exists � ∈ K

∗ with inf(t,x)∈ℝ×X t − 𝜇(tb(x) − a(x)) = t⋆.

Assumption 4 is the classical assumption of strong duality, which is equivalent to 
the existence of a Karush–Kuhn–Tucker (KKT) solution [18, Proposition 3.3].

Proposition 7  For any (t, x) ∈ ℝ × C , the function �K(t, x) is continuous in t, convex 
in x, and nonnegative if and only if x ∈ Sf (t) . Moreover, if either b is surjective or 
K

′ ⊆ intK , then �K is a signed metric for graph Sf .

Proof  Convexity and continuity of �K(t, x) are obvious. Take t ∈ ℝ and x ∈ C , 
that is, b(x) ∈ K

� . If x ∉ Sf (t) , then t�b(x) − a(x) ∉ K for all t′ ≤ t and hence, 
𝜆K(tb(x) − a(x)) > 0 since �K is a signed metric function for K . On the other hand, 
suppose that x ∈ Sf (t) , that is, tb(x) − a(x) ∈ K and �K(tb(x) − a(x)) ≤ 0.

Moreover, if (t, x) ∈ int graph Sf  , then t�b(x�) − a(x�) ∈ K and b(x�) ∈ K
� for all 

(t�, x�) around (t, x), and thus b(x) ∈ intK if either b is surjective or K′ ⊆ intK . Pick 
some 𝜏 > 0 and any � ∈ ℝ

m sufficiently close to 0 such that (t − �)b(x) − a(x) ∈ K 
and b(x) + �∕� ∈ K . Then

since K is a convex cone; in other words, tb(x) − a(x) ∈ intK and 𝜓(t, x) < 0 . We 
have already shown that 𝜓(t, x) > 0 for all (t, x) ∉ graph Sf = ∪t∈ℝSf (t) ; continu-
ity of �K also implies that �K(t, x) = 0 for all (t, x) ∈ bnd graph Sf  , completing the 
proof that �K is a signed metric function for graph Sf .	� ◻

A possible choice for the function �K is the scalarization function

for some � ∈ intK . The properties of scalarization functions are extensively dis-
cussed in [19, Chapter 5.2.2]. If K is proper, that is, K is a closed convex cone satis-
fying K ∩ −K = {0} and K −K = ℝ

m , then �K,� is well defined [19, Corollary 5.2.8] 
and maps each z ∈ ℝ

m to a finite signed ‘distance’ between z and the boundary of K . 
We show that the signed metric function (9) together with (10), denoted by �K,� , sat-
isfies Assumption 2 as well as the assumptions in Lemma 2.

Lemma 8  For any t < t⋆ , the function �K,�(t, ⋅) satisfies infx∈X 𝜓K,𝜉(t, x) > 0.

Proof  By means of contradiction, assume there exists t′ < t⋆ together with a sequence 
{xk ∈ X}k∈ℕ such that limk→∞ �K,�(t

�, xk) = 0 ; that is, by (10), there exists zk ∈ K and 
rk → 0 satisfying zk = t�b(xk) − a(xk) + rk� for all k ∈ ℕ . Hence, for any � ∈ K

∗ there 
exists � ∈ ℕ such that t� − 𝜇(t�b(xk) − a(xk)) = t� − 𝜇(zk) + rk𝜇(𝜉) ≤ t� + rk𝜇(𝜉) < t⋆ 
for all k ≥ � , noting that � is nonnegative on K , contradicting Assumption 4. 	�  ◻

Lemma 9  For any x ∈ X , the function �K,�(⋅, x) is nonincreasing.

K ∋ (t − �)b(x) − a(x) + �(b(x) + �∕�) = tb(x) − a(x) + �

(10)�K,� ∶ z ↦ inf{r ∈ ℝ | z + r� ∈ K}
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Proof  Take (t, x) ∈ ℝ × X and denote z = tb(x) − a(x) + �K,�(t, x)� ; since z ∈ K and 
b(x) ∈ K

� ⊆ K , we have that z + �b(x) ∈ K and hence,

for all � ≥ 0 , the desired result. 	�  ◻

Moreover, since �K,� is a convex (a fortiori, absolute continuous) function, it is 
differentiable almost everywhere. We obtain the following characterization of the 
gradient, if existing, from the dual theory of convex cone programs.

Proposition 10  Take z̄ ∈ ℝ
m ; the dual problem

where K∗ is the dual cone of K , has a unique solution ȳ if and only if the gradient 
∇𝜆K,𝜉(z̄) of the scalarization function (10) exists and equals ȳ.

Proof  Let r̄ = 𝜆K,𝜉(z̄) ; since the optimization problem in (10) is feasible and � ∈ K , 
Slater’s condition is satisfied and the KKT conditions

have a solution ȳ ∈ −K∗ . Rewriting yields ⟨ȳ, z̄⟩ = r̄ and hence, ȳ is an optimal solu-
tion of (11). We claim that any y ∈ ℝ

m is an optimal solution of (11) if and only if y 
is a subgradient of 𝜆K,𝜉(z̄) , that is,

for all z ∈ ℝ
m . Suppose y is a subgradient, then ⟨y,±𝜉⟩ ≤ 𝜆K,𝜉(z̄ ± 𝜉) − r̄ ≤ ±1 , 

where we have used that z̄ + r̄𝜉 ∈ K , and ⟨y, 𝜅⟩ ≤ 𝜆K,𝜉(z̄ + 𝜅) − r̄ ≤ 0 for all � ∈ K , 
since K is a convex cone. Moreover, ⟨y,−z̄⟩ ≤ r̄ and hence, y is an optimal solution 
of (11). On the other hand, take z ∈ ℝ

m and r = �K,�(z) ; then

if y is an optimal solution of (11), since z + r� ∈ K and y ∈ −K∗ . To conclude the 
proof, note that ∇𝜆K,𝜉 = ȳ if and only if ȳ is the unique subgradient. 	�  ◻

For a characterization of the subgradients for arbitrary optimization problems 
with affine and convex cone constraints, see [8, Theorem 2]. In particular, the KKT 
conditions of both (10) and (11) can be written as

with h(z̄) ∶ (r, y) ↦ (1 + ⟨y, 𝜉⟩, z̄ + r𝜉) being an affinely parametrized, affine map. 
For �K,� to be continuously differentiable around z⋆ ∶= t⋆b(x⋆) − a(x⋆) , we need 

�K,�(t + �, x) = inf{r ∈ ℝ | (t + �)b(x) − a(x) + r� ∈ K} ≤ �K,�(t, x)

(11)sup
−y∈K∗

⟨y, z̄⟩ s.t. 1 + ⟨y, 𝜉⟩ = 0

1 + ⟨y, 𝜉⟩ = 0

⟨y, z̄ + r̄𝜉⟩ = 0

⟨y, z − z̄⟩ ≤ 𝜆K,𝜉(z) − r̄

⟨y, z − z̄⟩ = ⟨y, z + r𝜉⟩ − r⟨y, 𝜉⟩ − ⟨y, z̄⟩ ≤ r − r̄

(12)h(z̄, (r, y)) +N
ℝ×K∗ ((r, y)) ∋ 0
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that the solution (11) is unique and Lipschitz continuous for z̄ around z⋆ , which is 
the case if h(z⋆, ⋅) +N

ℝ×K∗ is strongly regular at (r⋆, y⋆) for 0. If K is a polyhedral 
cone, then strong regularity corresponds to z⋆ lying in exactly one of the generating 
half-spaces.

5 � Implementation

We propose a practical algorithm to solve quasiconvex optimization algorithms using 
decomposed optimization and signed metric functions. To that extent, we assume that a 
signed metric function � for graph Sf  and some initial guess t(0) is given by the user. The 
algorithm is then generating a sequence (t(1), t(2),…) until some convergence condition 
is met. Now, as mentioned above, the optimization problem in (7) might be unbounded 
for some t(k) and we do not obtain any sensitivity information. In order to choose a new 
point in that case, we introduce a confidence interval I = (a, b) ⊂ ℝ which might be 
initially unbounded (that is, a, b ∈ ℝ ∪ {±∞} ). If the solution �(t(k)) of (7) is negative 
(including �(t(k)) = −∞ ) for any k ∈ ℕ , we update the lower bound of I to be equal to 
t(k) ; if the solution is positive, we update the upper bound accordingly. This ensures that 
t⋆ remains an element of I. However, when (7) is unbounded or the Newton step yields 
a point t+ outside I, we instead perform a bisection to find a new estimate. The full pro-
cedure is described by Algorithm 1. In the following analysis, we denote the size of the 
confidence interval by |I| = b − a , where |I| = ∞ if the interval is unbounded.

Algorithm 1   Quasiconvex programming by decomposed optimization.
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Termination Algorithm 1 has a combined termination condition: the first condition, 
size of the last step, is reminiscent of bisection algorithms where the step length 
corresponds to half the length of the confidence interval; the second condition, a 
measure of constraint satisfaction, prevents the algorithm from converging to an 
infeasible point. Unfortunately, termination of the algorithm in this form cannot be 
guaranteed. Indeed, even with the addition of a confidence interval, only local con-
vergence of Algorithm 1 holds under the assumptions of Propositions 5 and 6. It is 
well known that Newton’s method is susceptible to limit cycles if initialized too far 
away from the optimal solution [7, Example 2.16]. We prevent such behaviour by 
restricting the step length via the update rule

if t+ ∈ I and ak+1, bk+1 ∈ ℝ . Thus, it is ensured that the confidence interval shrinks 
if Newton’s method would otherwise circle the optimal solution. On the other hand, 
since the optimal value of (7) is not differentiable everywhere, a large (estimated) 
gradient may lead to a small step despite �(t(k)) being not zero. Here, we saturate4 
the absolute value of the gradient ∇t𝜓(t(k), x̄k) by some Dmax > 0 to ensure that 
|tk+1 − tk| → 0 only if �(t(k)) → 0.

Accuracy By Lemma 3, the optimal value t⋆ is the unique root of �(⋅) ; hence, there 
exists a monotonically increasing function Δ ∶ ℝ≥0 → ℝ≥ and a neighbourhood 
T ⊂ ℝ of t⋆ satisfying |𝜗(t)| ≥ Δ(|t − t⋆|) for all t ∈ T  . The algorithm terminates 
after K ∈ ℕ0 iterations only if

as a result of the second termination condition. In addition, if t(K+1) is the result of a 
Newton step, then the first termination condition yields

whereas, in the case of a bisection (that is, |IK+1| < ∞ ), we have that

since t(K), t⋆ ∈ IK+1 by construction and |t(K+1) − t(K)| = |IK+1|∕2 . In particular, under 
the assumptions of Propositions 5 and 6, the solution of (7) is differentiable around t⋆ 

tk+1 =

{
min{t+, (ak+1 + bk+1)∕2} if 𝜗(t(k)) > 0

max{t+, (ak+1 + bk+1)∕2} if 𝜗(t(k)) ≤ 0

|t(K) − t⋆| < Δ−1(𝜖2)

|t(K) − t⋆| < DKΔ
−1(𝜖1)

|t(K) − t⋆| ≤ |IK+1| < 2𝜖1

4  The saturation function is commonly defined as

for any r ∈ ℝ some constant D > 0.

sat(r;D) =

⎧
⎪
⎨
⎪⎩

+D if r > +D

r if r ∈ [−D,+D]

−D if r < −D
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with nonzero gradient, that is, the mapping Δ may be chosen as Δ ∶ � ↦ (DK − �D)� 
with 𝜖D > 0 . In this case, we obtain that

from the Newton step and the first termination condition.

Complexity Suppose now that �(⋅) is nonincreasing (see Lemma  2) and note that 
thus, for any 𝜏 > 0 there exists a constant d ∈ (0,Dmax∕2] satisfying |𝜗(t)| ≥ d|t − t⋆| 
for all t ∈ ℝ with |t − t⋆| > 𝜏 ; moreover, assume that the interval I0 is bounded (that 
is, |I0| < ∞ ). Hence, for all k ≥ 0,

by the revised update rule and construction of Ik+1 . In addition, as t(k+1) is a bound-
ary point of Ik+2 , we have that

where the last inequality follows from |t(k) − t⋆| ≤ |Ik+1| . We claim that for any 𝜏 > 0 
there exists K ≥ 0 such that |t(K) − t⋆| ≤ 𝜏 ; for otherwise,

for all K ≥ 0 , which contradicts that d𝜏∕Dmax > 0 and |I1| < ∞ . Reordering this ine-
quality yields the upper bound

for the number of iterations that are needed to reach �-distance of the optimal solu-
tion. On the other hand, if the confidence interval remains unbounded, that is, either 
t(k) ≤ t⋆ or t(k) ≥ t⋆ for all k ∈ ℕ0 , we can use similar arguments to obtain the upper 
bound

for any 𝜏 > 0 . Clearly, these convergence rates are inferior to the logarithmic bounds 
for bisection; however, under the assumptions of Propositions  5 and 6, we only 

|t(K) − t⋆| <
1

1 − D−1
K
𝜖D

𝜖1

d

Dmax

|t(k) − t⋆| ≤ |t(k+1) − t(k)| ≤
|Ik+1|
2

|Ik+2| ≤ max{|t(k+1) − t(k)|, |Ik+1| − |t(k+1) − t(k)|}

≤ max{
|Ik+1|
2

, |Ik+1| −
d

Dmax

|t(k) − t⋆|}

≤ |Ik+1| −
d

Dmax

|t(k) − t⋆|

𝜏 < |t(K+1) − t⋆| ≤ |IK+1| ≤ |I1| − K
d𝜏

Dmax

K ≤
Dmax

d�
(|I1| − �) ≤

Dmax

d�
(max{b0 − t(0), t(0) − a0} − �)

K ≤
Dmax

d𝜏
(|t(0) − t⋆| − 𝜏)
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need to come ‘close enough’ of the optimal value to obtain superlinear or quadratic 
convergence.

6 � Numerical examples

We present three examples for quasiconvex sum-of-squares programming that arise 
in the analysis of dynamical systems. Details on the examples can be found in [4]. 
The implementation of Algorithm 1 is based on the sum-of-squares toolbox multip-
oly/sosopt [20] and will be compared to the toolbox’s bisection method gsosopt. 
If not otherwise noted, the confidence intervals for both Algorithm 1 and gsos-
opt were initialized as I0 = [−50, 0] and tolerances5 were chosen as �1 = 1 × 10−3 
and �2 = 1 × 10−6 . All computations were performed with a 2.8 GHz quad-core Intel 
Core i7 processor with 16 GB of memory using sedumi for the low-level semidefi-
nite programs [21]. Source code is available at [22].

Decay rate bound A lower bound � = −t∕2 on the maximum decay rate of an 
exponentially stable, polynomial dynamic system can be computed by means of 
the quasiconvex sum-of-squares program

with indeterminate variables x = (x1, x2) , where V ∶ u ↦ u1x
2
1
+ u2x1x2 + u3x

2
2
 is a 

parametrized Lyapunov function candidate, the linear operator Jx ∶ ℝ[x] → ℝ[x]2 
returns the Jacobian matrix of V(u), and the polynomial lx = x2

1
+ x2

2
 enforces posi-

tive definiteness of the Lyapunov function. The system dynamics are given by

for this example. If t(0) is initialized at the center of the confidence interval, Algo-
rithm  1 returns t(fin) = −3.8560 after 8 iterations, whereas gsosopt terminated 
after 16 iterations with the interval Ifin = [−3.8567,−3.8559] . Computation times 
for the semidefinite subproblems are compatible (approximately 0.02  s per itera-
tion). To investigate the effects of an initial guess closer to the optimal value, we 
have chosen t(0) = −4 ; here, Algorithm 1 took only 4 iterations whereas gsosopt 
still took 13 iterations. On the other hand, it appears that Problem  (7) for (13) is 
unbounded for any initial guess larger than the optimal value; yet, with an initial 
value such as t(0) = −3 , our method still terminates faster than gsosopt with 11 
instead of 17 iterations. Unlike gsosopt, our method does not require a bounded 
confidence interval to begin with; setting I0 = (− inf,+ inf) and t(0) = −10 , the algo-
rithm terminates within 7 iterations.

(13)
inf

t∈ℝ, u∈ℝ3
t subject to tV(u) − JxV(u)f ∈ ℝ[x]

V(u) ∈ (ℝ[x] + lx)

f =

[
−0.125x3

1
− 1.125x1x

2
2
+ 0.75x3

2
+ 0.75x2

1
+ 1.5x1x2 + 0.75x2

2
− 4x1 + 5x2

−0.375x2
1
x2 + 0.75x1x

2
2
− 0.875x3

2
+ 0.25x2

1
+ 0.5x1x2 + 0.25x2

2
− x1 − 2x2

]

5  gsosopt terminates if the confidence interval has length �1 or smaller.
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Local stability analysis Suppose a polynomial V ∈ ℝ[x] is known to be a local 
Lyapunov function for a polynomial dynamic system; then solving the quasicon-
vex sum-of-squares program

where s(⋅) is a parametrized sum-of-squares multiplier (see [4, Section  IV.B] for 
details), yields a lower bound r = −t on the largest sublevel set of V contained in the 
stable domain. We take

for this example. We have used both Algorithm  1 and gsosopt to solve 
(14) with different choices for t(0) and I0 ; the results were t(fin) = −2.3045 and 
Ifin = [−2.3048,−2.3041] , respectively. Details of the computations are given in 
Table 1. Note how an initial guess close to the optimal value but near the boundary 
of the confidence interval leads to a large number of iterations of gsosopt.

Region of attraction estimation A popular strategy to estimate the region of attrac-
tion of a locally stable, polynomial dynamic system is to alternate between solving 
(14) and updating the candidate Lyapunov function V via a convex sum-of-squares 
program. In such a scheme, the quasiconvex sum-of-squares program is solved 
repeatedly. If the changes in V are small enough, the next optimal value will be close 
to the previous, suggesting warmstarting. We have performed 20 rounds of an alter-
nating scheme for the dynamics in the previous example; Algorithm 1, if initialized 
in the previous solution, took on average 6.5 iterations compared to 10 iterations per 
solution with a default initial guess. Consistent with the results in Table 1, on the 

(14)
inf

t∈ℝ, u∈ℝ8
t subject to ts(u) + (Vs(u) − JxVf − �lx) ∈ ℝ[x]

s(u) ∈ ℝ[x]

f =

[
−x2

x1 + (x2
1
− 1)x2

]
, V = 1.5x2

1
− 1x1x2 + x2

2

Table 1   Details of solving the 
quasiconvex problem (14) t(0) I

0
Algorithm 1 gsosopt

Iterations Time Iterations Time

−25 [−500] 7 3.8s 16 5.6s
−10 ” 5 3.0s 15 5.7s
−5 ” 4 2.4s 14 5.7s
−2.5 ” 3 2.0s 13 5.4s
−2 ” 3 2.0s 17 6.1s
−5 (− inf, 0) 4 2.3s – –
−2 ” 3 1.8s – –
−5 (− inf,+ inf) 7 4.2s – –
−2 ” 3 1.9s – –
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other hand, gsosopt performed worse under warmstarting (17 instead of 16 itera-
tions per solution) as the optimal value decreases.
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