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Abstract
This paper analyzes international environmental agreements in three-stage games consist-
ing of a membership subgame, the signatories’ decision on the intensity of cooperation, 
and an emissions subgame. Signatories may act as Stackelberg leaders or play Nash. In 
the Stackelberg game, the highest intensity of cooperation between signatories is optimal. 
In the Nash game, a moderate or the highest intensity of cooperation is optimal if emis-
sions are strategic substitutes. In this case the equilibrium emissions and the stable coali-
tion of the Nash game with optimal cooperation intensity are identical to the equilibrium 
emissions and the stable coalition of the Stackelberg game with the highest cooperation 
intensity. Finally, we apply our results to coalition formation games of the literature. In 
the applied Nash games, optimizing with respect to the cooperation intensity may enlarge 
the stable coalition up to the grand coalition which implements the first best.

Keywords  Optimal intensity of cooperation · Stable coalition · Nash · Stackelberg

JEL Classification  C71 · F55 · Q54

1  Introduction

Effective international environmental agreements (IEAs) with many countries are neces-
sary to keep global warming well below two degrees Celsius and to protect the community 
against catastrophic damages. There is a literature dating back to Hoel (1992), Carraro and 
Siniscalco (1993) and Barrett (1994) that analyzes IEAs by means of two-stage membership 
games developed in cartel theory (d’Aspremont et al. 1983). In the first stage of these games 
the coalition is formed and in the second stage countries decide on emissions and mitiga-
tion, respectively. A subgame perfect equilibrium is reached when the coalition is stable, i.e. 
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when there is no incentive to leave or to join the coalition. In this literature it is assumed that 
signatories maximize the sum of their welfares when choosing mitigation, and that either 
a Stackelberg game or a Nash game is played between members and non-members of the 
coalition.

The most prominent IEAs are the Kyoto Protocol and the Paris Agreement. In contrast 
to the “top-down” approach of the Kyoto Protocol, the Paris Agreement is a “bottom-up” 
approach which requires each country to make voluntary pledges (nationally determined 
contributions) towards achieving the long-term temperature goal of two degrees Celsius. 
Harstad (2023a, 2023b) and Colombo et al. (2022) argue that the cooperation intensity of 
signatories is low or moderate in the Paris Agreement, whereas it is high in the Kyoto Pro-
tocol. The coefficient of cooperation measures the cooperation intensity and ranges from 
zero to one. At the lowest cooperation intensity, a signatory is purely self-interested and 
maximizes its own welfare. At the highest cooperation intensity, signatories maximize the 
sum of their welfares.

Dimitrov et al. (2019, p. 6) describe the Paris Agreement as “shallow coordination” and 
the initial pledges as “not negligible yet not nearly ambitious enough”. The initial pledges 
are insufficient to limit global warming below two degree Celsius (cf. Rogelj et al. (2016)). 
Pledges are renegotiated every five years and scholars hope future pledges will be more 
ambitious (Falkner 2016). UNFCCC (2015), which rules the Paris Agreement, requires the 
signatories to enhance international cooperation for climate action in general, and in par-
ticular to strengthen cooperation on mitigation, on adaption and on technology development 
and transfer. Thus it is anchored in the Paris Agreement that countries should intensify 
cooperation over time. From the perspective of a signatory increasing the intensity of coop-
eration comes at the benefit of reducing global emissions and at the cost of reducing own 
emissions or tantamount at a consumption loss.

This trade-off may induce signatories to search for and choose the optimal cooperation 
intensity. Although the cooperation intensity cannot be contractually specified in the IEA 
and the cooperation intensity is not a usual decision variable, we assume that signatories 
behave as if they adjust and choose their cooperation intensity. In order to implement that 
as-if behavior, we endogenize the cooperation intensity and let the signatories maximize 
with respect to the intensity. Determining the best cooperation intensity answers the ques-
tion what the Paris Agreement may achieve in the future when signatories optimize their 
cooperation intensity.

To the best of our knowledge, the intensity of cooperation has only been applied by 
Harstad (2023a, 2023b) and Colombo et al. (2022) in Nash games. Harstad1 (2023b) ana-
lyzes a dynamic bargaining game denoted as pledge-and-review bargaining game in which 
countries decide whether to participate in an IEA, signatories decide on the duration of 
the IEA, and countries choose emissions and investments in renewables. Harstad (2023b) 
argues that features of the Paris agreement can be explained by his pledge-and-review bar-
gaining with low cooperation intensity and features of the Kyoto Protocol by the pledge-
and-review bargaining with high cooperation intensity. The cooperation intensity in the 
pledge-and-review bargaining is determined by the countries’ uncertainty concerning the 
discount rate and cannot be influenced by the coalition countries themselves. The stable 
coalition is the larger and global welfare is the higher the weaker is the cooperation intensity 

1 The pledge-and-review bargaining game used in Harstad (2023b) is microfounded as a non-cooperative 
game in Harstad (2023a).
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which explains the participation of many countries in the Paris Agreement and the partici-
pation of few countries in the Kyoto Protocol. In contrast to Harstad (2023a, 2023b), we 
consider simple static games in which the cooperation intensity is the choice variable of the 
signatories. Colombo et al. (2022) study a dynamic two-stage game with a stock of a global 
public good and with exogenous cooperation intensity. In the first stage, countries decide 
whether to participate in an IEA. In the second stage, countries choose their contribution to 
a public good. Colombo et al. (2022) show that the coalition size may be large and increases 
over time, and that the stable coalition and discounted global welfare are the larger the lower 
the cooperation intensity.

Our paper is also related to a literature in which coalition countries do not fully internal-
ize the climate externalities within the coalition. Finus and Rundshagen (1998) and Altami-
rano-Cabrera et al. (2008) apply the smallest common denominator bargaining, which was 
introduced by Endres (1997) to asymmetric countries that agree on the lowest quota (or 
tax) proposal, and employ that the smallest common denominator bargaining can stabilize 
the grand coalition. In a repeated game, Barrett (2002) shows that a consensus treaty with 
all countries (grand coalition) can be sustained, if the countries’ emissions reductions are 
modest. Finus and Maus (2008) endogenize the degree of modesty and analyze consensus 
treaties of all possible coalitions in a two-stage membership game with an additional pre-
stage. They find that modesty may lead to higher participation and more successful treaties.

The present paper analyzes the intensity of cooperation in a general static setting. In 
contrast to Harstad (2023a, 2023b) and Colombo et al. (2022), the cooperation intensity 
is determined by the signatories via maximizing their welfare. The results of our games 
depend on whether a Nash or Stackelberg game is played and whether emissions are stra-
tegic substitutes or strategic complements. In the Nash game, signatories account for the 
emissions leakage caused by non-signatories when choosing the cooperation intensity. 
If emissions are strategic substitutes [complements], the optimal cooperation intensity is 
weakly lower than [equal to] the highest cooperation intensity (Proposition 1). By contrast, 
in the Stackelberg game signatories choose the highest cooperation intensity (Proposition 
2). It turns out that the equilibrium emissions and the stable coalition of the Nash game with 
optimal cooperation intensity coincide with the equilibrium emissions and the stable coali-
tion of the Stackelberg game with highest cooperation intensity if and only if emissions are 
strategic substitutes (Proposition 3).

Our Propositions 1-3 are applied to a variety of games analyzed in the literature under the 
assumption of the exogenously given highest cooperation intensity among signatories. In 
emissions and abatement games, an emissions and trade game, an adaptation and mitigation 
game and a fishing game strategies are strategic substitutes. In these games with strategic 
substitutes, optimizing with respect to the cooperation intensity in Nash games may enlarge 
the size of the stable coalition up to the grand coalition whereby the latter implements the 
first best. In a mitigation and adaptation game in which strategies are strategic complements 
optimizing yields the highest cooperation level both in Nash and Stackelberg games and 
optimizing does not change the equilibrium emissions and the stable coalition compared to 
the literature which a priori assumed that signatories cooperate with the highest intensity of 
cooperation.

The present paper is organized as follows: In Sect. 2 we introduce the welfare function 
and the intensity of cooperation. Subsection 3.1 analyzes optimal cooperation intensity in 
the Nash game and Subsect. 3.2 optimal cooperation intensity in the Stackelberg game. 
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Subsection 3.3 compares the Nash and Stackelberg equilibria. Section 4 applies our proposi-
tions to existing games and results of the literature. Section 5 concludes.

2  The Welfare Function and the Intensity of Cooperation

Consider an economy with n ≥ 3 identical countries. The welfare of country 
i ∈ N = {1, . . . , n} is represented by the at least three times differentiable function 
W : R+ × R+ → R satisfying

	 wi = W (ei, E),� (1)

where ei ∈ R+ are country i’s emissions and E =
∑

j∈N ej  are aggregate or global emis-
sions. Country i benefits from own emissions and these emissions impose a negative exter-
nality on country j ̸= i, which is formally reflected by the partial derivatives We > 0 and 
WE < 0.2

As motivated in the introduction, we follow Colombo et al. (2022) and Harstad (2023a, 
2023b) and assume that each signatory’s choice of emissions is partly group-oriented and 
partly self-interested. Denoting the set of signatories by C := {1, . . . , m}, signatory i’s 
objective function is

	
W (ei, E) + γ

∑
j∈C\i

W (ej , E),� (2)

where γ ∈ [0, 1] reflects the cooperation intensity and is referred to as coefficient of cooper-
ation. In the polar case γ = 1, signatories are purely group-oriented and maximize the sum 
of the signatories’ welfares. In the polar case γ = 0, signatories are purely self-interested 
and maximize their own welfare.

3  The Games

In this section, we consider the following three-stage games: At stage 1, countries play a 
participation subgame and decide whether to join a climate coalition or to stay outside the 
coalition. At stage 2, signatories jointly choose the coefficient of cooperation γ and at stage 
3, all countries play an emissions subgame and choose their emissions. The games are solved 
by backward induction. We distinguish between two kinds of emissions subgames. At the 
Nash game signatories and non-signatories set their emissions simultaneously, whereas at 
the Stackelberg game signatories set emissions prior to non-signatories.

3.1  Nash Game

We begin with the Nash game. At the emissions subgame of stage 3 both non-signatories 
and signatories play Nash. Each non-signatory i ∈ F = N \ C maximizes its welfare func-

2 The results of section 3 neither rest on the interpretation of emissions nor on the signs of the partial deriva-
tives.
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tion (1) with respect to ei for given emissions of the other non-signatories and for given 
emissions of signatories which yields the first-order condition

	 We(ei, E) + WE(ei, E) = 0 ∀ i ∈ F � (3)

and the second-order condition3

	 W f
ee + W f

Ee + W f
eE + W f

EE < 0.� (4)

The non-signatories’ first-order condition (3) requires the marginal benefits of emissions, rep-
resented by We > 0, and the marginal costs of emissions, formally reflected by−WE > 0, 
to be equal. Setting ei = ef  for all i ∈ F , accounting for E = (n − m)ef +

∑
j∈C ej , 

and solving (3) with respect to (n − m)ef  we obtain the non-signatories’ aggregate best-

response function (n − m)ef = RF
(∑

j∈C ej

)
 with4

	

RF ′ = −
(n − m)

(
W f

eE + W f
EE

)

W f
ee + W f

Ee + (n − m)
(

W f
eE + W f

EE

) .� (5)

Each signatory i ∈ C maximizes the objective function (2) subject to E =
∑

j∈F ej + ei+ ∑
j∈C\i ej with respect to ei. The first-order condition is given by

	 We(ei, E) + [1 + γ(m − 1)] WE(ei, E) = 0 ∀ i ∈ C� (6)

and the second-order condition reads5

	 W c
ee + [1 + γ(m − 1)] W c

Ee + W c
eE + [1 + γ(m − 1)] W c

EE < 0.� (7)

The signatories’ first-order condition (6) also balances the marginal benefits and the mar-
ginal costs of emissions. The marginal benefits are equal to those of the non-signatories but 
the marginal costs are different. Whereas a non-signatory accounts only for the impact of 
its emissions on its own marginal costs, the signatories internalize the share of externali-
ties γ(m − 1) imposed on other signatories. Setting ei = ec for all i ∈ C, accounting for 
E = mec +

∑
j∈F ej , and solving (6) yields the signatories’ aggregate best-response func-

tion mec = RC
(∑

j∈F ej

)
 with6

	
RC′ = − m [W c

eE + (1 + γ(m − 1)) W c
EE ]

W c
ee + (1 + γ(m − 1)) W c

Ee + m [W c
eE + (1 + γ(m − 1)) W c

EE ]
.� (8)

3 We use the notation W f
ee := ∂2W (ei,E)

(∂ei)2 , W f
EE := ∂2W (ei,E)

(∂E)2 , W f
eE := ∂2W (ei,E)

∂ei∂E
 for i ∈ F  to 

avoid clutter.
4 Total differentiation of (3) with E = (n − m)ef +

∑
j∈C

ej  and rearranging terms yields (5).
5 We use the notation W c

ee := ∂2W (ei,E)
(∂ei)2 , W c

EE := ∂2W (ei,E)
(∂E)2 , W c

eE := ∂2W (ei,E)
∂ei∂E

 for i ∈ C to 
avoid clutter.

6 Total differentiation of (6) with E = mec +
∑

j∈F
ej  and rearranging terms yields (8).
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The first-order conditions (3) and (6) jointly determine the Nash equilibrium of the emis-
sions subgame in dependence of the cooperation coefficient γ and of the coalition size m, 
formally

	

ei = ec = êc(γ, m) ∀ i ∈ C, ei = ef = êf (γ, m) ∀ i ∈ F,

E = Ê(γ, m) = mêc(γ, m) + (n − m)êf (γ, m),
� (9)

where the hat marks Nash equilibrium values of the emissions subgame.
In the following, we need several assumptions. Our first assumption requires7

Assumption 1  The welfare function W (ei, E) fulfills the properties Wee < 0, WeE ≤ 0, 
Wee + 2nWeE + n2WEE < 0.

Assumption 1 ensures that the second-order conditions (4) and (7) are satisfied for all 
m ∈ {2, . . . , n} and γ ∈ [0, 1] in the emissions subgame. In Lemma 1 of the Appendix, we 
show that Wee + 2nWeE + n2WEE < 0 is necessary for the existence and uniqueness of 
the Nash equilibrium in the emissions subgame for m = n and γ = 1. Moreover, Assump-
tion 1 is sufficient for the existence and uniqueness of the Nash equilibrium in the emissions 
subgame for all m ∈ {2, . . . , n} and γ ∈ [0, 1].

Closer inspection of (5) and (8) shows that Assumption 1 also implies that the slopes 
of the aggregate best-response functions satisfy RF ′ > −1 and RC′ > −1, and that the 
sign of WeE + WEE  determines whether non-signatories’ emissions are strategic comple-
ments or substitutes. Emissions are strategic substitutes if WeE + WEE < 0, and comple-
ments ifWeE + WEE > 0. In the former case, the best response curve is downward-sloping 
(RF ′ ∈] − 1, 0[), in the latter case, it is upward-sloping (RF ′ > 0).

At stage 2, the coalition countries maximize their welfare sum mW (ec, E) subject 
to (9), êf (γ, m) = RF [mêc(γ, m)] and γ ∈ [0, 1] with respect to γ .8 Solving the asso-
ciated Lagrangean L = mW

[
êc(γ, m), Ê(γ, m)

]
 yields the first-order condition9

	 Lγ = mêc
γ · We(ei, E) + mÊγ · WE(ei, E) ⋛ 0, γ(1 − γ)Lγ = 0 ∀ i ∈ C.� (10)

In Lemma 2 of the Appendix, we show that Assumption 1 implies êc
γ · We < 0 and 

Êγ · WE > 0. Due to We > 0 and WE < 0, a higher cooperation intensity reduces both 
the signatories’ emissions and the global emissions, formally êc

γ < 0 and Êγ < 0. In (10), 
the term mêc

γ · We reflects the marginal costs and the term mÊγ · WE > 0 captures the 
marginal benefits of the cooperation intensity. In an interior solution, these marginal benefits 
and costs are balanced. Accounting for10Êγ = m (1 + RF ′) êc

γ  we obtain from (10)

	 We(ei, E) + m (1 + RF ′) WE(ei, E) ⋛ 0, γ(1 − γ)Lγ = 0 ∀ i ∈ C.� (11)

7 Our results also hold if Wee < 0, WeE ≤ 0 is replaced by Wee ≤ 0, WeE < 0.
8 Since the non-signatories choose their emissions at stage 3, the signatories take their aggregate best response 
into account when they choose the intensity of cooperation at stage 2.

9 We use the notation êc
γ := ∂êc(γ,m)

∂γ
, Êγ := ∂E(γ,m)

∂γ
 to avoid clutter.

10 Observe that Êγ = nêc
γ  if m = n. The formal treatment of m = n can be included in the subsequent 

analysis by assuming RF ′ = 0 if m = n.
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The second-order condition for an interior solution reads

	

W c
ee + m (1 + RF ′) W c

eE + m (1 + RF ′) [W c
Ee + m (1 + RF ′) W c

EE ]
+ m2RF ′′ · W c

E < 0.
� (12)

Combining (6) and (11) and solving for γ establishes

	
γ = G(m) :=

{
1 if Γ(m) ≥ 1,
Γ(m) if Γ(m) ∈]0, 1[,
0 if Γ(m) ≤ 0,

� (13)

where Γ(m) := 1 + m
m−1 RF ′. The grand coalition chooses γ = 1 due to Γ(n) = 1. A coali-

tion of size m ∈ {2, . . . , n − 1} chooses the corner solution γ = 1 if Γ(m) ≥ 1, the interior 
solution γ ∈]0, 1[ if Γ(m) ∈]0, 1[, and the corner solution γ = 0 if Γ(m) ≤ 0. If emissions 
are strategic complements for non-signatories, then Γ(m) ≥ 1 and the coalition chooses 
the corner solution γ = 1. If the coefficient of cooperation γ were unconstrained, in case of 
strategic complements the coalition would chooseγ > 1 to benefit from negative emissions 
leakage. Leakage is negative if non-signatories decrease their emissions as response to an 
emissions reduction of the signatories (RF ′ > 0). By contrast, if emissions are strategic 
substitutes for non-signatories, emissions leakage is positive (RF ′ ∈] − 1, 0[) and the coali-
tion chooses γ < 1. Since smaller coalitions are ceteris paribus accompanied by a larger 
emissions leakage (∂RF ′/∂m > 0) and a lower cooperation intensity (∂Γ(m)/∂m > 0), 
the corner solution γ = 0 could be optimal for small coalitions. In case of the grand coali-
tion (m = n) the optimal cooperation intensity is γ = 1. Making use of G(m) yields the 
welfare functions

	

Ŵ c(m) = W
[
êc(G(m), m), Ê(G(m), m)

]
,

Ŵ f (m) = W
[
êf (G(m), m), Ê(G(m), m)

]
.
� (14)

Our next assumption requires

Assumption 2  The welfare function W (ei, E) fulfills the property RF ′′ · W c
E ≤ 0.

In Lemma 3 of the Appendix, we show that Assumptions 1 and 2 are sufficient for the 
second-order condition (12) to be satisfied for any m ∈ {2, . . . , n}.

At stage 1, we turn to the participation game. Countries decide whether to participate or 
not in an IEA. A coalition of size m∗ is stable if it satisfies the internal stability condition 
Ŵ c(m∗) ≥ Ŵ f (m∗ − 1) and the external stability condition Ŵ c(m∗ + 1) < Ŵ f (m∗) of 
d’Aspremont et al. (1983). The subgame perfect equilibrium (SPE) of the Nash game then is 
characterized by the stable coalition m∗, the coefficient of cooperation γ∗ = G(m∗) ∈ [0, 1], 
equilibrium emissions e∗

c = êc(γ∗, m∗) and e∗
f = êf (γ∗, m∗), and equilibrium welfares 

w∗
c = Ŵ c(m∗) and w∗

f = Ŵ f (m∗).

In Lemma 4 of the Appendix we show that

	 Ŵ f (m) > Ŵ c(m) > wBAU ⇐⇒ G(m) > 0,� (15)
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	 Ŵ c(m) = wBAU = Ŵ f (m) ⇐⇒ G(m) = 0,� (16)

where wBAU is the countries’ welfare level in the business as usual (BAU).11 Due to 
Ŵ c(m + 1) ≥ w BAU = Ŵ f (m), the external stability condition is violated for G(m) = 0 
and there does not exist a SPE of the Nash game. Consequently, G(m∗) > 0. In particular, 
we prove in the Appendix

Proposition 1  Under Assumptions 1 and 2, the SPE of the Nash game with optimal coopera-
tion intensity is characterized by

(i)	 (a) γ∗ ∈]0, 1[ and 2 ≤ m∗ < n, if emissions are strategic substitutes or

�(b) γ∗ = 1 and m∗ = n, if emissions are strategic substitutes;

(ii)	 γ∗ = 1 and m∗ ≥ 2, if emissions are strategic complements.

If emissions are strategic substitutes (see Proposition 1 (i)), either the signatories’ best 
choice is the highest cooperation intensity and the grand coalition is stable, or the (positive) 
emissions leakage causes signatories to choose the moderate cooperation intensity γ∗ < 1 
and some smaller coalition is stable. In case of Γ(m) < 1, for any given coalition size m 
the signatories’ [non-signatories’] welfare is higher [lower] in the Nash game with optimal 
cooperation intensity than in a Nash game in which signatories take the highest cooperation 
coefficient γ = 1 as exogenously given. This relaxes the internal stability condition and 
tightens the external stability condition, such that the equilibrium coalition is (weakly) larger 
in the Nash game with optimal cooperation intensity than in the Nash game with exogenous 
cooperation intensity γ = 1. If emissions are strategic complements (see Proposition 1 (ii)), 
the negative emissions leakage induces signatories to choose the corner solution γ∗ = 1. In 
that case the equilibrium emissions and the stable coalition of the Nash game with optimal 
cooperation intensity γ∗ = 1 and the equilibrium emissions and the stable coalition of the 
Nash game with exogenous cooperation intensity γ = 1 coincide.

3.2  Stackelberg Game

In this subsection, we turn to the Stackelberg game. Signatories act as Stackelberg leaders 
and non-signatories as Stackelberg followers in the emissions subgame of stage 3. First, 
the signatories as Stackelberg leaders and then the non-signatories as Stackelberg followers 
choose emissions. Applying backward induction to stage 3 the non-signatories’ emissions 
are still determined by the first-order condition (3) which yields the non-signatories’ aggre-

gate best-response function (n − m)ef = RF
(∑

j∈C ej

)
, whereas the signatories now 

decide on emissions taking the non-signatories’ aggregate best response into account. More 
precisely, for given γ ∈ [0, 1] signatory i ∈ C maximizes the objective function (2) subject 

11 Formally, BAU ensues when no coalition exists and all countries play Nash against each other, i.e. γ = 1 
and m = 1. The associated BAU emissions are eBAU = êf (1, 1) = êc(1, 1) and BAU welfare levels are 
wBAU = W

(
e BAU , ne BAU

)
.
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to E = RF
(∑

j∈C ej

)
+ ei +

∑
j∈C\i ej  with respect to ei. The first-order condition is 

given by

	 We(ei, E) + [1 + γ(m − 1)] (1 + RF ′) WE(ei, E) = 0 ∀ i ∈ C� (17)

and the second-order condition reads

	

W c
ee + (1 + RF ′) W c

eE + [1 + γ(m − 1)] (1 + RF ′) [W c
Ee + (1 + RF ′) W c

EE ]
+ [1 + γ(m − 1)] RF ′′ · W c

E < 0.
� (18)

Recall that RF ′ ∈] − 1, 0[ if emissions are strategic substitutes, andRF ′ > 0 if emissions 
are strategic complements. The signatories’ first-order condition (17) requires the marginal 
benefits of emissions, represented byWe > 0, and the marginal costs of emissions, formally 
reflected by− [1 + γ(m − 1)] (1 + RF ′) WE > 0, to be equal. When setting ei, as in the 
Nash game signatory i internalizes the share γ(m − 1) of negative externalities levied on 
fellow signatories which ceteris paribus reduces signatories’ emissions relative to non-sig-
natories’ emissions. In addition, the signatories as Stackelberg leaders also account for the 
response of non-signatories which gives the signatories a first-mover advantage and ceteris 
paribus leads to an increase [decrease] of signatories’ emissions relative to non-signatories’ 
emissions in case of strategic substitutes [complements]. The first-order conditions (3) and 
(17) jointly determine the Stackelberg equilibrium of the emissions subgame in dependence 
of the cooperation coefficient γ and the coalition size m, formally

	

ei = ec = ẽc(γ, m) ∀ i ∈ C, ei = ef = ẽf (γ, m) ∀ i ∈ F,

E = Ẽ(γ, m) = mẽc(γ, m) + (n − m)ẽf (γ, m),
� (19)

where the tilde marks Stackelberg equilibrium values in the emissions subgame.
In Lemma 5 of the Appendix, we show that Assumptions 1 and 2 are sufficient both for 

the second-order condition (18) to be satisfied for all m ∈ {2, . . . , n} and γ ∈ [0, 1], and 
for the existence and uniqueness of the Stackelberg equilibrium in the emissions subgame.

At stage 2, coalition countries choose the cooperation coefficient γ. When doing so, they 
maximize the sum of the coalition countries’ welfare, formally mW (ec, E), with respect to 
γ, subject to (19), ẽf (γ, m) = RF [mẽc(γ, m)] and γ ∈ [0, 1].12 The first-order condition 
yields

	 mẽc
γ · We(ei, E) + mẼγ · WE(ei, E) = 0 ∀ i ∈ C.� (20)

Taking advantage of Ẽγ = m (1 + RF ′) ẽc
γ  turns the first-order condition (20) into

	 We(ei, s) + m (1 + RF ′) · WE(ei, E) = 0 ∀i ∈ C,� (21)

12 Since the non-signatories choose their emissions at stage 3, the signatories take their aggregate best 
response into account when they choose the intensity of cooperation at stage 2.
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where the second-order condition is given by (12) and is satisfied due to Assumptions 1 
and 2. Comparing (21) and (17) we infer γ = 1. Making use of that information yields the 
welfare functions

	 W̃ c(m) = W
[
ẽc(1, m), Ẽ(1, m)

]
, W̃ f (m) = W

[
ẽf (1, m), Ẽ(1, m)

]
.� (22)

At stage 1, applying the internal and external stability condition to W̃ c(m) and W̃ f (m) 
determines the stable coalition m∗, the cooperation coefficient γ∗ = 1, equilibrium emis-
sions e∗

c = ẽc(1, m∗) and e∗
f = ẽf (1, m∗), and equilibrium welfares w∗

c = W̃ c(m∗) and 
w∗

f = W̃ f (m∗).13 We summarize the results in14

Proposition 2  Under Assumptions 1 and 2, the SPE of the Stackelberg game with optimal 
cooperation intensity is characterized by γ∗ = 1 and m∗ ≥ 2.

The preceding analysis shows that the signatories’ best choice is the cooperation coefficient 
γ∗ = 1. Hence, countries cannot improve in comparison to the standard Stackelberg games 
of the literature in which the signatories take the cooperation coefficient γ = 1 as exog-
enously given.

3.3  Comparison of Nash and Stackelberg Games

Finally, we compare the SPE of the Nash game with the SPE of the Stackelberg game. In 
case of strategic substitutes, γ∗ ∈]0, 1] is an interior solution in the Nash game (Proposition 
1(i)), such that the first-order condition (11) holds with equality. Since (11) with equality is 
identical to the first-order condition (21) in the Stackelberg game, the equilibrium emissions 
and the stable coalition of the Nash game coincide with the equilibrium emissions and the 
stable coalition of the Stackelberg game. In case of strategic complements, the first-order 
conditions (11) and (21) are different, such that the SPE of the Nash game does not coincide 
with the SPE of the Stackelberg game. In the Appendix we prove

Proposition 3  Suppose that m∗ < n.15 Under Assumptions 1 and 2, the equilibrium emis-
sions and the stable coalition of the Nash game with the optimal intensity of cooperation are 
identical to the equilibrium emissions and the stable coalition of the Stackelberg game with 
the highest intensity of cooperation if and only if emissions are strategic substitutes.

In case of strategic substitutes, choosing the cooperation coefficient γ enables a coalition 
playing Nash against non-signatories to take advantage like a Stackelberg leader. In the 
Stackelberg game that advantage consists of a first-mover advantage whereas in the Nash 
game that advantage consists of choosing a moderate cooperation intensity. According to 
Proposition 3 these strategic advantages are of equal size such that the equilibrium emis-

13 Without risk of confusion the SPE of the Stackelberg game is also marked by an asterisk.
14 Note that ẽc maximizes W̃ c(m) for a given coalition size, such that W̃ c(m) ≥ wBAU holds for all 
m = {2, . . . , n}. Consequently, m = 2 is internally stable, which implies m∗ ≥ 2.
15 Suppose that m∗ = n. Then the SPE of the Nash game and the SPE of the Stackelberg game coincide. In 
both games signatories choose γ∗ = 1 and the stable grand coalition implements the socially optimal emis-
sions. This holds regardless of whether emissions are strategic substitutes or strategic complements.
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sions and the stable coalition are identical in the Nash game with optimal cooperation inten-
sity and in the Stackelberg game with the highest cooperation intensity among signatories 
in case of strategic substitutes.

In case of strategic complements, a coalition playing Nash against non-signatories would 
prefer a cooperation coefficient greater than one, but chooses γ∗ = 1 because γ > 1 is 
not feasible. For γ∗ = 1 and m∗ < n the equilibrium emissions of the Nash game with 
optimal cooperation intensity are different from the equilibrium emissions of the Stack-
elberg game with the highest cooperation intensity. In particular, the share of externali-
ties which the signatories internalize is smaller in the Nash game than in the Stackelberg 
game for any given coalition. The associated internalization shares are m∗ in the Nash 
game and m∗ (1 + RF ′) > m∗ in the Stackelberg game. Each non-signatory’s wel-
fare increases with the internalization share. Hence, the condition for the grand coali-
tion to be stable is weaker in the Nash game than in the Stackelberg game, formally 
Ŵ c(n) − Ŵ f (n − 1) > W̃ c(n) − W̃ f (n − 1).

4  Applications

In this section, we briefly report on models and the associated results to which Propositions 
1-3 can be applied. This literature restricts attention to Nash and Stackelberg games with 
exogenous cooperation intensity γ = 1 among signatories. Propositions 1-3 are applicable 
if Assumptions 1 and 2 are satisfied. Whereas Assumption 1 can be easily checked for con-
crete welfare functions, Assumption 2 does not relate to the primitives imposed on welfare 
functions. To have a more tractable assumption, we prove in Lemma 7 of the Appendix that 
Assumption 2 can be replaced by

Assumption 3  The welfare function W (ei, E) fulfills the properties WeeE = WeEE = 0, 
WEWeee ≤ 0 and WEWEEE ≤ 0.

In all games presented below except in the adaptation-mitigation game of subsection 4.3 
strategies are strategic substitutes, such that the equilibrium emissions and the stable coali-
tion of the Nash game with optimal cooperation intensity are identical to the equilibrium 
emissions and the stable coalition of the Stackelberg game according to Proposition 3.16

4.1  Emissions and Abatement

We begin with the most frequently used emissions game in which the welfare function is 
given by

	 W (ei, E) = B(ei) − D(E),� (23)

where B(ei) with B′ > 0, B′′ < 0 is the benefit of emissions and D(E) with D′ > 0, 
D′′ > 0 is the environmental damage. There are no stability results for the general func-
tional forms (23). In order to get specific results, Eckert and Nkuiya (2022) use the paramet-
ric functional forms

16 In Lemma 8 of the Appendix, we prove that Assumptions 1 and 3 are satisfied in the games of this section.
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B(ei) = aei − b

2
e2

i , D(E) = d

α
Eα,� (24)

where a, b and d are positive parameters, and171 < α ≤ 2 is the elasticity of the environ-
mental damage with respect to global emissions.

Barrett (1994) was the first who introduced an abatement game in which the welfare 
function is given by

	
W (qi, Q) = b

n

(
aQ − 1

2
Q2

)
− c

2
q2

i ,� (25)

where qi = eBAU − ei is country i’s abatement compared to BAU, Q :=
∑

j∈N qj  
= EBAU − E  is global abatement compared to BAU, a, b and c are positive parameters, 
and n is the number of countries. Diamantoudi and Sartzetakis (2006) and Rubio and 
Ulph (2006) show that the welfare functions (23) with (24) and (25) are transferable to 
one another for α = 2.

In the Nash game with exogenous cooperation intensity γ = 1, Eckert and Nkuiya 
(2022) show by means of numerical simulations for 1 < α ≤ 2 and Finus (2001) ana-
lytically proves for α = 2 that the stable coalition consists of at most two countries.18 
In the Stackelberg game with exogenous cooperation intensity γ = 1, Diamantoudi and 
Sartzetakis (2006) analytically find for19α = 2 that a coalition of at most four countries 
is stable, whereas Barrett (1994) with the help of simulations and Rubio and Ulph 
(2006) analytically show that any coalition can be stable.20

Nkuiya (2020) uses the following isoelastic benefit and quadratic damage function

	
B(ei) =

e1−g
i − 1
1 − g

, D(E) = d

2
E2,� (26)

where d and g are positive parameters. Nkuiya (2020) finds that the stable coalition consists 
of at most two countries in the Nash game with exogenous cooperation intensity γ = 1, 
whereas in the Stackelberg game with exogenous cooperation intensity γ = 1 large coali-
tions including the grand coalition can be stable.21

4.2  Emissions and Trade

Eichner and Pethig (2013, 2015) investigate the impact of trade on the stability of climate 
coalitions. They develop a general equilibrium model with a composite consumer good and 

17 Assumptions 2 and 3 are violated for α > 2.
18 Eckert and Nkuiya (2022) show that large coalitions including the grand coalition can be stable in the Nash 
game with highest cooperation intensity if α > 2.
19 There are no results for the Stackelberg game with α ̸= 2.
20 Diamantoudi and Sartzetakis (2006) restrict their analysis to strictly positive emissions, Rubio and Ulph 
(2006) allow for corner solutions, and in Barrett (1994) emissions are unrestricted.
21 Finus et al. (2024) prove for generic benefit and damage functions that the stable coalition is larger in 
Stackelberg games with exogenous cooperation intensity γ = 1 than in Nash games with exogenous coop-
eration intensity γ = 1.
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fossil fuel which are produced and consumed in each country and internationally traded. 
Fossil fuel consumption causes carbon emissions. Denoting by ei country i’s emissions cap 
its welfare function is given by

	
W (ei, E) = V (ei) + T

(
E

n

)
−

(
E

n
− ei

)
T ′

(
E

n

)
− D(E),� (27)

where

	
V (ei) = aei − b

2
e2

i , T

(
E

n

)
= x̄ − c

2

(
E

n

)2

, D(E) = 1
2

E2� (28)

and a, b, c and x̄ are positive parameters. In (27) and (28), V (ei) represents country i’s 
utility of fossil fuel consumption, T

(
E
n

)
 is country i’s transformation function between 

the consumer good and fossil fuel and D(E) represents country i’s environmental damage. 
In the Nash game with exogenous cooperation intensity γ = 1 the stable coalition consists 
of at most two countries but in the Stackelberg game with exogenous cooperation intensity 
γ = 1 stable coalitions may be larger and can include up to (slightly more than) 50 % of all 
countries when the parameter space is constrained to ensure non-negative emissions. Note 
that (27) collapses to (24) for c = 0 and α = 2, such that stable coalitions can be larger in 
the Stackelberg game when allowing for corner solutions (Rubio and Ulph 2006).

4.3  Mitigation and Adaptation

Bayramoglu et  al. (2018) and Finus et  al. (2021) analyze the stability of climate coali-
tions when countries choose mitigation and adaptation. They consider a three-stage game in 
which at stage 1 countries decide whether they participate in the coalition, at stage 2 country 
i ∈ N  chooses mitigation qi, where 

∑
j∈N qj =: Q, and at stage 3 country i ∈ N  chooses 

adaptation xi.22 The countries’ welfare function is given by

	
W̌ (qi, xi, Q) =

(
bQ − g

2
Q2

)
+ xi(a − fQ) − c

2
q2

i − d

2
x2

i ,� (29)

where a, b, c, d and g are positive parameters, and f is a parameter with f2 < d(c + n2g)/n2. 
Solving the country’s first order condition of adaptation W̌x = a − fQ − dxi = 0 at stage 3 
with respect to xi, and inserting into (29) yields23

	
W̌

(
qi,

a − fQ

d
, Q

)
=

(
bQ − g

2
Q2

)
− c

2
q2

i + (a − fQ)2

2d
=: W (qi, Q).� (30)

22 Since adaptation is a private good that does not cause any externalities, and since the costs of mitigation 
and adaptation are additively separable, each country chooses the same level of adaptation xi = x̌i(Q). 
Substituting xi = x̌i(Q) into the welfare function W̌ (qi, xi, Q) yields the identical welfare function 
W̌ (qi, x̌i(Q), Q) =: W (qi, Q) to which our three-stage game can be applied. This procedure may not be 
applicable to other games with two actions.
23 Since the results of section 3 neither rest on the interpretation of emissions nor on the signs of the partial 
derivatives, we can use qi, Q and ei, E interchangeably.
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(30) implies that emissions are strategic substitutes [complements] if 
WqQ + WQQ = f2 − dg < [>]0. If f2 − dg < 0, the stable coalition consists of at most 
two countries in the Nash game with exogenous cooperation intensity γ = 1 (see Bayra-
moglu et al. 2018). Finus et al. (2021) show that the stable coalition may increase up to the 
grand coalition in the Stackelberg game with exogenous cooperation intensity γ = 1. If 
f2 − dg > 0, a coalition of three countries is stable and the grand coalition can be stable, 
whereby the condition for the grand coalition to be stable is weaker in the Nash game with 
exogenous cooperation intensity γ = 1 than in the Stackelberg game with exogenous coop-
eration intensity γ = 1 (Finus et al. 2021).

4.4  Fishing

Pintassilgo and Lindroos (2008) and Long and Flaaten (2011) analyze the stability of fish-
ing coalitions with logistic stock growth and linear cost functions. At the first stage, country 
i ∈ N  decides on its membership in the fishing coalition and at the second stage, it chooses 
its fishing effort ei. The corresponding profit function is given by

	 W̌ (ei, X) = pqXei − cei,� (31)

where c, p and q are positive parameters and X is the fish stock. The steady-state relation 
between stock growth G(X) and total fishing effort H(X) is given by

	
G(X) = rX

(
1 − X

K

)
= qXE = H(X),� (32)

where r and K are positive parameters. Using (31) in (32) yields

	
W̌

(
ei, K

(
1 − qE

r

))
= pqK

(
1 − qE

r

)
ei − cei =: W (ei, E).� (33)

Long and Flaaten (2011) show that the stable coalition comprises slightly more than 50 % of 
all countries in the Stackelberg game with exogenous cooperation intensity γ = 1, whereas 
Pintassilgo and Lindroos (2008) prove that there is no stable coalition in the Nash game with 
exogenous cooperation intensity γ = 1.24

4.5  Summary and Illustration of Results

Table 1 summarizes the possible stable coalition sizes in the presented Nash games with both 
exogenous cooperation intensity γ = 1 and with optimal cooperation intensity γ∗.25 The asso-
ciated stable coalitions are listed in the third and fourth columns of Table 1, respectively.

24 Our Propositions 1-3 can also applied to cartel stability (see, e.g., Shaffer (1995); Thoron (1998); Konishi 
and Lin (1999) and Zu et al. (2012)).
25 Recall that according to Proposition 3 the stable coalition of the Nash game with optimal intensity coin-
cides with the stable coalition of the Stackelberg game with exogenous intensity γ = 1 if strategies are 
strategic substitutes. As mentioned below Proposition 1 in case of strategic complements the stable coalition 
is identical in the Nash game with optimal intensity and in the Nash game with exogenous intensity γ = 1.
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In the emissions and abatement games, in the emissions and trade game, in the mitiga-
tion and adaptation game with f2 < dg and in the fishing game, strategies are strategic 
substitutes. In view of the third and fourth columns of Table 1, in games with strategic sub-
stitutes the optimal cooperation intensity relative to the exogenous intensity γ = 1 (weakly) 
increases the coalition size, and a coalition of two or more countries is stable. The Nash 
equilibrium with optimal cooperation intensity Pareto dominates the business-as-usual 
equilibrium and there are Nash games in which optimizing the cooperation intensity can 
stabilize the grand coalition and implement the social optimum.26 We conclude that optimiz-
ing the intensity of cooperation within the coalition in Nash games with strategic substitutes 
may help to enlarge the stable coalition compared to Nash games with exogenous coopera-
tion intensity γ = 1.

In the mitigation and adaptation game with f2 > dg strategies are strategic comple-
ments. In that case the Nash coalition chooses the corner solution γ∗ = 1 and the stable 
coalition coincides with the stable coalition of a Nash game with exogenous intensity γ = 1. 
Here, we conclude that optimizing the intensity of cooperation within the coalition does not 
change the stable coalition size and does not help to enhance the stable coalition compared 
to Nash games with exogenous cooperation intensity γ = 1.

Finally, we illustrate the results of optimizing the cooperation intensity in a Nash coali-
tion with Barrett’s (1994) canonical abatement game presented in subsection 4.1. Figure 
1 shows the stable coalition size m∗ (left-hand side figure) and the optimal cooperation 
intensity γ∗ (right-hand side figure) in dependence of the abatement benefit parameter b.27 
The stable coalition size increases in b and the grand coalition becomes stable for b ≥ 75. 

26 In the Nash game with exogenous intensity γ = 1, the grand coalition is never stable. Endogenizing γ 
changes the free-rider incentives and may ensue γ∗ = 1 and m∗ = n. To put it differently, although in the 
Nash game with exogenous intensity it holds γ = 1 and in the Nash game with optimizing the intensity it 
results γ∗ = 1, the associated equilibrium emissions and the stable coalitions differ.
27 The left-hand side figure shows the rational number m∗ that solves the internal stability condition for the 
respective value of b. Note that the internal stability condition and the optimal cooperation intensity are func-
tions of b/c, m, n, so that we can normalize a, c = 1 without loss of generality. See “Derivation of Figure 1” 
of the Appendix for further details.

Table 1  Possible coalition sizes in Nash games
Game Sources Cooperation intensity

Exogenousγ = 1 Optimalγ∗

Emissions and abatement
– linear-quadratic specification B94, F01, DS06, RU06, EN22 m∗ ≤ 2 m∗ ∈ [2, n]  
– isoelastic specification N20 m∗ ≤ 2 m∗ ∈ [2, n]
Emissions and trade EP13, EP15 m∗ ≤ 2 m∗ ∈ [2, n/2]
Mitigation and adaptation
– strategic substitutes BFJ18, FFR21 m∗ ≤ 2 m∗ ∈ [2, n]
– strategic complements BFJ18, FFR21 m∗ ∈ {3, n} m∗ ∈ {3, n}
Fishing PL08, LF11 m∗ = 0 m∗ ≈ n/2
Note: B94: Barrett (1994), F01: Finus (2001), DS06: Diamantoudi and Sartzetakis (2006), RU06: Rubio 
and Ulph (2006), PL08: Pintassilgo and Lindroos (2008), LF11: Long and Flaaten (2011), EP13: Eichner 
and Pethig (2013), EP15: Eichner and Pethig (2015), BFJ18: Bayramoglu et al. (2018), N20: Nkuiya (2020), 
FFR21: Finus et al. (2021), EN22: Eckert and Nkuiya (2022)
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The optimal cooperation intensity is u-shaped in b and γ∗ = 1 for b ≥ 75. On the one hand, 
the optimal cooperation intensity ceteris paribus decreases with b because greater abatement 
benefits are accompanied by greater abatement efforts of non-members, which reduces the 
abatement incentives of the coalition members. On the other hand, the optimal cooperation 
intensity ceteris paribus increases with m because larger coalitions are accompanied by 
smaller leakage (∂RF ′/∂m > 0). The right-hand side figure reveals that the former effect 
dominates for small coalitions and the latter effect dominates for large coalitions. However, 
no matter which of these effects dominates, the stable coalition size m∗ increases in b. By 
contrast, with exogenous cooperation intensity γ = 1, a coalition of at most two countries is 
stable for any given b (see Table 1).

5  Conclusion

The present paper has analyzed the optimal intensity of cooperation in a general setting 
of self-enforcing environmental agreements. If signatories choose emissions before non-
signatories (Stackelberg game), then there is no additional strategic advantage of setting a 
lower than the highest possible cooperation intensity. By contrast, if signatories and non-
signatories choose emissions simultaneously (Nash game), then signatories set a weakly 
lower cooperation intensity than the highest cooperation intensity in case of strategic substi-
tutes, and the highest cooperation intensity in case of strategic complements. In the former 
case, the subgame perfect equilibrium of the Nash game is identical to the subgame perfect 
equilibrium of the Stackelberg game.

The results of choosing the optimal cooperation intensity in the Nash game depend on 
whether strategies are strategic substitutes or complements and are applied to games in the 
literature. If emissions are strategic substitutes, optimizing with respect to the cooperation 
intensity may increase the stable coalition up to the grand coalition. By contrast, if emis-
sions are strategic complements signatories choose the highest intensity of cooperation such 
that optimizing with respect to the cooperation intensity does not change the stable coali-

Fig. 1  Stable coalition size (left-hand side figure) and optimal cooperation intensity (right-hand side fig-
ure) dependent on b for a, c = 1 and n = 10 in Barrett’s (1994) game with a Nash coalition
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tion. In light of the results in games with strategic substitutes, our policy conclusion is that 
optimizing the intensity of cooperation may be helpful for enlarging the stable coalition. 
In view of the Paris Agreement, which seems to be a grand coalition with low intensity of 
cooperation, intensifying and optimizing the cooperation intensity may be worth trying to 
reach a grand coalition with the highest intensity of cooperation.

In Finus and Maus (2008) countries effectively agree on the level of modesty before the 
agreement is concluded, whereas in Harstad (2023b) the cooperation intensity results from 
exogenous uncertainty in a pledge-and-review bargaining game between the signatories. 
We contribute to this literature by letting the countries agree on the cooperation intensity 
after the agreement is concluded. Our model is therefore time consistent and uses the same 
cooperative solution concept for both the emissions choice and the cooperation intensity 
choice. Concerning the results the main difference is that in our approach the stable grand 
coalition with highest cooperation intensity may ensue whereas in Finus and Maus (2008) 
and Harstad (2023b) the stable grand coalition is characterized by a low or moderate coop-
eration intensity.

Our analysis can be extended in several directions. Although the optimal cooperation 
intensity (weakly) increases the coalition size in case of strategic substitutes, it is not clear 
whether this reduces global emissions or raises global welfare compared to the highest 
possible cooperation intensity. Furthermore, the analysis could be extended to the case of 
asymmetric countries with or without transfer payments. Finally, the analysis is restricted 
to models with one externality. The incorporation of positive spillovers from research and 
development of mitigation or adaptation technologies are on the agenda for future research 
in the field of self-enforcing environmental agreements with optimal cooperation intensity.

Appendix

Lemma 1

Under Assumption 1, at stage 3 of the Nash game there exists a unique equilibrium.

Proof

Following Cornes and Hartley (2007), Bayramoglu et al. (2018) and Finus et  al. (2021, 
2024), we use the concept of replacement functions to establish the existence and uniqueness 
of the equilibrium at stage 3 of the Nash game. Using ei = ef ∀ i ∈ F  and ei = ec ∀ i ∈ C 
in (3) and (6), the equilibrium is characterized by

	 W f
e (ef , E) + W f

E(ef , E) = 0 ∀ i ∈ F, � (A1)

	 W c
e (ec, E) + (1 + γ(m − 1))W c

E(ec, E) = 0 ∀ i ∈ C, � (A2)

	 (n − m)ef + mec = E, � (A3)
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From these equations, ef  and ec are functions of E, with the non-signatories’ replacement 
function ef = R̂f (E), the signatories’ replacement function ec = R̂c(E), and the aggregate 
replacement function E = R̂(E) = (n − m)R̂f (E) + mR̂c(E). Graphically, the equilib-
rium is given by the intersection of the aggregate replacement function with the 45-degree 
line. If the slope of the aggregate replacement function is less than one over the entire 
domain, it crosses the 45-degree line once, which implies the existence and uniqueness of 
the equilibrium. Totally differentiating (A1) and (A2) and rearranging yields the slopes of 
the individual replacement functions

	
R̂f

E = −
W f

eE + W f
EE

W f
ee + W f

Ee

, � (A4)

	
R̂c

E = −W c
eE + (1 + γ(m − 1))W c

EE

W c
ee + (1 + γ(m − 1))W c

Ee

� (A5)

and the slope of the aggregate replacement function

	
R̂E = −(n − m)

W f
eE + W f

EE

W f
ee + W f

Ee

− m
W c

eE + (1 + γ(m − 1))W c
EE

W c
ee + (1 + γ(m − 1))W c

Ee

� (A6)

	

= 1 − (n − m)
W f

ee + W f
Ee + n(W f

eE + W f
EE)

n(W f
ee + W f

Ee)

− m
W c

ee + (1 + γ(m − 1))W c
Ee + n[W c

eE + (1 + γ(m − 1))W c
EE ]

n[W c
ee + (1 + γ(m − 1))W c

Ee]

= 1 − n − m

n

(n − 1)(W f
ee + nW f

eE) + W f
ee + 2nW f

eE + n2W f
EE

n(W f
ee + W f

Ee)

− m

n

[(1 − γ)(n − 1) + γ(n − m)](W f
ee + nW f

eE) + (1 + γ(m − 1))[W c
ee + 2nW c

eE + n2W c
EE ]

n[W c
ee + (1 + γ(m − 1))W c

Ee]
.

� (A7)

Wee < 0, WeE ≤ 0 and Wee + 2nWeE + n2WEE < 0 from Assumption 1 implies that 
both fractions in (A7) are positive. Consequently, the slope of the aggregate replacement 
function is less than one over the entire domain, which is sufficient for the existence and 
uniqueness of the equilibrium at stage 3 of the Nash game. In the grand coalition equilib-
rium with the highest intensity of cooperation, i.e. m = n and γ = 1, (A7) becomes

	
R̂E |m=n,γ=1 = 1 − W c

ee + 2nW c
eE + n2W c

EE

W c
ee + nW c

Ee

= n − n(W c
ee + nW c

eE + W c
eE + nW c

EE)
W c

ee + nW c
Ee

.� (A8)

The second-order condition (7) requires W c
ee + nW c

eE + W c
eE + nW c

EE < 0. Consequently, 
W c

ee + nW c
Ee < 0 is necessary for R̂E |m=n,γ=1 < n, and W c

ee + 2nW c
eE + n2W c

EE < 0 
is then necessary and sufficient for R̂E |m=n,γ=1 < 1. � □
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Lemma 2

Under Assumption 1, at stage 2 of the Nash game it holds

	 êf
γW c

E(W f
eE + W f

EE) > 0, êc
γW c

E > 0, ÊγW c
E > 0, (êf

γ − êc
γ)W c

E < 0.

Proof

Differentiating (A1)-(A3) with respect to γ and solving for def

dγ , dec

dγ  and dE
dγ  yields

	
def

dγ
= êf

γ =
nm(m − 1)W c

E(W f
eE + W f

EE)
Φ

, � (A9)

	
dec

dγ
= êc

γ = −
n(m − 1)W c

E [W f
ee + W f

Ee + (n − m)(W f
eE + W f

EE)]
Φ

, � (A10)

	
dE

dγ
= Êγ = −

nm(m − 1)W c
E(W f

ee + W f
Ee)

Φ
� (A11)

and

	
d(ef − ec)

dγ
= êf

γ − êc
γ = −

n(m − 1)W c
E [W f

ee + W f
Ee + n(W f

eE + W f
EE)]

Φ
, � (A12)

where

	

Φ := (n − m)[W c
ee + (1 + γ(m − 1))W c

Ee][W f
ee + W f

Ee + n(W f
eE + W f

EE)]
+ m(W f

ee + W f
Ee)[W c

ee + (1 + γ(m − 1))W c
Ee + n[W c

eE + (1 + γ(m − 1))W c
EE ]]� (A13)

Along the lines of the proof of Lemma 1, Assumption 1 implies Φ > 0 and, thus, 
êf

γW c
E(W f

eE + W f
EE) > 0, êc

γW c
E > 0, ÊγW c

E > 0 and (êf
γ − êc

γ)W c
E < 0.�  □

Lemma 3

Under Assumptions 1 and 2, at stage 2 of the Nash game the second-order condition (12) 
is satisfied.
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Proof

Substituting (5) into (12) and rearranging yields

	

1
n2[W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)]2

·
{

(n − m)2[W f
ee + W f

Ee + n(W f
eE + W f

EE)]2(W c
ee + m2RF ′′W c

E)

+ 2m(n − m)(W f
ee + W f

Ee)[W f
ee + W f

Ee + n(W f
eE + W f

EE)]
· (W c

ee + m2RF ′′W c
E + nW c

eE)

+ m2(W f
ee + W f

Ee)2[W c
ee + m2RF ′′ · W c

E + nW c
eE + n(W c

Ee + nW c
EE)]

}
< 0,

� (A14)

such that second-order condition (12) is satisfied for Wee < 0, Wee + nWeE < 0 and 
Wee + 2nWeE + n2WEE < 0 from Assumption 1 and RF ′′ · W c

E ≤ 0 from Assumption 
2. � □

Lemma 4

Under Assumption 1, at stage 2 of the Nash game it holds

	

Ŵ f (m) > Ŵ c(m) > w BAU ⇐⇒ G(m) > 0,

Ŵ f (m) = Ŵ c(m) = w BAU ⇐⇒ G(m) = 0.

Proof

We first prove that at stage 2 of the Nash game it holds

	 W f
EW c

E > 0, W c
E(W f

E − W c
E) ≥ 0.� (A15)

Note that Lemma 1 implies ef = ec = eBAU if γ = 0, such that W f
E = W c

E  if γ = 0. Now 
suppose γ > 0 and W c

E > [<]0, such that the first-order condition (A2) implies W c
e < [>]0, 

and Lemma 2 implies ec > [<]ef . Then, WEe ≤ 0 implies W c
E ≤ [≥]W f

E  and, thus, 
0 < [>]W c

E ≤ [≥]W f
E  and W c

E(W f
E − W c

E) ≥ 0. This proves (A15).
Note that Lemma 1 implies Ŵ f (m) = Ŵ c(m) = w BAU  if γ = 0. Differentiating W f , 

W c and W f − W c with respect to γ, using the first-order conditions (A1) and (A2) as well 
as def

dγ , dec

dγ  and dE
dγ  from (A9), (A10) and (A11), and rearranging yields
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dW f

dγ
= W f

e

def

dγ
+ W f

E

dE

dγ
= W f

E

[
dE

dγ
− def

dγ

]

= −nm(m − 1)W c
EW f

E

W f
ee + W f

Ee + W f
eE + W f

EE

Φ
,

� (A16)

	

dW c

dγ
= W c

e

dec

dγ
+ W c

E

dE

dγ
= W c

E

[
dE

dγ
− (1 + γ(m − 1))dec

dγ

]

= − [Γ(m) − γ] n(m − 1)2(W c
E)2 W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)

Φ
,

�(A17)

	

d
(
W f − W c

)
dγ

= −nm(m − 1)W c
E(W f

E − W c
E)

W f
ee + W f

Ee + W f
eE + W f

EE

Φ

− n(m − 1)(W c
E)2 W f

ee + W f
Ee + n(W f

eE + W f
EE)

Φ

− γn(m − 1)2(W c
E)2 W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)

Φ
.

�(A18)

Using (A15) in (A16) reveals dW f

dγ > 0 and, thus, W f > [=]w BAU  for G(m) > [=]0. 
(A17) reveals dW c

dγ ⋛ 0 for γ ⋚ Γ(m) and, thus, W c > [=]w BAU  for G(m) > [=]0. 

Finally, using (A15) in (A18) reveals d(W f −W c)
dγ > 0 and, thus, W f > [=]W c for 

G(m) > [=]0. � □

Proof of Proposition 1

We first prove that there does not exist a SPE with γ∗ = 0. Suppose there exists a SPE with 
G(m∗) = 0. Then, Ŵ f (m∗) = w BAU  and Ŵ c(m) ≥ w BAU  from Lemma 3 implies 
Ŵ f (m∗) = w BAU ≤ Ŵ c(m∗ + 1), such that m∗ is externally unstable. Consequently, 
there does not exist a SPE with γ∗ = 0.

Now we prove that there exists at least one SPE with γ∗ > 0 and m∗ ≥ 2. Consider 
the grand coalition with G(n) = 1. If m = n is internally stable, then it is an equilibrium 
coalition. Else, if it is not internally stable, then m = n − 1 is externally stable,28 such that 
G(n − 1) > 0.29 Again, either m = n − 1 is an equilibrium coalition, or m = n − 2 is exter-
nally stable with G(n − 2) > 0. Repeating this argument, either some coalition m ≥ 3 is an 
equilibrium coalition, or m = 2 is externally stable with G(2) > 0. Then, Ŵ f (1) = w BAU  
and Ŵ c(2) > w BAU  from Lemma 3 implies Ŵ f (1) = w BAU < Ŵ c(2), such that m = 2 
is internally stable. Consequently, there exists at least one SPE with γ∗ > 0 and m∗ ≥ 2.

If m∗ < n [m∗ = n] and W f
eE + W f

EE < 0, such that emissions are strategic substitutes 
and RF ′ ∈] − 1, 0[ [RF ′ = 0] from (5), the SPE is characterized by γ∗ ∈]0, 1[ [γ∗ = 1] 
from (13), which proves Proposition 1(i). If W f

eE + W f
EE ≥ 0, such that emissions are stra-

28 Ŵ c(m) < Ŵ f (m − 1) implies Ŵ f (m′) > Ŵ c(m′ + 1) with m′ = m − 1.
29 Otherwise the external stability condition would be violated.
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tegic complements and RF ′ ≥ 0 from (5), the SPE is characterized by γ∗ = 1 from (13), 
which proves Proposition 1(ii).�  □

Lemma 5

Under Assumptions 1 and 2, at stage 3 of the Stackelberg game the second-order condition 
(18) is satisfied and there exists a unique equilibrium.

Proof

We first prove that the second-order condition (18) is satisfied. Substituting (5) into (18) and 
rearranging yields

	

1
n2[W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)]2

·
{

(n − m)2[W f
ee + W f

Ee + n(W f
eE + W f

EE)]2(W c
ee + Ξ)

+ 2m(n − m)(W f
ee + W f

Ee)[W f
ee + W f

Ee + n(W f
eE + W f

EE)]

·
[
W c

ee + Ξ + n

2m
W c

eE + n(1 + γ(m − 1))
2m

W c
Ee

]

+ m2(W f
ee + W f

Ee)2
[
W c

ee + Ξ + n

m
W c

eE + n(1 + γ(m − 1))
m

(
W c

Ee + n

m
W c

EE

)]}
< 0,

� (A19)

where Ξ := (1 + γ(m − 1))RF ′′ · W c
E , such that second-order condition (18) is satisfied 

for Wee < 0, Wee + nWeE < 0 and Wee + 2nWeE + n2WEE < 0 from Assumption 1 
and RF ′′ · W c

E ≤ 0 from Assumption 2.
Along the lines of the proof of Lemma 1, we use the concept of replacement functions to 

establish the existence and uniqueness of the equilibrium at stage 3 of the Stackelberg game. 
Using ei = ef ∀ i ∈ F  and ei = ec ∀ i ∈ C in (3) and (17), the equilibrium is characterized 
by

	 W f
e (ef , E) + W f

E(ef , E) = 0 ∀ i ∈ F, � (A20)

	 W c
e (ec, E) + (1 + γ(m − 1))[1 + RF ′(E)]W c

E(ec, E) = 0 ∀ i ∈ C, � (A21)

	 (n − m)ef + mec = E, � (A22)

From these equations, ef  and ec are functions of E, with the non-signatories’ replacement 
function ef = R̃f (E), the signatories’ replacement function ec = R̃c(E), and the aggre-
gate replacement function E = R̃(E) = (n − m)R̃f (E) + mR̃c(E). Totally differen-
tiating (A20) and (A21) and rearranging yields the slopes of the individual replacement 
functions
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R̃f

E = −
W f

eE + W f
EE

W f
ee + W f

Ee

, � (A23)

	
R̃c

E = −
W c

eE + (1 + γ(m − 1))[(1 + RF ′)W c
EE + RF ′′

1+RF ′ W c
E ]

W c
ee + (1 + γ(m − 1))(1 + RF ′)W c

Ee

, � (A24)

where dRF ′

dE = RF ′′/ dE
dec

= RF ′′

1+RF ′ , and the slope of the aggregate replacement function

	
R̃E = −(n − m)

W f
eE + W f

EE

W f
ee + W f

Ee

− m
W c

eE + (1 + γ(m − 1))[(1 + RF ′)W c
EE + RF ′′

1+RF ′ W c
E ]

W c
ee + (1 + γ(m − 1))(1 + RF ′)W c

Ee� (A25)

	

= 1 − 1/[W c
ee + (1 + γ(m − 1))(1 + RF ′)W c

Ee]
n2(W f

ee + W f
Ee)[W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)]

·
{

(n − m)2[W f
ee + W f

Ee + n(W f
eE + W f

EE)]2(W c
ee + mΞ)

+ 2m(n − m)(W f
ee + W f

Ee)[W f
ee + W f

Ee + n(W f
eE + W f

EE)]

·
[
W c

ee + mΞ + n

2
W c

eE + n(1 + γ(m − 1))
2m

W c
Ee

]

+ m2(W f
ee + W f

Ee)2

·
[
W c

ee + mΞ + nW c
eE + n(1 + γ(m − 1))

m

(
W c

Ee + nW c
EE

)]}
,

� (A26)

which is smaller than one for Wee < 0, WeE ≤ 0 and Wee + 2nWeE + n2WEE < 0 from 
Assumption 1 and RF ′′ · W c

E ≤ 0 from Assumption 2. Consequently, Assumptions 1 and 
2 are sufficient for the existence and uniqueness of the equilibrium at stage 3 of the Stack-
elberg game.� □

Lemma 6

Under Assumption 1, at stage 2 of the Stackelberg game it holds

	

W̃ f (m) > W̃ c(m) > w BAU ⇐⇒ m (1 + RF ′) > 1,

W̃ f (m) = W̃ c(m) = w BAU ⇐⇒ m (1 + RF ′) = 1,

W̃ c(m) > w BAU > W̃ f (m) ⇐⇒ m (1 + RF ′) < 1.

Proof

The proof follows along the lines of the proofs of Lemmas 2 and 4. Using ei = ef ∀ i ∈ F  
and ei = ec ∀ i ∈ C in (3) and (21), the equilibrium is characterized by
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	 W f
e (ef , E) + W f

E(ef , E) = 0 ∀ i ∈ F, � (A27)

	 W c
e (ec, E) + αW c

E(ec, E) = 0 ∀ i ∈ C, � (A28)

	 (n − m)ef + mec = E, � (A29)

where α := m (1 + RF ′) > 0. Differentiating (A27)-(A29) with respect to α and solving 
for def

dα , dec

dα  and dE
dα  yields

	
def

dα
=

nmW c
E(W f

eE + W f
EE)

Ψ
, � (A30)

	
dec

dα
= −

nW c
E [W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)]

Ψ
, � (A31)

	
dE

dα
= −

nmW c
E(W f

ee + W f
Ee)

Ψ
, � (A32)

and

	
d(ef − ec)

dα
= −

nW c
E [W f

ee + W f
Ee + n(W f

eE + W f
EE)]

Ψ
, � (A33)

where

	

Ψ := (n − m)(W c
ee + αW c

Ee)[W f
ee + W f

Ee + n(W f
eE + W f

EE)]
+ m(W f

ee + W f
Ee)[W c

ee + αW c
Ee + n(W c

eE + αW c
EE)]

= 1
n[W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)]

·
{

(n − m)2[W f
ee + W f

Ee + n(W f
eE + W f

EE)]2W c
ee

+ 2m(n − m)(W f
ee + W f

Ee)[W f
ee + W f

Ee + n(W f
eE + W f

EE)](W c
ee + nW c

Ee)

+ m2(W f
ee + W f

Ee)2[W c
ee + nW c

Ee + n(W c
Ee + nW c

EE)]
}

.

� (A34)

Assumption 1 implies Ψ > 0 and, thus, def

dα W c
E(W f

eE + W f
EE) > 0, dec

dα W c
E > 0, 

dE
dα W c

E > 0 and d(ef −ec)
dα W c

E < 0.

Next we prove

	 W f
EW c

E > 0, α ≥ 1 =⇒ W c
E(W f

E − W c
E) ≥ 0.� (A35)
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Note that Lemma 5 implies ef = ec = eBAU if α = 1, such that W f
E = W c

E  if α = 1. 
Now suppose α > 1 and W c

E > [<]0, such that the first-order condition (A28) implies 
W c

e < [>]0, and (A33) implies ec > [<]ef . Then, WEe ≤ 0 implies W c
E ≤ [≥]W f

E  
and, thus, 0 < [>]W c

E ≤ [≥]W f
E  and W c

E(W f
E − W c

E) ≥ 0. Finally suppose α ∈]0, 1[ 
and W c

E > [<]0, such that the first-order condition (A28) implies W c
e < [>]0, 

and (A33) implies ec < [>]ef . Then, Wee ≤ 0 implies W c
e ≥ [≤]W f

E  and, thus, 
0 > [<]W c

e ≥ [≤]W f
e , such that the first-order condition (A27) implies W f

E > [<]0. 
This proves (A35).

Note that Lemma 5 implies W̃ f (m) = W̃ c(m) = w BAU  if α = 1. Differentiating W f

, W c and W f − W c with respect to α, using the first-order conditions (A27) and (A28) as 
well as def

dα , dec

dα  and dE
dα  from (A30), (A31) and (A32), and rearranging yields

	

dW f

dα
= W f

e

def

dα
+ W f

E

dE

dα
= W f

E

[
dE

dα
− def

dα

]

= −nmW c
EW f

E

W f
ee + W f

Ee + W f
eE + W f

EE

Ψ
,

� (A36)

	

dW c

dα
= W c

e

dec

dα
+ W c

E

dE

dα
= W c

E

[
dE

dα
− α

dec

dα

]

= − [m (1 + RF ′) − α] n(W c
E)2 W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)

Ψ
,

� (A37)

	

d
(
W f − W c

)
dα

= −nmW c
E(W f

E − W c
E)

W f
ee + W f

Ee + W f
eE + W f

EE

Ψ

− n(W c
E)2 W f

ee + W f
Ee + n(W f

eE + W f
EE)

Ψ

− (α − 1)n(W c
E)2 W f

ee + W f
Ee + (n − m)(W f

eE + W f
EE)

Ψ
.

� (A38)

Using (A34) in (A36) reveals dW f

dα > 0 and, thus, W f ⋛ w BAU  for m (1 + RF ′) ⋛ 1. 
(A37) reveals dW c

dα ⋛ 0 for α ⋚ m (1 + RF ′) and, thus, W c > [=]w BAU  for 

m (1 + RF ′) ̸= [=]1. Consequently, d(W f −W c)
dα > 0 for α ∈]0, 1[ and, thus, 

W c > w BAU > W f  for m (1 + RF ′) < 1. Finally, using (A34) in (A38) reveals 
d(W f −W c)

dα > 0 for α ≥ 1 and, thus, W f > [=]W c for m (1 + RF ′) > [=]1. � □

Proof of Proposition 3

We first prove that there does not exist a SPE with m∗ (1 + RF ′) ≤ 1. Suppose there exists 
a SPE with m∗ (1 + RF ′) ≤ 1. Then, W̃ f (m∗) ≤ w BAU  and W̃ c(m) ≥ w BAU  from 
Lemma 6 implies W̃ f (m∗) ≤ w BAU ≤ W̃ c(m∗ + 1), such that m∗ is externally unstable. 
Consequently, there does not exist a SPE with m∗ (1 + RF ′) ≤ 1. The proof that there 
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exists at least one SPE with m∗ (1 + RF ′) > 1 and m∗ ≥ 2 follows along the lines of the 
proof of Proposition 1.

If m∗ < n and W f
eE + W f

EE < 0, such that emissions are strategic substitutes and 
RF ′ ∈] − 1, 0[ from (5), the SPE is characterized by m∗ (1 + RF ′) ∈]1, m∗[ from 
m∗ (1 + RF ′) > 1. Consequently, the SPE of the Nash game with optimal cooperation 
intensity coincides with the SPE of the Stackelberg game with highest cooperation intensity 
if emissions are strategic substitutes. If m∗ = n or W f

eE + W f
EE = 0, such that the grand 

coalition is stable or the non-signatories have dominant strategies, the SPE is characterized 
by m∗ (1 + RF ′) = m∗. Consequently, the SPE of the Nash game with optimal cooperation 
intensity coincides with the SPE of the Stackelberg game with highest cooperation intensity 
if the grand coalition is stable or the non-signatories have dominant strategies. If m∗ < n 
and W f

eE + W f
EE > 0, such that emissions are strategic complements and RF ′ ≥ 0 from 

(5), the SPE is characterized by m∗ (1 + RF ′) > m∗. Consequently, the SPE of the Nash 
game with optimal cooperation intensity differs from the SPE of the Stackelberg game with 
highest cooperation intensity if emissions are strategic complements. � □

Lemma 7

Under Assumptions 1 and 3, Assumption 2 is satisfied.

Proof

Using def

dE = − W f
eE

+W f
EE

W f
ee+W f

Ee

 and dE
dec

= 1 + RF ′ in RF ′′ yields

	

RF ′′ = ∂RF ′

∂E

dE

dec
+ ∂RF ′

∂ef

def

dec
=

(
∂RF ′

∂E
+ ∂RF ′

∂ef

def

dE

)
dE

dec

=
(

∂RF ′

∂E
− ∂RF ′

∂ef

W f
eE + W f

EE

W f
ee + W f

Ee

)
(1 + RF ′) ,

� (A39)

where

	

∂RF ′

∂E
= −

(n − m)
[(

W f
eEE + W f

EEE

) (
W f

ee + W f
Ee

)
−

(
W f

eeE + W f
eEE

) (
W f

eE + W f
EE

)]

[
W f

ee + W f
Ee + (n − m)

(
W f

eE + W f
EE

)]2 ,

� (A40)

	

∂RF ′

∂ef
= −

(n − m)
[(

W f
eeE + W f

eEE

) (
W f

ee + W f
Ee

)
−

(
W f

eee + W f
eeE

) (
W f

eE + W f
EE

)]

[
W f

ee + W f
Ee + (n − m)

(
W f

eE + W f
EE

)]2 ,

� (A41)

such that
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RF ′′W c
E =

(n − m)
(

W f
eE + W f

EE

)2

−
[
W f

ee + W f
Ee + (n − m)

(
W f

eE + W f
EE

)]3

·
{(

W f
EEE + W f

eEE

) (
W f

ee + W f
Ee

W f
eE + W f

EE

)2

− 2
(

W f
eeE + W f

eEE

) W f
ee + W f

Ee

W f
eE + W f

EE

+ W f
eee + W f

eeE

}
W c

E .

� (A42)

Wee < 0, WeE ≤ 0 and Wee + 2nWeE + n2WEE < 0 from Assumption 1 implies that 
RF ′′W c

E  is weakly negative if W c
EW f

EEE , W c
EW f

eee ≤ 0 and W f
eeE , W f

eEE = 0. � □

Lemma 8

The welfare and profit functions of section 4 satisfy Assumptions 1 and 3.

Proof

For (24), we have Wee = −b < 0, WeE = 0, 
Wee + 2nWeE + n2WEE = −b − n2d(α − 1)Eα−2 < 0, 
WEWEEE = −d2(α − 1)(2 − α)E2α−4 ≤ 0 ⇔ α ∈ [1, 2] and 
Weee, WeeE , WeEE = 0. For (25), we have Wee = −c < 0, WeE = 0, 
Wee + 2nWeE + n2WEE = −c − nb < 0 and zero third derivatives. For (26), we have 
Wee = −ge

−(1+g)
i < 0, WeE = 0, Wee + 2nWeE + n2WEE = −ge

−(1+g)
i − n2d < 0, 

WEWeee = −dg(1 + g)e−(2+g)
i E < 0 and WeeE , WeEE , WEEE = 0. For (27), we have 

Wee = −b < 0, WeE = −c/n, Wee + 2nWeE + n2WEE = −b − 2c + c − n2 < 0 
and zero third derivatives. For (30), we have Wqq = −c, WqQ = 0, 
Wqq + 2nWqQ + n2WQQ = −c − n2(dg − f2)/d < 0 ⇔ f2 < d(c + n2g)/n2 
and zero third derivatives. For (33), we have Wee = 0, WeE = −pq2K/r < 0, 
Wee + 2nWeE + n2WEE = −2npq2K/r < 0 and zero third derivatives. Thus, the welfare 
and profit functions of section 4 satisfy Assumptions 1 and 3. � □

Derivation of Figure 1:
At stage 3, using (25) in (3), (6) and Q = mqc + (n − m)qf  yields the Nash equilibrium 
of Barrett’s (1994) abatement subgame with a Nash coalition

	
b

n
(a − Q) − cqf = 0 ⇔ qf = b

nc
(a − Q) , � (A43)

	
[1 + γ(m − 1)] b

n
(a − Q) − cqc = 0 ⇔ qc = [1 + γ(m − 1)] b

nc
(a − Q) , �(A44)

	
Q = mqc + (n − m)qf ⇔ Q = ab[n + γm(m − 1)]

[n + γm(m − 1)]b + nc
. � (A45)
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Furthermore, using (25) in (5) yields the slope of the non-signatories’ aggregate best-
response function

	
RF ′ = − (n − m)b

(n − m)b + nc
∈] − 1, 0[.� (A46)

At stage 2, using (A46) in Γ(m) := 1 + m
m−1 RF ′ yields

	
Γ(m) = n(m − 1)c − (n − m)b

(m − 1)[(n − m)b + nc]
⋛ 0 ⇔ m ⋛ n(b + c)

b + nc
,� (A47)

where ∂Γ(m)
∂m = b[(n−m)2b+n(n−2m+m2)c]

(m−1)2[(n−m)b+nc]2 > 0 and 
∂Γ(m)

∂b = − b
c

∂Γ(m)
∂c = − nm(n−m)c

(m−1)[(n−m)b+nc]2 < 0. Using (A47) in (13) yields

	
γ = G(m) :=

{
n(m−1)c−(n−m)b

(m−1)[(n−m)b+nc] if m > n(b+c)
b+nc ,

0 if m ≤ n(b+c)
b+nc .

� (A48)

At stage 3, the external stability condition is violated if m ≤ n(b+c)
b+nc  (see paragraph above 

Proposition 1). If m > n(b+c)
b+nc , using (A43)-(A45) and (A48) in (25) yields

	

W f (m) = w BAU

+ ma2b2c(b + nc)[n(m − 1)c − (n − m)b][(n − m)(2n − m)b2 + n(4n − 3m + m2)bc + 2n2c2]
2n2(b + c)2[(n − m)2b2 + n(2n − 2m + m2)bc + n2c2]2

,
� (A49)

	
W c(m) = w BAU + a2b2c[n(m − 1)c − (n − m)b]2

2n2(b + c)2[(n − m)2b2 + n(2n − 2m + m2)bc + n2c2]
,

� (A50)

where w BAU = a2b2[nb+(2n−1)c]
2n2(b+c)2 . Using (A49) and (A50) yields

	
W c(m) − W f (m − 1) = a2b4c3[(n − m)2b2 + n(2n − 2m + m2)bc + n2c2]−1

2[(n − m + 1)2b2 + n(2n − 4m + 3 + m2)bc + n2c2]2
· Ω(n, m, d),

� (A51)

where d := b
c  and where

	

Ω(n, m, d) := (n − m)2(n − m + 1)2d2 + n(n − m + 1)[2(n − m)2 + (m2 − 1)(n − m + 1)]d
− n2[(m2 − 4m + 2)(n − m)2 − 8(m − 1)(n − m) − (m − 1)(m + 5)]
− n3(m − 1)[2(m − 3)n + (m − 2)(m2 − 3m + 4)]d−1 − n4(m − 1)(m − 3)d−2.� (A52)

Thus, W c(m) − W f (m − 1) ⋛ 0 ⇔ Ω(n, m, d) ⋛ 0 and ∂Ω(n,m,d)
∂d > 0. The left-hand 

side of Figure 1 implicitly plots Ω(n, m∗, d) = 0 for n = 10 and d = b ⇔ c = 1. Since 
Ω(n, m∗, d) = 0 cannot be explicitly solved for m∗, we solve γ∗ = Γ(m∗) for m∗, which 
yields
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m∗ = − [1 − γ∗(n − 1) + n(1 − γ∗)d−1]

2γ∗ +

√[
[1 − γ∗(n − 1) + n(1 − γ∗)d−1]

2γ∗

]2

+ n(1 − γ∗)(1 + d−1)
γ∗ ,

� (A53)

and use this expression in Ω(n, m∗, d) = 0, which yields Ω(n, γ∗, d) = 0. The right-hand 
side of Figure 1 implicitly plots Ω(n, γ∗, d) = 0 for n = 10 and d = b ⇔ c = 1.
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