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Abstract

The Deferred Acceptance (DA) mechanism can generate inefficient placements.

Although Pareto-dominant mechanisms exist, it remains unclear which and how

many students could improve their DA assignment. We characterize the set of

unimprovable students and show that it includes those unassigned or matched

with their least preferred schools. Nevertheless, by proving that in large markets

DA’s envy digraph contains a unique giant strongly connected component, we es-

tablish that almost all students are improvable, and furthermore, they can benefit

simultaneously via disjoint trading cycles. Our findings reveal both the perva-

siveness of DA’s inefficiency and the remarkable effectiveness of Pareto-dominant

mechanisms in addressing it, regardless of the specific mechanism chosen.
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1. INTRODUCTION

The student-proposing Deferred Acceptance (DA) algorithm is widely used to assign

pupils to schools because it produces a stable allocation and incentivizes parents to

rank schools truthfully. However, DA can result in outcomes that are Pareto-inefficient

for students; in some cases, it may assign every student to one of their least-preferred

schools (Kesten, 2010). Its inefficiencies have also been documented empirically. For in-

stance, Abdulkadiroğlu et al. (2009) show that approximately 2% of students in the New

York City high school match—which uses a version of DA—could have been assigned to

a more preferred school without harming others.

To address this inefficiency while preserving weaker forms of stability and strategy-

proofness, several mechanisms that Pareto dominate DA have been proposed. One such

mechanism—Kesten’s Efficiency-Adjusted Deferred Acceptance (EADA)—has shown

exceptional promise in both theory and the lab. Yet empirical work suggests that EADA’s

efficiency gains may be unevenly distributed (see Section 2). Consequently, a natural

theoretical question emerges: which and how many students can improve their DA place-

ment under EADA, and more generally, under efficient mechanisms that Pareto dominate

DA?

We begin by identifying which students are improvable. Our analysis introduces a

novel analytical framework: DA’s envy digraph—a directed graph in which nodes repre-

sent students who point to each other if they are envious of their DA assignment, irre-

spective of whether the envy is justified. Proposition 1 shows that a student is improv-

able if and only if they lie on a trading cycle in this graph. This characterization allows

us to identify improvable students using a graphical approach and directly implies that

sources and sink nodes in the envy digraph are unimprovable. While sink nodes corre-

spond to those assigned to their top choice under DA (who trivially envy nobody), source

nodes (those whom nobody envies) always include every unassigned student or those

matched to their least preferred choice (Proposition 2). This finding has an important

policy implication: students who are poorly assigned or unassigned cannot be helped

by any mechanism that preserves DA’s outcome as a baseline.

Next, we focus on how many students are unimprovable. Using the probabilistic

framework of random matching markets with uniformly and independently distributed

preferences, we quantify students who nobody envies (Proposition 3) and who envy no-

body (Proposition 4). The proofs establish novel connections between matching and

classical problems in probability—specifically, the distribution of singleton coupons in
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the coupon collector problem and the rank distribution in the stable marriage problem.

While valuable in their own right, these findings show that the proportion of students

who are unimprovable through these easily identifiable channels converges to zero as

the market grows large.

Our main result, Theorem 1, extends this intuition by proving that the proportion of

unimprovable students becomes arbitrarily small as market size grows large. The proof

leverages the density of DA’s envy graph, where most students make and receive a log-

arithmic number of applications. This density implies that the probability of two size-

able groups of students not pointing to each other becomes vanishingly small in large

markets. We show that the envy relations in school choice markets under DA exhibit

a characteristic property of random directed graphs—the emergence of a unique giant

strongly connected component where most nodes participate in at least one cycle.

Although DA’s inefficiency was previously known, Theorem 1 reveals that its perva-

siveness is not confined to pathological examples or specific datasets but emerges as

a systematic, expected property in random markets. The consequences are so severe

that the vast majority of students could find ways to improve their placement without

harming others. Combined with Proposition 2, this result has important implications:

while the most disadvantaged students cannot benefit from enhanced efficiency, the

vast majority of students are improvable, highlighting the scope and necessity of welfare

enhancements over DA.

Our final result, Theorem 2, addresses a related policy question: which efficient

mechanism dominating DA should be chosen to maximize the number of improved

students? By connecting student improvability to the classical cycle-packing problem

in graph theory, we prove that in large markets, any mechanism that Pareto dominates

DA will improve approximately the same number of students—almost all of them. This

surprising asymptotic equivalence occurs because the high density of DA’s envy digraph

ensures that if a student is not included in one particular trading cycle, they will likely

participate in an alternative trade. This result has important implications for market de-

sign: while different mechanisms that Pareto dominate DA may perform quite differ-

ently in small markets (Knipe and Ortega, 2025), they are virtually indistinguishable in

terms of size of improvement in large markets. Thus, policymakers can focus on other

desirable properties—such as minimal manipulation incentives or weak stability, both

areas in which EADA excels—when selecting among mechanisms that Pareto dominate

DA.
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In summary, our contributions are threefold. First, we introduce the novel envy di-

graph framework that provides a precise characterization of improvable students in

school choice. Second, we prove that almost all students are improvable in large mar-

kets, revealing the pervasive inefficiency of DA and the substantial scope for welfare im-

provements. Third, we establish the asymptotic equivalence of all efficient mechanisms

that Pareto dominate DA, demonstrating that the choice among such mechanisms be-

comes increasingly irrelevant as markets grow.

2. RELATED LITERATURE

Our work contributes to several strands of literature on matching mechanisms and ran-

dom market models. We organize our discussion around four interconnected themes.

On DA’s Pareto-inefficiency. The Pareto-inefficiency of DA (for students) is well-known

(Abdulkadiroğlu and Sönmez, 2003). Theoretical bounds on DA’s inefficiency were es-

tablished by Kesten (2010). Numerous empirical studies have documented this ineffi-

ciency in practice (Abdulkadiroglu et al., 2005, Abdulkadiroğlu et al., 2009, Che and Ter-

cieux, 2019, Ortega and Klein, 2023).

Efficient mechanisms that dominate DA. The most prominent mechanism in this class

is Efficiency-Adjusted Deferred Acceptance (EADA, Kesten, 2010). Over the past decade,

EADA’s properties and implementation have been extensively studied (Bando, 2014,

Tang and Yu, 2014, Dur et al., 2019, Troyan et al., 2020, Troyan and Morrill, 2020, Ehlers

and Morrill, 2020, Tang and Zhang, 2021, Doğan and Ehlers, 2021, Reny, 2022, Chen

and Möller, 2023), demonstrating that it is possible to achieve an efficient improve-

ment over DA while maintaining relatively low instability and manipulability. Another

well-known efficient mechanism that Pareto-dominates DA is DA+TTC, which applies

the top trading cycles (TTC) procedure to the allocation obtained by DA (Alcalde and

Romero-Medina, 2017).

Two seminal papers have studied the family of mechanisms that Pareto dominate

DA: Alva and Manjunath (2019) provide a comprehensive study of stable-dominating

rules, which include any efficient mechanism that improves on student-proposing DA,

and Tang and Yu (2014), who introduce the concept of improvable students and under-

demanded schools. This paper is heavily influenced by their work, which we use as
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building blocks for our results. However, these studies focus on identifying improv-

able students without quantifying their prevalence—a gap we fill by deriving asymptotic

bounds.

Empirical evaluations of mechanisms that dominate DA. Diebold and Bichler (2017)

conduct an extensive comparison across course allocation datasets, finding that the dif-

ference between DA and EADA rank distributions is not statistically significant in 7 out

of 19 datasets. They also show that EADA and DA always match the same number of stu-

dents. Ortega and Klein (2023) compute counterfactual EADA allocations for Budapest’s

school choice system and find that, while EADA improves the average student place-

ment, it does not help unassigned students or the worst-placed pupil (assigned to his

13th ranked school under both mechanisms) or those unassigned. In laboratory experi-

ments, Cerrone et al. (2024) find that EADA generates Pareto-efficient allocations more

frequently than DA in the lab but note that the distribution of efficiency improvements

is uneven among participants.

Random matching markets. Our analysis of the proportion of unimprovable students

builds on a rich literature on random matching markets at the intersection of economics

and computer science (Wilson, 1972, Knuth, 1976, Pittel, 1989, 1992, Immorlica and

Mahdian, 2005, Kojima and Pathak, 2009, Che and Kojima, 2010, Lee, 2016, Liu and Py-

cia, 2016, Ashlagi et al., 2017, Che and Tercieux, 2018, 2019, Pycia, 2019, Ashlagi et al.,

2021, 2023, Nikzad, 2022, Ortega and Klein, 2023, Ronen et al., 2025). Our paper advances

this literature by providing a characterization and quantification of unimprovable stu-

dents. Finally, our Theorem 2, establishing the equivalence of all efficient mechanisms

that Pareto dominate DA with regard to the number of students improved, has some re-

semblance to a number of equivalence theorems for large matching markets by Che and

Kojima (2010), Liu and Pycia (2016), Pycia (2019) and Che and Tercieux (2018). Among

these, Pycia (2019)’s result bears the closest resemblance to our finding. However, since

we do not focus on strategy-proof mechanisms, his result does not subsume our Theo-

rem 2.

3. MODEL

Following Abdulkadiroğlu and Sönmez (2003), a school choice problem P consists of

a finite set of students I and a finite set of schools S. Each student i has a strict pref-

erence ≻i over the schools. Each school s has a quota of available seats qs and a strict
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priority over the students ▷s, determined by local educational regulations. To allow for

unassigned students, we allow the existence of a null school (denoted s∅), which has

unlimited capacity. We use n= |S| to denote the number of schools.

For a given school choice problem P , a matching µ is a mapping from I to S such

that no school is matched to more students than its quota. We denote by µi the school to

which student i is assigned and by µ−1
s the set of students assigned to school s. With this

notation, a matching needs to satisfy |µ−1
s | ≤ qs for every s ∈ S. We call every student i

with µi = s∅ unassigned.

The function rki : S →{1, . . . , n} specifies the rank of school s according to the pref-

erence profile ≻i of student i:

rki(s) = |{s′ ∈ S : s′ ≻i s}|+ 1,

so that the most desirable option gets a rank of 1, whereas the least desirable gets a rank

of n. With some abuse of notation, we use the same rank function to specify the students’

rank per the priority profile of schools, i.e. rks(i) = |{j ∈ I : i ▷s j}|+ 1.

A matching µ weakly Pareto-dominates matching ν if, for every student i ∈ I ,

rki(µi) ≤ rki(νi). A matching µ Pareto-dominates matching ν if µ weakly dominates ν

and there exists a student j ∈ I with rkj(µj)< rkj(νj). A matching is Pareto-dominated if

there exists a matching that Pareto-dominates it and is Pareto-efficient if it is not Pareto-

dominated.

Student i desires school s in matching µ if rki(s)< rki(µi) and he envies student j at

matching µ if rki(µj)< rki(µi). We say that student j violates student i’s priority at school

s in matching µ if i desires s, µj = s, and rks(i)< rks(j). A matching µ is non-wasteful if

every school s that is desired by some student in µ satisfies |µ−1
s | = qs. A matching µ is

stable if it is non-wasteful and no student’s priority at any school is violated in µ.

A mechanism associates a matching to every school choice problem. We are mainly

interested in the student-proposing Deferred Acceptance (DA) mechanism (Gale and

Shapley, 1962), which works as follows:

Round 1: Every student applies to her most preferred school. Every school tentatively

accepts the best students according to its priority, up to its capacity, and

rejects the rest.
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Round k: Every student rejected in the previous round applies to her next best

school. Among both new applicants and previously accepted students, ev-

ery school accepts the best students according to its priority, up to its ca-

pacity, and rejects the rest.

The procedure stops when there is a round without any new rejection. We use DA(P )

to denote the unique resulting matching generated by DA in school choice problem P .

DAi(P ) denotes the school to which student i is assigned. DA−1
s (P ) denotes the set of

students assigned to school s in DA(P ).

Similarly, we will use M to denote an arbitrary mechanism that returns a Pareto-

efficient allocation that dominates DA. We use M(P ) to denote the class of such mecha-

nisms for school choice problem P , which include Efficiency-Adjusted Deferred Accep-

tance (EADA) and Top Trading Cycles using DA’s allocation as endowments (DA+TTC).

We now introduce a key concept in this paper: unimprovable students.

DEFINITION 1. A student i ∈ I is unimprovable if, for every matching M(P ) ∈M(P ), we

have Mi(P ) = DAi(P ).

Unimprovable students do not necessarily need to be in an adverse situation. For

example, every student who is assigned to their most preferred school in DA is unim-

provable. We denote by U(P ) the set of unimprovable students in school choice prob-

lem P . It is well-known that, for any school choice problem, there is always at least one

unimprovable student (Tang and Yu, 2014).

4. IDENTIFYING (UN)IMPROVABLE STUDENTS

Recall that a digraph G is given by a set of nodes V and a set of directed edges E. We

define DA’s envy graph as follows.

DEFINITION 2. Given a school choice problem P , we define DA’s envy digraph GDA(P ) =

(I,E(DA(P ))) where each node corresponds to a student and edge (i, j) exists if i envies

j in DA.

DA’s envy digraph gives us a full characterization of unimprovable students by iden-

tifying cycles in GDA(P ). A cycle of a digraph is a sequence of nodes i0, i1, . . . , ij , i0 such

that there is an edge between any consecutive nodes and no edge is repeated. A trading

cycle is a cycle in which every node appears only once, except for i0.
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PROPOSITION 1. A student is unimprovable if and only if he does not belong to any cycle

in GDA(P ).

PROOF. The if direction, stating that a student is unimprovable if he does not belong to

any cycle, is well-known in the literature (Kesten, 2010, Tang and Yu, 2014, Erdil, 2014).

For the only if part: if the cycle in which he participates is a trading cycle, then simply

execute such exchange so that each student node is now assigned to the school assigned

to the student node he points to. By construction of the graph, every student node in-

volved in the swap is better off, while all other students remain unaffected.

If the cycle is not a trading cycle, then at least one node besides i0 appears multiple

times in the sequence. Let ik be any such node. Then, rewrite the sequence so that every

node appearing before ik first appears remains, and every node appearing after ik last

appears remains (in other words, remove everything between ik first and last appear-

ance). Note that the modified cycle that obtains is still a cycle in the original graph. If

any repeated node remains, repeat the previous step until there are no other repeated

nodes left. Because the length of the cycle is finite, we end up with a trading cycle in

which students may execute the exchange prescribed by the edge’s direction to improve

their placement without affecting others, concluding the proof.

This characterization will be key for us to quantify unimprovable students in a prob-

abilistic framework in the next section using a graph-theoretical approach. We can use

a similar approach as before to find students who are always unimprovable, as follows.

PROPOSITION 2. For any school choice problem P , if there is a student i such that

i) rki[DAi(P )] = n and there is at least one school that is under-demanded, or

ii) DAi(P ) = s∅,

then i is unimprovable.

PROOF. For part i): if a student i is assigned to his least preferred school and some school

is under-demanded, then DAi(P ) must be the only under-demanded school because

every other institution rejected student i, ad since any students assigned to an under-

demanded school is unimprovable (Tang and Yu, 2014), the conclusion follows. Part ii)

is proven by Alva and Manjunath (2019), but we provide a short proof nonetheless. If a

student is not assigned, then the fictitious school s∅ is under-demanded, as it did not
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reject any student due to its infinite capacity. Consequently, per the previous argument,

such student is unimprovable.

The characterization of unimprovable students through cycles of the envy digraph

provides us with a clear identification of specific categories of students who cannot ben-

efit from any mechanism that Pareto dominates DA. However, it remains unclear how

many students fall into these categories in a typical school choice problem. In the next

section, we turn to quantifying the proportion of unimprovable students using a proba-

bilistic framework, which will allow us to understand the scope and distribution of po-

tential welfare improvements through mechanisms that Pareto dominate DA.

5. QUANTIFYING (UN)IMPROVABLE STUDENTS

Now we turn to the question of identifying how many students are expected to be unim-

provable on an average school choice problem. We consider a random school choice

problem where strict preferences and priorities are drawn independently and uniformly

at random, with an equal number of students and schools (and each school’s quota is

one). We will use this framework assuming (as the majority of the aforementioned liter-

ature) that the number of students and schools is equal and given by n. The benefit of

imposing this strong assumption is that it allows us to obtain tractable results. We de-

note by Pn a random instance of a school choice problem of size n and by GDA(Pn) the

corresponding random envy digraph generated by DA in such problem.1

First we will quantify the fraction of students who nobody envies or envy nobody, as

we have argued these are unimprovable. Then we will proceed to asymptotically com-

pute the fraction of students who are improvable.

5.1 Students who Nobody Envies (NE).

We use E[|NEn|] to denote the expected number of students assigned to under-

demanded schools, or, equivalently, the students who nobody envies. Proposition 3

shows that the expected number of under-demanded schools equals the n-th Harmonic

number Hn :=
∑n

k=1
1
k .

PROPOSITION 3. In a random school choice problem of size n, E[|NEn|] =Hn.

1We discuss many-to-one matching and correlated preferences in the Appendix.
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PROOF. DA can alternatively be implemented by a sequential algorithm in which a sin-

gle student applies to a school in each step, proposed by McVitie and Wilson (1971).

Whenever a student is rejected, he goes back to the queue of students who need to apply

to a school. McVitie and Wilson show that, for any queuing method of unassigned and

rejected students, this sequential algorithm generates the same matching as DA. The

McVitie-Wilson algorithm has a close resemblance to the coupon collector problem, in

which n coupons are drawn with replacement over a number of rounds until all coupons

have appeared at least once. The analogy between both problems is that coupon draw-

ing is equivalent to a random applications to schools, and both algorithms end once all

coupons have been collected, i.e. once all schools have received at least one application.

The number of singleton coupons that appear exactly once in the coupon collector

problem is equivalent to the number of under-demanded schools, as this is the number

of schools who received exactly one application during the execution of the McVitie-

Wilson algorithm. The last school to receive an application (resp. the last coupon to

appear) is always under-demanded (resp. a singleton), but there might be some more.

Myers and Wilf (2006) derive the joint probability distribution that there are s single-

ton coupons and the problem stops after r draws, and use it to compute the expected

number of singleton coupons, which equals Hn. It follows that the expected number of

under-demanded schools removed in the first round exactly equals Hn.

In Proposition 5 in the Appendix, we extend this result by computing the complete

distribution of envy, i.e. of in-degrees of GDA(Pn).

5.2 Students who Envy Nobody (EN).

We use E[|ENn|] to denote the expected number of students who are assigned to their

most preferred schools in a school choice problem of size n. We first derive the proba-

bility distribution of the rank of students in DA as follows.

From the coupon collector problem, we know that when the number of students

becomes arbitrary large there are nHn applications made in the execution of DA. This

means that, on average, each student makes Hn applications, and on average, each

school receives Hn applications, and this variable is tightly concentrated around its

mean (Motwani and Raghavan, 1995, Theorem 3.8). For an average student, the prob-

ability that his application is accepted by some school to which he applies equals 1
Hn

,

whereas the probability that his application is rejected at an arbitrary school equals
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1 − 1
Hn

(note that the probability of a rejection at a school is independent of whether

a student has been rejected by another school, because of our assumption of indepen-

dent schools’ priorities). Consequently, the probability that he ends up in his k-th ranked

school is the probability of k− 1 failures and one success:

1

Hn

(
1− 1

Hn

)k−1

(1)

Given that 1
Hn

is the probability of an application being successful, it follows that the

distribution of students’ ranks in DA is Geometric with parameter 1
Hn

. Thus, we estab-

lished the following asymptotic result.

PROPOSITION 4. For sufficiently large n and k ≤ n, Pr(rki = k)≈ 1
Hn

(
1− 1

Hn

)k−1
.

Ashlagi et al. (2021) establish a similar result to Proposition 4, showing that ranks

in a more general tiered matching model follow a geometric distribution. Because the

students’ rank distribution is Geometric, we immediately obtain the expected number

of students who are assigned to their most preferred school.

COROLLARY 1. For sufficiently large n, E[|ENn|]≈ n
Hn

.

From Propositions 3 and 4, we can establish a lower bound for the number of unim-

provable students. For example, in a market with n= 100, we expect at least 5 students

whom nobody envies and 19 students who envy nobody (with possible overlap between

these categories). Importantly, these results demonstrate that the fraction of students

who are unenvied or who envy nobody becomes negligible as n grows large. This obser-

vation naturally leads us to a broader question: what is the asymptotic behavior of the

total fraction of unimprovable students? To answer this, we introduce a novel approach

using strongly connected components in graph theory, which enable us to characterize

the global structure of DA’s envy digraph as market size grows.

5.3 The Giant Strongly Connected Component

A digraph is strongly connected if there is a path in each direction between each pair of

nodes. That is, a path exists from the first node in the pair to the second, and another

path exists from the second node to the first. A strongly connected component (SCC)

of a directed graph G = (I,E) is a subgraph G′ = (I ′ ⊆ I,E′ ⊆ E) that is strongly con-

nected and is maximal with this property: no additional edges or vertices from G can
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be included in the subgraph without breaking its property of being strongly connected.

The size of an SCC is the number of nodes in it. An SCC is trivial if it only includes one

node. An SCC is giant when the fraction of nodes it contains is bounded away from zero

asymptotically.

In our envy diagraph, improvable students and non-trivial SCCs are related by

Proposition 1. First, note that if a student belongs to a non-trivial SCC, it must be part of

a cycle with other nodes in the SCC and therefore is improvable. Conversely, if a student

is improvable, they must belong to a cycle and every node in this cycle can reach the

others and be reached by them, thereby forming (part of) a non-trivial SCC, which the

student we started out with belongs to.

While the geometric out-degree distribution of GDA(Pn) differs from the Poisson dis-

tribution characteristic of the standard Erdős-Rényi random digraph model, we demon-

strate below that a unique giant SCC also emerges in DA’s random envy digraph with

high probability.2

THEOREM 1. Fix an arbitrary ϵ > 0. With high probability, GDA(Pn) has a unique giant

SCC containing at least (1− ϵ)n students.

5.4 Proof of Theorem 1

The proof strategy hinges on establishing that DA’s envy random digraph is sufficiently

dense to preclude fragmentation into two large disjoint components lacking directed

edges between them. Such a partition would necessitate that no student in the first com-

ponent had applied to any school matched to students in the second component dur-

ing the execution of DA—an event whose probability decreases super-polynomially as n

approaches infinity. We formalize this intuition through a sequence of rigorous lemmas.

First, we demonstrate that with high probability, any substantial subset of students gen-

erates a significant number of applications during the allocation process. Subsequently,

we establish that the probability of absence of cross-component applications between

large partitions is vanishingly small. The proof concludes by applying the union bound

across all possible partitions, establishing the desired result.

Bounding the Number of Applications. We use a simple fact about DA in large mar-

kets: with high probability, the total number of applications made by a sizable subset of

2An event occurs with high probability if its probability approaches 1 as n grows, i.e., if the probability is
at least 1− 1

nc for some constant c > 0.
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students is at least on the order of n logn. This is because any single student, with high

probability, needs Θ(logn) applications to become matched. We formalize the claim that

every set of students of size at least ϵn collectively makes at least δn logn applications for

some constant δ > 0 depending on ϵ.

LEMMA 1. Fix ϵ > 0 and L≤∞. With high probability, all but at most ϵn of the students

each make at least L applications in the DA process.

PROOF. It suffices to show that a single student i makes at least L applications with

probability at least 1 − δ, for some δ that can be arbitrarily small as n → ∞. Once this

has been established, we can let Xi be the indicator that student i makes fewer than L

applications. Then E[
∑

iXi]≤ δn. By Markov’s inequality, the probability that more than

ϵn students make fewer than L applications is bounded above by δ/ϵ for large enough n.

Taking δ to be sufficiently small relative to ϵ implies that with high probability, at most

ϵn students make fewer than L applications.

That any student makes Ω(logn) applications in DA in probability is a well-known

result in random matching markets (Knuth, 1976, Pittel, 1989).3

Partition Argument and Probability of No Cross-Applications. Suppose that GDA(Pn) has

two disjoint subsets I0, I1 ⊆ I , each of size at least ϵn, such that there is no directed

edge from I0 to I1 in GDA(Pn). By definition, (i→ j) means student i prefers DAj(Pn) to

DAi(Pn). So if there is no edge from I0 to I1, it means no student in I0 prefers the school

matched to any student in I1 over its own match. Equivalently, no student in I0 applied

to any school DAj(Pn) with j ∈ I1 in the DA algorithm; otherwise, that application would

produce an envy edge i→ j if that school ultimately ended up matched to j.

Hence, an equivalent statement is: If GDA(Pn) has an SCC of size at most (1− 2ϵ)n, we

can split I into two blocks I0, I1, each at least ϵn, so that no student in I0 ever applied to

any school in S1 = {DAi(Pn) : i ∈ I1}. We first show that for a fixed partition (I0, S1), the

probability of no-application across blocks is very small.

LEMMA 2. Let I0 ⊆ I and S1 ⊆ S be subsets of students and schools with |I0|, |S1| ≥ ϵn.

Then the probability that the students in I0 in combination make at least Ln applications

yet no one applies to any school in S1 is at most (1− ϵ)Ln.

3See also Ashlagi et al. (2023, Theorem 3.2) for a characterization of rank distribution in any stable out-
come.
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PROOF. If applications were all mutually independent, the claim would be a simple con-

sequence of standard binomial concentration. In DA, however, the applications depend

on the history of rejections and hence see slight correlation. Instead, we consider a ver-

sion of deferred acceptance with redundant applications (what Knuth (1976) calls the

amnesiac algorithm) where we generate students’ preferences in a deferred manner and

direct each application-to-be-made to a uniformly random school independently. That

is, we allow a student to re-apply to a school that has already rejected her (and hence will

do so again). To get her true preferences, we simply remove the duplicates from the se-

quence of applications she will ever make. It is easy to see that this version of amnesiac

DA can be coupled exactly to the conventional DA to yield the same outcome.

In the amnesiac algorithm, each student makes weakly more applications. Thus, it

suffices to consider the event that the students in I0 in combination make at least Ln

applications in the amnesiac algorithm yet no one applies to any school in S1.

To understand this probability, we use the following coupling trick to handle the

preferences (and applications) of students in I0: First, generate an (infinite) sequence

of i.i.d. uniform samples σ = (σ1, σ2, . . .) from the set of schools S independent of the

preferences of all schools and all students outside I ; Then, run DA with redundant ap-

plications, and whenever an application is to be sampled from a student i ∈ I0, supply

with the next element from σ. We can verify inductively that, at any stage, this coupling

yields the same distribution (as in the amnesiac algorithm) for the next applications

to make—simply uniform and independent of all previous events. Our target no-cross-

application event in the lemma statement implies that (1) at least Ln elements from σ

are read before DA terminates and (2) none of these elements belong to the set S1; these

two combined imply that σj /∈ S1 for all j = 1, . . . ,Ln. By construction, the sequence

σ1, . . . , σLn are i.i.d. samples independent of all other sources of randomness, and thus

Pr(σj /∈ S1 ∀j ∈ [Ln]) = (Pr(σ1 /∈ S1))
Ln. Since |S1| ≥ ϵn, we have Pr(σ1 /∈ S1)≤ 1− ϵ, and

our desired upper bound of (1− ϵ)Ln follows immediately.

Union Bound over All Subsets We now combine Lemma 2 with a union bound over all

possible realizations of I0 and S1 to obtain the following corollary, from which the proof

of Theorem 1 follows naturally.

COROLLARY 2. Fix ϵ > 0. With high probability, there does not exist a subset of students

I0 ⊆ I and a subset of schools S1 ⊆ S such that (1) both subsets are of size at least ϵn, and

(2) no one in I0 ever applied to any school in S1 in DA.
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PROOF. For any I0 ⊆ I and S1 ⊆ S satisfying the cardinality condition, let EI0,S1 denote

the event that no one in I0 ever applied to any school in S1 in DA. Proving the corollary

reduces to bounding the probability of the union event

p := Pr

( ⋃
|I0|,|S1|≥ϵn

EI0,S1

)
.

Let AI0 denote the event that students in I0 makes a combined number of at least Ln

applications (including redundant ones) for some constant L to be specified later. By a

union bound, we have

p≤ Pr

( ⋃
|I0|,|S1|≥ϵn

(EI0,S1 ∩AI0)∪Ac
I0

)
≤

∑
|I0|,|S1|≥ϵn

Pr(EI0,S1 ∩AI0)+Pr

( ⋃
|I0|≥ϵn

Ac
I0

)
.

(2)

By Lemma 2, Pr(EI0,S1 ∩AI0)≤ (1− ϵ)Ln. The number of ways to choose any I0 ⊆ I

is at most 2n and same for S1 ⊆ S. We only need to consider partitions where |I0| ≥
ϵn and |S1| ≥ ϵn, so the total number of relevant partitions is strictly smaller. Thus, the

summation term in the right-hand side of expression (2) is at most

(2n)2 · (1− ϵ)Ln = exp
(
(2 log 2 +L log(1− ϵ))n

)
→ 0

as n → ∞, granted that L is sufficiently large compared to ϵ. By Lemma 1, with high

probability, all but ϵn/2 students each make at least 2L/ϵ applications, and as a result

any ϵn students make in total at least 2L/ϵ · ϵn/2 = Ln applications, implying the event⋂
|I0|≥ϵnAI0 . Thus, Pr

(⋃
|I0|≥ϵnAc

I0

)
→ 0 as n→∞. Combining the bounds on the two

terms gives an upper bound on p that tends to zero as n→∞, finishing the proof.

We now prove Theorem 1 using Corollary 2.

PROOF OF THEOREM 1. Note that DA with redundant applications produces the exact

same matching and envy graph (modulo duplicate edges due to redundancy). Thus, we

may use DA with redundant applications as our underlying data generation algorithm.

Given that ϵ is arbitrary, it suffices to show that the giant SCCs contains at least (1−
2ϵ)n students with high probability. When this is not the case, there must exist a set of

SCCs of combined size at least ϵn that either cannot reach or cannot be reached from the

largest SCC. In either case, there exist disjoint subsets I0, I1 ⊆ I both of size at least ϵn

where there are no edges from I0 to I1, and equivalently no students in I0 have applied
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to any school in S1 := {DAi(P ) : i ∈ I1}. This is, however, unlikely: By Corollary 2, the

probability of being able to find such sizable subsets I0 and S1 with no applications

between them tends to zero. Hence, the size of the giant SCCs is at least (1− 2ϵ)n with

high probability.

Theorem 1 yields a surprising corollary, namely:

COROLLARY 3. The fraction of students who are unimprovable converges to zero in large

markets.

Theorem 1 implies that the set of improvable students forms a substantial major-

ity of the entire student population, but is silent regarding how many of them can be

improved by the same mechanism, nor does it specify which mechanism chooses the

maximum improvement over DA. Our next Theorem tackles both questions.

5.5 Equivalence among Mechanisms that Dominate DA

We define a cycle packing H as a union of pairwise-disjoint cycles in G, with the property

that no additional cycles exist in the subgraph G\H . V (H) denotes the vertex set of H ,

or equivalently, the set of nodes that are in some cycle in H . Note that, by Proposition

1, every efficient mechanism corresponds to a cycle packing of DA’s envy digraph. Our

second Theorem shows that, with high probability, every efficient mechanism improves

almost all nodes.

THEOREM 2. With high probability, every cycle packing of the envy digraph GDA(Pn) covers

at least (1− ϵ)n nodes, for any arbitrary constant ϵ > 0.

PROOF. LetH ⊆GDA(Pn) be a cycle packing. Consider the induced subgraphGDA(Pn)\H =

GDA(Pn)[I\V (H)], which by definition, contains no cycles.

Suppose, for contradiction, that |V (H)| < (1 − ϵ)n. Then, the directed acyclic sub-

graph GDA(Pn)\H contains N = |I\V (H)|> ϵn vertices. Hence, there exists a topological

ordering i1, . . . , iN of vertices in I\V (H) such that no directed edge from ik to iℓ for

1≤ k < ℓ≤N is present in GDA(Pn)\H (and hence GDA(Pn)).

Partitioning these nodes into I0 = {i1, . . . , i⌊N/2⌋} and I1 = {i⌊N/2⌋+1, . . . , iN} yields

two subsets, each with size at least ⌊ϵn/2⌋, and crucially, no edges in GDA(Pn) go from I0

into I1. This scenario is identical to the one in Theorem 1, which is improbable due to

Corollary 2. Consequently, we must have |V (H)| ≥ (1− ϵ)n with high probability.
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Theorem 2 establishes not merely the prevalence of improvable students but also

demonstrates that nearly all such students can concurrently benefit from improvement

via non-intersecting trading cycles. Furthermore, Theorem 2 establishes the asymptotic

equivalence across all such mechanisms regarding the proportion of students they im-

prove. This result has significant implications for policy implementation. When policy-

makers deliberate on which efficiency-enhancing mechanism to adopt as an alternative

to DA, concerns about differential distributions of efficiency gains become largely ir-

relevant, as all such mechanisms ultimately benefit approximately the same number of

students in large markets. This equivalence result is particularly striking given that in

carefully constructed small instances, different efficient mechanisms that dominate DA

may significantly differ in their corresponding number of improved students (Knipe and

Ortega, 2025).

5.6 Simulations and Extensions

The simulations depicted in Figure 1 show the emergence of a unique giant component

in GDA(Pn) for even relatively small values of n.

FIGURE 1. Average fraction of nodes in the largest (blue) and second-largest (red) SCCs (average
over 2,000 random envy digraphs for each n).

The simulations in Figure 2 illustrate the convergence of unimprovable students to

zero as market size increases. The convergence rate is approximately O(1/ logn), directly
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corresponding to the rate at which students receive their top choice under DA (as shown

in Corollary 1). This theoretical relationship explains the gradual nature of the decline.

FIGURE 2. Average fraction of unimprovable students (average over 2,000 random problems for
each n).

In the Appendix, we discuss two extensions of our work.

1. Many-to-one Matching: Our probabilistic analysis has assumed that the number

of schools and students is the same, yet our main results (Theorems 1 and 2)) can

extended to a model with n schools, each with a quota q, and qn students. In this

model, each student makes fewer applications, but each rejection makes him envy

q instead of only 1 student. This trade-off between application frequency and envy

multiplicity results in an envy digraph that becomes even more densely connected.

Consequently, the emergence of a unique giant strongly connected component re-

mains a robust phenomenon, as well as the asymptotic size equivalence among ef-

ficient mechanisms that dominate DA. However, convergence occurs more slowly

as q increases. We provide proofs and simulations in the Appendix

2. Correlated Preferences: In the Appendix, we introduce correlation on students’ pref-

erences by dividing the set of schools into tiers, as in Ashlagi et al. (2021). We find

that several giant SCCs form, in fact as many as tiers, including a sizeable fraction

of students. Simulations suggest that the fraction of nodes in a giant SCC converges

to one asymptotically.
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6. CONCLUSION

DA’s inefficiency affects almost all students in large markets, with nearly all students

becoming improvable through trading cycles in the envy digraph as market size grows.

While our findings suggest that an efficiency adjustment should be implemented, our

equivalence theorem says such debate should be guided by other properties and not by

the number of students who benefit from a better school placement.
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APPENDIX A: ADDITIONAL RESULTS

A.1 In-degree Distribution

In the main text, we have derived the distribution of students’ ranks in DA, obtaining the
out-degree distribution of GDA(Pn) as a corollary. Now, we derive the in-degree distribu-
tion as follows.

PROPOSITION 5 (The Distribution of Envy). For any fixed integer k, there exists suffi-

ciently large n, such that Pr(deg−(i) = k− 1)≈ (Hn)
k

k! e−Hn .

PROOF. The coupon collector analogy will be again useful for us. If a student i is as-
signed to school s, and school s is drawn x times in the coupon collector problem, then
there are x − 1 students who envy student i, as they were all rejected by school x. So,
to obtain how frequently a student is envied, we will study the number of times that
a coupon appears over the time that it takes for all coupons to be collected T , which
is well-known to be tightly concentrated around nHn (Motwani and Raghavan, 1995).
Therefore, in what follows we fix T = nHn (this assumption simplifies the proof, but we
provide a complete proof in Proposition 6 below that does not impose it).

Over the course of the nHn applications that it takes for the algorithm to finish, each
day the coupon/school s is drawn with probability 1/n. This means that the number of
times that coupon s is drawn, denoted by Xi, is a Xi ∼ Binomial(nHn,1/n). When the
number of trials is large and the success probability is small (both of which occur when
n grows), the binomial is well-approximated by a Poisson distribution (Motwani and
Raghavan, 1995, section 3.6.2). Hence, we may approximate Xi ≈ Poisson(λ), with the
parameter λ=Hn. In consequence, the chance that coupon/school s appears k times is
approximately:

Pr(Xi = k) = e−λ λk

k!
(3)

Substituting λ=Hn, we obtain:

Pr(Xi = k) = e−Hn
(Hn)

k

k!
(4)

The previous proof directly assume that the coupon collector process ends in nHn it-
erations, making the argument easy to follow. Now we present a formal proof that avoids
such assumption, but that is more complex.

PROPOSITION 6 (Poisson Approximation for In-Degrees). In the coupon collector prob-
lem with n distinct coupons, let Xi denote the number of times coupon i appears during
the collection process. Then, for each fixed non-negative integer k,

Pr(Xi = k) = e−Hn
(Hn)

k

k!
+ o(1) (5)
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as n → ∞. That is, the distribution of Xi is asymptomatically well-approximated by a
distribution of a Poisson random variable with parameter Hn.

PROOF. We use the Poissonization technique to simplify the analysis by replacing the
fixed (but random) total number of trials with a Poisson-distributed number. This tech-
nique has been used to analyze the coupon collector problem (Brown et al., 2008, Ash-
lagi et al., 2021). We proceed in five steps.

Step 1: Poissonized Model. Let N ∼ Poisson(λ) be the number of trials, where λ= nHn.
This choice aligns the expected number of trials with the original problem, since E[T ] =
nHn, where T is the time to collect all n coupons.

In the Poissonized model:

• Each trial independently yields coupon i with probability 1/n.
• The number of times coupon i appears, Xi, follows a Poisson(λ/n) distribution.

Thus, for any fixed k,

Pr(Xi = k |N ∼ Poisson(λ)) = e−λ/n (λ/n)
k

k!
. (6)

Substituting λ= nHn, we get:

Pr(Xi = k |N ∼ Poisson(nHn)) = e−Hn
(Hn)

k

k!
. (7)

Here, Hn naturally emerges as the expected intensity of coupon i’s appearances over
nHn trials.

Step 2: Relating Poissonized Model to Original Problem. In the original problem, T is
the number of trials until all n coupons are collected. We know E[T ] = nHn and Var(T )≤
n2π2/6 = O(n2). To bridge the models, we use concentration of T around its mean. By
Chebyshev’s inequality:

Pr
(
|T − nHn|> εnHn

)
≤ Var(T )

(εnHn)
2 ≤ π2n2/6

ε2n2(Hn)
2 =

π2

6ε2(Hn)
2 . (8)

Since Hn ≈ logn+γ, we have Pr
(
|T −nHn|> εnHn

)
=O(1/(logn)2)→ 0 as n→∞. Thus,

T is sharply concentrated around nHn, justifying the Poissonized approximation.

Step 3: De-Poissonization. To connect back to the original problem, consider the true
distribution of Xi:

Pr(Xi = k) =
∞∑
t=0

Pr(Xi = k | T = t)Pr(T = t). (9)

Given T = t, each of the t trials independently yield coupon i with probability 1/n,
so Xi ∼ Binomial(t,1/n). For large t, this approximates a Poisson distribution: if t =

nHn(1 + δn) with |δn| → 0, then Binomial(t,1/n)≈ Poisson(t/n)≈ Poisson(Hn(1 + δn)).
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Define the “typical” set An = {t : |t− nHn| ≤ εnHn}. Then:

Pr(Xi = k) =
∑
t∈An

Pr(Xi = k | T = t)Pr(T = t) +
∑
t/∈An

Pr(Xi = k | T = t)Pr(T = t). (10)

• For t ∈ An, t/n = Hn(1 + δn) with |δn| ≤ ε, and Pr(Xi = k | T = t) =
(t
k

)
(1/n)k(1 −

1/n)t−k. Using the Poisson approximation for binomials (Le Cam 1960, valid since
t/n is finite and n is large), this is:

Pr(Xi = k | T = t)≈ e−t/n (t/n)
k

k!
= e−Hn(1+δn) (Hn(1 + δn))

k

k!
. (11)

As ε→ 0, this approaches e−Hn(Hn)
k/k!.

• For t /∈ An, Pr(T = t) ≤ Pr(|T − nHn| > εnHn) = O(1/(logn)2), so this term con-
tributes o(1).

Since Pr(T ∈An)→ 1 and the conditional probability stabilizes, the error is o(1).

Step 4: Poisson Approximation. In the Poissonized model, Xi ∼ Poisson(Hn), giving:

Pr(Xi = k |N ∼ Poisson(nHn)) = e−Hn
(Hn)

k

k!
. (12)

By the de-Poissonization argument, this holds in the original problem with error o(1):

Pr(Xi = k) = e−Hn
(Hn)

k

k!
+ o(1). (13)

Step 5: Conclusion. We have shown that, for each fixed k, Pr(Xi = k) matches the
Poisson(Hn) probability mass function up to o(1), so Xi converges in distribution to
Poisson(Hn) as n→∞. (Note that Hn →∞, but convergence is assessed pointwise for
each k.) This completes the proof.

A.2 Many-to-One Matching

In the main text, we have shown that a giant unique SCC appears in GDA(Pn) if there are
as many schools as students. We relax such assumption here, allowing for a school to be
able to admit many students, as follows.

THEOREM 3 (Giant SCC in Many-to-One Matching). Consider a random school choice
problem Pn with n schools, where each school has the same fixed quota q, and nq students.
Fix an arbitrary ϵ > 0. With high probability, the envy digraph GDA(Pn) has a unique giant
strongly connected component containing at least (1− ϵ)nq students.

PROOF. We follow a strategy similar to Theorem 1, adapting it to the many-to-one set-
ting. First, we establish bounds on the number of applications in the DA algorithm, then
analyze partitions of the resulting envy digraph.

Step 1: Bounds on applications. We first establish the following bound on the number
of applications a typical student makes, similar to Lemma 1:
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LEMMA 3. Fix ϵ > 0. With high probability, all but at most ϵnq students each make at least√
logn applications.

PROOF. Again, it suffices to show that for a fixed student i, the number of applications
she makes is at least

√
logn with high probability; the lemma follows as a consequence of

Markov’s inequality applied to the number of students making fewer applications than
this, same as we saw in the proof of Lemma 1.

The standard approach for one-to-one matchings using the coupon collector prob-
lem as an approximation can be adapted to this case with slight modifications. In partic-
ular, one can establish that the total number of applications throughout DA is of order
Θ(n logn). Since the order of applications in DA is irrelevant, one can hold off i and run
DA on the rest of the students I\{i}, and when this first stage terminates (i.e., when all
the students except for i are stably matched) there should be already Θ(n logn) applica-
tions. At this point, all but one school has their capacity filled; Without loss of generality,
let it be school sn. Using terminologies from Ashlagi et al. (2021), we say that this inter-
mediate state of DA is smooth if (1) at most O(n logn) applications are made until this
point and (2) all but at most na schools have received applications from Ω(logn) distinct
students with constant a < 1. With nearly identical analysis as in Ashlagi et al. (2021), we
can show that a smooth state is achieved with high probability; the details are repetitive
and hence omitted.4 We now let i start making applications until the full DA terminates
(i.e., some one applies to this last unfilled school sn). Note that, by symmetry, an appli-
cation to a school who has received m≥ q applications will be accepted with probability
q/(m+ 1). Denote the number of applications to school sk at the beginning of this sec-
ond stage by Mk for k = 1, . . . , n− 1. Under a smooth state, we may assume without loss
of generality that Mk ≥ Θ(logn) for k = 1, . . . , ⌊n − na⌋; as the second stage of DA un-
folds, the number of applications to each school can only increase. The probability that
an application from i is accepted is at most

1

n

(
1 +

n−1∑
k=1

q

Mk + 1

)
≤ na

n
+ (n− na)

q

Θ(logn)
≤Θ(q/ logn).

Thus, conditional on the likely smooth state before i starts to apply, the number of ap-
plications that i makes until receiving a (tentative) acceptance is stochastically lower
bounded by a geometric distribution with success probability Θ(q/ logn), and therefore,

4The first bound on the number of applications can be derived from classic results on the generalized
coupon collector problem; see, e.g., Newman and Shepp (1960), Erdős and Rényi (1961). The second bound
on the number of applications received by the schools is slightly more involved. To derive it, we run the
amnesiac DA (Knuth, 1976), and using concentration arguments on the number of draws in (generalized)
coupon collector problem, one can show that the number of applications, counting duplicates, is of or-
der Ω(n logn) up to this stage; further, duplicates are rare among them, so the total number of applica-
tions in the classic DA is again Ω(n logn) with high probability prior to the second stage. The number of
applications each school receives can then be bounded using a Poissonization argument or with direct
Chernoff-type bounds. See, e.g., Ashlagi et al. (2021, Proposition 4.3) for a formal statement and analysis in
the one-to-one case.
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the conditional probability (under a smooth state) that i makes fewer than
√
logn ap-

plications is at most 1 − (1 − Θ(q/ logn))
√
logn → 0. Since a smooth state is achieved

with high probability, the marginal probability of i making less than
√
logn applications

vanishes as n→∞, finishing our proof.

Step 2: Partition Argument. Suppose GDA(Pn) has two disjoint subsets I0, I1 ⊆ I , each
of size ≥ ϵnq, with no edges from I0 to I1. Let S1 = {s ∈ S : ∃j ∈ I1 with DAj(Pn) = s}, so
|S1| ≥ ϵn. We now show that for any fixed subsets I0 and S1, it is extremely unlikely that
no one in I0 ever applies to schools in S1.

LEMMA 4. For any fixed I0 ⊆ I and S1 ⊆ S with |I0| ≥ ϵnq and |S1| ≥ ϵn, the probability
that students in I0 make at least n

√
logn applications yet none apply to S1 is at most

(1− ϵ)n
√
logn.

PROOF. We use the similar idea as in the proof of Lemma 1. In the amnesiac DA model,
each application independently targets a school in S1 with probability ≥ ϵ. Thus, the
probability of the event in the lemma is at most (1− ϵ)n

√
logn as claimed.

Step 3: Union Bound over Partitions. The event that the giant SCC contains strictly
less than (1 − 2ϵ)nq students implies the existence of linear-sized I0, I1 ⊆ I with no
edges going from I0 to I1, and thus no one in I0 ever applies to the set of schools
S1 := {s ∈ S : ∃j ∈ I1,DAj(P ) = s}. Denote such an event by EI0,S1 . By a similar union
bound argument as in the proof of Theorem 1, the probability p the giant SCC contains
< (1− 2ϵ)nq students is bounded by:

p≤
∑

|I0|≥ϵnq,|S1|≥ϵn

Pr(EI0,S1 ∩AI0) + Pr

 ⋃
|I0|≥ϵnq

Ac
I0

 , (14)

where AI0 denotes the event that the subset of students I0 make at least n
√
logn appli-

cations in total.
Note that EI0,S1 ∩AI0 is precisely the kind of events characterized in Lemma 4, and

hence the first summation term (which has fewer than (2nq)2 terms) is at most

22nq · (1− ϵ)n
√
logn = exp

(
2nq ln 2 + n

√
logn log(1− ϵ)

)
→ 0 (15)

as n → ∞. Lemma 3 further ensures Pr(
⋃

|I0|≥ϵnqAc
I0
) → 0 as n → ∞. Thus, the giant

SCC contains ≥ (1− ϵ)nq students with high probability.

Despite the different structure of the many-to-one market with uniform quotas,
the fundamental conclusion remains: in large random markets, a unique giant SCC
emerges, and thus most students are improvable. However, we emphasize that the rate
of convergence in the many-to-one setting differs from the one-to-one case, and de-
pends on the size of the constant q: As q increases, each school forms larger “envy-free
clusters” (students assigned to the same school), potentially slowing convergence.

In Figures A.1a and A.1b, we observe exactly that: the unique giant SCC emerges but
the fraction of nodes in it for fixed n becomes smaller for larger constant q.
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Note that although the convergence appears slow, scaling like 1/ logn and consis-
tent with our analysis,the main driver behind this slow rate is the highly dispersed dis-
tribution of applications submitted by students. In particular, an O(1/ logn) fraction of
students submit only one application and thus envy no one. Empirical simulations sug-
gest that, aside from these trivially unimprovable students, the giant strongly connected
component (SCC) contains nearly all of the remaining students.

(a) n= [10 : 10 : 200], q = 5. (b) n= [5 : 5 : 100], q = 10.

FIGURE A.1. Average fraction of nodes in the largest (blue) and second-largest (red) SCCs (aver-
age over 1,000 random problems for each n), preferences and priorities uniform i.i.d.

Equivalence in Many-to-One Matching. The cycle packing result in Theorem 2 also ex-
tends naturally to the many-to-one setting with fixed quota q for each school. We present
this generalization as follows:

THEOREM 4 (Cycle Packing in Many-to-One Matching). Consider a random school
choice problem Pn with n schools, where each school has the same fixed quota q, and
nq students. Fix an arbitrary ϵ > 0. With high probability, every cycle packing of the envy
digraph GDA(Pn) covers at least (1− ϵ)nq students.

PROOF. The proof follows the approach of Theorem 2, adapted to the many-to-one
setting. Let H ⊆ GDA(Pn) be a cycle packing, and consider the induced subgraph
GDA(Pn)\H =GDA(Pn)[I\V (H)], which contains no cycles by definition.

Suppose, for contradiction, that |V (H)| < (1− ϵ)nq. Then, the directed acyclic sub-
graph GDA(Pn)\H contains N = |I\V (H)| > ϵnq vertices. We can find a topological or-
dering i1, . . . , iN of vertices in I\V (H) such that no directed edge from ik to iℓ for
1≤ k < ℓ≤N is present in GDA(Pn)\H .

Partitioning these nodes into I0 = {i1, . . . , i⌊N/2⌋} and I1 = {i⌊N/2⌋+1, . . . , iN} yields

two subsets, each with size at least ⌊ϵnq/2⌋, with no edges going from I0 to I1 in GDA(Pn).
This scenario implies that no student in I0 has applied to any school matched to

students in I1 during the execution of DA. By Lemma 4, such a partition is extremely
unlikely for sufficiently large n, with probability vanishing as n grows.

Thus, we must have |V (H)| ≥ (1− ϵ)nq with high probability.

These findings collectively demonstrate that our main conclusions—both about the
pervasiveness of improvable students and the asymptotic equivalence of mechanisms
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that Pareto dominate DA—are robust to varying market structures, including the practi-
cally important case of schools with multiple seats.

A.3 Correlation in Preferences

In the main text, we assume that students’ preferences are independently drawn. Here
we relax such assumption by dividing schools into two tiers of equal size, and assume
that each school in Tier 1 is more preferred than any school in Tier 2. This tiered model
aims to capture the empirical observation that some schools are known to be of high
quality and preferred by most students. Within tiers, preferences are drawn uniformly at
random.

Interestingly, in this scenario we observe the emergence of two (rather than one) gi-
ant SCCs. Simulations suggest that the fraction of nodes in one of the two giant SCCs
converge to 1 as the market grows, as follows. The emergence of two giant SCCs is ex-

FIGURE A.2. Average fraction of nodes in the largest (blue) and second-largest (red) SCCs in a
two-tiered model (average over 1,000 random envy digraphs for each n).

pected. Every student matched with a school in Tier 2 is not envied by any student in
Tier 1, so therefore any SCCs can contain either only Tier 1 students (i.e. matched to
schools from Tier 1) or Tier 2 students, which implies no SCC includes more than half of
the students. But, since each subgraph is dense enough, we find that a giant SCC obtains
for each tier of the market, and thus almost all students in each tier are improvable via
within-tier exchanges. Based on these observations, we conjecture that in a model that
allows for a constant c number of tiers, c giant SCCs grow and they contain asymptoti-
cally almost all nodes as the market grows.
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