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Abstract
Most of the existing literature on optimal trade execution in limit order book models assumes
that resilience is positive. But negative resilience also has a natural interpretation, as it models
self-exciting behaviour of the price impact, where trading activities of the large investor
stimulate other market participants to trade in the same direction. In the paper we discuss
several new qualitative effects on optimal trade execution that arise when we allow resilience
to take negative values. We do this in a framework where both market depth and resilience
are stochastic processes.

Keywords Optimal trade execution · Limit order book · Stochastic market depth ·
Stochastic resilience · Negative resilience · Quadratic BSDE · Infinite-variation execution
strategy · Semimartingale execution strategy

Mathematics Subject Classification Primary: 91G10 · 93E20 · 60H10; Secondary: 60G99

1 Introduction

In an illiquid financial market large orders have a substantial adverse effect on the realized
prices. It is, therefore, reasonable to divide a large order into smaller ones when an investor
faces the task of closing a large position in an illiquid market. The scientific literature on
optimal trade execution problems deals with the optimization of such trading schedules. The
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inputs are time horizon T ∈ (0,∞), size x ∈ R (shares of a stock) of the financial position
to be closed until time T and model of the price impact.

The literature onoptimal trade execution takes price impact as exogenously given.Depend-
ing on how the price impact is modeled the majority of current literature can be naturally
divided into two groups.

In the first group of models, execution strategies (Xt )t∈[0,T ] have absolutely continuous
paths t �→ Xt , and the price impact at any time t depends only on the derivative Ẋt at time t .
In particular, the price impact at time t is independent of all orders executed at times prior to
t and does not influence the impact of the orders executed at times after t . Essentially, what is
modeled in this approach is only market depth, and the price impact is purely instantaneous
in the sense described above.1

In the second group of models, trades induce a transient price impact that decays over
time due to resilience effects of the price. In such models, the execution price at time t is
influenced in a nontrivial way by orders filled at times prior to t , and the execution at time t
in turn influences the execution prices of subsequent orders. Essentially, there are now two
quantities to bemodeled separately: market depth and resilience. Suchmodels are inspired by
a limit order book interpretation. The pioneering work Obizhaeva and Wang (2013) models
the price impact via a block-shaped limit order book (which translates into a constant market
depth), where the impact decays exponentially at a constant rate. Mathematically, it is this
rate that is called resilience.2 Our model in this paper falls into this second group.

As explained above, there is a clear qualitative difference between the models in the first
and in the second group. Moreover, this translates into qualitative differences in the optimal
execution strategies. One of the facets worth mentioning in this respect is that, as opposed to
absolutely continuous strategies in the first group of models, optimal strategies in the second
group are càdlàg and usually exhibit jumps (in a sense, jumps at certain times allow to better
exploit finite resilience).3

Most of the existing literature within the second group of models assumes that resilience is
positive. The explanation is that the impact of the trade should decay over time. But negative
resilience also has a natural interpretation, as it models self-exciting behaviour of the price
impact, where trading activities of the large investor stimulate other market participants to
trade in the same direction. From this viewpoint, it seems reasonable to expect that there
are (particularly unstable) periods in financial markets when the resilience is negative. In
this paper we discuss several new qualitative effects in optimal trade execution that can arise
when we allow the resilience to take negative values.

In practice, resilience is difficult to estimate from real data (cf. Section 7.3 in Roch (2022)),
and we are not aware of any empirical study of whether the resilience can be negative. On
the other hand, there recently appeared many papers on trade execution that model self-
excitement of price impact in different ways, while, as explained above, negative resilience
is an alternative way of modeling this effect. As in Cayé and Muhle-Karbe (2016) and in

1 This, instantaneous, impact is alternatively called temporary impact. There can also be a permanent com-
ponent in the price impact, but it has no effect on determining optimal execution strategies. In the literature,
such models are often called the Almgren-Chriss type models; see, e.g., (Almgren, 2012; Almgren & Chriss,
2001; Ankirchner et al., 2014) and references therein.
2 From this perspective, the models within the first group are essentially models with infinite resilience,
whereas the models in the second group are models with finite resilience.
3 The exceptions are Graewe and Horst (2017) and Horst and Xia (2019), where optimal strategies are
absolutely continuous, although the models belong to the second group according to our classification. The
reason is that jumps are strongly penalized by the form of the functionals that are optimized in Graewe and
Horst (2017) and Horst and Xia (2019).
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Fu et al. (2022a), we motivate self-exciting price impact by the following reasons. Imagine,
for instance, a large trader performing extensive selling. Firstly, a continued selling pressure
makes it more and more difficult to find counterparties. Secondly, such an extensive selling
by the large trader may trigger stop-loss strategies by other market participants, where they
start selling in anticipation of further decrease in the price. Thirdly, extensive selling may
also attract predatory traders that employ front-running strategies. In each case, we obtain an
increased price impact for subsequent trades.

For existing approaches to self-exciting price impact, seeAlfonsi andBlanc (2016), Cartea
et al. (2018), Cayé and Muhle-Karbe (2016), Fu et al. (2022a) and references therein. We
now explain that, mathematically, all these approaches and ours are pairwise substantially
different. In Cayé and Muhle-Karbe (2016) the framework is of the Almgren–Chriss type,
and self-excitement is produced by the trades of the large trader in a way that the price impact
coefficient depends on the trading activity of the large trader. In Alfonsi and Blanc (2016)
the orders of the large trader incur price impact like in the Obizhaeva–Wang model (with
positive resilience), while the orders of other market participants are modeled by Hawkes
processes with self-exciting jump intensities. That is, in contrast to the previously mentioned
approach, self-excitement is produced by the trades of other market participants. Cartea et al.
(2018) again use Hawkes processes but in a quite different way: they consider an execution
model where the large trader places limit orders whose fill rates depend on mutually exciting
“influential”market order flows. Fu et al. (2022a) consider liquidation games between several
large traders (and the corresponding mean-field limit as well as the single player subcase)
with a self-exciting order flow. In a sense, self-excitement in Fu et al. (2022a) is “more
endogenous” than in the other mentioned approaches (including ours, where the resilience
process is exogenously given), as in Fu et al. (2022a) there appear “child orders” triggered by
the large traders’ trading activity, and as the strategies in Fu et al. (2022a) come out as Nash
equilibria in the game. In our approach self-excitement is produced by the trades of the large
trader at time instances when the resilience is negative in the Obizhaeva-Wang type model
where both market depth and resilience are stochastic processes (differently from Cartea et
al. (2018) and like in the other mentioned approaches, the large trader trades with market
orders).

Despite the differences in the set-up, it is interesting to observe the following qualitative
similarity in the strategies that may result from our approach and from the one in Fu et
al. (2022a). Below we, in particular, discuss that, in our framework, it is never optimal to
overshoot the execution target whenever the resilience is positive, but it can be optimal to
overshoot the target if we allow the resilience to take negative values. In other words, in
our framework, the possibility to overshoot the target is a qualitative effect of self-excitation
via negative resilience. In the same vein, in the single player benchmark model for Fu et
al. (2022a) without self-excitation, which goes back to Graewe and Horst (2017), it is not
optimal to overshoot the execution target (this is observed in Theorem 2.2 of Horst and
Kivman (2021)), whereas the resulting strategies in the model with self-excitation in Fu et
al. (2022a) do sometimes overshoot the target (cf. Figure 1 or Figure 2 in Fu et al. (2022a)).

We now briefly describe our framework. The execution strategies are càdlàg semimartin-
gales (Xt )t∈[0−,T ] with X0− = x and XT = 0. As explained above, we need to allow for
jumps (i.e., block trades). In particular, a possibility of a block trade at time 0 means that X0−
can be different from X0. Notice that we do not require X to have monotone paths, which
means that we allow for trading in both directions within the execution strategy. We assume
that the realized price of the asset is the sum of a martingale unaffected price and a deviation
process (Dt )t∈[0−,T ] that carries the price impact. The inputs are the price impact process
(γt ) driven by (3), which models market depth, and the resilience process (ρt ). Both enter
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the dynamics of the deviation process (4). We see from (4) that the sign of (ρt ) determines
whether the deviation process moves back to zero or moves further away from it. The optimal
execution problem is given in (6).

This general setting is elaborated in Ackermann et al. (2021a), where the solution to
the optimal execution problem is described via a solution to a challenging quadratic BSDE
(characteristic BSDE). In Ackermann et al. (2021a) it is shown that the characteristic BSDE
has a solution in two specific subsettings of this general framework. In this paper we also
complement these results by establishing the existence for the characteristic BSDE in the
subsetting, where the resilience process (ρt ) and the processes (μt ) and (σt ) in dynamics (3)
for the price impact process (γt ) are independent from the driving Brownian motion (Wt ).
It turns out that this subsetting is feasible enough to study some new qualitative effects of
negative resilience and to explicitly construct pertinent examples.

It is worth noting that the majority of papers on models with finite resilience considers
execution strategies of finite variation. In this stream of literature, strategies of infinite varia-
tion were first included by Lorenz and Schied (2013), where they allow for a non-martingale
dynamics in the unaffected price, and hence the execution strategies need to account for the
fluctuations in it. Recently, strategies of infinite variation emerge in related frameworks of
Horst andKivman (2021) and Fu et al. (2022b). In the framework ofAckermann et al. (2021a)
we need to include strategies of infinite variation, as they actually come out as optimal trad-
ing schedules, e.g., to account for the fluctuations in (γt ) and (ρt ). This comes with some
adjustments in the conventional setting of the optimal execution problem, where the most
important one is the term d[γ, X ] in the dynamics (4) of the deviation process (Dt )t∈[0−,T ].
As the main theme of this paper is to discuss the effects of negative resilience, we withdraw
from an extended discussion of the term d[γ, X ] in (4) but rather refer an interested reader
to Ackermann et al. (2021a). From this perspective, we mention that Carmona and Web-
ster (2019) provide a strong empirical evidence that trading strategies of large traders are of
infinite variation nature.

We, finally, embed our paper into a broader set of related literature on optimal trade
execution in models with finite resilience. After the pioneering paper Obizhaeva and Wang
(2013) subsequent work either extends the framework in different directions or suggests
alternative frameworkswith similar features.4 Alfonsi et al. (2008) study constrainedportfolio
liquidation in a model of the type as in Obizhaeva and Wang (2013). There is a subgroup of
models which includemore general limit order book shapes, see Alfonsi et al. (2010), Alfonsi
and Schied (2010), Predoiu et al. (2011). Models in another subgroup extend the exponential
decay of the price impact to general decay kernels, see Alfonsi et al. (2012), Gatheral et
al. (2012). Finite player games with deterministic model parameters and transient impact
were studied by Luo and Schied (2019), Schied et al. (2017), Schied and Zhang (2019)
and Strehle (2017). Models with transient multiplicative price impact have recently been
analyzed in Becherer et al. (2018a, b), whereas Becherer et al. (2019) contains a stability
result for the involved cost functionals. Superreplication and optimal investment in a block-
shaped limit order book model with exponential resilience is discussed in Bank and Dolinsky
(2019, 2020) and in Bank and Voß (2019). The present paper falls into the subgroup that
studies time-dependent (possibly stochastic) market depth and resilience, see Ackermann et
al. (2021a, b), Alfonsi and Acevedo (2014), Bank and Fruth (2014), Fruth et al. (2014), and
Fruth et al. (2019). To point out the difference from our present paper, we notice that all
mentioned papers except Ackermann et al. (2021a, b) consider only positive resilience, the
framework in Ackermann et al. (2021b) is in discrete time, while Ackermann et al. (2021a)

4 In SSRN an earlier version of Obizhaeva and Wang (2013) appeared already in 2005.
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does not study the question of what kind of new effects can arise when the (time-dependent)
resilience process is allowed to take negative values.

The paper is organized as follows. Section 2 contains a precise description of our setting
and formulates the problem of optimal trade execution in this setting. Section 3 describes
the solution to this optimal trade execution problem based on the results from Ackermann
et al. (2021a). The key ingredient here is Sect. 3.1 that establishes existence of a solution to
the characteristic BSDE in our setting. In Sect. 4 we present two general results about the
possibility for optimal execution strategies in such models to overjump zero or to exhibit pre-
mature closure. Loosely speaking, a necessary condition for overjumping zero or premature
closure is to have negative resilience at least for some time, while a sufficient condition for
that is to have negative resilience for some time close to the time horizon T . See Sect. 4 for
the precise formulations andmore detailed discussions. Via case studies in Sect. 5 we address
several questions that arise in discussions in Sect. 4. For instance, one of the examples shows
that the “close to T ”-requirement in the sufficient condition mentioned above is essential. It
is worth mentioning that Sect. 5 contains both examples with deterministic optimal strategies
and examples with stochastic ones and, in the latter examples, the strategies are of infinite
variation. In one of other examples we see that, with resilience that can take negative values, it
is possible that the optimal execution strategy closes the position at a certain point in time and
reopens it immediately. Finally, the paper is concluded with a more tricky example, where
the position is kept closed during a time interval, after which it is reopened again.

2 Problem formulation

Let us introduce the stochastic order book model in which we analyze the effects of negative
resilience. In Remark 2.2 below we explain in which sense the model is a special case of the
model considered in Ackermann et al. (2021a) and in which sense not. Remark 2.1 provides
information on where to find more detailed motivations and derivations of the order book
model.

We fix a terminal time T > 0 and consider trading in the time interval [0, T ]. Let
(�,FT , (Ft )t∈[0,T ], P) be a filtered probability space that satisfies the usual conditions and
supports a Brownian motion W = (Wt )t∈[0,T ]. Furthermore, we assume that (Ft )t∈[0,T ] has
the structure Ft = ⋂ε>0(FW

t+ε ∨ F⊥t+ε), t ∈ [0, T ), FT = FW
T ∨ F⊥T , where (FW

t )t∈[0,T ]
denotes thefiltration generated byW , and (F⊥t )t∈[0,T ] is a right-continuous complete filtration
such that FW

T and F⊥T are independent. Throughout the paper, Et [·] denotes the conditional
expectation E[·|Ft ] for t ∈ [0, T ], and μL denotes the Lebesgue measure on [0, T ].

As input processes we require three (F⊥t )t∈[0,T ]-progressively measurable processes ρ =
(ρt )t∈[0,T ], μ = (μt )t∈[0,T ], and σ = (σt )t∈[0,T ] such that there exist deterministic c, ε ∈
(0,∞) such that

2ρ. + μ. − σ 2
. ≥ ε P × μL -a.e., (1)

max{|ρ.|, |μ.|} ≤ c P × μL -a.e. (2)

Here and in what follows, we write ρ., μ., etc., to emphasize the presence of the time
variable, i.e., we do so to indicate that we speak about the process as a whole. Assumption
(1) is a structural condition on the input processes which, roughly speaking, ensures that the
minimization problem under consideration (see (6) below) is convex. To see this, we refer
to the alternative representation of the cost function provided in (Theorem 3.1 Ackermann
et al. (2021a)). Note that the process 2ρ + μ− σ 2 also shows up in the denominator of the
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driver of the characteristic BSDE (7). Assumption (2) is a boundedness condition that we
need in order to ensure existence of a solution of BSDE (7). Please note that Assumption (1)
in combination with Assumption (2) also implies boundedness of σ .

The two processes μ and σ are used to model price impact. More precisely, we define the
price impact process γ = (γt )t∈[0,T ] to be the solution of

dγt = γtμt dt + γtσt dWt , t ∈ [0, T ], γ0 > 0, (3)

where γ0 is a positive F0-measurable random variable. Consequently, γ is the positive con-
tinuous (Ft )t∈[0,T ]-adapted process

γt = γ0 exp

(∫ t

0

(

μs − σ 2
s

2

)

ds +
∫ t

0
σsdWs

)

, t ∈ [0, T ].

Given an open position x ∈ R to be liquidated, an execution strategy is a càdlàg semi-
martingale X = (Xt )t∈[0−,T ] such that X0− = x and XT = 0. For any t ∈ [0, T ], the
quantity Xt− describes the remaining position to be closed during [t, T ]. As in Ackermann
et al. (2021a) we follow the convention that a positive position Xt− > 0 means the trader
has to sell an amount of |Xt−| shares, whereas Xt− < 0 requires to buy an amount of |Xt−|
shares. Note that we do not require an execution strategy X to havemonotone paths and hence
we allow for selling and buying within the same strategy. Moreover, the paths of execution
strategies can exhibit jumps and thus so-called block trades are possible.

We assume that trading according to an execution strategy X affects the asset price.
To model this influence we associate to every execution strategy X a deviation process
D = (Dt )t∈[0−,T ] with initial deviation d ∈ R. We assume that the actual price of the asset is
the sumof an unaffected price and the price deviation D. The unaffected price is assumed to be
a martingale satisfying suitable integrability assumptions. This ensures that the optimal trade
execution problem we are about to set up (see (6) below) does not depend on the unaffected
price process and that we only need to focus on the deviation D (see (Remark 2.2 Ackermann
et al. (2021a)) for more detail). The deviation is modeled as follows. Given x, d ∈ R and an
execution strategy X = (Xt )t∈[0−,T ], the deviation process D = (Dt )t∈[0−,T ] associated to
X is defined by

dDt = −ρt Dtdt + γt d Xt + d[γ, X ]t , t ∈ [0, T ], D0− = d, (4)

i.e.,

Dt=e−
∫ t
0 ρsds

(

d +
∫

[0,t]
e
∫ s
0 ρuduγsd Xs+

∫

[0,t]
e
∫ s
0 ρudud[γ, X ]s

)

, t ∈ [0, T ], D0−=d.

When ignoring the effects of X on D at time t ∈ [0, T ] we see from (4) that the sign of ρt
determines whether the deviation tends back to 0 or further moves away from it. In the case
ρ > 0, which is typically assumed in the literature, the deviation is always reverting to 0 and
the speed of reversion is determined by the magnitude of ρ. The input process ρ thus models
how fast the order book recovers frompast trades and is therefore called the resilience process.
We allow ρ to also take negative values and thereby enable the incorporation of signaling
effects, where, e.g., a series of buy trades might indicate the arrival of further buy trades and
therefore lead to a further growth of the deviation process.
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For x, d ∈ R, we let A0(x, d) be the set of all execution strategies X (i.e., càdlàg semi-
martingales X = (Xt )t∈[0−,T ] with X0− = x and XT = 0) such that all three conditions

E0

[

sup
t∈[0,T ]

γ 2
t (Xt − γ−1t Dt )

4

]

<∞ a.s.,

E0

⎡

⎣
(∫ T

0
γ 2
t (Xt − γ−1t Dt )

4σ 2
t dt

) 1
2

⎤

⎦ <∞ a.s.,

E0

⎡

⎣
(∫ T

0
D4
t γ
−2
t σ 2

t dt

) 1
2

⎤

⎦ <∞ a.s.

are satisfied.
Given x, d ∈ R and X ∈ A0(x, d), we then consider the expected costs

J (x, d, X) = E0

[∫

[0,T ]
Dt−dXt +

∫

[0,T ]
γt

2
d[X ]t

]

. (5)

The optimal trade execution problem considered here consists in minimizing the expected
costs over X ∈ A0(x, d). An optimal strategy is an execution strategy X∗ ∈ A0(x, d) such
that

J (x, d, X∗) = ess inf
X∈A0(x,d)

J (x, d, X). (6)

We point out that possible jumps of the integrators at time 0 contribute to the integrals∫
[0,t] . . . dXs ,

∫
[0,t] . . . d[X ]s , and

∫
[0,t] . . . d[γ, X ]s in the definition of the deviation (4) and

the expected costs (5).

Remark 2.1 We refer to the introduction of Ackermann et al. (2021a) as well as Sections 4, 5
and Appendix A therein for a discussion of the specific form of the deviation dynamics (4)
and the expected costs (5). In short, they come from a block-shaped symmetric limit order
book model, and, e.g., the term d[γ, X ] in (4) appears because execution strategies are not
necessarily of finite variation. We also mention Carmona and Webster (2019) for empirical
evidence that, in related settings, trading strategies are of infinite variation nature.

Remark 2.2 Let us briefly explain inwhich sense the setting outlined above is a special case of
the model considered in Ackermann et al. (2021a). In Ackermann et al. (2021a) we consider
a general continuous local martingale M instead of the Brownian motionW to drive the price
impact process γ in (3). Moreover, in Ackermann et al. (2021a) we do not require that the
three input processes ρ, μ, and σ are independent of the martingale M .

In (Section 7 Ackermann et al. (2021a)) we establish existence of a solution to a charac-
teristic BSDE (see (3.2) & (3.3) Ackermann et al. (2021a)) for the trade execution problem in
two subsettings: The first one assumes that σ ≡ 0, whereas the second one assumes that the
underlying filtration is continuous (in the sense that every martingale is continuous). In the
present paper we complement these results by establishing in Theorem 3.1 below existence
of a solution to the BSDE in the subsetting outlined above. This is included in neither of the
two subsettings considered in Ackermann et al. (2021a).
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3 Solution of the trade execution problem

In this section we provide a probabilistic solution of the optimal trade execution problem (6).
To this end, we establish in Sect. 3.1 an existence result for a characteristic BSDE associated
to problem (6). Subsequently, in Sect. 3.2, we combine this result with the main results in
Ackermann et al. (2021a) to obtain a representation of the optimal strategy for (6).

3.1 Characteristic BSDE

A representation of the minimal expected costs, a characterization for the existence of an
optimal strategy as well as a formula for the optimal strategy in the general framework
considered in Ackermann et al. (2021a) are provided as a main result in (Theorem 3.4
Ackermann et al. (2021a)). This result is based on the existence of a solution of a certain
BSDE ((3.2) & (3.3) Ackermann et al. (2021a)).

In the setting of the present paper, where ρ,μ, σ are independent of the Brownian motion
W , we consider the BSDE

dYt = −
[

− (ρt + μt )
2Y 2

t

σ 2
t Yt + 1

2

(
2ρt + μt − σ 2

t
) + μt Yt

]

dt + dM⊥t , t ∈ [0, T ], YT = 1

2
.

(7)

By a solution of (7) we mean a pair (Y , M⊥) such that

• (7) is satisfied P-a.s.,
• Y is an (Ft )t∈[0,T ]-adapted, càdlàg, [0, 1/2]-valued process, and
• M⊥ is a càdlàg (Ft )t∈[0,T ]-martingale with M⊥0 = 0, E([M⊥]T ) <∞, and [M⊥,W ] =

0.

We show in Theorem 3.1 the existence of a solution (Y , M⊥) of (7).5 Any such solution
(Y , M⊥) of (7) provides a solution (Y , 0, M⊥) of the BSDE ((3.2) & (3.3) Ackermann et al.
(2021a)) (in the sense that ((3.4) Ackermann et al. (2021a)) is satisfied). In particular, we can
invoke in Section 3.2 below the main results from (Section 3 Ackermann et al. (2021a)).

Theorem 3.1 Under (1) and (2) there exists a solution (Y , M⊥) of (7).

Proof Let L : R→ [0, 1/2] be the truncation function defined by L(y) = (y∨0)∧ 1
2 , y ∈ R.

Let f : �× [0, T ] × R→ R be the function defined by

f (t, y) = − (ρt + μt )
2L(y)2

σ 2
t L(y)+ 1

2

(
2ρt + μt − σ 2

t
) + μt L(y), t ∈ [0, T ], y ∈ R. (8)

We first consider BSDE (7) with its driver replaced by f and on the filtered probability space
(�,F⊥T , (F⊥t )t∈[0,T ], P|F⊥T ), where P|F⊥T denotes the probability measure P restricted to

the sigma algebra F⊥T . Note that the expressions “P-a.s.” and “P|F⊥T -a.s.” have the same
meaning. In the calculations below we assume without loss of generality that ρ, μ, and
σ satisfy (1) and (2) for all (ω, t), as we can otherwise replace them in f with (F⊥t )-
progressively measurable processes ρ,μ, and σ that satisfy (1) and (2) for all (ω, t) and such
that ρ = ρ P × μL -a.e., μ = μ P × μL -a.e., and σ = σ P × μL -a.e. Observe that for all

5 Uniqueness of the solution will follow as a byproduct of our analysis; see Theorem 3.2 below.
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t ∈ [0, T ] the function R  y �→ f (t, y) is continuous. Moreover, it is concave on [0, 1/2]
and constant on the complement R \ [0, 1/2]. This implies for all t ∈ [0, T ] and y′ < y that

f (t, y)− f (t, y′)
y − y′

≤ max

{
∂+ f

∂ y
(t, 0), 0

}

= max {μt , 0} ≤ c.

It follows that for all t ∈ [0, T ] and all y, y′ ∈ R it holds
(
f (t, y)− f (t, y′)

)
(y − y′) ≤ c(y − y′)2.

Moreover, it holds for all t ∈ [0, T ] that

sup
y∈R
| f (t, y)− f (t, 0)| ≤ sup

y∈R

∣
∣
∣
∣
∣

(ρt + μt )
2L(y)2

σ 2
t L(y)+ 1

2

(
2ρt + μt − σ 2

t
)

∣
∣
∣
∣
∣
+ sup

y∈R
|μt L(y)|

≤ 2c2

ε
+ 1

2
c.

This implies in particular that supy∈R| f (·, y)− f (·, 0)| ∈ L2(�×[0, T ]). By (Proposition 5.1
Klimsiak andRzymowski (2021)) (see also (Theorem1Kruse andPopier (2016))) there exists
a pair (Y , M⊥) such that BSDE (7) on (�,F⊥T , (F⊥t )t∈[0,T ], P|F⊥T ) with its driver replaced

by f is satisfied a.s., Y is a càdlàg (F⊥t )t∈[0,T ]-adapted process with E[supt∈[0,T ] Y 2
t ] <∞,

and M⊥ is a càdlàg (F⊥t )t∈[0,T ]-martingale with M⊥0 = 0 and E[[M⊥]T ] <∞.
Next, note that (0, 0) is a solution of the BSDE with driver f and terminal condition 0.

Then a comparison principle for BSDEs e.g., (Proposition 4 Kruse and Popier (2016)) proves
that Yt ≥ 0 for all t ∈ [0, T ] a.s. Furthermore, it holds a.s. that for all t ∈ [0, T ]

f (t, 1/2) = − (ρt + μt )
2

2 (2ρt + μt )
+ 1

2
μt = − ρ2

t

2(2ρt + μt )
≤ 0.

Again the comparison principle ensures that Yt ≤ 1
2 for all t ∈ [0, T ] a.s. In particular, the

truncation function in (8) is inactive. Therefore, (Y , M⊥) also a.s. satisfies BSDE (7) and Y
is [0, 1/2]-valued.

Since FW
T and F⊥T are independent and Ft = ⋂

ε>0(FW
t+ε ∨ F⊥t+ε) for all t ∈ [0, T ),

we have that M⊥ is not only an (F⊥t )t∈[0,T ]-martingale, but also an (Ft )t∈[0,T ]-martingale.
Furthermore,we can show thatM⊥W is an (Ft )t∈[0,T ]-martingale. It follows that 〈M⊥,W 〉 =
0. Since W is continuous, it holds that [M⊥,W ] is continuous, and hence [M⊥,W ] = 0.
This completes the proof. ��

3.2 Representation of the optimal strategy

For a solution (Y , M⊥) of (7), we recall from ((3.5) Ackermann et al. (2021a)) the process
β̃ = (β̃t )t∈[0,T ] defined by, in the present set-up,

β̃t = (ρt + μt )Yt
σ 2
t Yt + 1

2 (2ρt + μt − σ 2
t )

, t ∈ [0, T ]. (9)

By (1), (2), and the fact that Y is [0, 1/2]-valued, we have that β̃ is P × μL -a.e. bounded.
It thus follows from (Proposition 3.8 Ackermann et al. (2021a)) that the solution of (7) is
unique up to indistinguishability. Furthermore, by boundedness of β̃, under the condition
that

∃ a càdlàg semimartingale β such that β̃ = β P × μL -a.e. (10)
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we obtain from (Theorem 3.4 Ackermann et al. (2021a)) for any initial values x, d ∈ R (see
also (Lemma 3.3 Ackermann et al. (2021a)) for the case x = d

γ0
) the existence of an optimal

strategy, which is unique up to P × μL -null sets. Notice that, in our present context, this
is equivalent to uniqueness up to indistinguishability. Indeed, if X (1) and X (2) are optimal
strategies, then they are indistinguishable, as X (1) and X (2) are càdlàg and X (1) = X (2)

P × μL -a.e. Note that condition (10) is in particular guaranteed if ρ,μ, σ are deterministic
and of finite variation, as in the examples in Sect. 5 below.

Weextract the following representation for the optimal strategy and its associated deviation
from (Theorem 3.4 Ackermann et al. (2021a)) provided that (10) holds true. Define

Qt = −
∫ t

0
βsσsdWs −

∫ t

0
βs(μs + ρs − σ 2

s )ds, t ∈ [0, T ],

and denote by E(Q) the stochastic exponential of Q, i.e.,

E(Q)t = exp

{

−
∫ t

0

(
βs(μs + ρs − σ 2

s )+ 1

2
β2
s σ

2
s

)
ds −

∫ t

0
βsσs dWs

}

, t ∈ [0, T ].

Let x, d ∈ R. Then the optimal strategy
(
X∗t
)
t∈[0−,T ] ∈ A0(x, d) is given by the formulas

X∗0− = x, X∗T = 0,

X∗t =
(

x − d

γ0

)

(1− βt )E(Q)t , t ∈ [0, T ).
(11)

The associated deviation process (D∗t )t∈[0−,T ] is given by

D∗0− = d, D∗T =
(

x − d

γ0

)

(−γT )E(Q)T ,

D∗t =
(

x − d

γ0

)

(−γtβt )E(Q)t , t ∈ [0, T ).

(12)

We summarize the statements above in the following theorem.

Theorem 3.2 Assume that (1) and (2) hold true. Then the solution of the BSDE (7) is unique
up to indistinguishability. If, in addition, (10) is satisfied, then for all x, d ∈ R the unique
(up to indistinguishability) optimal strategy X∗ for (6) is given by (11) and the associated
deviation process D∗ satisfies (12).

4 Overjumping zero and premature closure

In this section we study qualitative effects of negative resilience on the optimal strategy. In
particular, we examine effects that we call overjumping zero and premature closure. Roughly
speaking, we are interested in market situations where it is optimal to change a buy program
into a sell program (or vice versa), or where it is optimal to close the position strictly before
the end of the execution period. More precisely, we intend to identify market conditions
under which paths of optimal trade execution strategies with positive probability jump over
the target level 0 or already take the value 0 prior to T . To this end recall that under (1), (2),
and (10), given an initial position x ∈ R and an initial deviation d ∈ R, the optimal strategy
X∗ satisfies for all t ∈ [0, T ) that

X∗0− = x and X∗t =
(

x − d

γ0

)

(1− βt )E(Q)t . (13)
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This representation allows to disentangle the contributions to the optimal strategy’s sign of
the initial conditions x and d on the one side and the input processes ρ, μ, and σ defining the
market dynamics on the other side. Indeed, since the stochastic exponential E(Q) is positive,
the sign of X∗t for t ∈ [0, T ) is determined by the signs of the two factors (x − d

γ0
) and

(1 − βt ). The first factor (x − d
γ0

) is determined by the initial conditions, does not depend

on time, and thus can only contribute to a change of sign of X∗ at time 0. Note that (x − d
γ0

)

has a different sign than the initial condition X∗0− = x if and only if γ0|x | < sgn(x)d . A
nonzero initial deviation d �= 0 can thus have the effect that X∗ changes its sign directly at
time 0. In practice, one would typically assume that d = 0, in which case this factor does
not contribute to a change of sign.

In the sequel we focus on the contribution of the second factor (1 − β) and provide
definitions of the effects overjumping zero and premature closure which are only built upon
(1− β). This factor and hence also these effects are determined by the input processes ρ, μ,
and σ driving the market dynamics and are independent of the initial conditions x and d .

For ease of notation, we extend the domain of β to the point 0− by setting β0− = 0. In
what follows, we denote by π� the projection operator from �× [0, T ] onto �.

Definition 4.1 Assume that (1), (2), and (10) hold true. Define

Aoj = {(ω, t) ∈ �× [0, T ) : (1− βt−(ω))(1− βt (ω)) < 0},
Apc = {(ω, t) ∈ �× [0, T ) : (1− βt−(ω))(1− βt (ω)) = 0}.

(i) We say that overjumping zero is optimal in the limit order book model driven by ρ, μ,
and σ , if P(π�(Aoj )) > 0.

(ii) We say that premature closure is optimal, if P(π�(Apc)) > 0.

In relation with Definition 4.1 we need to make the following comments.

(a) π�(Aoj ), π�(Apc) ∈ FT by the measurable projection theorem (Theorem I.4.14 Revuz
and Yor (1999)) (recall that FT is complete and notice that Aoj , Apc ∈ FT ⊗ B([0, T ])
and, moreover, are optional sets, as β is adapted and càdlàg).

(b) The terms overjumping zero and premature closure are well-defined, as β satisfying (10)
is unique up to indistinguishability.

It is worth noting that the terms overjumping zero and premature closure could be equiv-
alently defined with the help of stopping times:

Lemma 4.2 Assume that (1), (2), and (10) hold true. Then, overjumping zero (resp., premature
closure) is optimal if and only if there exists a stopping time τ : � → [0, T ] such that
P(τ < T ) > 0 and

(1− βτ−)(1− βτ ) < 0 (resp., = 0) P-a.s. on {τ < T }.
Lemma 4.2 easily follows from the optional section theorem (Theorem IV.5.5 Revuz and

Yor (1999)), which applies because Aoj and Apc are optional sets. We also remark that a
simple attempt to define τ as, say, T ∧ inf{t ∈ [0, T ) : (1 − βt−)(1 − βt ) < 0} does not
always work, as, for ω such that τ < T but the infimum is not attained, the expression
(1− βτ−)(1− βτ ) will be zero.

Wenow turn to the question about newqualitative effectswe canget ifwe allow for negative
resilience. Informally, with positive resilience one will not be able to observe overjumping
zero or premature closure in the optimal strategy. On the contrary, if we allow the resilience
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to take negative values, then overjumping zero and premature closure in the optimal strategy
become possible. Propositions 4.3 and 4.4 contain precisemathematical formulations of these
statements. After these propositions we also provide amore detailed informal Discussion 4.5.

Proposition 4.3 Assume (1) and (2).

(i) We have

β̃. ≤
(

1− ρ.

2ρ. + μ.

)

1{ρ.+μ.>0} ≤ 1 P × μL -a.e. on {(ω, t) ∈ �× [0, T ] : ρt (ω) ≥ 0}.

(ii) Assume (10) and that ρ ≥ 0 P × μL-a.e. Then overjumping zero is not optimal.
(iii) Assume (10) and that there exists an FT -measurable random variable δ such that

δ > 0 P-a.s. and ρ. ≥ δ P × μL-a.e. (14)

Then neither overjumping zero nor premature closure is optimal.

In relation with Proposition 4.3 we make the following comments.

(a) A rather widespread situation in today’s literature on resilient price impact is to assume a
constant resilience. This falls into part (iii) of Proposition 4.3. To discuss the assumption
in (iii) in more detail, we remark that, if

inf
t∈[0,T ] ρt > 0 P-a.s., (15)

then (14) is satisfied. Indeed, in this case we can take δ = inf t∈[0,T ] ρt because, by the
measurable projection theorem, for all z ∈ R we have

{ω ∈ � : inf
t∈[0,T ] ρt < z} = π�({(ω, t) ∈ �× [0, T ] : ρt (ω) < z}) ∈ FT ,

i.e., δ := inf t∈[0,T ] ρt isFT -measurable.More precisely, (14) is slightly weaker than (15)
and can be, in fact, equivalently expressed as follows: there exists an FT ⊗ B([0, T ])-
measurable ρ̃ such that ρ̃ = ρ P × μL -a.e. and inf t∈[0,T ] ρ̃t > 0 P-a.s.

(b) The observation in part (iii) of Proposition 4.3 is in line with Horst and Kivman (2021),
where in a different but related setting (with a positive stochastically varying resilience)
it is observed that the optimal strategy never changes its sign (see (Theorem 2.2 Horst
and Kivman (2021))), which means in our terminology that neither overjumping zero
nor premature closure is optimal.

(c) Comparison of (ii) and (iii) poses the question if premature closure can be optimal with
nonnegative resilience. The answer is affirmative: e.g., if ρ ≡ 0, then βt = 1 for all
t ∈ [0, T ], and the optimal strategy is to close the position immediately (cf. Proposition
3.7 Ackermann et al. (2021a)). This is, however, a rather degenerate example. A much
more interesting one, for which we, however, allow the resilience to be negative, is
presented in Sect. 5.3.

Proof of Proposition 4.3 (i) Define

B = {(ω, t) ∈ �× [0, T ] : Yt (ω) ∈ [0, 1/2],
2ρt (ω)+ μt (ω)− σ 2

t (ω) > 0,

ρt (ω) ≥ 0}
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and observe that B ∈ FT ⊗B([0, T ]). It is enough to show the claim for every (ω, t) ∈ B.
To this end, we fix an arbitrary (ω, t) ∈ B. By (9) we have to show that

(ρt (ω)+ μt (ω))Yt (ω)

σ 2
t (ω)Yt (ω)+ 1

2 (2ρt (ω)+ μt (ω)− σ 2
t (ω))

≤
(

ρt (ω)+ μt (ω)

2ρt (ω)+ μt (ω)

)

1{ρt (ω)+μt (ω)>0}.

(16)

If ρt (ω)+μt (ω) ≤ 0, this inequality is evident. Therefore we assume ρt (ω)+μt (ω) > 0
in the sequel. Note that the fact that Yt (ω) ≤ 1

2 implies

Yt (ω)− 1

2

2ρt (ω)+ μt (ω)− σ 2
t (ω)

2ρt (ω)+ μt (ω)
≤ Yt (ω)

(

1− 2ρt (ω)+ μt (ω)− σ 2
t (ω)

2ρt (ω)+ μt (ω)

)

= σ 2
t (ω)Yt (ω)

2ρt (ω)+ μt (ω)
.

This shows that

(ρt (ω)+ μt (ω))Yt (ω) ≤ ρt (ω)+ μt (ω)

2ρt (ω)+ μt (ω)

(

σ 2
t (ω)Yt (ω)+ 1

2
(2ρt (ω)+ μt (ω)− σ 2

t (ω))

)

and hence establishes (16).
(ii) We first notice that (i) and (10) ensure that β. ≤ 1 P × μL -a.e. As β has càdlàg paths,

by the standard Fubini argument, we infer that P-a.s. it holds: for all t ∈ [0, T ], we have
βt ≤ 1. This shows that overjumping zero is not optimal.

(iii) It suffices to show that premature closure is not optimal. Define

C = {(ω, t) ∈ �× [0, T ] : Yt (ω) ∈ [0, 1/2],
2ρt (ω)+ μt (ω)− σ 2

t (ω) > 0,

max{|ρt (ω)|, |μt (ω)|} ≤ c,

δ(ω) > 0 and ρt (ω) ≥ δ(ω)},
where c is from (2), and notice that C ∈ FT ⊗ B([0, T ]). It follows from (i) that

β̃t (ω) ≤ max

{

1− δ(ω)

3c
, 0

}

< 1 for all (ω, t) ∈ C .

As P × μL((�× [0, T ]) \ C) = 0 and β is càdlàg, we conclude that P-a.s. it holds

sup
t∈[0,T ]

βt ≤ max

{

1− δ

3c
, 0

}

< 1

(again by the Fubini argument), and hence premature closure is not optimal.
��

In the sequel, for a set K ⊆ �× [0, T ] and ω ∈ �, we use the notation

Kω = {t ∈ [0, T ] : (ω, t) ∈ K }
for the section of K . We will permanently use the well-known statements that, if K ∈
FT ⊗ B([0, T ]), then
• for any ω ∈ �, Kω ∈ B([0, T ]),
• and the mapping ω �→ μL(Kω) is FT -measurable.
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Proposition 4.4 Assume (1), (2), and (10). In addition, assume that there exists an FT -
measurable random variable δ such that

P

(

∀n ∈ N, μL

(
Bω ∩

[
T − 1

n
, T
])

> 0

)

> 0, (17)

where

B = {(ω, t) ∈ �× [0, T ] : δ(ω) > 0 and ρt (ω) ≤ −δ(ω)} (∈ FT ⊗ B([0, T ])). (18)

Then overjumping zero or premature closure is optimal.

Discussion 4.5 (a) The meaning of (17) is that, with positive probability, resilience ρ is
assumed to be negative with positive Lebesgue measure in any neighbourhood of the
terminal time T .

(b) It is instructive to compare Proposition 4.4 with part (iii) of Proposition 4.3. The assump-
tions are “almost” complementary: compare (14) with (17)–(18). In both cases, we step
a little away from 0 (this is the role of δ in (14) and (18)) but in a “soft” sense (the bound
δ can depend on ω).

(c) In view of (a) and (b) we informally summarize part (iii) of Proposition 4.3 and Propo-
sition 4.4 as follows. Positive resilience implies that neither overjumping zero nor
premature closure is optimal; negative resilience “close to T ” implies optimality of
overjumping zero or premature closure. There arises the question of whether negative
resilience “far from T ” also implies overjumping zero or premature closure. The answer
is negative: see Example 5.2 below.

Proof of Proposition 4.4 1. In the first step of the proof we establish that (1), (2), and (17)
imply P × μL(C) > 0, where

C = {(ω, t) ∈ �× [0, T ] : β̃t (ω) > 1} (∈ FT ⊗ B([0, T ])).
To this end, we first recall from (Lemma 8.1 Ackermann et al. (2021a)) that lims↑T Ys = YT
(= 1

2 ) P-a.s., i.e., for the solution (Y , M⊥) of (7), the orthogonal to W martingale M⊥ does
not jump at terminal time T . We define

M = {(ω, t) ∈ �× [0, T ] : lim
s↑T Ys(ω) = YT (ω) = 1

2
,

Yt (ω) ≥ 0,

2ρt (ω)+ μt (ω)− σ 2
t (ω) > 0,

max{|ρt (ω)|, |μt (ω)|} ≤ c},
where c is from (2), and notice that M ∈ FT ⊗ B([0, T ]), P × μL((�× [0, T ]) \ M) = 0.
Now we set

K = B ∩ M,

where B is from (18), and observe that (17) holds with B replaced by K . As P × μL(C) =∫
�

μL(Cω) P(dω), we get P × μL(C) > 0, once we prove

F :=
{

ω ∈ � : ∀n ∈ N, μL

(
Kω ∩

[
T − 1

n
, T
])

> 0

}

⊆ {ω ∈ � : μL(Cω) > 0}. (19)

To establish (19), we fix an arbitrary ω0 ∈ F and make the following simple observation

t ∈ Kω0 ⇐⇒ (ω0, t) ∈ M and ρt (ω0) ≤ −δ(ω0) < 0.
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This yields that, for t ∈ Kω0 , it holds

μt (ω0)− σ 2
t (ω0) ≤ |μt (ω0)| ≤ c,

hence

0 < 2ρt (ω0)+ μt (ω0)− σ 2
t (ω0) < ρt (ω0)+ μt (ω0)− σ 2

t (ω0) ≤ c − δ(ω0). (20)

Now we compute from (9) that, for t ∈ Kω0 , we have the equivalence

β̃t (ω0) > 1 ⇐⇒ 2Yt (ω0) > 1+ ρt (ω0)

ρt (ω0)+ μt (ω0)− σ 2
t (ω0)

. (21)

Moreover, (20) and (21) reveal that, for t ∈ Kω0 ,

2Yt (ω0) > 1− δ(ω0)

c − δ(ω0)
�⇒ β̃t (ω0) > 1 (⇐⇒ t ∈ Cω0). (22)

Recalling that ω0 ∈ F , the definition of the event F in (19), and that lims↑T Ys(ω0) = 1
2 (as

ω0 ∈ F implies that there exists t ∈ [0, T ] with (ω0, t) ∈ K ⊆ M), we conclude from (22)
that there exists n0 ∈ N (which depends on ω0) such that

Kω0 ∩
[
T − 1

n0
, T
]
⊆ Cω0 ,

hence μL(Cω0) ≥ μL(Kω0 ∩ [T − 1/n0, T ]) > 0. We thus proved (19) and completed the
first step of the proof.

2. The first step together with (10) yields P × μL(β. > 1) > 0. Define the stopping time
τ = T ∧ inf{t ∈ [0, T ] : βt > 1} (as usual, inf ∅ := ∞). As P × μL(β. > 1) > 0, we
get, by the Fubini argument, that P(τ < T ) > 0. Since β0− = 0 and β is càdlàg, P-a.s. on
{τ < T } it holds βτ− ≤ 1 and βτ ≥ 1, which yields the result. ��

5 Case studies on the effects of negative resilience

In this section we analyze the effects of negative resilience and discuss the results of Propo-
sition 4.3 and Proposition 4.4 in several subsettings of Sect. 2.

5.1 A case study with piecewise constant resilience and deterministic optimal
strategies

In this subsection we assume that there are N different regimes of resilience. That is to say
that ρ is piecewise constant. Moreover, we assume that ρ is deterministic, μ > 0 is constant
and σ ≡ 0. These assumptions lead to deterministic optimal strategies. We summarize the
results in the following proposition.

Proposition 5.1 Assume that γ0 > 0 is deterministic and that6 x − d
γ0

> 0. Suppose further-
more that σ ≡ 0, thatμ > 0 is a deterministic constant, and that ρ : [0, T ] → (−μ/2,∞) is
piecewise constant in the sense that there exist N ∈ N,ρ(1), . . . , ρ(N ) ∈ (−μ/2,∞), and 0 =

6 This assumption is only for ease of exposition. All statements hold also in the case x − d
γ0

< 0 with the
suitable adjustments.
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T0 < T1 < . . . < TN = T such that for all t ∈ [0, T ) it holds ρt = ∑N
i=1 ρ(i)1[Ti−1,Ti )(t).

Then, (1) and (2) are satisfied. The unique solution of (7) is given by

Yt = e(T−t)μ
( N∑

i=n(t)+1

(ρ(i) + μ)2eTμ

μ(ρ(i) + 1
2μ)

(e−(t∨Ti−1)μ − e−Tiμ)+ 2

)−1
, M⊥t = 0, t ∈ [0, T ],

(23)

where n(t) = max{i ∈ {0, . . . , N } : Ti ≤ t}. Moreover, (10) is satisfied with βt =
β̃t = ρt+μ

ρt+ 1
2μ

Yt , t ∈ [0, T ]. The optimal strategy X∗ and the associated deviation D∗ are
deterministic, for every i ∈ {1, . . . , N } they are continuous on (Ti−1, Ti ), and for every
i ∈ {1, . . . , N − 1} they have a jump at Ti if and only if ρ has a jump at Ti . Furthermore, for
every i ∈ {1, . . . , N } the deviation D∗ is constant on (Ti−1, Ti ) and takes negative values,
and the optimal strategy X∗ is monotone on (Ti−1, Ti ): more precisely, if ρ(i) > 0 (resp.,
ρ(i) < 0; resp., ρ(i) = 0), then X∗ is strictly decreasing (resp., strictly increasing; resp.,
constant) on (Ti−1, Ti ).

Proof Clearly, (1) and (2) are satisfied. Next note that Y from (23) satisfies for all t ∈ [0, T ]
that

Yt = e(T−t)μ
(∫ T

t

(ρs + μ)2

ρs + 1
2μ

e(T−s)μds + 2

)−1
.

From this it follows that Y is continuous and satisfies the Bernoulli ODE

dYt = (ρt + μ)2

ρt + 1
2μ

Y 2
t dt − μYtdt, t ∈ [0, T ], YT = 1

2
.

Consequently, (Y , 0) is the unique solution of (7). Moreover, β̃ defined by (9) is càdlàg and
of finite variation and thus we have (10) with β = β̃. In particular, β is deterministic, and
since σ ≡ 0 and ρ,μ are deterministic, we have that the optimal strategy X∗ and its deviation
D∗ are deterministic as well.

For every i ∈ {1, . . . , N − 1} observe also that β has a jump at Ti if and only if ρ has a
jump at Ti . This directly translates into jumps of the optimal strategy X∗ and jumps of the
associated deviation D∗ via (11) and (12). To show that the deviation D∗ is constant on each
(Ti−1, Ti ), i ∈ {1, . . . , N }, observe that for all i ∈ {1, . . . , N } and t ∈ (Ti−1, Ti ) it holds
that

dβt = ρ(i) + μ

ρ(i) + 1
2μ

(
(ρ(i) + μ)2

ρ(i) + 1
2μ

Y 2
t − μYt

)

dt = β2
t (ρ

(i) + μ)dt − μβt dt (24)

and hence

d (γtβtE(Q)t ) = βt d(γtE(Q)t )+ γtE(Q)t dβt

= βtγtE(Q)t

(
μ− βt (μ+ ρ(i))

)
dt + γtE(Q)t

(
β2
t (ρ

(i) + μ)− μβt

)
dt

= 0.

It thus follows from (12) that D∗ is constant on (Ti−1, Ti ) for i ∈ {1, . . . , N }. Moreover,
since ρ > − 1

2μ, μ > 0, and Y > 0, it holds that β > 0, and therefore D∗ < 0 (recall that
we assume x − d

γ0
> 0). Next note that we have for all i ∈ {1, . . . , N } and t ∈ (Ti−1, Ti )
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that, using (24),

d((1− βt )E(Q)t ) = (1− βt )dE(Q)t − E(Q)t dβt

= −E(Q)t (1− βt )βt

(
μ+ ρ(i)

)
dt − E(Q)t

(
β2
t (ρ

(i) + μ)− μβt

)
dt

= −E(Q)tβtρ
(i)dt .

Since β > 0 and x− d
γ0

> 0, we conclude that if ρ(i) is positive, then X∗ in (11) is decreasing
on (Ti−1, Ti ), and if ρ(i) is negative, then X∗ is increasing on (Ti−1, Ti ), i ∈ {1, . . . , N }. ��

In Examples 5.2, 5.3, and 5.4 belowwe consider the setting of Proposition 5.1 with N = 3
different regimes of resilience. More precisely, we assume in the sequel of this subsection
the setting of Proposition 5.1 with N = 3, x = 1, d = 0, γ0 = 1, μ = 0.5, and Ti = i for
i ∈ {1, 2, 3}.

We already know from Proposition 4.4 that overjumping zero or premature closure is
optimal if we have negative resilience in the last regime (i.e., ρ(3) < 0). In the three examples
below we want to analyze under which conditions these effects occur in the case where the
resilience is positive in the last (and also the first) regime.We choose ρ(1) = 0.1 and ρ(3) = 1.
Proposition 4.3 entails that we necessarily need ρ(2) < 0 to see these effects. Therefore we
choose a different negative value for ρ(2) in each example.

For these choices of ρ(i), i ∈ {1, 2, 3}, Proposition 5.1 shows that it is optimal to first sell
during (0, 1), change this to a buy program on (1, 2) to profit from the negative resilience
during that time interval, and then sell again during (2, 3). Moreover, since ρ(1) and ρ(3)

are positive, we can already derive (e.g., by Proposition 4.3) that β < 1 on [0, 1) and on
[2, 3), and hence that X∗ is strictly positive on [0, 1) and on [2, 3) due to x − d

γ0
= 1.

Between Examples 5.2, 5.3, and 5.4 we vary the size of ρ(2) < 0. This then determines if
we get overjumping zero or premature closure for the optimal strategy. Recall that β in all
examples has jumps at t = 1 and t = 2 and is continuous on (0, 1), (1, 2), and (2, 3), with
values strictly smaller than 1 on [0, 1) and [2, 3). The facts that ρ(1) = 0.1, μ = 0.5, and
Y1 ∈ (0, 1/2] yield that also β1− < 1. We moreover have that (1 − βt−)(1 − βt ) > 0 for
all t ∈ [0, 1) ∪ (2, 3). This, continuity of β on (1, 2), β1− < 1, and β2 < 1 imply that
overjumping zero is optimal if and only if at least one of

β1 = ρ(2) + 1
2

ρ(2) + 1
4

Y1 > 1 (25)

and

β2− = ρ(2) + 1
2

ρ(2) + 1
4

Y2 > 1 (26)

is satisfied. Premature closure is optimal if and only if

there exists t ∈ [1, 2] such that (1− βt−)(1− βt ) = 0. (27)

The resilience ρ, the function β, and the optimal strategy X∗ for each of the examples below
are shown in Fig. 1.

Example 5.2 We choose ρ(2) = −0.05. The first row in Fig. 1 shows that β stays strictly
smaller than one also on [1, 2), and hence the optimal strategy X∗ is strictly positive on the
time interval [0, 3). We conclude that, in general, a period of negative resilience does not
necessarily lead to overjumping zero or premature closure.
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Fig. 1 Top row: ρ, β, and X∗ in Example 5.2. Middle row: ρ, β, and X∗ in Example 5.3. Bottom row: ρ, β,
and X∗ in Example 5.4

Example 5.3 We next provide an example where negative resilience indeed leads to over-
jumping zero and premature closure. To this end we choose ρ(2) = −0.09 in the above
set-up. From the second row of Fig. 1 we observe that β jumps above 1 at time t = 1, but
then decays continuously below 1 already before its next jump at t = 2. It therefore holds
that (25) and (27) are satisfied. We thus have overjumping zero as well as premature closure
for the optimal strategy. This implies (recall x − d

γ0
= 1) that the optimal strategy jumps to a

negative value at time t = 1 and crosses 0 within the time interval (1, 2) to become positive
again. Note that the set of points in time t ∈ [0, T ) for which we have βt > 1 is strictly
included in the set where ρt < 0 (which is [1, 2)).

Example 5.4 We finally provide an example where the set of points in time t ∈ [0, T ) for
which we have βt > 1 is equal to the set where ρt < 0. This means that the time periods
with negative resilience exactly coincide with the time periods where the optimal strategy is
negative. We achieve this for example for ρ(2) = −0.15 in the above set-up (see the third
row of Fig. 1). In particular, (25) is satisfied, i.e., overjumping zero is optimal. Furthermore,
one can compute that (26) holds true as well. It follows that condition (27) is not met, and
therefore, premature closure is not optimal. Note that the optimal strategy changes its sign
twice, but does not continuously cross 0.
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5.2 A case study with piecewise constant resilience and stochastic optimal
strategies

We here consider a similar setting as in Sect. 5.1, but now σ can be a deterministic constant
different from 0. Although the solution of BSDE (7) and the process β = β̃ are still determin-
istic, the optimal strategy X∗ and its associated deviation D∗ in general become stochastic.
The properties derived in Proposition 5.1 that D∗ is constant between jumps and that X∗ is
monotone between jumps then no longer hold. However, we can produce the main effects
discussed in Examples 5.2, 5.3, and 5.4 also in the case with nonzero σ . Let σ = √0.1,
μ = 0.5, x = 1, d = 0, γ0 = 1, T = 3. Assume ρ as in Proposition 5.1 with N = 3, T0 = 0,
T1 = 1, T2 = 2, T3 = T , ρ(1) = 0.1, ρ(3) = 1, and a ρ(2) < 0 chosen appropriately for
each example. Then, for ρ(2) = −0.05, we see that β < 1 everywhere, which implies that
neither overjumping zero nor premature closure is optimal (cf. the first row of Figure 2). This
is just as in Example 5.2. In order to obtain the same effect as in Example 5.3, we consider
ρ(2) = −0.07. Then, {t ∈ [0, T ) : βt > 1} � {t ∈ [0, T ) : ρt < 0}, and β jumps above 1
in t = 1 and goes through 1 on (1, 2) (cf. the second row of Figure 2). Consequently, both
overjumping zero and premature closure are optimal in this case. If we set ρ(2) = −0.15,
we observe that {t ∈ [0, T ) : ρt < 0} = [1, 2) = {t ∈ [0, T ) : βt > 1} (cf. the third row

Fig. 2 Top row: β, a path of X∗, and the corresponding path of D∗ for σ = √0.1 and ρ(2) = −0.05. Middle
row: β, a path of X∗, and the corresponding path of D∗ for σ = √0.1 and ρ(2) = −0.07. Bottom row: β, a
path of X∗, and the corresponding path of D∗ for σ = √0.1 and ρ(2) = −0.15
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of Figure 2), and that overjumping zero is optimal, but premature closure is not. This is the
analogon of Example 5.4.

5.3 A case study with premature closure over a time interval

In Example 5.3 the optimal strategy entails to close the position at a certain point in time and
reopen it immediately. On the other hand, in the case ρ ≡ 0, it is optimal to close the position
immediately and not to reenter trading (cf. Proposition 3.7 Ackermann et al. (2021a)). In the
same way we can show that if, say, ρ = 0 on (T1, T ), for some T1 ∈ (0, T ), then the optimal
strategy X∗ satisfies X∗. = 0 on [T1, T ] (and it can involve non-trivial trading on [0, T1]
depending on behaviour of the model parameters on (0, T1)). Keeping the position closed
during a time interval and reopening again is more tricky, but also possible, as we show next.
For an illustration, we refer to Fig. 3.

Let T1, T2 ∈ (0, T ) such that T1 < T2. Suppose that σ 2 > 0 is a deterministic constant
and that μ = σ 2 + 2. For deterministic ρ(1) > −1, ρ(3) > 0, and κ > 0 let

ρt =

⎧
⎪⎨

⎪⎩

ρ(1), t ∈ [0, T1),
(
κe2(t−T ) + 1

)−1/2 − 1, t ∈ [T1, T2),
ρ(3), t ∈ [T2, T ].

(28)

Fig. 3 The resilience ρ, β, a path of the optimal strategy X∗, and the corresponding path of the deviation D∗
in the setting where σ and μ = σ 2 + 2 are deterministic constants and ρ is defined as in (28). The specific
parameter values are x = 1, d = 0, γ0 = 1, σ = 1, T = 3, T1 = 1, T2 = 2, ρ(1) = 0.01, ρ(3) = 1, and
κ = 2.416. Observe that β = 1 and X∗ = 0 between t = 1 and t = 2
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Note that (1) and (2) are satisfied. Let Y be the unique solution of the ODE (cf. (7) in the
current setting)

dYt = (ρt + σ 2 + 2)2Y 2
t

σ 2Yt + ρt + 1
dt − (σ 2 + 2)Ytdt, t ∈ [0, T ], YT = 1

2
. (29)

We have (10) with

βt = β̃t = (ρt + σ 2 + 2)Yt
σ 2Yt + ρt + 1

, t ∈ [0, T ].

This implies that

{t ∈ [0, T ] : βt = 1} =
{
t ∈ [0, T ] : Yt = ρt + 1

ρt + 2

}
.

In the sequel we establish that if κ is chosen such that limt↑T2
ρt+1
ρt+2 = YT2 , then

ρ+1
ρ+2 = Y on

(T1, T2). To this end, suppose7 that limt↑T2
ρt+1
ρt+2 = YT2 and define Ỹ = ρ+1

ρ+2 on (T1, T2). We

show that Ỹ is a solution of (29) on (T1, T2). It holds for all t ∈ (T1, T2) that

dỸt
dt
= 1

(ρt + 2)2
dρt

dt
= −κe2(t−T ) (ρt + 1)3

(ρt + 2)2
.

On the other hand, we obtain for all t ∈ (T1, T2) that

(ρt + σ 2 + 2)2Ỹ 2
t

σ 2Ỹt + ρt + 1
− (σ 2 + 2)Ỹt =

(
(ρt + σ 2 + 2)2(ρt + 1)

σ 2(ρt + 1)+ (ρt + 1)(ρt + 2)
− (σ 2 + 2)

)
ρt + 1

ρt + 2

= ρt
ρt + 1

ρt + 2
.

In order to show that

− κe2(t−T ) (ρt + 1)3

(ρt + 2)2
= ρt

ρt + 1

ρt + 2
, t ∈ (T1, T2), (30)

note first that this is equivalent to

−κe2(t−T )(ρt + 1)2 = ρt (ρt + 2), t ∈ (T1, T2).

Denoting at = κe2(t−T ), t ∈ (T1, T2), and using ρt + 1 = (at + 1)− 1
2 , t ∈ (T1, T2), we can

rewrite this as

−at (at + 1)−1 =
(
(at + 1)−

1
2 − 1

) (
(at + 1)−

1
2 + 1

)
, t ∈ (T1, T2).

The right hand side equals (at + 1)−1 − 1, t ∈ (T1, T2). We thus obtain the equivalent
equation

−at = 1− (at + 1), t ∈ (T1, T2),

which clearly holds true. This proves (30). Thus, by uniqueness of the solution of (29) and
limt↑T2

ρt+1
ρt+2 = YT2 , we have Y = ρ+1

ρ+2 on (T1, T2). This implies that β = 1 on (T1, T2). It
follows that for all x, d ∈ R, almost all paths of the optimal strategy X∗ (cf. (11)) equal 0

7 Observe that to determine YT2 it suffices to consider ρ only on [T2, T ]. In particular, YT2 does not depend on
the choice of κ .Moreover, asρ(3) �= 0,we haveYT2 ∈ (0, 1/2) (via a straightforward comparison argument for

(29)). Therefore, we can set κ = e2(T−T2)(1−2YT2 )Y
−2
T2

> 0. It follows for this κ that limt↑T2
ρt+1
ρt+2 = YT2 .
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on [T1, T2). Finally, observe that if x, d ∈ R with x �= d
γ0
, then almost all paths of X∗ are

nonzero everywhere on [T2, T ) because, on [T2, T ), we have Y ≤ 1
2 <

ρ(3)+1
ρ(3)+2 , as ρ(3) > 0,

i.e., Y = ρ+1
ρ+2 holds nowhere on [T2, T ).
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