
Bestuzheva, Ksenia et al.

Article  —  Published Version

Global optimization of mixed-integer nonlinear programs
with SCIP 8

Journal of Global Optimization

Suggested Citation: Bestuzheva, Ksenia et al. (2023) : Global optimization of mixed-integer nonlinear
programs with SCIP 8, Journal of Global Optimization, ISSN 1573-2916, Springer US, New York, Vol.
91, Iss. 2, pp. 287-310,
https://doi.org/10.1007/s10898-023-01345-1

This Version is available at:
https://hdl.handle.net/10419/318655

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10898-023-01345-1%0A
https://hdl.handle.net/10419/318655
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of Global Optimization (2025) 91:287–310
https://doi.org/10.1007/s10898-023-01345-1

Global optimization of mixed-integer nonlinear programs
with SCIP 8

Ksenia Bestuzheva1 · Antonia Chmiela1 · Benjamin Müller1 ·
Felipe Serrano1 · Stefan Vigerske2 · Fabian Wegscheider1

Received: 16 May 2023 / Accepted: 12 November 2023 / Published online: 14 December 2023
© The Author(s) 2023

Abstract
For over 10 years, the constraint integer programming framework SCIP has been extended
by capabilities for the solution of convex and nonconvex mixed-integer nonlinear programs
(MINLPs). With the recently published version 8.0, these capabilities have been largely
reworked and extended. This paper discusses the motivations for recent changes and provides
an overview of features that are particular to MINLP solving in SCIP. Further, difficulties in
benchmarking global MINLP solvers are discussed and a comparison with several state-of-
the-art global MINLP solvers is provided.

Keywords Global optimization · Mixed-integer nonlinear programming · SCIP ·
Branch-and-cut · Optimization software · Benchmark

Mathematics Subject Classification 65K05 · 90-08 · 90C11 · 90C20 · 90C26

1 Introduction

Mixed-integer nonlinear programming (MINLP) concerns with the optimization of an objec-
tive function such that a finite set of linear or nonlinear constraints and integrality conditions
is satisfied. The generality of this problem class means that many real-world applications can

B Stefan Vigerske
svigerske@gams.com

Ksenia Bestuzheva
bestuzheva@zib.de

Antonia Chmiela
chmiela@zib.de

Benjamin Müller
benjamin.mueller@zib.de

Felipe Serrano
serrano@zib.de

1 Department AIS2T, Zuse Institute Berlin, Berlin, Germany

2 GAMS Software GmbH, c/o Zuse Institute Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-023-01345-1&domain=pdf
http://orcid.org/0000-0002-7018-7099
http://orcid.org/0000-0002-4809-2958
http://orcid.org/0000-0002-4463-2873
http://orcid.org/0000-0002-7892-3951
http://orcid.org/0009-0001-2262-0601
http://orcid.org/0009-0000-8100-6751


288 Journal of Global Optimization (2025) 91:287–310

bemodeled asMINLP [1–4], but also that software that handles this class efficiently becomes
extremely complex. MINLP solvers [5] are often built on top of or by combining solvers for
mixed-integer linear programs (MIP) and solvers that find locally optimal solutions for non-
linear programs (NLP). In fact, the first general purpose solver, DICOPT [6], decomposes
the solution of an MINLP into a sequence of MIP and NLP solves [7], thereby building
on established software for these program classes. DICOPT solves MINLPs with convex
nonlinear constraints to optimality, but works only as a heuristic on nonconvex MINLPs.
The first general purpose solvers for nonconvex MINLPs were αBB, BARON, and GLOP
[8–10], all based on convexification techniques for nonconvex constraints. Also the solver
SCIP (Solving Constraint Integer Programs) belongs to this category [11].

In the following, MINLPs of the form

min c�x, (MINLP)

such that g ≤ g(x) ≤ g,

b ≤ Ax ≤ b,

x ≤ x ≤ x,

xI ∈ Z
|I|,

are considered, where x , x ∈ R
n
, R := R ∪ {±∞}, x ≤ x , I ⊆ {1, . . . , n}, c ∈ R

n , g,

g ∈ R
m
, g ≤ g, g : Rn → R

m
is specified explicitly in algebraic form, b, b ∈ R

m̃
, b ≤ b,

and A ∈ R
m̃×n . The restriction to a linear objective function is a technical detail of SCIP and

without loss of generality.
SCIP is a branch-cut-and-price framework for the solution different types of optimization

problems, most generally constraint integer programs (CIPs), and most importantly MIPs
and MINLPs. CIPs are finite-dimensional optimization problems with arbitrary constraints
and a linear objective function that satisfy the following property: if all integer variables are
fixed, the remaining subproblem is a linear or nonlinear program. The problem class of CIP
was motivated by the modeling flexibility of constraint programming and the algorithmic
requirements of integrating it with efficient solution techniques for MIP [12].

In order to solve CIPs, SCIP constructs relaxations—typically linear programs (LPs). If
the relaxation solution is not feasible for the current subproblem, the plugins that handle
the violated constraints need to take measures to eventually render the relaxation solution
infeasible for the updated relaxation, for example by branching or separation [12]. A plethora
of additional plugin types, e.g., for presolving, finding feasible solutions, or tightening vari-
able bounds, allow accelerating the solution process. After 20 years of development of the
framework itself and included plugins, SCIP includes mature solvers for MIP, MINLP, and
several other problem classes [13]. The extended version of this paper [14] provides a short
overview on the history of the MINLP solver in SCIP. Since November 2022, SCIP is freely
available under an open-source license.

SCIP solves MINLPs to global optimality via a spatial branch-and-bound algorithm that
mixes branch-and-infer and branch-and-cut [15]. Important parts of the solution algorithm
are presolving, domain propagation (that is, tightening of variable bounds), linear relaxation,
and branching. A distinguishing feature of SCIP is that its capabilities to handle nonlinear
constraints are not limited to MINLPs, but can be used for any CIP. For example, problems
can be handledwhere linear and nonlinear constraints aremixedwith typical constraints from
constraint programming, as long as appropriate constraint handlers have been included in
SCIP. Sincemost constraint handlers in SCIP construct a linear relaxation of their constraints,

123



Journal of Global Optimization (2025) 91:287–310 289

also the handling of nonlinear constraints focuses on linear relaxations. The emphasis on
handling CIPs with nonlinear constraints rather than MINLP only is also a reason that the
use of nonlinear relaxations or reformulations of completeMINLPs into other problem types,
e.g., mixed-integer conic programs, has not been explored much so far.

With SCIP 8 [16], a complete overhaul of nonlinear constraint handling was released.
The primary motivation for this change was to increase the reliability of the solver and to
alleviate numerical issues that arose from problem reformulations and led to SCIP returning
solutions that are feasible in the reformulated problem, but infeasible in the original problem.
More precisely, previous SCIP versions built an extended formulation of (MINLP) explicitly,
with the consequence that the original constraints were no longer included in the presolved
problem. Even though the formulations were theoretically equivalent, it was possible that
ε-feasible solutions for the reformulated problemwere not ε-feasible in the original problem.
SCIP 8 remedies this by building an implicit extended formulation as an annotation to the
original problem. A second motivation for the major changes in SCIP 8 was to reduce the
ambiguity of expression and nonlinear structure types by implementing different plugin
types for low-level structure types that define expressions, and high-level structure types that
add functionality for particular, sometimes overlapping structures. Finally, new features for
improving the solver’s performance onMINLPswere introduced. These include intersection,
SDP (semi-definite programming), and RLT (reformulation linearization technique) cuts for
quadratic expressions [17, 18], perspective strengthening [19], and symmetry detection [20].

An overview of SCIP’s MINLP solving capabilities is given next. Afterwards, the
performance of SCIP and other global MINLP solvers is compared.

2 MINLP capabilities of SCIP

In the following, the integration of nonlinear constraints into the branch-and-cut solver of
SCIP is discussed. Next, the concept of a nonlinear handler is introduced, which is a new
plug-in type of SCIP 8 that facilitates the integration of extensions that handle specific
nonlinear structures. The remainder of this section gives a concise overview of features that
increase the efficiency of MINLP solving. Unless specified otherwise, more details are often
found in [16].

2.1 Framework

2.1.1 Expressions

Algebraic expressions are well-formed combinations of constants, variables, and algebraic
operations such as addition, multiplication, and exponentiation, that are used to describe
mathematical functions. They are represented by a directed acyclic graph with nodes repre-
senting variables, constants, and operations and arcs indicating the flow of computation. In
SCIP, all semantics of expression operands are defined by expression handler plugins. These
handler provide callbacks that are used by the SCIP core to manage expressions (create,
modify, copy, parse, print), to evaluate at a point or over intervals, to compute derivatives, to
simplify and compare, and to check curvature and integrality.

For the following operators, expression handlers are included in SCIP 8: constant, variable,
affine-linear function, product, power, signpower (y 	→ sign(y)|y|p for p > 1), exponentia-
tion, logarithm, entropy, sine, cosine, and absolute value. In previous versions of SCIP, also

123



290 Journal of Global Optimization (2025) 91:287–310

high-level structures such as quadratic functions could be represented as expression types. To
avoid ambiguity and reduce complexity, this has been replaced by a recognition of quadratic
expressions that is no longer made explicit in the expression type.

2.1.2 Constraint handler for nonlinear constraints

All nonlinear constraints g ≤ g(x) ≤ g of (MINLP) are handled by the constraint handler

for nonlinear constraints in SCIP, while the linear constraints b ≤ Ax ≤ b are handled by the
constraint handlers for linear constraints and its specializations (e.g., knapsack, set-covering).
A constraint handler is responsible for checking whether solutions satisfy constraints and, if
that is not the case, to resolve infeasibility by enforcing constraints. This applies in particular
to solutions of the LP relaxation. The nonlinear constraint handler currently enforces its
constraints by the following means:

DOMAINPROP: by analyzing the constraints with respect to the variable bounds at the
current node of the branch-and-bound tree, infeasibility or a bound tight-
ening may be deduced, which allow pruning the node or cutting off the
given solution, respectively; this is also known as domain propagation;

SEPARATE: computing a cutting plane that is violated by the given solution;
BRANCH: the current node of the branch-and-bound tree is subdivided, that is, a

variable xi and a branching point x̃i ∈ [xi , xi ] are selected and two child
nodes with xi restricted to [xi , x̃i ] and [x̃i , xi ], respectively, are created.

To decidewhether a node can be pruned (DOMAINPROP), an overestimate of the range of
g(x)with respect to current variable bounds is computedbymeans of interval arithmetics [21].
If a constraint k is found such that gk([x, x])∩[g

k
, gk] = ∅, then there exists no point in [x, x]

for which this constraint is feasible. A bound tightening may be computed by applying the
samemethods in reverse order. That is, interval arithmetic is used to overestimate g−1([g, g]),
the preimage of g(x) on [g, g], and variable bounds are tightened to [x, x]∩g−1([g, g]). This
is also known as feasibility-based bound tightening (FBBT). In the simplest case, callbacks
of expression handlers are used to propagate intervals through expressions. However, in some
cases, other methods that take more structure into account or that use additional information
are used (see, e.g., Sects. 2.3.1 and 2.3.2).

To construct a linear relaxation of the nonlinear constraints (SEPARATE option), an
extended formulation is considered:

min c�x, (MINLPext)

such that hi (x, wi+1, . . . , wm̂) �i wi , i = 1, . . . , m̂,

b ≤ Ax ≤ b,

x ≤ x ≤ x, w ≤ w ≤ w,

xI ∈ Z
|I|.

The functions hi are obtained from the expressions that define functions gi by recursively
annotating subexpressions with auxiliary variableswi+1, . . . , wm̂ for some m̂ ≥ m. Initially,
slack variables w1, . . . , wm are introduced and assigned to the root of all expressions, i.e.,
hi := gi ,wi := g

i
,wi := gi , for i = 1, . . . ,m. Next, for each function hi , subexpressions f

may be assigned new auxiliary variables wi ′ , i ′ > m, which results in extending (MINLPext)
by additional constraints hi ′(x) = wi ′ with hi ′ := f . Bounds wi ′ and wi ′ are initialized to
bounds on hi ′ , if available. Since auxiliary variables in a subexpression of hi always receive

123



Journal of Global Optimization (2025) 91:287–310 291

an index larger than max(m, i), the result is referred to by hi (x, wi+1, . . . , wm̂) for any
i = 1, . . . , m̂. If a subexpression appears in several expressions, it is assigned at most one
auxiliary variable.

For the (in)equality sense�i , a valid simplification is to assume equality. For performance
reasons, though, it can be beneficial to relax to inequalities if that does not change the feasible
space of (MINLPext)when projected onto x . Therefore, for i ∈ {1, . . . ,m},�i is set according
to the finiteness of g

i
and gi . For i > m, monotonicity of expressions is taken into account

to derive �i .
Whether to annotate a subexpression by an auxiliary variable depends on the structures

that are recognized. In the simplest case, every subexpression that is not already a variable is
annotated with an auxiliary variable. This essentially corresponds to the Smith Normal Form
[10]. For every function hi of (MINLPext), the callbacks of the corresponding expression
handler can be used to compute linear under- and overestimators, such that a linear relaxation
for (MINLPext) is constructed. It can, however, be beneficial to not add an auxiliary variable
for every subexpression, thus allowing for more complex functions in (MINLPext). This will
be the discussed in Sect. 2.1.3 below.

If a constraint hi (x, wi+1, . . . , wm̂) �i wi of (MINLPext) is violated in theLP solution and
no cut is found that separates this solution, then the variables appearing in hi are candidates
for branching (BRANCH). More precisely, when an expression handler computes a linear
under- or overestimator for hi (x, wi+1, . . . , wm̂), it also signals for which variables it used
current variable bounds. Marked original variables are then added to the list of branching
candidates. For an auxiliary variable wi ′ , i ′ > i , the variables in the subexpression that hi ′
represents are considered for branching instead.

The decision on whether to add a cutting plane that separates the solution of the LP
relaxation or to branch is rather complex, but the idea is to branch if either no cutting plane
is found or if the violation of available cutting planes in the relaxation solution is rather
small when compared to the convexification gap of the under/overestimators that define the
cutting planes. In the latter case, it may be beneficial to first reduce the convexification gap
by branching. To select one variable from the list of branching candidates, the violation of
constraints in (MINLPext) and historical information about the effect of branching on a given
variable on the optimal value of the LP relaxation (“pseudo costs”) are taken into account.
The branching point is a convex combination of the value of the variable in the LP relaxation
and the mid-point of the variable’s interval.

2.1.3 Nonlinear handlers

For a constraint log(x)2 + 2 log(x)y + y2 ≤ 4, a slack variable and four auxiliary variables
would be introduced to construct the extended formulation w2 + 2w3 + w4 ≤ w1, w5 =
log(x),w2 = w2

5,w3 = w5y,w4 = y2. This is due to the expression handlers having a rather
myopic view, basically, implementing techniques that can handle only their direct children.
It is clear that, for this example, an extended formulation that only replaces log(x) by an
auxiliary variable w2 could be more efficient to solve. However, this requires methods to
detect the quadratic (or convex) structure and to either compute linear underestimators for
the quadratic (convex) expression w2

2 + 2w2y + y2 or to separate cutting planes for the set
defined by w2

2 + 2w2y + y2 ≤ w1.
Such structure detection and handling methods are the task of the new nonlinear handler

plugins that were introduced with SCIP 8. Nonlinear handlers determine the extended formu-
lation (MINLPext) by decidingwhen to annotate subexpressionswith auxiliary variables. That

123



292 Journal of Global Optimization (2025) 91:287–310

is, given a constraint hi (x) �i wi , a nonlinear handler analyses the expression that defines
hi and attempts to detect specific structures. At this point, it may also request to introduce
additional auxiliary variables, thus changing hi (x) into hi (x, wi+1, . . . , wm̂). In addition, it
informs the constraint handler that it will provide separation for hi (x, wi+1, . . . , wm̂) ≤
wi , or ≥ wi , or both. If none of the nonlinear handlers declare that they will handle
hi (x) �i wi , auxiliary variables are introduced for each argument of the root of the expres-
sion hi and expression handler callbacks are used to construct cutting planes from linear
under-/overestimators.

In addition to separation, nonlinear handlers can also contribute to domain propaga-
tion. This is implemented analogously to separation by setting up an additional extended
formulation similarly to (MINLPext).

Note that the extended formulations are stored as annotation on the original expressions.
Thus, for each task, the most suitable formulation can be used. For example, feasibility is
checked on the original constraints, domain propagation and separation use the correspond-
ing extended formulations, but branching is performed, by default, with respect to original
variables only. With SCIP 7 and earlier, only one extended formulation was constructed
explicitly and the connection to the original formulation was no longer available, leading to
problems in ensuring that solutions are (ε-)feasible for the original constraints.

In addition to an improved numeric reliability, the nonlinear handlers also allow for a
higher flexibility when handling nonlinear structures. For each node in an expression, several
nonlinear handler can be attached, each one annotating possibly different subexpressionswith
auxiliary variables. For example, for a nonconvex quadratic constraint

∑
i, j ai, j xi x j ≤ w,

the nonlinear handler for quadratics can declare that it will provide separation (by intersection
cuts, see Sect. 2.3.5), but that also other means of separation should be tried. However, since
no other nonlinear handler declares that it will provide separation, auxiliary variables are
introduced for each argument of the sum, that is, an auxiliary variable Xi j is assigned to each
product xi x j . For the corresponding constraints xi x j ≤ Xi j (if ai, j ≥ 0), the McCormick
underestimators [22]

Xi j ≥ xi x j + x j xi − xi x j , Xi j ≥ xi x j + x j xi − xi x j (1)

or other means (see Sect. 2.3.2) will be used to construct a linear relaxation.

2.1.4 NLP relaxation

Similar to the central LP relaxation of SCIP, an NLP relaxation is also available. In contrast to
constraint handlers, the NLP relaxation uses a common data structure to store its constraints.
Therefore, in case of aMINLP, the NLP relaxation together with the integrality conditions on
variables provides a unified view of the problem. To find local optimal solutions for the NLP
relaxation, interfaces to the NLP solvers filterSQP, Ipopt, and Worhp [23–25] are available.
Function derivatives are computed via CppAD [26].

2.2 Presolving

When presolving nonlinear constraints, expressions are simplified and brought into a canon-
ical form. For example, recursive sums and products are flattened and fixed or aggregated
variables are replaced by constants or sums of active variables. In addition, it is ensured that
if a subexpression appears several times (in the same or different constraints), always the
same expression object is used.

123



Journal of Global Optimization (2025) 91:287–310 293

2.2.1 Variable fixings

Similar to what has been shown by Hansen et al. [27], if a bounded variable x j does not
appear in the objective (c j = 0), but in exactly one constraint g

k
≤ gk(x) ≤ gk where

gk(x) is convex in x j for any fixing of other variables and gk = +∞ (or concave in x j and
g
k

= −∞), then there always exists an optimal solution where x j ∈ {x j , x j }. For example,

if y ∈ [0, 1] appears only in a constraint xy+ yz− y2 ≤ 5, then y can be changed to a binary
variable.

SCIP recognizes such variables for polynomial constraints (under additional assumptions
[16]) and changes the variable type to binary, if x j = 0 and x j = 1, or adds a bound
disjunction constraint x j ≤ x j ∨ x j ≥ x j . As a consequence, branching on x j leads to fixing
the variable in both children.

2.2.2 Linearization of products

To better utilize SCIP’s techniques for MIP solving, products of binary variables are lin-
earized. In the simplest case, a product

∏
i xi is replaced by a new variable z and a constraint

of type “and” that models z = ∧
i xi is added. The “and”-constraint handler will then sep-

arate a linearization of this product [28]. For a product of only two binary variables, the
linearization is added directly.

For a quadratic function in binary variables with many terms, the number of variables
introduced may be large. In this case, a linearization that requires fewer additional variables
is used, even though it may lead to a weaker relaxation.

2.2.3 KKT strengthening for QPs

A presolving method that aims to tighten the relaxation of a quadratic program (QP) by
adding redundant constraints derived from Karush-Kuhn-Tucker (KKT) conditions is avail-
able. Consider a quadratic program of the form min{ 12 x�Qx + c�x : Ax ≤ b}, where
Q ∈ R

n×n is symmetric, c ∈ R
n , A ∈ R

m×n , and b ∈ R
m . If the QP is bounded, then

all optima satisfy the KKT conditions Qx + c + A�μ = 0, Ax ≤ b, μi (Ax − b)i = 0,
i = 1, . . . ,m, where μ ≥ 0 is the vector of Lagrangian multipliers of constraints Ax ≤ b.

If SCIP recognizes that (MINLP) is equivalent to a QP and all variables are bounded,
then the KKT conditions are added as redundant constraints to the problem, whereby the
complementarity constraints are formulated via special ordered sets of type 1. The redundant
constraints can help to strengthen the linear relaxation and prioritize branching decisions to
satisfy the complementarity constraints, which focuses the search more on the local optima.

In addition to a QP, the implementation can also handle mixed-binary quadratic programs.
For all details, see [29, 30].When this presolverwas added to SCIP 4.0, it has shown to be very
beneficial for box-constrained quadratic programs. Due to the many changes and extensions
in SCIP 8 for the handling of quadratic constraints (Sect. 2.3) it needs to be reevaluated under
which conditions this presolver should be enabled. Currently, it is disabled by default.

2.2.4 Symmetry detection

Symmetries are automorphisms onRn that map optimal solutions to optimal solutions. They
have an adverse effect on the performance of branch-and-bound solvers, because symmet-
ric subproblems may be treated repeatedly. Therefore, SCIP can enforce lexicographically

123



294 Journal of Global Optimization (2025) 91:287–310

maximal solutions from an orbit of symmetric solutions via bound tightening and separation
[16, 31–33].

Since optimal solutions are naturally not known in advance, the symmetry detection resorts
to find permutations of variables thatmap the feasible set onto itself andmap each point to one
with the same objective function value [34]. These permutations are given by isomorphisms
in an auxiliary symmetry detection graph, which is constructed from the problem data (e.g.,
c, A, I, and the expressions that define g(x)) [20, 35].

2.3 Quadratics

Since quadratic functions frequently appear in MINLPs, a number of techniques have been
added to SCIP to handle this structure. Next to the presolving methods that were discussed
in the previous section, three nonlinear handlers and four separators deal with quadratic
structures. When none of the nonlinear handlers are active, then for each square and bilinear
term in a quadratic function, an auxiliary variable is added in the extended formulation and
gradient, secant, and McCormick under- and overestimators (1) are generated.

2.3.1 Domain propagation

If variables appear more than once in a quadratic function, then a term-wise domain propa-
gation does not necessarily yield the best possible results, due to suffering from the so-called
dependency problem of interval arithmetics. For example, it is easy to compute the range for
x2 + x for given bounds on x , or bounds on x for a given interval on x2 + x , but standard
interval arithmetics treats the terms x2 and x separately, which leads to overestimating the
result.

Therefore, a specialized nonlinear handler in SCIP provides a domain propagation
procedure for quadratics that aims to reduce overestimation. For this, the detection rou-
tine of the handler writes a quadratic expression as q(y) = ∑k

i=1 qi (y) with qi (y) =
ai y2i +ci yi +∑

j∈Pi bi, j yi y j , where yi is either an original variable (x) or another expression,
ai , ci ∈ R, bi, j ∈ R\{0}, j ∈ Pi ⇒ i /∈ Pj for all j ∈ Pi , Pi ⊂ {1, . . . , k}, i = 1, . . . , k.
For functions qi with at least two terms (at least two of ai , bi, j , j ∈ Pi , and ci are nonzero), a
relaxation is obtained by replacing each y j by [y

j
, y j ], j ∈ Pi . For this univariate quadratic

interval-term in yi , tight bounds can be computed [36].
In addition, bounds on variables y j , j ∈ Pi , are computed by considering

∑
j∈Pi bi, j y j ∈

([q, q]−∑
i ′ �=i qi ′(y))/yi − ai yi − ci , yi ∈ [y

i
, yi ], where [q, q] are given bounds on q(y).

After relaxing each qi ′ to an interval, bounds on each y j , j ∈ Pi , can be computed.

2.3.2 Bilinear terms

For a product y1y2, where y1 and y2 are either non-binary variables or other expressions, best
possible linear under- and overestimators when considering the bounds [y

1
, y1] × [y

2
, y2]

only are given by (1). However, if linear inequalities in y1 and y2 are available, then possibly
tighter linear estimates and variable bounds can be computed using an algorithm by Locatelli
[37]. The inequalities are found by projection of the LP relaxation onto variables (y1, y2).
For more details, see [38]. An alternative method that uses linear constraints to tighten the
relaxation of quadratic constraints is described in the following.

123



Journal of Global Optimization (2025) 91:287–310 295

2.3.3 RLT cuts

The Reformulation–Linearization Technique (RLT) [39, 40] has proven very useful to tighten
relaxations of polynomial programming problems. In SCIP, an RLT separator for bilinear
product relations in (MINLPext) is available.

For simplicity, denote by Xi j the auxiliary variable that is associated with a constraint
xi x j � Xi j of (MINLPext) (X ji denotes the same variable as Xi j ). Recall that it is valid to
replace � by =. RLT cuts are derived by multiplying a linear constraint by a nonnegative
bound factor and replacing the product relations by variables from X . For example, given
a linear constraint a�x ≤ b and a bound xi ≥ xi , the quadratic inequality a�x (xi −
xi ) ≤ b (xi − xi ) is formed. Next, each term xkxi is replaced by Xki , if Xki = xkxi exists
in (MINLPext), or estimated by (1), otherwise.

In addition, the RLT separator can reveal linearized products between binary and contin-
uous variables. To do so, it checks whether pairs of linear inequalities that are defined in the
same triple of variables (one of them binary, the other two continuous) imply a product rela-
tion. These implicit products can then be used in the linearization step of RLT cut generation
[18].

2.3.4 SDP cuts

A popular convex relaxation of the condition X = xx� (see previous section) is given
by requiring X − xx� to be positive semidefinite (psd). Separation for the set {(x, X) :
X − xx� � 0} itself is possible, but cuts are typically dense and may include variables
Xi j for products that do not exist in the problem. Therefore, only principal 2 × 2 minors of
X − xx�, which also need to be psd, are considered. By Schur’s complement, this means
that the condition

Ai j (x, X) :=
⎡

⎣
1 xi x j
xi Xii Xi j

x j Xi j X j j

⎤

⎦ � 0 (2)

needs to hold for any i, j , i �= j . A separator in SCIP detects minors for which Xii ,
X j j , Xi j exist in (MINLPext) and enforces Ai j (x, X) � 0 by adding a linear inequality
v�Ai j (x, X)v ≥ 0, where v ∈ R

3 is an eigenvector of Ai j (x̂, X̂) with v�Ai j (x̂, X̂)v < 0
and (x̂, X̂) is the solution that violates (2).

2.3.5 Intersection cuts

Intersection cuts [41, 42] have shown to be efficient to strengthen relaxations of MIPs. A
recently described method to compute the tightest possible intersection cuts for quadratic
programs [43] has been implemented in SCIP [17].

Assume a nonconvex quadratic constraint of (MINLPext) is q(y) ≤ w with q being a
quadratic as in Sect. 2.3.1. The separation of intersection cuts is implemented for the set
S := {(y, w) ∈ R

k : q(y) ≤ w} that is defined by this constraint. Let (ŷ, ŵ) be a basic
feasible LP solution violating q(y) ≤ w. First, a convex inequality g(y, w) < 0 is build that
is satisfied by (ŷ, ŵ), but by no point of S. This defines a so-called S-free set C = {(y, w) ∈
R
k+1 : g(y, w) ≤ 0}, that is, a convex set with (ŷ, ŵ) ∈ int(C) containing no point of S in

its interior. The quality of the resulting cut highly depends on which S-free set is used, but
using maximal S-free sets yield the tightest possible intersection cuts [43].

123



296 Journal of Global Optimization (2025) 91:287–310

Byusing the conic relaxation K of the LP-feasible region defined by the nonbasic variables
at (ŷ, ŵ), the intersection points between the extreme rays of K and the boundary of C
are computed. The intersection cut is then defined by the hyperplane going through these
points and successfully separates (x̂, ŵ) and S. To obtain even better cuts, there is also a
strengthening procedure implemented that uses the idea of negative edge extension of the
cone K [44].

In addition to the separation of intersection cuts for a set S given by a constraint q(y) ≤ w,
SCIP can also generate intersection cuts for quadratic equations implied by the condition
X = xx� (see Sect. 2.3.3). Since X needs to have rank 1, any 2 × 2 minor of X needs to
have determinant zero. Therefore, for any set of variable indices i1, i2, j1, j2 with i1 �= i2
and j1 �= j2, the condition Xi1 j1Xi2 j2 = Xi1 j2 Xi2 j1 needs to hold. If all variables in this
condition exist in (MINLPext), then the procedure to generate intersection cuts is applied to
the set defined by this condition, if it is violated.

Since intersection cuts can be rather dense, it is not clear yet how to decide when it will be
beneficial to generate such cuts. Their separation is therefore currently disabled by default.
For more details, see [17].

2.3.6 Edge-concave cuts

Another method to obtain a linear outer-approximation for a quadratic constraint is by
utilizing an edge-concave decomposition of the quadratic function. This has shown to
be particularly useful for randomly generated quadratic instances [45, 46]. A function is
edge-concave over the variables’ domain (e.g., [x, x]) if it is componentwise concave.

Given a quadratic function, the separator for edge-concave cuts solves an auxiliaryMIP to
partition the square and bilinear terms into a sum of edge-concave functions and a remaining
function. Since the convex envelope of edge-concave functions is vertex-polyhedral [47], that
is, it is a polyhedral function with vertices corresponding to the vertices of the box of variable
bounds, facets on the convex envelope of each edge-concave function can be computed by
solving an auxiliary linear program (see also Sect. 2.4.1). For the remaining terms, linear
underestimators such as (1) are summed up.

Since the current implementation of edge-concave cuts in SCIP has not shown to be
particularly useful for general MINLP, it is disabled for now.

2.3.7 Second-order cones

An important connection between MINLP and conic programming is the detection of con-
straints that can be represented as a second-order cone (SOC) constraint, since the latter
defines a convex set, while the original constraint may use a nonconvex constraint function.
Thus, SOC detection is the aim of a specialized nonlinear handler in SCIP. In the detection
phase, a constraint hi (x) ≤ wi (the case≥ is handled similarly) of (MINLPext) is passed to the
nonlinear handler. For this constraint, it is checked whether it defines a bound on an Euclidian

norm (
√∑k

j=1(a j y2j + b j y j ) + c ≤ wi for some coefficients a j , b j , c ∈ R, a j > 0, where

y j is either an original variable or some subexpression of hi (·)), or is a quadratic constraint
that is SOC-representable [48]. Since the introduction of slack variables wi , i ≤ m, may
prevent such a detection, the equivalent constraint hi (x) ≤ w̄i is considered instead.

Once a SOC constraint has been detected, a solution that violates this constraint can be
separated. However, if the detected cone is of high dimension, thenmany cutsmay be required

123



Journal of Global Optimization (2025) 91:287–310 297

to provide a tight linear relaxation. Thus, a disaggregation into three-dimensional cones as
suggested by Vielma [49] is used.

2.4 Convexity

2.4.1 Convex and concave constraints

For the linear underestimation of functions like x exp(x) or x2+2xy+ y2, the construction of
an extended formulation (xw, exp(x) = w; w1 + 2w2 + w3, w1 = x2, w2 = xy, w3 = y2)
is not advisable. Instead, hyperplanes that support the epigraph of a convex function can
be used if convexity is recognized. In SCIP, specialized nonlinear handlers are available to
detect for a function hi (x) of (MINLPext) the subexpressions that need to be replaced by
auxiliary variables wi+1, . . . , wm̂ such that the remaining expression hi (x, wi+1, . . . , wm̂)

is convex or concave. The detection utilizes the often applied rules for convexity/concavity
of function compositions (e.g., f convex and monotone decreasing, g concave ⇒ f ◦ g
convex), but applies them in reverse order. That is, instead of deciding whether a function
is convex/concave based on information on the convexity/concavity and monotonicity of its
arguments, the algorithm formulates conditions on the convexity/concavity of the function
arguments given a convexity/concavity requirement on the function itself. When a condition
on an argument cannot be fulfilled, it is replaced by an auxiliary variable.

Next to “myopic” rules for convexity/concavity that are implemented by the expression
handlers, also rules for product compositions, signomials, and quadratic forms are available.
Further, it has been shown that for a composition of convex functions f ◦g, it can be beneficial
for the linear relaxation to consider the extended formulation f (w),w ≥ g(x), instead of the
composition f (g(x)) [50]. This is enforced by a small variation of the detection algorithm.

When a convex constraint hi (x, wi+1, . . . , wm̂) ≤ wi of (MINLPext) is violated at a point
(x̂, ŵ), a tangent on the graph of hi at (x̂, ŵ) provides a separating hyperplane. If, however,
hi is univariate, that is, hi (x, wi+1, . . . , wm̂) = f (y) for some variable y, and y is integral,
then taking the hyperplane through the points (�ŷ�, f (�ŷ�)) and (�ŷ�+1, f (�ŷ�+1)) gives
a tighter underestimator.

For a concave function hi (x, wi+1, . . . , wm̂), any hyperplane αx+βw+γ that underesti-
mates hi (x, wi+1, . . . , wm̂) in all vertices of the box [x, x]×[wi+1, wi+1]×· · ·×[wm̂, wm̂]
is a valid linear underestimator, since hi is vertex-polyhedral with respect to the box. Maxi-
mizing αx̂ + βŵ + γ such that αx + βw + γ does not exceed hi (x, wi+1, . . . , wm̂) for all
vertices gives an underestimator that is as tight as possible at a given reference point (x̂, ŵ).
Since the size of this cut generating LP is exponential in k, underestimators for concave
functions in more than 14 variables are currently not computed.

2.4.2 Tighter gradient cuts

The separating hyperplanes generated for convex functions of (MINLPext) as discussed in
the previous section are, in general, not supporting for the feasible region of (MINLPext),
because the point where the functions are linearized is not at the boundary of the feasible
region. Therefore, often several rounds of cut generation and LP solving are required until the
relaxation solution satisfies the convex constraints. Solvers for convex MINLP have handled
this problem in various ways [7, 51], but the basic idea is to build gradient cuts at a suitable
boundary point of the feasible region.

123



298 Journal of Global Optimization (2025) 91:287–310

In SCIP, three procedures for building tighter and/or deeper gradient cuts for convex
relaxations are included. The first two methods compute a point on the boundary of the set
defined by all convex constraints of (MINLP) that is close to the point to be separated [29].
The first method solves an additional nonlinear program to project the point to be separated
onto the convex set. Since solving an NLP for every point to be separated can be quite
expensive, the second method, going back to an idea by Veinott [52], does a binary search
between an interior point of the convex set and the point to be separated. The interior point is
computed once in the beginning of the search by solving an auxiliary NLP. The third method
does not aim to separate a given point, but utilizes the feasible points that are found by primal
heuristics of SCIP. When a new solution is found, gradient cuts are generated at this solution
for convex constraints of (MINLPext) and added to the cutpool. If such a cut is later found to
separate the relaxation solution, it is added to the LP.

All methods are currently disabled as they are not yet efficient in general.

2.5 Quotients

Note that SCIP does not include a dedicated expression handler for quotients, since they
can equivalently be written using a product and a power expression. Therefore, the default
extended formulation for an expression y1y

−1
2 is given by replacing y−1

2 by a new auxiliary
variable w. The linear outer-approximation is then obtained by estimating y1w and y−1

2
separately. However, tighter linear estimates are often possible. Therefore, a specialized
nonlinear handler checkswhether a given function hi (x) can be cast as f (y) = ay1+b

cy2+d +ewith
a, b, c, d, e ∈ R, a, c �= 0, and y1 and y2 being either original variables or subexpressions of
hi (x). By distinguishing a number of cases, linear estimators are computed, e.g., by exploring
vertex-polyhedrality or by using a formula from [53]. In the univariate case (y1 = y2), f is
either convex or concave if −d/c /∈ [y

2
, y2] and a specialized domain propagation method

is used to avoid the dependency problem of interval arithmetic.

2.6 Perspective strengthening

Perspective reformulations have shown to efficiently tighten relaxations of convex mixed-
integer nonlinear programs with on/off-structures, which are often modeled via big-M
constraints or semi-continuous variables [54]. A variable x j is semi-continuous with respect
to the binary indicator variable x j ′ if it is fixed to a value x0j when x j ′ = 0 and restricted to

a domain [x1j , x1j ] when x j ′ = 1.
In SCIP, a strengthening of under- and overestimators for functions that depend on

semi-continuous variables is available. Consider a constraint hi (x, wi+1, . . . , wm̂) � wi

of (MINLPext). A strengthening of under- or overestimators for hi (x, wi+1, . . . , wm̂) is
attempted if the variables that hi depend on are semi-continuous with respect to the same
indicator variable x j ′ .

To determine whether a variable is semi-continuous, suitable bounds that are implied
by fixing the same binary variable are searched for. The implied bounds can be obtained
either from linear constraints directly or by probing, and are stored by SCIP in a globally
available data structure. In addition, an auxiliary variable wi is found to be semi-continuous
if function hi (x, wi+1, . . . , wm̂) depends only on semi-continuous variables with the same
indicator variable.

123



Journal of Global Optimization (2025) 91:287–310 299

Assume that a linear underestimator �(x, wi+1, . . . , wm̂) has been computed for
hi (x, wi+1, . . . , wm̂). The perspective strengthening extends the underestimator such that
it is tight for x j ′ = 0:

�(x, wi+1, . . . , wm̂) + (
hi (x

0, w0
i+1, . . . , w

0
m̂) − �(x0, w0

i+1, . . . , w
0
m̂)

)
(1 − x j ′).

This extension ensures that the estimator is equal to hi (x, wi+1, . . . , wm̂) for x j ′ = 0,
(x, w) = (x0, w0), and equal to �(x, wi+1, . . . , wm̂) for x j ′ = 1. If hi is convex, cuts obtained
this way are equivalent to the classic perspective cuts [54]. The method is also applicable
when there is a linear part of hi that depends on variables that are not semi-continuous and
that do not appear in the nonlinear part. For more details on the implementation in SCIP, see
[19].

2.7 Optimization-based bound tightening

Optimization-Based Bound Tightening (OBBT) is a domain propagation technique which
minimizes and maximizes each variable over the feasible set of the problem or a relax-
ation thereof [55].Whereas FBBT (see Sect. 2.1.2) propagates the nonlinearities individually,
OBBT considers (a relaxation of) all constraints together, and may hence compute tighter
bounds, with higher effort.

In SCIP, OBBT solves for each variable xk that could be subject to spatial branching
two LPs that minimize and maximize the variable with respect to the constraints of the LP
relaxation and the objective cutoff constraint c�x ≤ U . The optimal values of these LPs may
then be used to tighten the bounds of xk .

By default, OBBT is applied at the root node to tighten bounds globally. It restricts the
computational effort by limiting the number of iterations spent for solving the auxiliary LPs
and interrupting for cheaper domain propagation techniques between LP solves. Further,
the dual solutions of the auxiliary LPs are used to derive linear inequalities that serve as
computationally cheap approximation of OBBT during the branch-and-bound search. These
inequalities are propagated whenever bounds of variables in the inequality become tighter or
a new primal solution is found. For further details, see [56].

In addition to OBBT with respect to the LP relaxation, also a variant is available that
optimizes variables with respect to the potentially tighter convex NLP relaxation that is given
by all linear and convex nonlinear constraints of (MINLP) [29]. Because of the potentially
high computational cost of solving many NLPs, this variant of OBBT is deactivated by
default.

2.8 Primal heuristics

The purpose of primal heuristics is to find high quality feasible solutions early in the search.
When given an MINLP, up to 40 primal heuristics are active in SCIP by default. Many of
them aim to find an integer-feasible solution to the LP relaxation. In the following, primal
heuristics that are only active in the presence of nonlinear constraints are discussed.

2.8.1 subNLP

A primal heuristic like subNLP is implemented in virtually any MINLP solver. Given a
point x̃ that satisfies the integrality requirements, the heuristic fixes all integer variables in

123



300 Journal of Global Optimization (2025) 91:287–310

(MINLP) to the values given by x̃ . It then calls the SCIP presolver on this subproblem for
possible simplifications. Finally, it triggers a solution of the remaining NLP, using x̃ as the
starting point. If the NLP solver, such as Ipopt, finds a solution that is feasible (and often also
locally optimal) for the NLP relaxation, then a feasible point for (MINLP) has been found.

The starting point x̃ can be the current solution of the LP relaxation if integer-feasible,
a point found by a primal heuristic that searches for integer-feasible solutions of the LP
relaxation, or a point that is passed on by other primal heuristics for MINLP, such as those
mentioned in the next sections.

2.8.2 Multistart

If (MINLP) is nonconvex after fixing all integer variables, then several local optima may
exist for the NLPs solved by heuristic subNLP. Depending on the starting point, the NLP
solver may find different local optimum. Therefore, the multistart heuristic aims to compute
several starting points for subNLP.

The algorithm, originally developed in [57], aims to approximate the boundary of the
feasible set of the NLP relaxation by sampling points from [x, x] and pushing them towards
the feasible set by the use of an inexpensive gradient descent method. Afterwards, points that
are relatively close to each other are grouped into clusters. Ideally, each cluster approximates
the boundary of some connected component of the feasible set. For each cluster, a linear
combination of the points is passed as a starting point to subNLP. For integer variables, the
value in the starting point is rounded to an integral value. However, since this most likely
leads to infeasible NLPs, the multistart heuristic currently runs for continuous problems only
by default. For more details, see [29].

2.8.3 NLP diving

As an alternative to finding a good fixing for all integer variables of (MINLP), the NLP
diving heuristic starts by solving the NLP relaxation at the current branch-and-bound node
with an NLP solver, using the solution of the LP relaxation as starting point. It then iteratively
fixes integer variables with fractional value and resolves both the LP and NLP relaxations,
thereby simulating a depth-first-search in a branch-and-bound tree. By default, variables
for which the sum of the distances from the solutions of the LP and NLP relaxations to a
common integer value is minimal are rounded to the nearest integer value. Further, binary
and nonlinear variables are preferred. If the resulting NLP is found to be (locally) infeasible,
one-level backtracking is applied, that is, the last fixing is undone, and the opposite fixing is
tried.

2.8.4 MPEC

While the NLP diving heuristic either completely omits or enforces integrality restrictions in
the NLP relaxation, the MPEC heuristic adds a relaxation of the integrality restriction to the
NLP and tightens this relaxation iteratively. The heuristic is only applicable to mixed-binary
nonlinear programs at the moment.

The basic idea of the heuristic, originally developed in [58], is to reformulate (MINLP)
as a mathematical program with equilibrium constraints (MPEC) and to solve this MPEC
to local optimality. The MPEC is obtained by rewriting the condition xi ∈ {0, 1}, i ∈ I, as
complementarity constraint xi ⊥ 1− xi . This reformulation is again reformulated to an NLP

123



Journal of Global Optimization (2025) 91:287–310 301

bywriting it as xi (1−xi ) = 0.However, these reformulated complementarity constraintswill
not, in general, satisfy constraint qualifications. Therefore, in order to increase the chances
of solving the NLP reformulation, the heuristic solves regularized versions of the NLP by
relaxing xi (1 − xi ) = 0 to xi (1 − xi ) ≤ θ , for different, ever smaller θ > 0. If the NLP
solution is close to satisfying xI ∈ {0, 1}|I|, it is passed as starting point to the subNLP
heuristic. If an NLP is (locally) infeasible, the heuristic does two more attempts where the
values for binary variables that are already close to 0 or 1 are flipped to 1 or 0, respectively.
For more details, see [32].

2.8.5 Undercover

While the previous heuristics focused on enforcing the integrality condition on an NLP,
heuristic undercover [59] starts from a completely different angle. The heuristic is based
on the observation that it sometimes suffices to fix only a comparatively small number of
variables of (MINLP) to yield a mixed-integer linear subproblem. For example, for a bilinear
term, only one of the variables needs to be fixed. A set covering problem is solved tominimize
the number of variables to fix. The values for the fixed variables are taken from solutions of
the LP or NLP relaxation or a known feasible solution of the MINLP.

The resulting sub-MIP is less complex to solve, and does not need to be solved to proven
optimality. The solutions of the sub-MIP are immediately feasible for (MINLP). However, the
best one is also passed as starting point to heuristic subnlp to try for further improvement.
For more details, see [59].

3 Benchmark

This section aims to present a fair comparison of SCIP with several other state-of-the-art
solvers for general MINLP. Doing so is not trivial at all. First, a set of instances needs to be
selected that is suitable as a benchmark set. Second, solver parameters have to be set such that
all solvers solve the same instances with the same working limits and the same requirements
on feasibility and optimality—this goal could not be reached completely. Third, the solver’s
results have to be checked for correctness, or, when this is not possible, plausibility.

GAMS was used for the experiments, as it provides various facilities to help on solver
comparisons and comes with current versions of SCIP and the commercial solvers BARON
[60], Lindo API [61], and Octeract included.

All computations were run on a Linux cluster with Intel Xeon E5-2670 v2 CPUs
(20 cores). The GAMS version is 41.2.0, which includes SCIP 8.0.2, BARON 22.9.30,
Lindo API 14.0.5099.162, and Octeract 4.5.1. A GAMS license with all solvers enabled was
used, so that SCIP uses CPLEX 22.1.0.0 as LP solver and Ipopt with HSL MA27 as NLP
solver, BARON can choose between all LP/MIP/NLP solvers that it interfaces with, and
Octeract uses CPLEX 22.1.0.0 as LP/MIP/QP/QCP solver.

3.1 Test set

To construct a test set suitable for benchmarking, the MINLPLib [62] collection of 1595
MINLPs was used as source. First, instances that could not be handled by some solver were
excluded. All solvers were then run on the remaining 1505 instances using the parameter
settings described below. The results of these runs were then used to select 200 instances

123



302 Journal of Global Optimization (2025) 91:287–310

that could be solved by at least one solver, that were not trivial for all solvers, had a varying
degree of integrality and nonlinearity, and such that having many instances with a similar
name is avoided. The latter was done to avoid overrepresentation of problems for whichmany
instances were added to MINLPLib.

Since small changes to an instance can lead to large variations in the solver’s performance,
the benchmark’s reliability is improved by considering for each instance four additional
variants where the order of variables and equations has been permuted. Thus, a test set of
1000 instances is obtained.

The following approach was used to select the benchmark set of 200 instances before
permutation: Let I be the initial set of 1505 instances from MINLPLib, di be the fraction
of integer variables in instance i ∈ I , and ei be the fraction of nonzeros in the Jacobian and
objective function gradient that correspond to nonlinear terms. Next, assign to each instance
an identifier fi ∈ F such that instances that seem to come from the same model are assigned
the same identifier. This goal is approximated by mapping i to the name of the instance until
the first digit, underscore, or dash, except for the block layout design instances fo*, m*,
no*, o*, which were all assigned to the same identifier. |F | = 230 different identifiers were
found this way.

Further, let t i be the largest time in seconds that any solver who did not produce wrong
results on instance i spend on instance i . Finally, let S be the number of instances that could
be solved by at least one solver.

To ensure that instances with a varying amount of integer variables and nonlinearity are
included, the interval [0, 1] was split once at breakpoints 0.05, 0.25, 0.5, 0.9 and once at
0.1, 0.25, 0.5. Let D and E be the resulting partitions of [0, 1]. For every interval from
D and E , the aim is to have roughly the same number of instances with di and ei in the
respective intervals. For the choice of breakpoints that define D and E , the distribution of di
and ei , i ∈ I , have been taken into account. For example, MINLPLib contains many purely
continuous and purely discrete instances, but not many instances that are mostly linear or
completely nonlinear.

To avoid including too many instances originating from the same model, including more
than two instances for each identifier in F is discouraged. Further, instances that seem trivial,
i.e., which are solved by all solvers in no more than five seconds, or could not be solved by
any solver are excluded. Introducing penalty terms, the following optimization problem for
instance selection is obtained:

min
∑

d∈D
λ2d +

∑

e∈E
λ2e + 10

∑

f ∈F
λ2f

such that
∑

i∈I :di∈d
zi =

⌊
N

|D|
⌉

+ λd ∀d ∈ D,

∑

i∈I :ei∈e
zi =

⌊
N

|E |
⌉

+ λe ∀e ∈ E,

∑

i∈I : fi= f

zi ≤ 2 + λ f ∀ f ∈ F,

zi = 0 ∀i ∈ I : t i ≤ 5,

zi = 0 ∀i ∈ I : i /∈ S,

z ∈ {0, 1}|I |, λ ∈ Z
|D|+|E |+|F |

123



Journal of Global Optimization (2025) 91:287–310 303

Table 1 Number of instances selected with “discreteness” di and “nonlinearity” ei in intervals from D and E

E ↓ | D → [0,0.05) [0.05,0.25) [0.25,0.5) [0.5,0.9) [0.9,1] [0,1]

[0, 0.1) 3 7 19 15 6 50

[0.1, 0.25) 8 22 9 7 4 50

[0.25, 0.5) 8 8 6 10 18 50

[0.5, 1] 25 2 5 7 11 50

[0, 1] 44 39 39 39 39 200

This problem was solved for N varying between 180 and 220. For N = 208, this yield a
selection of 200 instances with an acceptable penalty value of 106. Table 1 shows the number
of instances for each element of D × E . For five identifiers from F , three instead of two
instances were selected, i.e., λ f = 1 for five f ∈ F . Section1 in the supplement gives the
list of selected instances.

3.2 Parameter settings

3.2.1 Missing variable bounds

To compute a lower bound on the optimal value of a minimization problem, all solvers con-
sidered here construct a convex relaxation of the given problem. For nonconvex constraints,
this often relies on the computation of valid convex underestimators or concave overestima-
tors. As these typically depend on variables’ bounds (recall (1)), an instance with missing or
very large bounds on variables in nonconvex terms can be very hard or impossible to solve.

Even when the user forgot to specify some variable bounds, the solver may still be able to
derive bounds via domain propagation. Further, once a feasible solution x̂ has been found,
additional bounds may be derived from the inequality c�x ≤ c� x̂ . However, as there are
always cases where bounds are still missing after presolve, solvers invented different ways
to deal with this obstacle.

If SCIP cannot under- or overestimate because of missing variable bounds, it continues
by branching on an unbounded variable. This way, there will eventually be a node in the
branch-and-bound tree where all variables are bounded. Nodes that still contain unbounded
variable domains may be pruned due to a derived lower bound on the objective function
exceeding the incumbents objective function value. But it may also be the case that pruning
will not be possible and SCIP does not terminate. However, variable bounds after branching
cannot grow indefinitely in SCIP, but are limited by±1020 by default. That is, SCIP does not
search for solutions with variable values beyond this value.

The other solvers considered here add variable bounds based on a heuristic decision. If
BARON is still missing bounds on variables in nonconvex terms after presolve, it sets the
bound to a value that depends on the type of nonlinearity involved. Typically, this value is
around ±1010. BARON also prints a warning and no longer claim to have solved a problem
to global optimality, i.e., it does not return a lower bound. Lindo API adjusts the bounds for
all variables that are involved in convexification to be within [−1010, 1010]. At termination, it
returns the lower bound for the restricted problem.Octeract proceeds similarly and introduces
a bound of ±107 for every missing bound and returns the lower bound for the restricted
problem at termination.

123



304 Journal of Global Optimization (2025) 91:287–310

Evidently, passing an instance with unbounded variables to several solvers with default
settings may mean that each solver solves a different subproblem of the actual problem and
often also reports a lower bound that corresponds to the solved subproblem only. Fortunately,
parameters are available to adjust the treatment of unbounded variables. A first impulse could
be to tell all solvers to set missing bounds to infinity, but this is not possible as each solver
treats values beyond a different finite value as “infinity” (BARON: 1050, Octeract: 10308,
SCIP: 1020). Changing this value is either not possible or not advisable.

We therefore decided to aim for ±1012 as replacement for a missing variable bound. For
BARON and SCIP, the GAMS interface can replace any missing bound by ±1012 before
the instance is passed to the solver. BARON will hence also return a lower bound for this
restricted problem. For Lindo API, a solver parameter can be changed so that bounds for all
variables subject to convexification are bounded by ±1012 (instead of ±1010). Finally, also
for Octeract, all missing bounds are set to ±1012 (instead of ±107) by changing of a solver
parameter. Note, that this still does not ensure that all solvers solve the same instance, since
Lindo API may still change initial finite bounds beyond 1012 and may not bound variables
that are not involved in convexification.

Next to missing bounds on problem variables, also singularities in functions (e.g., 1/x ,
log(x)) can make finite estimators unavailable. Unfortunately, there are no parameters avail-
able to ensure a uniform treatment of this case in all solvers. SCIP ensures that the variable
in x p , p < 0, or log(x) is bounded away from zero by 10−9, and terminates with a lower
bound for this modified problem. BARON applies the same method as the one for missing
variable bounds to choose a suitable bound on x . No lower bound is returned at termination
then. The methods in Lindo API and Octeract are not known to us.

3.2.2 Solution quality

To ensure that all solvers return solutions of the same quality, constraints of (MINLP) are
required to be satisfiedwith an absolute tolerance of 10−6. This applies to linear and nonlinear
equations, variable bounds, and integrality.

In addition, a tolerance on the proof of optimality is set. For this purpose, typically, solvers
are allowed to stop when the absolute or relative gap between lower and upper bounds on
the optimal value are sufficiently small. Since the test set is diverse and has optimal values
of varying magnitude, setting only a relative gap limit and no absolute gap limit would
be preferable. Unfortunately, Octeract does not permit different values for these limits. As a
compromise, BARON, Lindo API, and SCIP are run with 10−4 as relative gap limit and 10−6

as absolute gap limit, while for Octeract, 10−6 is used for both the absolute and relative gap
limit. Section2.2 in the supplement shows that this tighter optimality tolerance has essentially
no effect on the performance of Octeract.

3.2.3 Working limits

As working limits, a time limit of two hours is used and the jobs on the cluster are restricted
to 50 GB of RAM. Further, parallelization functionality has been disabled. For a comparison
with parallelization enabled, see [14].

3.2.4 Summary

To summarize, the following parameters are used:

123



Journal of Global Optimization (2025) 91:287–310 305

Table 2 Aggregated performance
data for all solvers on test set of
1000 instances

Solved Timeout Fail Best obj Time

BARON 790 183 27 928 75.4

Lindo API 538 323 139 729 489.1

Octeract 671 279 50 848 184.1

SCIP 776 183 41 922 85.2

Virt. worst 368 405 227 589 1505.2

Virt. best 967 33 0 987 19.7

GAMS (applied to all solvers): optcr=1e-4, optca=1e-6, reslim=7200,
workspace=50000, threads=1

BARON: InfBnd=1e12, AbsConFeasTol=1e-6, AbsIntFeasTol=1e-6
Lindo API: GOP_BNDLIM=1e12, SOLVER_FEASTOL=1e-6
Octeract: INFINITY=1e12, INTEGRALITY_VIOLATION_TOLERANCE=1e-6

SCIP: gams/infbound=1e12, constraints/nonlinear/linearize
heursol=o (this undoes a change in the algorithmic settings of SCIP that is
part of the GAMS/SCIP interface)

3.3 Correctness checks

A run of a solver on an instance is marked as failed if the solver terminated abnormally, the
solution is not feasible with respect to the feasibility tolerance, or the lower or upper bound
contradicts with the bounds on the optimal value that are specified on the MINLPLib page.

A run that has not failed is marked as solved if the relative or absolute gap limits are
satisfied. If a solver stopped without closing the gap before the time limit, then the solver
time is changed to the time limit. The only exception here is BARON, which stops on
two instances before the time limit without reporting a lower bound due to singularities in
functions (see Sect. 3.2.1). To be consistent with the treatment of other solvers, these two
instances were accounted as solved by BARON with the original solver time.

3.4 Results

Table 2 shows for each solver the number of instances that could be solved, how often the
time limit was reached, and the number of runs that were marked as failed. In addition, the
number of instances for which a solution with objective value not more than 1% worse than
the best solution found by any considered solver is shown. Finally, the shifted geometricmean
of the running time of the solver is provided. The shift has been set to 1 s. Here, instances that
failed are accounted with the time limit. In addition, results for the virtual best and virtual
worst solver are reported, which are obtained by picking for each instance the fastest or
slowest solver (best or worst objective function value for “best obj.” column), respectively.
The performance profile in Fig. 1 shows the number of instances a solver solved with a time
that is at most a factor of the fastest solvers time. Section2.1 in the supplement provides
detailed results.

The results show a small lead of BARON before SCIP with respect to the number of
instances solved, number of instances finding a best solution, and average time. Since the
number of timeouts is almost equal, one could argue that it is the higher stability of BARON

123



306 Journal of Global Optimization (2025) 91:287–310

Fig. 1 Performance profile comparing all solvers

that moves it onto the first place here. In fact, the 41 fails of SCIP are due to returning a wrong
optimal value 16 times, returning an infeasible solution 23 times, and aborts due to numerical
troubles for two instances. For BARON, fails are due to returning a wrong optimal value 26
times and an infeasible solution only once. While SCIP 8 has made a large step forward in
ensuring that nonlinear constraints are satisfied in the non-presolved problem, violations in
linear constraints or variable bounds still occur for a few instances. These are typically due
to variables being aggregated during presolve.

Even though Octeract and Lindo API solved considerably fewer instances than BARON
and SCIP, which also results in an increased mean time, it is noteworthy that each of the
two is also the fastest solver on 270 and 66 instances, respectively. Octeract also produced
correct results for 95% of the test set, while for Lindo API a relatively high number of wrong
optimal values, infeasible solutions, or aborts is observed.

The large differences between the real and virtual solvers show that none of the solvers
dominates all others or is dominated.

4 Conclusion

The development of the MINLP solver in SCIP has come a long way. In a recent version-to-
version comparison [13, slides 49–51], a steady improvement in the performance of SCIP
on MINLP over the last ten years has been measured, resulting in SCIP 8 solving twice as
many instances as SCIP 3 and a speed-up of factor three. Partially, this improvement has
been achieved by improving and adding features particular for MINLP. However, due to the
generality of SCIP as a CIP solver, also many developments that targeted MIP solving were
immediately available for MINLP solving.

With version 8, the MINLP solving capabilities of SCIP have been largely reworked
and extended, which resulted in a considerable improvement in both robustness and perfor-
mance [13, 16]. As a result, SCIP’s performance is currently on par with the state-of-the-art
commercial solver BARON.

In contrast to the commercial solvers considered here, SCIP offers a variety of possibilities
for a user, developer, or researcher to interact with the solving process. In particular, the newly
added “nonlinear handler” plugin type sets SCIP apart from most other MINLP solvers, as
it allows focusing on experimenting with new algorithms to handle certain structures in
nonlinear functions without modifying the solver’s code.

123



Journal of Global Optimization (2025) 91:287–310 307

The rather large number of features that are disabled by default shows that tuning and
improving the existing code base has become increasingly necessary. Of course, also new
features will be added in the future, e.g., improved separation for signomial functions
[63], alternative relaxations for polynomial functions [64], or monoidal strengthening of
intersection cuts for quadratics [65].

Supplementary information

A supplement with all data generated or analyzed for the computational experiments during
this study is available online.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10898-023-01345-1.

Acknowledgements We are in all SCIP developers’ debt—the extensions to support nonlinear constraints and
solve MINLPs would not have been possible without the framework’s existence and the powerful MIP solver
that we could build upon. While the authors of this paper are the main developers of the new MINLP features
in SCIP 8, many have contributed to the MINLP capabilities in previous releases of SCIP, namely Martin
Ballerstein, TimoBerthold, Tobias Fischer, ThorstenGellermann, AmbrosGleixner, RenkeKuhlmann, Dennis
Michaels, Marc Pfetsch, and Stefan Weltge. Last but not least, we are very grateful to Franziska Schlösser for
the setup and maintenance of benchmarking and testing facilities for the infamous “consexpr” development
branch of SCIP.

Funding Open Access funding enabled and organized by Projekt DEAL. The work for this article has been
conducted within the Research Campus Modal funded by the German Federal Ministry of Education and
Research (BMBF Grant Numbers 05M14ZAM, 05M20ZBM). Additional funding has been received from the
German Federal Ministry for Economic Affairs and Energy within the project EnBA-M (ID: 03ET1549D).

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Floudas, C.A.: Nonlinear and Mixed Integer Optimization: Fundamentals and Applications. Oxford
University Press, New York (1995)

2. Grossmann, I.E., Kravanja, Z.: Mixed-integer nonlinear programming: a survey of algorithms and appli-
cations. In: Conn, A.R., Biegler, L.T., Coleman, T.F., Santosa, F.N. (eds.) Large-Scale Optimization with
Applications, Part II: Optimal Design and Control, pp. 73–100. Springer, New York (1997). https://doi.
org/10.1007/978-1-4612-1960-6_5

3. Pintér, J.D. (ed.): Global Optimization: Scientific and Engineering Case Studies Nonconvex Optimization
and Its Applications, vol. 85. Springer, New York (2006). https://doi.org/10.1007/0-387-30927-6

123

https://doi.org/10.1007/s10898-023-01345-1
https://doi.org/10.1007/s10898-023-01345-1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-1-4612-1960-6_5
https://doi.org/10.1007/978-1-4612-1960-6_5
https://doi.org/10.1007/0-387-30927-6


308 Journal of Global Optimization (2025) 91:287–310

4. Trespalacios, F., Grossmann, I.: Review of mixed-integer nonlinear and generalized disjunctive pro-
gramming methods. Chemie Ingenieur Technik 86(7), 991–1012 (2014). https://doi.org/10.1002/cite.
201400037

5. Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Cochran, J.J., Cox, L.A., Jr., Keskinocak, P.,
Kharoufeh, J.P., Smith, J.C. (eds.)Wiley Encyclopedia of Operations Research andManagement Science.
Wiley, Hoboken (2010). https://doi.org/10.1002/9780470400531.eorms0527

6. Kocis, G.R., Grossmann, I.E.: Computational experience with DICOPT: solving MINLP problems in
process systems engineering. Comput. Chem. Eng. 13(3), 307–315 (1989). https://doi.org/10.1016/0098-
1354(89)85008-2

7. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear
programs. Math. Programm. 36(3), 307–339 (1986). https://doi.org/10.1007/BF02592064

8. Adjiman,C.S., Floudas,C.A.:Rigorous convexunderestimators for general twice-differentiable problems.
J. Glob. Optim. 9(1), 23–40 (1996). https://doi.org/10.1007/BF00121749

9. Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Glob. Optim. 8(2),
201–205 (1996). https://doi.org/10.1007/BF00138693

10. Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the
global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999). https://doi.
org/10.1016/s0098-1354(98)00286-5

11. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-
and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2017). https://doi.org/10.1080/10556788.
2017.1335312

12. Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin (2007)
13. Pfetsch, M.: SCIP: past, present, future. Presentation at workshop Let’s SCIP it! (2022). https://scipopt.

org/20years/slides/pfetsch.pdf
14. Bestuzheva, K., Chmiela, A., Müller, B., Serrano, F., Vigerske, S., Wegscheider, F.: Global optimization

of mixed-integer nonlinear programs with SCIP 8.0. Technical report (2022). https://optimization-online.
org/?p=21314

15. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear
optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032

16. Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., Doornmalen, J., Eifler, L.,
Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C., Hulst,
R., Koch, T., Lübbecke, M., Maher, S.J., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.E., Rehfeldt, D.,
Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S., Wegscheider, F.,
Wellner, P., Weninger, D., Witzig, J.: The SCIP optimization suite 8.0. ZIB report 21–41, Zuse Institute
Berlin (2021). nbn:de:0297-zib-85309

17. Chmiela, A., Muñoz, G., Serrano, F.: On the implementation and strengthening of intersection cuts for
QCQPs. In: Singh, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization,
pp. 134–147. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73879-2_10

18. Bestuzheva, K., Gleixner, A., Achterberg, T.: Efficient separation of RLT cuts for implicit and explicit
bilinear products. In: Del Pia, A., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization,
pp. 14–28. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32726-1_2

19. Bestuzheva, K., Gleixner, A., Vigerske, S.: A computational study of perspective cuts. Math. Program.
Comput. 15(4), 703–731 (2023). https://doi.org/10.1007/s12532-023-00246-4

20. Wegscheider, F.: Exploiting symmetry in mixed-integer nonlinear programming. Master’s thesis, Zuse
Institute Berlin (2019). nbn:de:0297-zib-77055

21. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs, NJ (1966)
22. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex

underestimating problems. Math. Program. 10(1), 147–175 (1976). https://doi.org/10.1007/bf01580665
23. Fletcher, R., Leyffer, S.: User manual for filterSQP. Numerical Analysis Report NA/181, Department of

Mathematics, University of Dundee, Scotland (1998)
24. Wächter,A.,Biegler, L.T.:On the implementation of a primal-dual interior point filter line search algorithm

for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/
s10107-004-0559-y

25. Büskens, C., Wassel, D.: The ESA NLP solver WORHP. In: Fasano, G., Pintér, J.D. (eds.) Modeling and
Optimization in Space Engineering. Springer Optimization and Its Applications, vol. 73, pp. 85–110.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-4469-5_4

26. Bell, B.: CppAD: a Package for Differentiation of C++ Algorithms. https://github.com/coin-or/CppAD/
27. Hansen, P., Jaumard, B., Ruiz, M., Xiong, J.: Global minimization of indefinite quadratic functions

subject to box constraints. Naval Res. Logist. (NRL) 40(3), 373–392 (1993). https://doi.org/10.1002/
1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A

123

https://doi.org/10.1002/cite.201400037
https://doi.org/10.1002/cite.201400037
https://doi.org/10.1002/9780470400531.eorms0527
https://doi.org/10.1016/0098-1354(89)85008-2
https://doi.org/10.1016/0098-1354(89)85008-2
https://doi.org/10.1007/BF02592064
https://doi.org/10.1007/BF00121749
https://doi.org/10.1007/BF00138693
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1016/s0098-1354(98)00286-5
https://doi.org/10.1080/10556788.2017.1335312
https://doi.org/10.1080/10556788.2017.1335312
https://scipopt.org/20years/slides/pfetsch.pdf
https://scipopt.org/20years/slides/pfetsch.pdf
https://optimization-online.org/?p=21314
https://optimization-online.org/?p=21314
https://doi.org/10.1017/S0962492913000032
https://doi.org/10.1007/978-3-030-73879-2_10
https://doi.org/10.1007/978-3-031-32726-1_2
https://doi.org/10.1007/s12532-023-00246-4
https://doi.org/10.1007/bf01580665
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/978-1-4614-4469-5_4
https://github.com/coin-or/CppAD/
https://doi.org/10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A
https://doi.org/10.1002/1520-6750(199304)40:3<373::AID-NAV3220400307>3.0.CO;2-A


Journal of Global Optimization (2025) 91:287–310 309

28. Berthold, T., Heinz, S., Pfetsch, M.E.: Nonlinear pseudo-boolean optimization: relaxation or propaga-
tion? In: Kullmann, O. (ed.) Theory and Applications of Satisfiability Testing—SAT 2009, pp. 441–446.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_40

29. Maher, S.J., Fischer, T., Gally, T., Gamrath, G., Gleixner, A., Gottwald, R.L., Hendel, G., Koch, T.,
Lübbecke, M.E., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S.,
Schwarz, R., Serrano, F., Shinano, Y., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite
4.0. ZIB report 17–12, Zuse Institute Berlin (2017). nbn:de:0297-zib-62170

30. Fischer, T.: Branch-and-cut for complementarity and cardinality constrained linear programs. PhD thesis,
Technical University of Darmstadt (2017)

31. Hojny, C., Pfetsch,M.E.: Polytopes associated with symmetry handling.Math. Program. 175(1), 197–240
(2019). https://doi.org/10.1007/s10107-018-1239-7

32. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel, G., Hojny, C.,
Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Serrano,
F., Shinano, Y., Viernickel, J.M., Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization
suite 5.0. ZIB report 17–61, Zuse Institute Berlin (2017). nbn:de:0297-zib-66297

33. Gamrath,G.,Anderson,D., Bestuzheva,K., Chen,W.-K., Eifler, L., Gasse,M.,Gemander, P., Gleixner,A.,
Gottwald, L.,Halbig,K.,Hendel,G.,Hojny,C.,Koch, T., Bodic, P.L.,Maher, S.J.,Matter, F.,Miltenberger,
M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske,
S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP optimization suite 7.0. ZIB report 20–10, Zuse
Institute Berlin (2020). nbn:de:0297-zib-78023

34. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., Liebling, T.M., Naddef, D.,
Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Inte-
ger Programming, pp. 647–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-
0_17

35. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploita-
tion. Math. Program. 131(1), 273–304 (2012). https://doi.org/10.1007/s10107-010-0351-0

36. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429
(2010). https://doi.org/10.1007/s10601-009-9076-1

37. Locatelli, M.: Convex envelopes of bivariate functions through the solution of KKT systems. J. Glob.
Optim. 72(2), 277–303 (2018). https://doi.org/10.1007/s10898-018-0626-1

38. Müller, B., Serrano, F., Gleixner, A.: Using two-dimensional projections for stronger separation and
propagation of bilinear terms. SIAM J. Optim. 30(2), 1339–1365 (2020). https://doi.org/10.1137/
19m1249825

39. Adams, W.P., Sherali, H.D.: A tight linearization and an algorithm for zero-one quadratic programming
problems. Manag. Sci. 32(10), 1274–1290 (1986). https://doi.org/10.1287/mnsc.32.10.1274

40. Adams, W.P., Sherali, H.D.: Linearization strategies for a class of zero-one mixed integer programming
problems. Oper. Res. 38(2), 217–226 (1990). https://doi.org/10.1287/opre.38.2.217

41. Tuy, H.: Concave programming with linear constraints. Doklady Akademii Nauk 159(1), 32–35 (1964)
42. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19(1),

19–39 (1971). https://doi.org/10.1287/opre.19.1.19
43. Muñoz, G., Serrano, F.: Maximal quadratic-free sets. In: Bienstock, D., Zambelli, G. (eds.) Integer Pro-

gramming and Combinatorial Optimization, pp. 307–321. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-45771-6_24

44. Glover, F.: Polyhedral convexity cuts and negative edge extensions. Z. für Oper. Res. 18, 181–186 (1974).
https://doi.org/10.1007/BF02026599

45. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic
programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. 136(1),
155–182 (2012). https://doi.org/10.1007/s10107-012-0555-6

46. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cutting planes for mixed-integer
quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim. Methods
Softw. 30(1), 215–249 (2015). https://doi.org/10.1080/10556788.2014.916287

47. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P. (eds.)
Frontiers in Global Optimization, pp. 563–573. Springer, Boston (2004). https://doi.org/10.1007/978-1-
4613-0251-3_30

48. Mahajan, A., Munson, T.: Exploiting second-order cone structure for global optimization. Technical
Report ANL/MCS-P1801-1010, Argonne National Laboratory (2010)

49. Vielma, J.P., Dunning, I., Huchette, J., Lubin, M.: Extended formulations in mixed integer conic quadratic
programming. Math. Program. Comput. 9(3), 369–418 (2016). https://doi.org/10.1007/s12532-016-
0113-y

123

https://doi.org/10.1007/978-3-642-02777-2_40
https://doi.org/10.1007/s10107-018-1239-7
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/978-3-540-68279-0_17
https://doi.org/10.1007/s10107-010-0351-0
https://doi.org/10.1007/s10601-009-9076-1
https://doi.org/10.1007/s10898-018-0626-1
https://doi.org/10.1137/19m1249825
https://doi.org/10.1137/19m1249825
https://doi.org/10.1287/mnsc.32.10.1274
https://doi.org/10.1287/opre.38.2.217
https://doi.org/10.1287/opre.19.1.19
https://doi.org/10.1007/978-3-030-45771-6_24
https://doi.org/10.1007/978-3-030-45771-6_24
https://doi.org/10.1007/BF02026599
https://doi.org/10.1007/s10107-012-0555-6
https://doi.org/10.1080/10556788.2014.916287
https://doi.org/10.1007/978-1-4613-0251-3_30
https://doi.org/10.1007/978-1-4613-0251-3_30
https://doi.org/10.1007/s12532-016-0113-y
https://doi.org/10.1007/s12532-016-0113-y


310 Journal of Global Optimization (2025) 91:287–310

50. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math.
Program. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8

51. Kronqvist, J., Lundell, A., Westerlund, T.: The extended supporting hyperplane algorithm for convex
mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016). https://doi.org/10.1007/
s10898-015-0322-3

52. Veinott, A.F.: The supporting hyperplane method for unimodal programming. Oper. Res. 15(1), 147–152
(1967). https://doi.org/10.1287/opre.15.1.147

53. Zamora, J.M., Grossmann, I.E.: Continuous global optimization of structured process systems models.
Comput. Chem. Eng. 22(12), 1749–1770 (1998). https://doi.org/10.1016/S0098-1354(98)00244-0

54. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math.
Program. 106(2), 225–236 (2006). https://doi.org/10.1007/s10107-005-0594-3

55. Quesada, I., Grossmann, I.E.: Global optimization algorithm for heat exchanger networks. Ind. Eng.
Chem. Res. 32(3), 487–499 (1993). https://doi.org/10.1021/ie00015a012

56. Gleixner, A., Berthold, T., Müller, B., Weltge, S.: Three enhancements for optimization-based bound
tightening. J. Glob. Optim. 67(4), 731–757 (2017). https://doi.org/10.1007/s10898-016-0450-4

57. Smith, L., Chinneck, J., Aitken, V.: Improved constraint consensus methods for seeking feasibility in
nonlinear programs. Comput. Optim. Appl. 54(3), 555–578 (2013). https://doi.org/10.1007/s10589-012-
9473-z

58. Schewe, L., Schmidt, M.: Computing feasible points for binary MINLPs with MPECs. Math. Program.
Comput. 11(1), 95–118 (2019). https://doi.org/10.1007/s12532-018-0141-x

59. Berthold, T., Gleixner, A.: Undercover: a primal MINLP heuristic exploring a largest sub-MIP. Math.
Program. 144(1–2), 315–346 (2014). https://doi.org/10.1007/s10107-013-0635-2

60. Khajavirad, A., Sahinidis, N.V.: A hybrid LP/NLP paradigm for global optimization relaxations. Math.
Program. Comput. 10(3), 383–421 (2018). https://doi.org/10.1007/s12532-018-0138-5

61. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668
(2009). https://doi.org/10.1080/10556780902753221

62. A Library of Mixed-Integer and Continuous Nonlinear Programming Instances. https://www.minlplib.
org (2022-10-14)

63. Xu, L., D’Ambrosio, C., Liberti, L., Vanier, S.H.: On cutting planes for extended formulation of signomial
programming (2022) arXiv:2212.02857

64. Bestuzheva, K., Gleixner, A., Völker, H.: Strengthening SONC relaxations with constraints derived from
variable bounds. ZIB-Report 23-03, Zuse Institute Berlin (2023). nbn:de:0297-zib-89510

65. Chmiela, A., Muñoz, G., Serrano, F.: Monoidal strengthening and unique lifting in MIQCPs. In: Del Pia,
A., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization, pp. 87–99. Springer, Cham
(2023). https://doi.org/10.1007/978-3-031-32726-1_7

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10107-005-0581-8
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1007/s10898-015-0322-3
https://doi.org/10.1287/opre.15.1.147
https://doi.org/10.1016/S0098-1354(98)00244-0
https://doi.org/10.1007/s10107-005-0594-3
https://doi.org/10.1021/ie00015a012
https://doi.org/10.1007/s10898-016-0450-4
https://doi.org/10.1007/s10589-012-9473-z
https://doi.org/10.1007/s10589-012-9473-z
https://doi.org/10.1007/s12532-018-0141-x
https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1007/s12532-018-0138-5
https://doi.org/10.1080/10556780902753221
https://www.minlplib.org
https://www.minlplib.org
http://arxiv.org/abs/2212.02857
https://doi.org/10.1007/978-3-031-32726-1_7

	Global optimization of mixed-integer nonlinear programs with SCIP 8
	Abstract
	1 Introduction
	2 MINLP capabilities of SCIP
	2.1 Framework
	2.1.1 Expressions
	2.1.2 Constraint handler for nonlinear constraints
	2.1.3 Nonlinear handlers
	2.1.4 NLP relaxation

	2.2 Presolving
	2.2.1 Variable fixings
	2.2.2 Linearization of products
	2.2.3 KKT strengthening for QPs
	2.2.4 Symmetry detection

	2.3 Quadratics
	2.3.1 Domain propagation
	2.3.2 Bilinear terms
	2.3.3 RLT cuts
	2.3.4 SDP cuts
	2.3.5 Intersection cuts
	2.3.6 Edge-concave cuts
	2.3.7 Second-order cones

	2.4 Convexity
	2.4.1 Convex and concave constraints
	2.4.2 Tighter gradient cuts

	2.5 Quotients
	2.6 Perspective strengthening
	2.7 Optimization-based bound tightening
	2.8 Primal heuristics
	2.8.1 subNLP
	2.8.2 Multistart
	2.8.3 NLP diving
	2.8.4 MPEC
	2.8.5 Undercover


	3 Benchmark
	3.1 Test set
	3.2 Parameter settings
	3.2.1 Missing variable bounds
	3.2.2 Solution quality
	3.2.3 Working limits
	3.2.4 Summary

	3.3 Correctness checks
	3.4 Results

	4 Conclusion
	Supplementary information
	Acknowledgements
	References




