
Brill, Markus; Israel, Jonas; Micha, Evi; Peters, Jannik

Article  —  Published Version

Individual representation in approval-based committee
voting

Social Choice and Welfare

Provided in Cooperation with:
Springer Nature

Suggested Citation: Brill, Markus; Israel, Jonas; Micha, Evi; Peters, Jannik (2024) : Individual
representation in approval-based committee voting, Social Choice and Welfare, ISSN 1432-217X,
Springer, Berlin, Heidelberg, Vol. 64, Iss. 1, pp. 69-96,
https://doi.org/10.1007/s00355-024-01563-w

This Version is available at:
https://hdl.handle.net/10419/318559

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00355-024-01563-w%0A
https://hdl.handle.net/10419/318559
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Social Choice and Welfare (2025) 64:69–96
https://doi.org/10.1007/s00355-024-01563-w

ORIG INAL PAPER

Individual representation in approval-based committee
voting

Markus Brill1,2 · Jonas Israel1 · Evi Micha3,4 · Jannik Peters1,5

Received: 13 May 2022 / Accepted: 29 August 2024 / Published online: 8 November 2024
© The Author(s) 2024

Abstract
When selecting multiple candidates based on approval preferences of voters, the
proportional representation of voters’ opinions is an important and well-studied
desideratum. Existing criteria for evaluating the representativeness of outcomes focus
on groups of voters and demand that sufficiently large and cohesive groups are “rep-
resented” in the sense that candidates approved by some group members are selected.
Crucially, these criteria say nothing about the representation of individual voters, even
if these voters are members of groups that deserve representation. In this paper, we for-
malize the concept of individual representation (IR) and explore to which extent, and
under which circumstances, it can be achieved. We show that checking whether an IR
outcome exists is computationally intractable, andwe verify that all common approval-
based voting rules may fail to provide IR even in cases where this is possible. We then
focus on domain restrictions and establish an interesting contrast between “voter inter-
val” and “candidate interval” preferences. This contrast can also be observed in our
experimental results, where we analyze the attainability of IR for realistic preference
profiles.
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70 M. Brill et al.

1 Introduction

Weconsider the problemof selecting afixed-size subset of candidates (a so-called com-
mittee) based on the approval preferences of voters. This problem has been extensively
studied in recent years (Lackner and Skowron 2022) and has a wide variety of applica-
tions, including political elections (Brill et al. 2024b), recommender systems (Skowron
et al. 2017), medical diagnostic decision-making (Gangl et al. 2019), blockchain con-
sensus protocols (Boehmer et al. 2024), and participatory budgeting (Peters et al.
2021b).

A central concern in committee voting is the principle of proportional repre-
sentation, which states that the voters’ interests and opinions should be reflected
proportionately in the committee. While proportional representation is intuitive to
understand in scenarios such as apportioning parliamentary seats based on vote shares
(Balinski and Young 1982; Pukelsheim 2014), it is less straightforward to formalize in
the context of approval-based committee elections. Indeed, the literature has defined
a number of different concepts aiming to capture proportional representation (Aziz
et al. 2017; Sánchez-Fernández et al. 2017; Peters and Skowron 2020; Skowron 2021;
Peters et al. 2021b; Brill and Peters 2023).

Most (if not all) of these approval-based proportionality notions focus on the repre-
sentation of groups of voters. Specifically, it is usually required that each sufficiently
large group of voters is “represented” in the committee,1 where the interpretation of
“representation” differs across different notions. For example, extended justified rep-
resentation (Aziz et al. 2017) prescribes that there exists at least one voter in the group
approving a certain number of committee members, whereas proportional justified
representation (Sánchez-Fernández et al. 2017) demands that there are sufficiently
many committee members that are each approved by at least one voter in the group.
Notably, neither definition comprises any representation requirements for individual
voters in a group. Thus, a group may count as “represented” even though some voters
in the group do not approve a single committee member.2

In this paper, we adopt an individualistic point of view: our goal is to provide all
members of a voter group equal guarantees. Intuitively, when a population consists of
n voters and a committee of k representatives is elected, we expect every cohesive voter
group of size � ·n/k to be represented by � representatives in the committee; thus, each
individual group member might reasonably hope that at least � candidates represent
her in the committee. This notion, which we call individual representation, is aligned
with the notion of “individual fairness” that was recently introduced in clustering (and
in particular in facility location problems) by Jung et al. (2020): there, each individual
expects to be served by a facility in distance proportional to the radius of the ball that
captures its n/k closest neighbors, where n is the number of individuals and k is the
number of facilities.

1 Often, there is also a condition on the “cohesiveness” of the group, stating that the approval preferences
of group members need to be sufficiently aligned. This requirement is extensively discussed by Brill and
Peters (2023).
2 Axioms like extended justified representation offer significant lower bounds on the average satisfaction
of a voter group (e.g., a high proportionality degree (Skowron 2021)). However, this still does not ensure
representation of voters on the individual level.
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Individual representation in approval-based committee voting 71

Individual representation, as defined in this paper, is a strengthening of a notion
called semi-strong justified representation by Aziz et al. (2017). The latter property
requires that all members of a group are represented in the committee at least once,
given that the group is large and cohesive enough. Individual representation strengthens
this requirement by demanding that all members of cohesive groups are represented
multiple times (in proportion to the group size). Aziz et al. (2017) observed that semi-
strong JR cannot be provided in all instances; this immediately implies our stronger
requirement is not universally attainable either.

In this paper, we systematically study individual representation (IR). Notwithstand-
ing the observation that IR demands cannot always bemet, we clarify how IR relates to
existing axioms and we show that a large range of common approval-based committee
voting rules can fail to provide IR even in cases where IR is achievable. We observe
that even committees approximating IRmay fail to exist. Moreover, we answer a ques-
tion by Aziz et al. (2017) by showing that it is computationally intractable to decide
whether a given instance admits a committee providing semi-strong JR or individ-
ual representation. We then turn our attention to restricted domains of preferences
(Elkind and Lackner 2015; Yang 2019) and demonstrate that positive results can be
obtained. Doing so, we uncover a striking difference between the candidate interval
and voter interval domains: whereas the former restriction does not admit any non-
trivial approximation of IR, we devise an efficient algorithm for selecting committees
approximating IR for the latter. This is surprising insofar as these two domain restric-
tions often exhibit similar behavior (Pierczyński and Skowron 2022; Terzopoulou
et al. 2021).3 Finally, we experimentally study how often IR is achievable for a wide
variety of generated preference data, and how often established voting rules select IR
outcomes.

2 Preliminaries

For t ∈ N, we let [t] denote the set {1, 2, . . . , t}. Let N = [n] be a set of n voters
and C = {c1, . . . , cm} be a set of m candidates. Each voter i ∈ N approves a subset
Ai ⊆ C of candidates. An (approval) profile A = (A1, . . . , An) contains the approval
set Ai of each voter i ∈ N .We often illustrate approval profiles graphically, see Figs. 1,
2, and 4.

Given a committee size k ∈ [m], we want to select a subsetW ⊆ C of size |W | = k,
referred to as a committee.We call (A, k) anapproval-based committee (ABC) election.
An ABC voting rule takes as input an ABC election (A, k) and outputs one or more
committees of size k.

As is standard in the ABC election literature, we assume that voters only care about
the number of approved candidates in the committee, i.e., voter i evaluates a committee
W by |W ∩ Ai |. Given a subset S ⊆ C of candidates, we let N (S) denote the set of
voters who approve all candidates in S, i.e., N (S) = {i ∈ N : S ⊆ Ai }.

3 A notable exception is the work by Peters (2018), who derives polynomial-time algorithms for the
candidate interval domain, but not for the voter interval domain.
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72 M. Brill et al.

Given an ABC election (A, k) and � ∈ N, we call a group V ⊆ N of voters
�-cohesive if |V | ≥ � · n

k and |⋂i∈V Ai | ≥ �. The following representation notions
are due to Aziz et al. (2017) and Sánchez-Fernández et al. (2017).

Definition 1 Consider anABC election (A, k). A committeeW ⊆ C of size k provides

• justified representation (JR) if for each 1-cohesive group V ⊆ N , there is a voter
i ∈ V with |W ∩ Ai | ≥ 1;

• proportional justified representation (PJR) if for each � ∈ N and each �-cohesive
group V ⊆ N , it holds that |W ∩ (

⋃
i∈V Ai )| ≥ �;

• extended justified representation (EJR) if for each � ∈ N and each �-cohesive
group V ⊆ N , there is a voter i ∈ V with |W ∩ Ai | ≥ �;

• core stability if for each group V ⊆ N (independent of V being �-cohesive) and
S ⊆ C with |V | ≥ |S| · n

k , there is a voter i ∈ V with |W ∩ Ai | ≥ |S ∩ Ai |.
It is well-known that core stability implies EJR, which in turn implies PJR, which

implies JR (Aziz et al. 2017; Sánchez-Fernández et al. 2017). All of these notions have
in common that they consider a group of voters “represented” as long as at least one
voter in the group is sufficiently represented. This point of viewmight be hard to justify
in many contexts. In the following section, we present our approach to representation
that takes into account every voter in a group individually.

3 Individual representation

In this section, we define the main concept of this paper: individual representation.
This notion builds on the idea of (semi-)strong justified representation as defined by
Aziz et al. (2017) and the notion of individual fairness in clustering as defined by Jung
et al. (2020).

Similarly to the proportionality notions defined in Sect. 2, we assume that a voter
deserves some representation in an ABC election if she can find enough other voters
who all approve a subset of candidates in common. This follows the rationale that
every member of a group of voters that (i) makes up a sizable part of the electorate
and (ii) can come to an agreement on how (part of) the committee ought to be filled,
should be represented accordingly.

Given an ABC election (A, k), we determine the number of seats that voter i ∈ N
can justifiably demand as

fi := max
S⊆Ai

{|S| : |N (S)| ≥ |S| · n/k}.

In words, fi is the largest value f such that voter i can find enough like-minded
voters to form an f -cohesive group. In particular, fi = 0 for all voters i who are not
contained in any cohesive group of size at least n/k.

Definition 2 (Individual Representation) Given an ABC election (A, k), a committee
W ⊆ C of size |W | ≤ k provides individual representation (IR) if |W ∩ Ai | ≥ fi for
all voters i ∈ N .
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Individual representation in approval-based committee voting 73

Fig. 1 Approval profile showing that IR committees do not always exist. Voters correspond to integers and
approve all candidates placed above them. For k = 3, we have n/k = 3 and fi = 1 for each voter i ∈ [9].
Clearly, there is no W ⊆ {c1, c2, c3, c4} of size |W | ≤ 3 that satisfies |W ∩ Ai | ≥ 1 for all i . This instance
appears in the paper by Aziz et al. (2017) as Example 7

When only requiring W ∩ Ai �= ∅ for every voter with fi > 0, we get semi-strong
justified representation (semi-strong JR) as defined by Aziz et al. (2017). The authors
of that paper provide an example showing that semi-strong JR committees do not
always exist (see Fig. 1). Since individual representation clearly is a more demanding
property, it immediately follows that IR committees (i.e., committees providing IR)
do not need to exist either.

Observation 1 There exist instances of ABC elections that do not admit an IR com-
mittee.

One immediate follow-up question is whether we can guarantee IR in an approx-
imate sense. To study this question, we introduce the notion of (α, β)-individual
representation, which uses additive and multiplicative approximation parameters.

Definition 3 ((α, β)-IR) Given an ABC election (A, k), a committeeW ⊆ C of size at
most k provides (α, β)-individual representation ((α, β)-IR) if for every voter i ∈ N
it holds that α · |Ai ∩ W | + β ≥ fi , with α ≥ 1 and β ≥ 0.

Unfortunately, non-trivial approximation guarantees are impossible to obtain with-
out restricting the set of profiles.

Theorem 2 For every k ≥ 2, there exists an instance (A, k) that does not admit an
(α, β)-IR committee for β < k − 1, and any α ≥ 1.

Proof Fix k ≥ 2 and let n = k · (k + 1). Note that n/k = k + 1 > k. Consider the
profile in which for each voter i ∈ [n/k], we have Ai = {c(k−1)·(i−1)+1, . . . , c(k−1)·i }
and all remaining n − n/k voters approve all candidates. That is, the approval sets of
the first n/k voters are pairwise disjoint and contain k − 1 candidates each.

For every voter i ∈ [n/k]we get that |N (Ai )| = 1+(n−n/k) = 1+(k−1)(k+1).
Since n/k = k + 1, this implies that fi = k − 1 for all i ∈ [n/k]. Further, for all
distinct voters i, i ′ ∈ [n/k] it holds that Ai ∩ Ai ′ = ∅. However, since n/k > k, for
each W ⊆ C with |W | ≤ k there is a voter i ∈ [n/k] with |Ai ∩ W | = 0. Thus, for
any α ≥ 1 and β < k − 1, this instance does not admit an (α, β)-IR committee. 
�

To see that this bound on β is the worst-possible, note that if fi = k for some voter
i , this means that all voters have a set of at least k jointly approved candidates (and a
committee consisting of such candidates would provide IR). On the other hand, every
committee trivially provides (1, k − 1)-IR whenever fi < k for all i ∈ N . We study
approximation bounds for (α, β)-IR on restricted domains in Sect. 4.
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74 M. Brill et al.

Fig. 2 Two profiles admitting IR committees that are not identified by common voting rules or proportion-
ality axioms

3.1 Relation to other proportionality axioms

We have already observed that IR is a strengthening of semi-strong JR. Furthermore,
it is easy to see that every IR committee also provides EJR (and thus PJR and JR). On
the other hand, there exist profiles where semi-strong JR committees exist that do not
provide PJR. To build intuition on how IR differs from the other notions, and on how it
leads to the election of committees that might be considered “fair” from an individual
voter perspective, consider the following two examples, illustrated in Fig. 2.

Example 1 The first part of Fig. 2 shows an approval profile with 8 voters and 3 can-
didates. Assuming k = 2, every voter i ∈ N has fi = 1. Thus, the only committee
providing IR is W = {c1, c2}, which represents every voter once and, moreover, sat-
isfies core stability. However, both W ′ = {c1, c3} and W ′′ = {c2, c3} are core stable
as well (and in fact would be selected when choosing a committee maximizing the
total number of approvals). Many common ABC voting rules would select either W ′
or W ′′ (see Proposition 5). One can argue that committee W is a “fairer” or “more
representative” choice in this example.

Example 2 The second part of Fig. 2 shows an approval profile with 12 voters and
10 candidates. For k = 6, we have fi = 1 for i ∈ {1, . . . , 4} and fi = 2 for i ∈
{5, . . . , 12}. Here, the only committee providing IR is W = {c1, c2, c3, c4, c9, c10},
representing each of the first four voters once, while representing all other voters at
least twice. This committee is not core stable, because the group consisting of voters
5 to 12 would prefer {c5, c6, c7, c8} to W . In order to appreciate the IR committee W ,
consider voters 1 to 4 andobserve that these voters are completely “symmetric.”Hence,
from an “equal treatment of equals” perspective, if one of them is represented by an
approved candidate in the committee, the same should hold for the others. In fact, the
only core-stable committees that provide this kind of symmetry are {c5, . . . , c10}, in
which one third of the electorate is not represented at all, or committees containing
only two candidates among c5 to c8. In the latter case, by noticing that voters 9 to
12 are “symmetric” as well, we can argue similarly as above that they are not treated
equally. Thus, the committee W that uniquely provides IR might be considered the
“fairest” choice under an individualistic point of view.
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Individual representation in approval-based committee voting 75

Fig. 3 Relationships between different notions of representation. An arrow from X to Y signifies that X
implies Y . A committee providing one of the shaded notions does not always exist (the case for core stability
is an open problem). PR is defined in Appendix B

Fig. 4 Profile showing that
semi-strong JR is incompatible
with PJR, EJR, and core stability

The instance in Example 2 shows that core stability and individual representation
are incompatible in the strong sense that for this instance, the (nonempty) set of IR
committees and the (nonempty) set of core-stable committees are disjoint.

Proposition 3 IR is incompatible with core stability.

Next, we show further incompatibility results for semi-strong JR.

Proposition 4 Semi-strong JR is incompatible with PJR, EJR, and core stability.

Proof Consider an ABC election with n = 8, k = 4 and the following approval
profile: A1 = · · · = A4 = {c1, c2}, A5 = {c3, c4, c5}, A6 = {c3}, A7 = {c4}, and
A8 = {c5}. For an illustration of this instance, see Fig. 4. As f6 = f7 = f8 = 1, every
committeeW that provides semi-strong JRmust satisfy {c3, c4, c5} ⊆ W . But then we
have |W ∩ (∪i∈[4]Ai )| = 1, even though the first four voters form a 2-cohesive group.
As a consequence semi-strong JR is incompatible with PJR and EJR. Moreover, as in
this instance the core is nonempty (e.g., the committee {c1, c2, c3, c4} is core stable),
we can also deduce that semi-strong JR is incompatible with core stability. 
�

In Appendix B we also establish the relation between perfect representation (PR)
as defined by Sánchez-Fernández et al. (2017) and the two axioms we are interested
in. A graphical representation of the results of this section can be found in Fig. 3.

3.2 ABC rules violating IR

Next, we consider the question whether we can find ABC rules that select IR commit-
tees whenever they exist. This question was already raised by Aziz et al. (2017) in the
context of semi-strong JR, but remained open. In other words, we look for rules that
are “consistent” with individual representation.

Definition 4 (IR-consistency) An ABC rule is consistent with individual representa-
tion, or short IR-consistent, if it outputs at least one IR committee for every ABC
election that admits one.
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76 M. Brill et al.

Consistencywith semi-strong JR can be defined analogously.We show that all com-
mon ABC voting rules fail consistency with respect to both IR and semi-strong JR.4

Example 1 already rules out any rule that always selects one of the candidates
with the highest numbers of approvals, so-called approval winners. In particular, this
class of rules includes all common committee-monotonic ABC rules as well as other
“sequential” rules like the Method of Equal Shares (MES), as these rules select one
of the approval winners in the very first round.5

Proposition 5 No ABC voting rule that always selects one of the approval winners is
IR-consistent.

Moreover, the rules PAV, Satisfaction-AV, and reverse-seqPAV select only commit-
tees including c3 in Example 1, and thus fail IR-consistency as well. In Appendix C
we provide additional examples showing that all remaining ABC rules mentioned in
Table 4.1 of the survey by Lackner and Skowron (2022) fail IR-consistency as well.

3.3 Computational complexity

Another open problem stated by Aziz et al. (2017) concerns the computational com-
plexity of deciding whether a given ABC election admits a committee providing
semi-strong JR. We settle this question and the analogous one for individual rep-
resentation by showing that both problems are NP-hard.

Theorem 6 It is NP-hard to decide whether an ABC election admits an IR committee
or a semi-strong JR committee.

Proof We reduce from exact cover by 3-sets. Here, we are given a set of elements
X = {x1, . . . , x3�} and a collection T ⊆ 2X of 3-element subsets of X . The goal is to
find a partition of X into sets from T . The problem is NP-hard even if each element
appears in exactly three sets (Garey and Johnson 1979).We construct an ABC instance
by setting N = X andC = {ci | Ti ∈ T }, i.e., for each Ti ∈ T we have a candidate ci .
Further, for each set Ti = {xi1 , xi2 , xi3} the candidate ci is approved exactly by voters
xi1 , xi2 , and xi3 . We set k = �. Hence, only groups of 3 voters corresponding to sets
in T are 1-cohesive, and we get fxi ≥ 1 for each xi ∈ X .

Every exact cover by 3-sets corresponds to a committee of size k where every voter
is represented exactly once and thus provides IR in this instance. Conversely, every
IR committee of the constructed ABC instance corresponds to a selection of sets from
T such that every element in X is covered exactly once. Since fi = 1 for every voter,
the same argument holds for semi-strong JR as well. 
�

Moreover, it is hard to compute a voter’s fi -value.

4 Since neither IR nor semi-strong JR is always achievable (and semi-strong JR may be achievable in
instances where IR is not) we can, in general, not deduce consistency regarding one of the notions from
consistency regarding the other. However, all our examples in this section satisfy fi ≤ 1 for all voters i ,
such that semi-strong JR and IR coincide.
5 For definitions of ABC rules not defined in this paper, we refer the reader to the survey by Lackner and
Skowron (2022). For a formal definition of sequentiality, see Brill et al. (2023).
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Individual representation in approval-based committee voting 77

Theorem 7 Given an ABC instance, a voter i ∈ N, and j ∈ N, it is NP-complete to
decide whether fi ≥ j holds.

Proof It is easy to see that this problem is in NP since any subset of voters including
voter i of size j · n

k and any subset of candidates of size j approved by all selected
voters serves as a witness.

We reduce from balanced complete bipartite subgraph. Here, we are given a bipar-
tite graph G = (V1 ∪ V2, E) and an integer j and the goal is to decide whether G has
K j, j as a subgraph, i.e., a subgraph consisting of j vertices from V1 and j vertices
from V2 forming a bipartite clique. The problem is known to be NP-hard (Garey and
Johnson 1979). We construct an ABC instance by setting N = V1∪{x},C = V2 ∪{y}
and k = |V1| + 1. Thus, n

k = 1. Each v ∈ V1 approves exactly its neighbors in G, as
well as y, while x approves all candidates. It follows that fx ≥ j + 1 if and only if
there is a set of j voters different from x approving at least a common set of j + 1
candidates. Since all voters approve y, this is equivalent to these j voters all approving
j candidates different from y and therefore by definition all being connected to these
j vertices in V2. Thus, they form a K j, j if and only if fx ≥ j + 1. 
�

4 Domain restrictions

Wehave seen (Theorem 2) that non-trivial approximations of individual representation
are impossible to obtain in general. In this section, we explore whether this negative
result can be circumvented by considering restricted domains of preferences. Domain
restrictions for dichotomous (i.e., approval) preferences have been studied by Elkind
and Lackner (2015) and Yang (2019).

Restricting attention to a well-structured domain often allows for axiomatic and
algorithmic results that are not achievable otherwise (Elkind et al. 2017). In the ABC
setting, for example, it has recently been shown that a core-stable committee always
exists in certain restricted domains (Pierczyński and Skowron 2022), whereas the
existence of such committees is an open problem for the unrestricted domain.

We start by recalling the definitions of two classic restricted domains of dichoto-
mous preferences: candidate interval and voter interval (Elkind and Lackner 2015).

Definition 5 (Candidate Interval) An approval profile A satisfies candidate interval
(CI) if there is a linear order over the candidates C such that for every voter i ∈ N ,
the approval set Ai forms an interval of that order.

Definition 6 (Voter Interval) An approval profile A satisfies voter interval (VI) if there
is a linear order over the voters N such that for every candidate c j ∈ C , the set N ({c j })
of voters approving c j forms an interval of that order.

The profile in Example 1 satisfies both candidate interval and voter interval. In fact,
a voter order witnessing VI is given in Fig. 2. To see that the profile satisfies CI as well,
consider the order (c1, c3, c2). The profile in Example 2, on the other hand, satisfies
neither CI nor VI.
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Algorithm 1 (2, 4)-IR for Voter Interval Profiles
1: W0 ← ∅ // Round 1
2: for i = 1 to n do
3: Si ← ∅
4: if |Wi−1 ∩ Ai | <

⌊|N≥i | · k/(2n)
⌋
then

5: Let Si be an arbitrary subset of S∗
i of size equal to

⌊|N≥i | · k/(2n)
⌋ − |Wi−1 ∩ Ai | such that

|Si ∩ Wi−1| is minimized
6: end if
7: Wi ← Wi−1 ∪ Si
8: end for
9: Ŵ0 ← ∅ // Round 2
10: for i = n to 1 do
11: Si ← ∅
12: if |Ŵn−i ∩ Ai | < �|N<i | · k/(2n)� then
13: Let Si be an arbitrary subset of S∗

i of size equal to �|N<i | · k/(2n)� − |Ŵn−i ∩ Ai | such that

|Si ∩ (Ŵn−i ∪ Wn)| is minimized
14: end if
15: Ŵn−i+1 ← Ŵn−i ∪ Si
16: end for
17: S ← an arbitrary subset of C with S ∩ (Wn ∪ Ŵn) = ∅ and |S| = k − |Wn | − |Ŵn |
18: return Wn ∪ Ŵn ∪ S

Elkind and Lackner (2015) have shown that it can be checked in polynomial time
whether a profile satisfies CI or VI. (If the answer is yes, a linear order over candi-
dates/voters can be found efficiently as well.)

Our first observation is that the candidate interval domain is not helpful for our
purposes: Indeed, the approval profile used to establish Theorem 2 can easily be seen
to satisfy CI. Thus, restricting preferences in this way does not yield any improved
bounds.

Corollary 8 For every k ≥ 2, there exists a CI profile A such that (A, k) does not admit
an (α, β)-IR committee with β < k − 1 and any α ≥ 1.

Now, we turn our attention to the voter interval domain. Due to the similarity
between VI and CI, one might expect a similar result here. Surprisingly, however,
we can prove a positive result for VI: We provide an algorithm that finds a (2, 4)-IR
committee in polynomial time for any VI profile.

Before describing the high level idea of our algorithm, we state a useful property
of VI profiles. Without loss of generality, we assume that the linear order witnessing
VI is given by (1, . . . , n). Moreover, for a, b ∈ Z with a ≤ b, we let [a, b] denote the
integer interval {a, a + 1, . . . , b}.
Observation 9 Let i1, i2, i3 ∈ [n] such that i1 < i2 < i3. For any S ⊆ C, if i1 ∈ N (S)

and i3 ∈ N (S), then i2 ∈ N (S).

Let S∗
i ∈ argmaxS⊆Ai

{|S| : |N (S)| ≥ |S|·n/k}, i.e., a largest subset of Ai approved
by sufficiently many voters to validate the fi -value. (If multiple such sets exist, we
pick one of them arbitrarily.) From Observation 9 we know that if i1 and i2 exist such
that i1 < i2 < i or i < i2 < i1, and if i1 ∈ N (S∗

i ), then i2 ∈ N (S∗
i ), i.e., N (S∗

i ) forms
an interval of the order of voters including i .
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Further, let N<i := {i ′ ∈ N (S∗
i ) : i ′ < i} denote the set of voters in N (S∗

i ) that
are ordered before i and let N≥i := {i ′ ∈ N (S∗

i ) : i ′ ≥ i} denote the set of voters in
N (S∗

i ) that are ordered after i (including i itself).

Observation 10 For each voter i , there exist ai ∈ [1, i] and bi ∈ [i, n] such that
N<i = [ai , i − 1] and N≥i = [i, bi ].

Using this observation and the fact that fi = |S∗
i | ≤ (|N<i |+|N≥i |)·k/n, Algorithm

1 returns a (2, 4)-IR committee W for any VI profile as follows. In the first round,
iterating from voter i = 1 to n, it selects at least

⌊|N≥i | · k/(2n)
⌋
candidates that are

approved by voter i . In the second round, iterating from voter i = n to 1, it selects at
least �|N<i | · k/(2n)� candidates that are approved by voter i (excluding the candidates
that are selected in the first round). Together, this ensures |W ∩ Ai | ≥ fi/2−2, where
W is the set of selected candidates.

Theorem 11 For every instance (A, k) such that A satisfies voter interval, Algorithm
1 returns a (2, 4)-IR committee in polynomial time.

Proof Let W = Wn ∪ Ŵn ∪ S be the committee returned by Algorithm 1, and let
f≥i = |N≥i | ·k/n and f<i = |N<i | ·k/n. In the first round we ensure that |Wn ∩ Ai | ≥⌊
f≥i/2

⌋
, as at iteration i if |Wi−1∩Ai | <

⌊
f≥i/2

⌋
, we include

⌊
f≥i/2

⌋−|Wi−1∩Ai |
candidates into Wi that are not already included. Similarly, in the second round we
ensure that |Ŵn ∩ Ai | ≥ � f<i/2� as at iteration n− i+1 if |Ŵn−i ∩ Ai | < � f<i/2�, we
include � f<i/2� − |Ŵn−i ∩ Ai | candidates into Ŵn−i+1 that are not already included.
As fi ≤ f≥i + f<i , for each i ∈ N we have that

|W ∩ Ai | ≥ ⌊
f≥i/2

⌋ + � f<i/2� ≥ fi/2 − 2,

and therefore 2 · |W ∩ Ai | + 4 ≥ fi . Thus, we conclude that W provides (2, 4)-IR.

Now we show that |Wn| ≤ k/2 and |Ŵn| < k/2. We first consider Wn .

Lemma 12 |Wi | ≤ ((i−1)+|N≥i |)·k
2n for all i ∈ [n].

Proof We prove the lemma using induction. For i = 1, W1 = ⌊
f≥1/2

⌋ ≤ |N≥1|·k
2n and

the statement holds. Assume that for all t ′ < t , we have |Wt ′ | ≤ ((t ′−1)+|N≥t ′ |)·k
2n .

We show that the statement holds for Wt . Note that

|Wt | = |Wt−1| + ⌊
f≥t/2

⌋ − |Wt−1 ∩ At | (1)

as at iteration t , the algorithm adds
⌊
f≥t/2

⌋ − |Wt−1 ∩ At | candidates to Wt . Let
t∗ = max{r ∈ {0, . . . , t−1} : t ∈ N (S∗

t−r )}. In words, t∗ denotes the leftmost voter in
the linear order (1, . . . , n) such that t approves N (S∗

t∗). Note that [t− t∗, t] ⊆ N (S∗
t∗).

First, assume that t∗ = 0. This means that t does not approve any N (S∗
t ′′) for t

′′ < t .
From this we get that |N≥t−1| = 1, since N≥t−1 is an interval that contains agents to

123



80 M. Brill et al.

the right side of t − 1 (including t − 1), but since t is not part of this interval, no agent
to the right of t can be part of it either. Then, from Equation (1) we have that

|Wt | ≤ ((t − 2) + |N≥t−1|) · k
2n

+ ⌊
f≥t/2

⌋ − |Wt−1 ∩ At |

≤ ((t − 2) + 1) · k
2n

+ ⌊
f≥t/2

⌋ − |Wt−1 ∩ At |

≤ (t − 1 + |N≥t |) · k
2n

.

Now assume that t∗ > 0. First, using induction, we show that

|Wt | = |Wt−r | + ⌊
f≥t/2

⌋ − |Wt−r ∩ At |

for every r ∈ [1, t∗+1]. Intuitively, this follows from the fact that all the candidates that
are added during iterations from t− t∗ up to t−1 are approved by voter t as well, since
t ∈ N (S∗

t−r ) for all r ∈ [1, t∗]. For r = 1, the claim immediately follows from Eq.
(1). Assume that for all q ′ < q it holds that |Wt | = |Wt−q ′ |+⌊

f≥t/2
⌋−|Wt−q ′ ∩ At |.

We have

|Wt−(q−1) ∩ At | = ⌊
f≥t−(q−1)/2

⌋ − |Wt−q ∩ At−(q−1)| + |Wt−q ∩ At | (2)

as at iteration t−(q−1)we add
⌊
f≥t−(q−1)/2

⌋−|Wt−q ∩ At−(q−1)| candidates from
S∗
t−(q−1) to Wt−(q−1), and as t ∈ N (S∗

t−(q−1)), these candidates are approved by t ,
too. Then,

|Wt | = |Wt−(q−1)| + ⌊
f≥t/2

⌋ − |Wt−(q−1) ∩ At |
= |Wt−q | + ⌊

f≥t−(q−1)/2
⌋ − |Wt−q ∩ At−(q−1)| + ⌊

f≥t/2
⌋ − |Wt−(q−1) ∩ At |

= |Wt−q | + ⌊
f≥t/2

⌋ − |Wt−q ∩ At |,

where the second transition follows since at iteration t − (q − 1),
⌊
f≥t−(q−1)/2

⌋ −
|Wt−q ∩ At−(q−1)| candidates are added to Wt−(q−1), and the third transition follows
from Eq. (2).

Now, we distinguish two cases.

Case 1: t∗ = t − 1. Here, we have

|Wt | = |Wt−(t∗+1)| + ⌊
f≥t/2

⌋ − |Wt−(t∗+1) ∩ At |
= |W0| + ⌊

f≥t/2
⌋ − |W0 ∩ At | = |N≥t | · k

2n
.

Case 2: t∗ ≥ 1. Here, we have

|Wt | = |Wt−(t∗+1)| + ⌊
f≥t/2

⌋ − |Wt−(t∗+1) ∩ At |
≤ (t − (t∗ + 1) − 1 + |N≥t−(t∗+1)|) · k

2n
+ |N≥t | · k

2n
≤ (t − 1 + |N≥t |) · k

2n
,
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Algorithm 2 Finding fi and S∗
i

1: fi ← 0
2: S∗

i ← ∅
3: for ai = 1 to i do
4: for bi = i to n do
5: S ← ∅
6: for j = 1 to m do
7: if {ai , . . . , bi } ⊆ N ({c j }) then
8: S ← S ∪ {c j }
9: end if
10: end for
11: �∗ ← argmax�∈N{� : bi − ai + 1 ≥ � · n/k}
12: if min{�∗, |S|} > fi then
13: S∗

i ← an arbitrary subset of S of size min{�∗, |S|}
14: fi ← |S∗

i |
15: end if
16: end for
17: end for
18: return fi , S

∗
i

where the third inequality follows from the fact that |N≥t−(t∗+1)| ≤ t − (t − (t∗ +1)),
as t is not in N (S∗

t−(t∗+1)). 
�
As Rounds 1 and 2 of Algorithm 1 are symmetric, with similar arguments, we can

show the following lemma. The proof can be found in Appendix A.1.

Lemma 13 |Ŵi | ≤ ((i−1)+|N<n−i+1|)·k
2n for all i ∈ [n].

From Lemma 12, for i = n, we have |N≥n| ≤ 1, and hence |Wn| ≤ ((n−1)+1)·k
2n ≤ k/2.

From Lemma 13, for i = n, we have |N<1| = 0, and hence |Ŵn| ≤ ((n−1)+0)·k
2n < k/2.

Thus, |W | = |Wn| + |Ŵn| < k.

Lastly, we show that S∗
i , and thus fi , can be computed in polynomial time. For this,

we employ Observation 10, i.e., the fact that N (S∗
i ) forms an interval of voters that

includes i . We consider all such intervals and for each of them calculate the maximum
subset of candidates that the voters in this interval deserve due to their size.

Lemma 14 For any voter i , fi , and S∗
i can be computed in polynomial time.

Proof We show that Algorithm 2 correctly computes both fi and S∗
i . For each interval[ai , bi ] where ai ≤ i and i ≤ bi , the algorithm finds the maximum number of candi-

dates that this interval is eligible to elect, denoted by �∗. Moreover, S ⊆ C denotes
the set of candidates that is approved by all the voters in the interval. The algorithm
calculates the maximum subset of S that can be elected by the voters in the interval
as min{�∗, |S|}. Then, S∗

i and fi are updated properly by assigning them the biggest
subset and the size of it, respectively, that an interval of voters can elect.

Assume for contradiction that the algorithm returns a subset S′ with |S′| < |S∗
i |.

This means that there is an interval [ai , bi ] of voters that can elect S∗
i . Thus, when

the algorithm considers this interval, it would return a subset of size at least |S∗
i |, a

contradiction. 
�
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This concludes the proof of Theorem 11. 
�
Further, we can show that the bound provided by Theorem 11 is almost tight up to

the additive part of 4.

Theorem 15 For every k ≥ 3, there exists a VI profile A such that (A, k) that does not
admit an (α, 0)-IR committee with α < 2 − 2/k.

Proof Fix k ≥ 3 and consider the following instance with n ≥ k and m = 2(k − 1).
All voters i ∈ [2, n − 1] approve all the candidates, while A1 = {c1, . . . , ck−1} and
An = {ck, . . . , cm}. Notice that this profile is VI. Indeed, if we order the voters
as 1, 2, . . . , n, then the voters that approve each candidate form an interval of the
ordering. Now, we see that f1 = fn = k − 1, but for each W ⊆ C with |W | ≤ k,
either |A1 ∩ W | ≤ k/2 or |An ∩ W | ≤ k/2. 
�

In Appendix D, we show that all common ABC rules may fail to return a committee
that provides (2, 4)-IR for VI preferences.

Beyond VI and CI, many other domain restrictions have been studied in the lit-
erature. In Appendix E, we provide lower and upper bounds for (α, β)-IR for all
domain restrictions introduced by Elkind and Lackner (2015) and Yang (2019). Any
domain that is more restrictive than VI inherits the guarantee of a (2, 4)-IR commit-
tee from VI—but we show that in some cases we can achieve better approximation
guarantees. On the other hand, any domain that is more general than CI inherits the
inapproximability from CI. In fact, we show that the same lower bound applies even
in a slightly more restricted domain introduced by Yang (2019). Moreover, we show
that committees satisfying IR (without approximation) always exist and can be found
in polynomial time for a subclass of VI profiles. We also determined for which of the
considered domain restrictions a semi-strong JR committee is guaranteed to exist. For
a summary of our results, see Table 1 in Appendix E.

5 Experimental results

To complement our theoretical results, we performed experiments on generated
approval profiles in order to check how often IR committees exist and how often
they are selected by common ABC rules.

5.1 Setup

Inspired by Peters et al. (2021a) and Szufa et al. (2022), we used five models to
generate approval profiles: a voter-interval model (VI), a candidate-interval model
(CI), an impartial culture model (IC), the truncated urn model (Truncated), and the
resampling model (Resampling). All generated approval profiles have 100 voters and
50 candidates. For each of the five models, we generated 1000 profiles, using a variety
of parameters. For each generated profile, we created 50 ABC elections, one for each
k ∈ [50]. Thus, the total number of generated ABC elections is 250,000.

Our first model is the voter interval Euclidean model (VI). Here, we choose a
location in [0, 1] uniformly at random for each voter and candidate. Further, for each
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Fig. 5 The ratio of generated profiles that admit an IR committee

candidate we choose a radius according to |N (0, r)| for a parameter r . A candidate
is approved by all voters in its radius. We select 100 instances for each r ∈ { �

20 : � ∈
[1, 10]}.

Our second model is the candidate interval Euclidean model (CI). Here, we again
choose a location in [0, 1] uniformly at random for each voter and candidate as well
as a radius according to |N (0, r)| for a parameter r for each voter. A voter approves
all candidates in its radius. We select 100 instances for each r ∈ { �

20 : � ∈ [1, 10]}.
In the impartial culture model (IC), for all voters and each candidate, the candidate

is approved by the voter with probability r . We select 100 instances for each r ∈
{ �
20 : � ∈ [1, 10]}.
Finally, for the truncated urn model and the resampling model, we follow the

approach of Szufa et al. (2022), who use these (and other) models to draw “maps
of elections.” To cover a wide variety of locations on those maps, we pick several
different parameter combinations for those models.6

We consider the ABC rules AV, PAV, seq-PAV, Greedy Monroe, MES, seq-
Phragmén, and sequential Chamberlin–Courant (seq-CC).

5.2 Results

First, we studied howoften the generated approval profiles admit an IR committee. The
results are shown inFig. 5.We found that IR committees exist quite often, especially for
larger values of k. In particular, profiles generated by the VI model or by the truncated

6 For the truncated urn model, which uses parameters (α, p) ∈ [0, 1]2, we use the following 10 combina-
tions of parameters: (0.1, 0.5), (0.9, 0.5), (0.3, 0.3), (0.3, 0.5), (0.3, 0.7), (0.5, 0.3), (0.5, 0.5), (0.5, 0.7),
(0.7, 0.4), and (0.7, 0.6). For the resampling model with parameters (φ, p) ∈ [0, 1]2, we use the same set
of parameter combinations.
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Fig. 6 For each model and each voting rule, the bold colored part of the bar indicates the ratio of instances
the rule returned an IR committee, while the pale-colored part indicates the same ratio for semi-strong
JR, averaged over all values k with 2 ≤ k ≤ 20. For each model, the black line indicates the fraction of
instances admitting an IR committee, while the gray dashed line indicates the ratio of instances admitting
a semi-strong JR committee

urn model admit IR committees in more than 80% of instances, for all values of k. On
the other hand, profiles generated by the CI model rarely admit IR committees. This
striking contrast between VI and CI, which is reminiscent of our theoretical results in
Sect. 4, can be explained with a feature of the preference generation model: Due to the
way we generate CI preferences, many voters tend to have rather large approval sets.
These voters approvingmany candidates are then part of multiple cohesive groups, not
all of which can be represented in an IR manner. (A similar situation can be observed
in the profile constructed in the proof of Theorem 2.)

Second, we studied how often different ABC rules select a committee providing IR
(or semi-strong JR). In order not to dilute our results, we restricted k to the “interesting”
range between 2 and 20. The results are shown in Fig. 6. Of course, the fraction of
profiles for which a rule selects an IR (or semi-strong JR) committee is upper-bounded
by the fraction of profiles that admit such a committee. For each model, the latter
fraction is depicted in the graph as a solid black line for IR, and a dashed gray line for
semi-strong JR. While no rule manages to find an IR committee every time one exists,
the rules PAV, sequential PAV, MES, and sequential Phragmén select IR committees
often. For the small fraction of CI profiles that admit an IR committee, all considered
rules do a good job in finding one. Since seq-CC greedily optimizes the amount of
voters that are represented at least once, it finds a committee providing semi-strong
JR in almost all profiles that admit one. But as the rule does not aim at representing
voters more than once, it rarely produces IR committees. In the profiles generated by
the IC model, IR often coincides with semi-strong JR (for k ≤ 20) because almost
all non-zero fi -values are 1. This is in line with the effect noticed by Bredereck et al.
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(2019), whose experiments showed that EJR and JR are very likely to coincide under
IC.

6 Discussion

Based on the observations that common axioms in approval-based committee voting
do not address the representation of individual voters, and that common voting rules
sometimes unfairly distinguish between such voters, we formalize individual repre-
sentation (IR) as a requirement for committees. We find that all common voting rules
fail to select IR committees, even when these exist. Nevertheless, for some restricted
domains—most prominently, voter interval preferences—weprovide polynomial-time
algorithms for finding committees that provide a good approximation to IR. Our exper-
imental results suggest that IR is achievable in many instances that follow somewhat
realistic preferences. It remains an open problem to find intuitive voting rules that
provide (approximate) IR whenever possible.

A Omitted Proofs

A.1 Proof of Lemma 13

Lemma 13 |Ŵi | ≤ ((i−1)+|N<n−i+1|)·k
2n for all i ∈ [n].

Proof We prove the lemma using induction. For i = 1, we have that Ŵ1 =
� f<n/2� ≤ |N<n |·k

2n and the statement holds. Assume that, for all t ′ < t , we have

|Ŵt ′ | ≤ ((t ′−1)+|N<n−t ′+1|)·k
2n .

We show that the statement holds for Ŵt . Note that

|Ŵt | = |Ŵt−1| + � f<n−t+1/2� − |Ŵt−1 ∩ An−t+1| (3)

as at iteration t , the algorithm adds � f<n−t+1/2� − |Ŵt−1 ∩ An−t+1| candidates to
Ŵt . Let t∗ = max{r ∈ {0, . . . , t − 1} : n − t + 1 ∈ N (S∗

n−t+1+r )}. If t∗ = 0, from
Equation (3) we get that

|Ŵt | ≤ ((t − 2) + |N<n−t+2|) · k
2n

+ � f<n−t+1/2� − |Ŵt−1 ∩ An−t+1|

≤ ((t − 2) + 0) · k
2n

+ � f<n−t+1/2� − |Ŵt−1 ∩ An−t+1|

≤ ((t − 2) + |N<n−t+1|) · k
2n

,
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where the second inequality follows from the fact that |N<n−t+2| = 0, as n − t + 1 /∈
N (S∗

n−t+2). Now assume that t∗ > 0. First, using induction, we show that

|Ŵt | = |Ŵt−r | + � f<n−t+1/2� − |Ŵt−r ∩ An−t+1|

for any r ∈ [1, t∗ + 1].
For r = 1, the claim immediately follows from Equation (3). Assume that for all

q ′ < q it holds that |Ŵt | = |Ŵt−q ′ | + � f<n−t+1/2� − |Ŵt−q ′ ∩ An−t+1|. Now, we
have

|Ŵt−(q−1) ∩ An−t+1| = ⌊
f<n−t+(q−1)+1/2

⌋ − |Ŵt−q ∩ An−t+(q−1)+1|
+ |Ŵt−q ∩ An−t+1| (4)

as at iteration t − (q − 1) we add
⌊
f<n−t+(q−1)+1/2

⌋ − |Ŵt−q ∩ An−t+(q−1)+1| can-
didates from S∗

n−t+(q−1)+1 to Ŵt−(q−1), and as n − t + 1 ∈ N (S∗
n−t+(q−1)+1), these

candidates are approved by n − t + 1, too. Then,

|Ŵt | = |Ŵt−(q−1)| + � f<n−t+1/2� − |Ŵt−(q−1) ∩ An−t+1|
= |Ŵt−q | + ⌊

f<n−t+(q−1)+1/2
⌋ − |Ŵt−q ∩ An−t+(q−1)+1|

+ � f<n−t+1/2� − |Ŵt−(q−1) ∩ An−t+1|
= |Ŵt−q | + � f<n−t+1/2� − |Ŵt−q ∩ An−t+1|,

where the second transition follows since at iteration t−(q−1),
⌊
f<n−t+(q−1)+1/2

⌋−
|Ŵt−q ∩ An−t+(q−1)+1| candidates are added to Ŵt−(q−1), and the third transition
follows from Equation (4).

Now, we distinguish two cases.

Case 1: t∗ = t − 1 Here, we have

|Ŵt | = |Ŵt−(t∗+1)| + ⌊
f<n−t+1/2

⌋ − |Ŵt−(t∗+1) ∩ An−t+1|
= |Ŵ0| + � f<n−t+1/2� − |Ŵ0 ∩ An−t+1| = |N<n−t+1| · k

2n
.

Case 2: t∗ ≥ 1 Here, we have

|Ŵt | = |Ŵt−(t∗+1)| + � f<n−t+1/2� − |Ŵt−(t∗+1) ∩ An−t+1|
≤ (t − (t∗ + 1) − 1 + |N<n−t+(t∗+1)+1|) · k

2n
+ |N<n−t+1| · k

2n

≤ (t − 2 + |N<n−t+1|) · k
2n

,

where the third inequality follows from the fact that |N<n−t+(t∗+1)+1| ≤ t∗, as n−t+1
is not in N (S∗

n−t+(t∗+1)+1). 
�
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B Relation to perfect representation

Consider an approval profile A and a committee size k such that k divides the number
of voters n. A committee W of size k provides perfect representation (PR) (Sánchez-
Fernández et al. 2017) if it is possible to partition the electorate N into k pairwise
disjoint subsets N1, . . . , Nk of size n

k each, and assign a distinct candidate from W
to each of the subsets in such a way that for each subset all the voters in the subset
approve of the assigned candidate.

It is known that not all ABC voting instances where k divides n admit a committee
providing PR (Sánchez-Fernández et al. 2017). Thus, in the following, we will call an
ABC election a PR-instance if it admits a PR committee.

Proposition 16 On PR-instances, every committee providing perfect representation
also provides semi-strong JR, but not the other way around.

Proof Assume a PR-instance is given together with a committee W that provides
perfect representation. By definition, |Ai ∩ W | ≥ 1 for every voter i ∈ N . Thus, W
provides semi-strong JR. As a counterexample for the other direction, consider the
following instance with n = 6 and k = 3.

A1 = A2 = {c1, c4}, A3 = {c2, c4, c6}, A4 = {c2, c5}, A5 = A6 = {c3, c5}

The committee W = {c4, c5, c6} provides semi-strong JR but not perfect representa-
tion (whereas {c1, c2, c3} provides both). 
�

Note that Sánchez-Fernández et al. (2017, Theorem 4) establish that on PR-
instances, perfect representation also implies PJR. It follows that, whereas semi-strong
JR and PJR are incompatible in general (as we proved in Sect. 3), every PR-instance
admits a committee that satisfies semi-strong JR, PJR, and perfect representation.

Proposition 17 There are PR-instances that do not admit an IR committee. Moreover,
there are PR-instances where an IR committee exists but does not provide perfect
representation.

Proof Regarding the first claim consider the following instance with n = 8 and k = 4.

A1 = {c1} A5 = {c1, c5, c6}
A2 = {c2} A6 = {c2, c5, c6}
A3 = {c3} A7 = {c3, c5, c6}
A4 = {c4} A8 = {c4, c5, c6}

Here {c1, . . . , c4} provides perfect representation (and semi-strong JR) but not IR
(which is not achievable in this instance). Regarding the second claim, again consider
the instance from the proof of Proposition 16 with n = 6 and k = 3. Here, the
committee {c4, c5, c6} provides IR, but not perfect representation. 
�
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C Counterexamples for IR-consistency

Here we provide further examples showing that all common ABC rules violate IR-
consistency. Note that all committee monotone rules (including AV, SAV, sequential
PAV, and sequential Phragmén) as well as MES and PAV were already ruled out to
satisfy IR-consistency in Sect. 3.2.

Example 3 Consider the following profile with n = 16 voters and assume k = 4:

A1 = A2 = A3 = {c1} A4 = {c1, c5}
A5 = A6 = A7 = {c2} A8 = {c2, c5}
A9 = A10 = A11 = {c3} A12 = {c3, c5}
A13 = A14 = A15 = {c4} A16 = {c5}.

Here we have fi = 1 for all voters i ∈ N\{13, 14, 15} and thus the only committee
providing individual representation is W = {c1, c2, c3, c5}. Chamberlin-Courant-AV
(CCAV), Monroe-AV and PAV with the weight-vector (1, 1

n , 1
n2

, . . .), which provide
an IR committee in the example of Proposition 5, choose {c1, c2, c3, c4} and thus fail
individual representation.

The only two remaining rules from Table 4.1 in the survey by Lackner and Skowron
(2022) are leximin-Phragmén (Brill et al. 2024a) (referred to as “leximax-Phragmén”
by Lackner and Skowron (2022)) and Minimax-AV (Brams et al. 2007).

Example 4 Consider the following profile with n = 6 voters and let k = 3:

A1 = {c1} A3 = {c1, . . . , c5} A5 = {c4, c5, c6}
A2 = {c2} A4 = {c3, . . . , c6} A6 = {c5, c6}.

Here we have fi = 1 for all voters i ∈ N and thus {c1, c2, c5} and {c1, c2, c6} are the
only committees providing individual representation (or semi-strong JR). It turns out
that leximin-Phragmén does not select any of these two. It is easy to see that the load
distribution with the minimum maximal load for either of the two IR committees is
( 23 ,

2
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3 ). The committee {c1, c4, c5}, however, induces a load distribution of

( 35 , 0,
3
5 ,

3
5 ,

3
5 ,

3
5 )which is lower both in terms of themaximumaswell as lexicographic

ordering.

Example 5 Consider the following profile with n = 100 voters and let k = 2:

99 × {c1, c2} 1 × {c3, . . . , c8}.

Minimax-AV (which minimises the maximumHamming-distance among all voters to
the winning committee) selects any two candidates from {c3, . . . c8} and none that is
supported by the 99 voters. This clearly violates individual representation and semi-
strong JR.

123



Individual representation in approval-based committee voting 89

Table 1 Individual
representation guarantees in
structured profiles. The column
Lower Bound indicates that,
while the column Upper Bound
gives us values (α, β) such that
an (α, β)-IR committee always
exists (and can be computed
efficiently). The last column
refers to the existence of
semi-strong JR committees in
every instance

Individual representation Semi-strong-JR
Lower bound Upper bound

PART (1, 0) (1, 0) �
α-TR (1, 0) (1, 0) �
VEI (2 − 2/k, 0) (2, 0) �
CEI (2 − 2/k, 0) (2, 0) �
DUE (2 − 2/k, 0) (2, 4) ×
VI (2 − 2/k, 0) (2, 4) ×
CI (1, k − 1) (1, k − 1) ×

D Common ABC Rules do not Guarantee (2, 4)-IR for VI Preferences

The two examples below show that many common ABC rules are not guaranteed to
return a committee that provides (2, 4)-IR for VI preferences.

Example 6 Consider the following profile with n = 28 voters and let k = 14:

A1 = {c1, . . . , c7}
A2 = · · · = A14 = {c1, . . . , c20}
A15 = · · · = A28 = {c8, . . . , c20}.

Notice that f1 = 7 and fi = 13 for i > 1. Here,MES, AV, PAV, seq-PAV, rev-seq-PAV,
seq-Phragmén, SAV, and Greedy Monroe (depending on the tie breaking) all return
committees W where {c8, . . . , c20} ⊂ W and thus only one of the candidates among
{c1, . . . , c7} is included. Hence, they all fail to select a (2, 4)-IR committee.

Example 7 Consider the following profile with n = 28 voters and let k = 14:

A1 = · · · = A14 = {c1, . . . , c7}
A14+i = {c5+i }, ∀i ∈ {1, . . . , 14}.

Again,wehave f1 = 7.CCand seq-CC return committeesW where only one candidate
among {c1, . . . , c7} is included. Thus, they fail to select a (2, 4)-IR committee.

A simple adaption of Example 5 shows that Minimax-AV fails to provide any good
approximation for IR even on t-PART instances. From Table 4.1 of the recent survey
by Lackner and Skowron (2022), the only rules missing are leximin-Phragmén and
Monroe-AV for which we experimentally found profiles with n = 30 voters and
m = 300 candidates where these two rules also fail to select a (2, 4)-IR committee.
Thus, we can conclude that Algorithm 1 outperforms all common ABC voting rules
in terms of approximating IR on VI profiles.
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Fig. 7 Upper (green) and lower (red) bounds of approximate IR and guaranteed existence (white) or not
(gray) of semi-strong JR committees under the respective domain. An arrow from X to Y shows that X
implies Y. An upper (resp. lower) bound for each domain is the best (resp. worst) upper (resp. lower) bound
of any of its descendants (resp. ancestors), including itself

E Further domain restrictions

We consider all the restricted domains that are discussed by Elkind and Lackner (2015)
and Yang (2019). An overview of how these domain restrictions are related to each
other (which is adapted from Yang (2019)) can be found in Fig. 7. An overview of the
results of this section can be found in Table 1.

E.1 t-PART

Definition 7 (t-partition (t-PART)) An approval profile A satisfies t-partition (t-
PART) if there is a partition (C1, . . . ,Ct ) of C such that for every voter i ∈ N
there exists C j such that Ai = C j .

Theorem 18 Under t-PART approval profiles an IR committee always exists.

Proof Note that for each voter i ∈ N with Ai = C j for some j ∈ [t], fi =⌊
N (C j ) · k/n⌋

. Now consider the committee that contains
⌊
N (C j ) · k/n⌋

candidates
from each C j . Clearly, W provides IR and also

|W | =
∑

j∈T

⌊

N (C j ) · k
n

⌋

≤ n · k
n

= k,

which completes the proof. 
�
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E.2 CEI, VEI andWSC

Definition 8 (Candidate Extremal Interval (CEI)) An approval profile A satisfiesCan-
didate Extremal Interval (CEI) if there is a linear order of C such that for every voter
i ∈ N , the approval set Ai forms a prefix or a suffix of that order.

Definition 9 (Voter Extremal Interval (VEI)) An approval profile A satisfies Voter
Extremal Interval (VEI) if there is a linear order of N such that for every candidate
c j ∈ C , the set N ({c j }) of voters approving c j forms a prefix or a suffix of that order.

Definition 10 (WeaklySingle-Crossing (WSC))Anapproval profile A satisfiesWeakly
Single-Crossing (WSC) if there is a linear order of N such that for each pair of can-
didates c,c′ in C it holds that each of the voter sets N1 = {i : c ∈ Ai , c′ /∈ Ai },
N1 = {i : c /∈ Ai , c′ ∈ Ai } and N3 = N\(N1 ∪ N2) forms an interval of this ordering,
and N3 appears between N1 and N2.

Theorem 19 For any CEI and VEI profile, there exists a (2, 0)-IR and a semi-strong
JR committee, and both can be found in polynomial time.

Proof Assume we are given a CEI profile and the order c1, . . . , cm over the candidates
such that each Ai is either a prefix or a suffix of that order. If fi = k for some voter, then
this means that there are at least k candidates that are approved by all the voters and
these candidates can form the winning committee which clearly is IR and semi-strong
JR. Otherwise, if fi ≤ k − 1 for all voters i ∈ [n], we set

W = {c1, . . . , c�k/2�, cm−�k/2�, . . . , cm},

i.e.,W consists of the first �k/2� candidates and the last �k/2� candidates of the order.
Hence, for each i ∈ [n], it holds that |Ai ∩W | ≥ min{k/2−1, |Ai |}, and as fi ≤ k−1,
we get that W provides (2, 0)-IR. Now notice that as W consists of the first and the
last candidate in the order. Hence, W provides semi-strong-JR as each voter approves
one of these two candidates.

Now, assume we are given a VEI profile and the order over the voters. We order the
candidates as follows. Let Cp and Cs be the set of candidates such that the voters that
approve a candidate inCp andCs form a prefix and a suffix of N , respectively.Without
loss of generality, a candidate c such that N (c) = N is assigned to Cp. A candidate c
in Cp is ordered before c′ in Cp if the last voter that approves c is ordered after the last
voter that approves c′ (break ties arbitrarily). A candidate c in Cs is ordered before c′
in Cs if the first voter that approves c is ordered after the first voter that approves c′
(break ties arbitrary). All the candidates inCp are ordered before the candidates inCs .
As above, if fi = k for some voter, then this means that there are at least k candidates
that are approved by all the voters and these candidates form the winning committee
which clearly is IR and semi-strong JR. Otherwise, if W consists of the first �k/2�
candidates and the last �k/2� candidates of the order that we describe above, then for
each i ∈ [n], it holds that |Ai ∩W | ≥ min{k/2−1, |Ai |}, and as fi ≤ k−1, we again
get that W provides (2, 0)-IR. Now similarly as above, as W consists of the first and
the last candidate of the order, W is semi-strong-JR as if fi ≥ 1 for some i ∈ N , then
i approves some candidate between these two candidates. 
�
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Theorem 20 For any WSC profile, there exists a semi-strong JR committee and it can
be found in polynomial time.

Proof Consider the order 1, . . . , n of the voters.Without loss of generality assume that
for each i ∈ N , |Ai | > 1 (otherwise we can just exclude them) and that k ≥ 2. Now, let
c∗ be a candidate that is approved by voter 1 and let i > 1 be the first voter in the order
that does not approve c∗. This means that i approves a candidate c′ different from c∗,
and the profile is WSC if all the voters from i to n approve c′. Hence, any committee
W with {c∗, c′} ⊆ W provides semi-strong JR, as all the voters are represented by at
least one candidate. 
�

Proposition 21 There exists an instance that is VEI, CEI andWSC, and does not admit
a (2 − 2/k, 0)-IR committee.

Proof Consider the instance defined in the proof of Theorem 15. We now show that
the profile is CEI, VEI and WSC, from which the lemma follows. Indeed, for CEI, if
we order the candidates as c1, c2, . . . , cm , then each Ai forms a prefix or a suffix of the
ordering. For VEI, if we order the voters as 1, 2, . . . , n, then the voters that approve
each candidate form a prefix or a suffix of the ordering. Under the same ordering of
the voters, note that for each candidate c ∈ C we have c ∈ Ai for either all i ∈ [n−1]
or for all i ∈ [n]\{1}. Thus, the profile is also WSC. 
�

E.3 DUE

Definition 11 (Dichotomous Uniformly Euclidean (DUE)) An approval profile A sat-
isfies Dichotomous uniformly Euclidean (DUE) if there is a mapping of voters and
candidates into the real line and a radius r such that every voter i ∈ N approves the
candidates that are at most r far from her.

Proposition 22 There exists a DUE profile which does not admit a semi-strong JR
committee.

Proof Consider the following instance with n = 6 voters and let k = 3:

A1 = {c1} A4 = {c3}
A2 = {c1, c2} A5 = {c3, c4}
A3 = {c2} A6 = {c4}.

To see that this is a DUE profile, consider the following mapping of the instance onto
the real line. Each voter i ∈ [6] is mapped to the point i and candidates c1 to c4 are
mapped to 1.5, 2.5, 4.5 and 5.5, respectively. From this mapping we obtain the above
profile by using an approval radius of 0.5. We observe fi = 1 for all i ∈ [6], but for
any committee W of size 3 it holds that |Ai ∩ W | = 0 for some i ∈ {1, 3, 4, 6}. 
�
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E.4 ˜̨ -Tree Representation

Definition 12 (α̃-tree representation (α̃-TR)) An approval profile A satisfies α̃-tree
representation (α̃-TR)7 if there exists a rooted tree T with vertices C ∪ {x} and root
x /∈ C such that for every voter i ∈ N there is a candidate c ∈ C such that Ai equals
the set of vertices on the path from x to c (excluding x but including c).

Under α̃-TR preferences, the following algorithm always selects a committee that
provides individual representation.Hereweuse dist(c, x) to denote the (edge-)distance
between the root x and a candidate c ∈ C .

Algorithm 3 Individual representation for α̃-TR
1: W ← ∅
2: traverse the tree in any order
3: for c ∈ T do
4: if |N ({c})| ≥ n

k · dist(c, x) then
5: W ← W ∪ {c}
6: end if
7: end for
8: if |W | < k then
9: fill up W arbitrarily
10: end if
11: return W

Note that this algorithmbasically resemblesHareAVas defined byAziz et al. (2017)
with a specific tie-breaking mechanism that depends on the tree representation. Due
to this tie-breaking, it is clearly polynomial time computable.

Theorem 23 Under α̃-TR preferences, a committee providing individual representa-
tion always exists and can be found in polynomial time.

Proof Let T [W ] be the subgraph of T induced by the candidate set W chosen by
Algorithm 3. First, note that T [W ] is a subtree of T with root x . To see this, let c ∈ W
and let c′ be the direct ancestor of c (i.e., c′ is the candidate immediately before c
on the path from x to c). By the α̃-TR property we have N ({c}) ⊆ N ({c′}) and by
the definition of the distance function it holds that dist(c, x) = dist(c′, x) + 1. Thus
|N ({c′})| ≥ n

k · dist(c′, x) and c′ is also in W . We now show that the committee W is
of size k. Then, we show that it indeed provides individual representation.

By Lines 8 and 9 of Algorithm 3 it holds that |W | ≥ k. Now consider T [W ]; we
will assign n

k voters to each edge of this tree. In order to do this, for a leave c of the tree
choose n

k (yet unassigned) voters from N ({c}) and assign them to the edge incident to
c. (If n

k is not an integer we assign one voter only partially.) Then we delete c and that
edge from the tree, starting this process again with a leave of the smaller tree. Since
|N ({c})| ≥ n

k · dist(c, x) and N ({c}) ⊆ N ({c′}) for all candidates c′ on the path from
x to c, there always exist n

k such voters. Since there are only n voters in total we have
|W | ≤ k.

7 We use α̃ instead of α in order to avoid confusion with the use of α for denoting an approximation of IR.
Same with α̃-VTR, β̃-VPTR and β̃-PTR.
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To show that satisfies IR, consider a group of voters V ⊆ N such that |V | ≥ � · n
k

and | ⋂i∈V Ai | ≥ � for some � ∈ N. By the definition of α̃-TR there is a path of (edge-
)length � from x to some c ∈ C such that the candidates on that path (including c)
are a subset of

⋂
i∈V Ai of size �. We call the set of these candidates AV ⊆ ⋂

i∈V Ai .
Every candidate in AV is approved by all of V , i.e., by at least � · n

k voters, and is at
distance ≤ � from the root of T . Thus Algorithm 3 chooses all candidates in AV and
therefore we have |Ai ∩ W | ≥ � for all i ∈ V . 
�

E.5 ˜̨ -VTR

Definition 13 (α̃-vertex tree representation (α̃-VTR)) An approval profile A satisfies
α̃-vertex tree representation (α̃-VTR) if there exists a rooted tree T with vertices
V ∪ {x} and root x /∈ V , such that for every candidate c j ∈ C there exists a voter
approving c j such that the set N ({c j }) of voters approving c j forms a path from x to
that voter (excluding x but including the voter).

Proposition 24 There exists an α̃-VTR instance that does not admit an (α, β)-IR com-
mittee for β < k − 1 and any α ≥ 1.

Proof We note that the instance in Theorem 2 is also a α̃-VTR instance, from which
the statement follows. To see this, consider a rooted tree with root x and vertices
v ∈ V as follows: the voters v n

k +1, . . . , vn form a simple path starting from x . All the
remaining voters v1, . . . , v n

k
are incident to the vertex farthest away from x and make

up the leaves of the tree. The set of voters approving a common candidate in the above
instance now form a path from x to one of the leaves v1, . . . , v n

k
and thus this is an

α̃-VTR representation of that instance. 
�

Note that the instance discussed in the proof of Proposition 24 does not admit a
committee providing semi-strong JR.
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