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Abstract Nowadays, customers as well as retailers look

for increased sustainability. Recommerce markets – which

offer the opportunity to trade-in and resell used products –

are constantly growing and help to use resources more

efficiently. To manage the additional prices for the trade-in

and the resale of used product versions challenges retailers

as substitution and cannibalization effects have to be taken

into account. An unknown customer behavior as well as

competition with other merchants regarding both sales and

buying back resources further increases the problem’s

complexity. Reinforcement learning (RL) algorithms offer

the potential to deal with such tasks. However, before

being applied in practice, self-learning algorithms need to

be tested synthetically to examine whether they and which

work in different market scenarios. In the paper, the

authors evaluate and compare different state-of-the-art RL

algorithms within a recommerce market simulation

framework. They find that RL agents outperform rule-

based benchmark strategies in duopoly and oligopoly sce-

narios. Further, the authors investigate the competition

between RL agents via self-play and study how perfor-

mance results are affected if more or less information is

observable (cf. state components). Using an ablation study,

they test the influence of various model parameters and

infer managerial insights. Finally, to be able to apply self-

learning agents in practice, the authors show how to cali-

brate synthetic test environments from observable data to

be used for effective pre-training.

Keywords Recommerce � Dynamic pricing �
Competition � Reinforcement learning � Market

simulation � Sustainability

1 Introduction

Nowadays, shoppers and retailers alike are becoming more

environmentally conscious. A study conducted in 2020

found that over two-thirds of shoppers planned on buying

sustainable clothing in the future, and over half already did

so regularly, see Statista (2020). At the same time, another

study reveals that retailers favor online channels over off-

line channels when selling used goods, with 78% preferring

the former and only 6% the latter, cf. Rabe (2020). This

demand is causing more and more businesses, especially

those selling their products through e-commerce channels,
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to adopt more sustainable strategies and enter the circular

economy, see, e.g., Kirchherr et al. (2017).

In this context, the need for more sustainable business

strategies xed, see Hawlitschek (2021), Weinhardt et al.

(2021), as well as the proper use of the potential of artificial

intelligence in modern information systems facing chal-

lenges of a transforming world, see Thomas et al. (2020).

In the domain of e-commerce, circular markets are also

referred to as recommerce markets, a phrase coined in

2005, cf. Colony (2005). Recommerce markets, in which

used products are sold, are constantly growing. Such

markets follow the concept of a circular economy and help

to save resources by giving products a longer lifetime.

Recommerce firms buy returned articles (such as smart-

phones, clothes, etc.) from customers or other firms and –

after optionally repairing or refurbishing them – resell them

again to consumers as used products. As the costs for

grading, storing, repairing, or refurbishing products are

comparably low and consumers’ interest in sustainability is

increasing, recommerce is a beneficial business model.

However, recommerce firms also face challenges, which

can be described as follows:

1. To successfully manage trade-ins and sales a jointly

optimized pricing is essential.

2. Further, when also new product versions are sold,

substitution effects between new and used products

have to be taken into account.

3. Many recommerce markets are characterized by

duopoly or oligopoly competition.

4. The interaction of own and competitors’ prices on

demand are not easy to anticipate.

5. Usually fully manual pricing decisions are not feasible

and automation is required, but effective rule-based

pricing strategies are hard to derive.

6. Self-learning data-driven algorithms typically require a

great amount of data to be trained in practice.

To tackle these challenges, simulated market environments

are key to developing, testing, and evaluating the strategic

interplay of automated pricing strategies applied in

recommerce markets. In addition, the potential perfor-

mance of self-learning strategies can be compared to rule-

based baseline strategies.

In this paper, we propose a conceptual framework for

such a recommerce market simulation, including an

adjustable customer behavior model, which is capable to

apply rule-based and self-learning agents based on rein-

forcement learning (RL). Monitoring tools shall allow to

analyze each agent’s policy and their effects on the overall

market and the associated resource flows. With the help of

such simulations, we seek to study the competitiveness of

self-adapting pricing tools and their long-term impact on

market competitors and customers.

Our key contributions can be summarized as follows:

• We use a synthetic simulation framework to study

whether different state-of-the-art RL algorithms allow

computing effective dynamic pricing strategies for

recommerce markets in duopoly and oligopoly

competition.

• We analyze how different RL algorithms perform

compared with rule-based benchmark strategies in

different market scenarios and evaluate associated

steady states.

• We use self-play to identify strategies that achieve

competitive results compared to strategies not seen in

training.

• We study the impact of different model parameters and

information structures on the performance of RL

algorithms and the associated average prices, sales,

stock levels, and resource flows.

• We demonstrate how to calibrate synthetic environ-

ments from data which allow to pre-train RL agents

before applying them to incompletely known

environments.

• We provide a rich open-source simulation and evalu-

ation framework, see code repository.1

The remainder of this paper is organized as follows. In

Sect. 2, we discuss related work. In Sect. 3, we describe

our conceptual framework to simulate recommerce markets

and to test self-learning algorithms. In Sect. 4, we present

several experimental evaluations to study the performance

of different state-of-the-art RL algorithms applied within

different problem scenarios, including duopoly and oligo-

poly setups. Further, we perform an ablation study

regarding the impact of several model parameters. To

illustrate how to potentially apply self-learning agents in

practice without being forced to train them extensively on

real-life markets, we show in Sect. 5 how to calibrate

synthetic test environments from observable data to be

used for pre-training before releasing the agent to the target

market. In Sect. 6, we summarize the main results obtained

and discuss limitations and potential extensions of the

model. Concluding remarks and ideas for future work are

given in the final Sect. 7.

2 Related Work

We shortly discuss related work along the following dif-

ferent streams associated to the topic of the paper: circular

economy (Sect. 2.1), dynamic pricing and market simula-

tions (Sect. 2.2), and an overview of existing RL tech-

niques (Sect. 2.3).

1 https://github.com/hpi-epic/BP2021.
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2.1 Circular Economy

A market is most commonly referred to as a circular

economy if it includes the three activities of reduce, reuse,

and recycle, e.g., see Kirchherr et al. (2017). This means

that while in a classical linear economy market each pro-

duct is sold once at its new price and after use thrown

away, in a circular economy a focus is put on recycling and

thereby waste reduction. An entry point to study the con-

cepts of circular economy and sustainable markets is given

in, e.g., Stahel (2016) and Bocken et al. (2016). The overall

idea is to save resources, reduce the use of resources and to

avoid waste, which is also closely related to closed-loop

supply chains, see, e.g., Savaskan et al. (2004), Gönsch

(2014). Further, related aspects are environmental costs

(Commoner 1972) or recycling investments (Schlosser

et al. 2021).

2.2 Dynamic Pricing and Market Simulations

Selling products on online marketplaces is a classical

revenue management application, see, e.g., Talluri and

Van Ryzin (2006). A comprehensive overview of the lit-

erature in dynamic pricing research is provided by the

surveys by Chen and Chen (2015), den Boer (2015),

Strauss et al. (2018), and Klein et al. (2020). The recent

work of Gerpott and Berends (2022) particularly discusses

dynamic pricing models under competition on online

marketplaces.

The combined problem of (i) updating prices, (ii)

learning demand behaviors, and (iii) identifying strategy

equilibria in competitive markets is challenging as infor-

mation is incomplete and merchants may constantly adapt

their strategies. For analyzing and evaluating the complex

interplay and long-term behavior of mutual self-adaptive

pricing strategies, market simulations for classical e-com-

merce applications have been used, see Kephart et al.

(2000), DiMicco et al. (2003), van de Geer et al. (2019),

and Schlosser and Richly (2019). The latter put a focus on

the dynamic interaction of two market participants and

their global effects, focusing on each agent’s profit as the

main performance indicator.

While the previously mentioned research projects focus

mostly on online retail markets, many other use cases of

dynamic pricing are known. A magnitude of publications

considers pricing under competition in very different sce-

narios, potentially including other constraints, optimization

goals, or mechanics which have to be taken into account,

ranging from inventory management to fairness goals.

Some of those publications rely on reinforcement learning

(RL), for example, Maestre et al. (2018). This is one of the

examples relying on learning from a simulation, a

requirement that is demanded by all model-free RL

methods.

RL is usually considered in those use cases in which the

state representation becomes too complex to apply other-

wise optimal dynamic programming-based solution meth-

ods. This can occur in online markets with many

competitors or relevant demand features, but in other

specialized use cases as well. For example, if the under-

lying optimization goal does not only aim for revenue

optimization, but also for optimal usage of a limited

resource, as described in Turan et al. (2020). In this use

case, an RL-based policy is charged with the task of

managing not only the price of rides but also the supply of

electric vehicles in a dynamic market.

The previously mentioned publications vary widely in

their choice of the solution method. The one presented

here, relying on RL and neural networks, is only rarely

chosen. To learn specific market dynamics in dynamic

pricing, neural networks are used, for example in Yang

et al. (2022). In this example, a recurrent neural network is

used to represent the market dynamics in a market with

perishable products. The combination of RL and recurrent

networks has been shown in the past, but is not applied

here. Another project considering dynamic pricing using

RL and perishable products is provided by Shihab and Wei

(2022). Other examples of specialized use cases incorpo-

rating competition and other relevant features include

cloud resource pricing, see Chen et al. (2022). Markets in

which customers also provide products to the market and

thus influence the market prices by adjusting their own

sales, are, e.g., small-scale energy markets and smart grid

systems. Pricing in such markets has been studied by Tsao

et al. (2022).

One example of research that considers retail products

and which also incorporates selling used versions of those,

is provided in Wen et al. (2022). In this use case, the

pricing is not dynamic regarding competition, which dis-

tinguishes it from the scenario described here.

However, the additional buyback option of recommerce

markets and associated circular resource flows, all while

keeping the demand dependent on competitors’ choices,

have not been studied in the mentioned frameworks.

2.3 Reinforcement Learning

In this section, we give a brief overview of existing RL

methods. RL agents are trained through a process of trial-

and-error. They iteratively interact with an unknown

environment by means of an observable state and an action

and observe feedback signals as well as the following state

according to an underlying Markov process. Simulation-

based RL algorithms enable the heuristically solving of
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large Markov decision problems with incomplete

information.

The books by Sutton and Barto (2018) and Bertsekas

(2019) summarize the state of the art in the field of RL.

Examples of established RL algorithms are, e.g., Deep

Q-learning Networks (DQN), cf. Mnih et al. (2015),

Proximal Policy Optimization (PPO), cf. Schulman et al.

(2017), or Soft Actor Critic (SAC), cf. Haarnoja et al.

(2018).

Applications of DQN and SAC to dynamic pricing

under competition can, e.g., be found in Kastius and

Schlosser (2022). Unfortunately, RL algorithms typically

require a lot of training data which makes them less

attractive to use in practice. To overcome this issue, current

approaches such as transfer learning, cf. Zhu et al. (2020),

or multitask RL, cf. Teh et al. (2017), seek to use

observable data more efficiently. Alternatively, synthetic

market environments that mimic the use case under con-

sideration can be used to pretrain RL agents.

In this context, we aim at closing a research gap by

studying the applicability and effectiveness of different

state-of-the-art RL methods to recommerce problems with

additional buyback options using a rich open-source sim-

ulation and evaluation framework.

3 Model and Problem Description

In this section, we first briefly introduce the main compo-

nents of our recommerce model (Sect. 3.1) and then

describe the mathematical model and its problem formu-

lation as Markov Decision Process from one firm’s per-

spective (Sect. 3.2). In Sect. 3.3, we define a

suitable environment to be able to apply RL methods in

different market setups. Finally, we discuss different

potential classes of RL methods for our recommerce use

case and select suitable algorithms to be used in the eval-

uation and comparison.

3.1 Overview

To mimic real-life recommerce markets, in our market

simulation framework, we consider the following main

components: (i) supplier(s), (ii) firm(s) including a private

data/event store, (iii) a (shared) marketplace, (iv) con-

sumer, (v) resource in use, and (vi) waste (cf. garbage), see

Fig. 1. The components are connected as follows. Firms set

prices for new and used products on their (or a central)

marketplace. Arriving consumers decide (whether and)

which product to buy from which firm. Bought products are

considered as a resource in use on the consumer side. They

may be disposed of as garbage after a while or sold back to

one of the firms which offer a corresponding buyback

price. Firms can also order new resources from their (or a

central) supplier at a certain cost (cf. virgin cost). To be

able to easily integrate various RL libraries, we follow a

standard stationary discrete-time setup with an infinite

horizon.

Note that this basic model sketched above also allows to

describe the following special cases: (i) monopoly settings,

(ii) scenarios with just one product type, and (iii) classical

e-commerce scenarios with no buyback option (cf. linear

economy), as well as combinations of those cases (i)-(iii).

Active decisions are made by the firms and the con-

sumers. The pricing decisions of a firm can be organized by

a certain rule-based strategy as well as an RL agent

exploiting a firm’s gathered partially observable market

data. Consumer behavior can be arbitrarily defined, e.g., by

generating random numbers of interested customers with

heterogeneous preferences and a diversified willingness-to-

pay. Besides consumers of a myopic type, also certain

shares of strategic or loyal customers can be defined and

considered.

3.2 Model Description

In the following, we describe the setup, a firm’s controls,

the consumers’ behavior, competitors’ reactions, and a

firm’s objective.

3.2.1 Setup

We consider an infinite time horizon. The discount factor

for one unit of time is denoted by d. We consider K

competing firms. Each firm sells a new version as well as

used versions of a standardized product. If a customer buys

a new product, the item becomes a used product and is

added to the number of resources in use denoted by Nuse. In

this context, firms can buy back items from consumers.

Each firm has an inventory of used products. Items repur-

chased from the consumers are added to a firm’s inventory.

We assume that the rebuy price includes average costs for

cleaning, refurbishing, repairing, etc.). The inventory

holding costs per item and unit of time are denoted by

cinv � 0. If a consumer buys a new product, the selling firm

receives the item from a supplier and faces virgin costs

cvirgin � 0 per item.

3.2.2 A Firm’s Controls and Competitors’ Reactions

Each firm k, k ¼ 1; :::;K, sets a price p
ðkÞ
new 2 Anew, for new

products, where Anew denotes the set of admissible prices.

Further, each firm k, k ¼ 1; :::;K, sets a price p
ðkÞ
used 2 Aused,

for used products, where Aused denotes the admissible pri-

ces. Also, each firm k, k ¼ 1; :::;K, sets a rebuy price
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p
ðkÞ
rebuy 2 Arebuy, for rebuying used products, where Arebuy

denotes a set of admissible prices. The sets Anew, Aused , and

Arebuy can be chosen discrete or continuous.

A firm sets its three prices simultaneously for one period

of time. The K firms set their prices subsequently in a

certain order and with fixed delays. Taking the perspective

of one specific firm, e.g., firm k ¼ 1, this firm sets its prices

at the beginning of a period of length one, e.g., from time t

to t þ 1, taking into account the current prices

pnewðtÞ 2 AK
new, pusedðtÞ 2 AK

used, prebuyðtÞ 2 AK
rebuy as well as

the own inventory of used products, cf. N
ð1Þ
usedðtÞ� 0. Within

the period ðt; t þ 1Þ each firm k ¼ 2; :::;K of the competing

K � 1 firms adjusts its price vector at its corresponding

point in time sðkÞ 2 ðt; t þ 1Þ in a similar way by reacting to

the current prices at time sðkÞ, i.e., pnewðsðkÞÞ, pusedðsðkÞÞ,
prebuyðsðkÞÞ and its own inventory N

ðkÞ
usedðsðkÞÞ � 0. In this

context, for each firm, we assume non-anticipating

Markovian strategies, where competitors’ prices are

observable while competitors’ inventory levels are not

observable. For the firms’ strategies, we allow for rule-

based as well as self-learning AI-based strategies.

3.2.3 Consumer Behavior for Buying and Reselling

We consider a stream of arriving consumers whose number

and timing can be defined in a steady deterministic and in a

random fashion.

A single consumer arriving at a certain point in time t

observes the current offer prices for new

(pnew :¼ ðpð1Þnew; :::; p
ðKÞ
newÞ) and for used

(pused :¼ ðpð1Þused; :::; p
ðKÞ
usedÞ) products from all K firms. A

customer’s choice behavior can be defined arbitrarily and

may include a no-buy option (cf. k ¼ 0). In our model, we

assume that a (myopic) customer buys at most one product

and that the overall consumer buying behavior is expressed

as a probability distribution for buying no item at all (cf.

P
ð0Þ
no buyðpnew;pusedÞ� 0) or buying either a new (cf.

P
ðkÞ
newðpnew; pusedÞ� 0) or a used (cf. P

ðkÞ
usedðpnew; pusedÞ� 0)

product from one of the K firms given the current prices

pnew 2 AK
new and pused 2 AK

used , such that

P
ð0Þ
no buyðpnew; pusedÞ þ

X

k¼1;:::;K

PðkÞ
newðpnew; pusedÞ

þ
X

k¼1;:::;K

P
ðkÞ
usedðpnew; pusedÞ ¼ 1:

ð1Þ

Note, within this framework various choice models can be

used.

Moreover, consumer behavior regarding selling back

items is modeled as follows. We again consider a stream of

consumers (interested in giving back an item), which may

explicitly depend on the current number of resources in use

Nuse. The precise number of such customers arriving, e.g.,

within a period of time, and the timing can be defined in a

steady deterministic way as well as in a random fashion.

Further, a (myopic) consumer interested in reselling

observes the current rebuy prices of all competitors

(prebuy :¼ ðpð1Þrebuy; :::; p
ðKÞ
rebuyÞ) and sells back at most one

product. We assume that the overall consumer reselling

behavior is expressed as a probability distribution for

selling no item at all (cf. P
ð0Þ
no sellðprebuyÞ� 0) or selling the

used product to one of the K firms (cf. P
ðkÞ
sellðprebuyÞ� 0)

given the current rebuy prices prebuy 2 AK
rebuy, such that

P
ð0Þ
no sellðpnew; pused; prebuyÞ þ

X

k¼1;:::;K

P
ðkÞ
sellðpnew; pused; prebuyÞ ¼ 1:

ð2Þ

Supplier
vendor_0 
Inventory: 90
Profit: 391.4

Garbage 
Amount: 80

Resources 
in use

Amount: 279

Market- 
place

Resource cost: 3

thrown away: 6

Consumer

Price used: 5 

Sales used: 2

Price new: 7

Sales new: 4

Arrivals: 840
Sales: 673

Rebuy price: 3

Repurchases: 1

Market Simulation
Episode length: 50

Time step: 42

Supplier
vendor_1
Inventory: 10
Profit: 697.8

Market- 
place

Resource cost: 3
Price used: 4 

Sales used: 1

Price new: 6

Sales new: 8

Rebuy price: 2

Repurchases: 0

Fig. 1 Illustration of the main components of a recommerce market simulation with two competing merchants and prices for new items, used

items, and buyback prices
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Note that the resell probabilities may also depend on the

competitors’ current offer prices, which may serve as

potential reference prices. Again this formulation is fairly

general and compatible with established choice models.

3.2.4 Problem Formulation from a Single Firm’s

Perspective

A firm k’s profit, k ¼ 1; :::;K, is characterized by its sales,

purchases, and its holding costs, which are connected to the

inventory process NðkÞðtÞ. By X
ðkÞ
newðtÞ (and X

ðkÞ
usedðtÞ), we

denote the number of new items (and used items) sold

within period ðt; t þ 1Þ. The number of used items repur-

chased from consumers within ðt; t þ 1Þ is denoted by

X
ðkÞ
rebuyðtÞ. Given a pricing strategy (policy)

aðkÞ :¼ ðpðkÞnew; p
ðkÞ
used; p

ðkÞ
rebuyÞ, a firm k’s random accumulated

future profits from time t on (discounted on time t) amount

to, t� 0, k ¼ 1; :::;K,

G
ðkÞ
t :¼

X1

i¼t

di�t �
X
ðkÞ
newðiÞ � p

ðkÞ
newðiÞ � cvirgin

� �
þ X

ðkÞ
usedðiÞ � p

ðkÞ
usedðiÞ

�N
ðkÞ
usedðiÞ � cinv � X

ðkÞ
rebuyðiÞ � p

ðkÞ
rebuyðiÞ

0
@

1
A:

ð3Þ

A firm k’s goal, k ¼ 1; :::;K, is to determine a non-antici-

pating (Markovian) 3-dimensional feedback pricing policy

that for given a certain initial state

s
ðkÞ
0 :¼ N

ðkÞ
usedð0Þ; pnewð0Þ; pusedð0Þ; prebuyð0Þ

� �
; ð4Þ

which is characterized by a firm k’s initial inventory level

and the current market prices, optimizes a given objective,

e.g., the maximization of expected total discounted profit,

cf. (3), from time t ¼ 0 on:

E G
ðkÞ
0 jsðkÞ0

� �
: ð5Þ

Note, depending on the targeted use case, the number of

resources in use might also be considered observable and

added to the state. Further, the proposed model is general

enough to deal with monopoly or duopoly scenarios as

special cases and also subsume models with no differen-

tiation between new and used products or without a rebuy

channel (cf. linear economy).

Due to the size of the state space, standard dynamic

programming-based solution techniques (assuming com-

plete information about the dynamics of the underlying

process) are, in general, not applicable and analytical

closed-form solutions are very likely not exist. Hence, we

seek to apply RL agents to the problem as an alternative

approach.

3.3 Application and Selection of RL Agents

3.3.1 Embedding of RL Environments

Based on the model description and problem formulation

given in Sect. 3.2, we describe how different RL Algo-

rithms can be applied to our problem by mapping the

recommerce model to a standard RL framework. Standard

RL frameworks usually require a discrete-time (turn-based)

setup and are characterized by a so-called environment,

which includes states, actions, reward signals, and state

transition dynamics. The RL agent plays against the envi-

ronment by choosing actions from a certain action space

and receiving (aggregated) reward signals and associated

state transitions.

From a firm’s, i.e., the agent’s perspective, the state is

characterized by its inventory level, the current prices of

the competitors, cf. (4), and – if considered observable –

the amount of resources in use. Further, a firm’s action is a

combination of prices for new products, used products, and

the buyback price. Hence, for an RL agent, the action space

is 3-dimensional and given by the price sets Anew, Aused,

and Arebuy.

The reward signal of a firm is the aggregated reward

associated to realized sales, purchases, and holding costs

(within one period); it is characterized by the underlying

customer behavior, cf. demand probabilities (1) and the

resell probabilities (2), including the defined arrival

streams of interested consumers, see Sect. 4.1.2.

Finally, (realized) state transitions are organized via the

MDP described in Sect. 3.2 and governed by the evolution

of the own inventory level and, in particular, the subse-

quent price adjustments of all competing firms. This, in

general, requires that certain, e.g., rule-based, policies are

assigned to the competing firms, see Sect. 4.1.1.

The agent’s objective is to find a state-dependent strat-

egy that maximizes expected discounted long-term

rewards, cf. (5). Note, the agent does not know internals of

the environment, i.e., the defined consumer behavior and

the defined competitors’ strategies are not unknown to the

agent. Finally, within the described environment, different

standard RL algorithms can be applied by using common

RL libraries.

3.3.2 Selection of RL Algorithms

Potential state-of-the-art RL algorithms for our problem are

so-called Q-Learning-based techniques and policy gradient

algorithms. Here, we will focus on RL algorithms using

neural networks; note that tabular methods (as used in

classical dynamic programming) cannot handle the
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problem because the size of the state space exceeds the

computational limits by far.

Further, as also the action space of our problem will be

typically large, we decided to consider algorithms that use

a continuous action space. The main reason for this is that

for a discrete formulation, neural networks require an

output neuron for each individual action. But the size of

this action space is jAnewj � jAusedj � jArebuyj, which does not

scale with fine-grained price levels. Moreover, unlike the

continuous ones, the actions in a discrete formulation have

the disadvantage that they only represent categories and,

hence, do not have a metric order. They also do not reflect

that the prices are real vectors whose distances have any

meaningful interpretation. In line with this, for example,

Kastius and Schlosser (2022) found that Soft Actor Critic

(SAC), cf. Haarnoja et al. (2018), performed better than

Deep-Q-Learning (DQN), cf. Mnih et al. (2015), on their

pricing benchmarks.

Finally, as RL methods with continuous action space,

we selected the following state-of-the-art RL algorithms to

be applied to our problem: A2C Mnih et al. (2016), SAC,

and PPO Schulman et al. (2017). Alternative algorithms

such as DDPG Silver et al. (2014) or TD3 Fujimoto et al.

(2018) were tested but soon ruled out due to their clearly

inferior performance. A3C, an asynchronous alternative to

A2C, was also considered but deemed unnecessary due to

the environment’s ability to generate data faster than the

algorithm itself could process it.

4 Evaluation

Our evaluation is organized as follows. In Sect. 4.1.1, we

define the consumer behavior and rule-based benchmark

strategies to be used in our experimental framework,

including reproducible hyperparameters for the different

RL agents are defined. In Sect. 4.2, we study the perfor-

mance of RL agents against rule-based benchmark strate-

gies in a duopoly. In Sect. 4.3, we consider an opportunistic

version of the setup of Sect. 4.2. In Sect. 4.4, we use self-

play to evaluate an RL agent playing against itself in a

duopoly. In Sect. 4.5, we provide a study examining

alternative versions of observable state spaces. In Sect. 4.6,

we also analyze monopoly and oligopoly scenarios.

Finally, in Sect. 4.7, we provide an ablation study with

respect to various model parameters in order to verify the

general applicability of the proposed model framework as

well as the robustness of the market results.

4.1 Definitions and Model Specifications

4.1.1 Competitors’ Strategies

In our experiments, we seek to model the timing of price

updates in a realistic (i.e., not concurrently) and fair fash-

ion (i.e., with uniform timely delays). For ease of sim-

plicity, we let the K competing firms subsequentially

update their prices (in random order) with a fixed consis-

tent delay of 1/K units of time. To be precise, firm k,

k ¼ 1; :::;K, adjusts its prices at points in time

t þ ðk � 1Þ=K, t ¼ 0; 1; :::. Hence, in each period, we

obtain K sub-intervals of length 1/K in which the market

prices remain unchanged.

As a rule-based benchmark strategy (denoted by RBB),

we define a common, representative competitive strategy,

which seeks to undercut other competitors’ prices but also

balances its own inventory level. The strategy uses an

incremental price unit h for undercutting competitors’

prices and a given upper reference level M for the firm’s

own inventory level. If firm k plays this RBB strategy, the

prices are (at any time t) adjusted as follows:

pðkÞnewðN
ðkÞ
used; pnew; pused; prebuyÞ

:¼ max min
i2f1;:::;Kgnfkg

pðiÞnew

n o
� h; cvirgin þ h

� � ð6Þ

p
ðkÞ
usedðN

ðkÞ
used; pnew; pused; prebuyÞ

:¼

min
i2f1;:::;Kgnfkg

p
ðiÞ
used

n o
þ h ;N

ðkÞ
used\M=15

min
i2f1;:::;Kgnfkg

p
ðiÞ
used

n o
� h ;N

ðkÞ
used\M=8

min
i2f1;:::;Kgnfkg

p
ðiÞ
used

n o
� 2h ; else

8
>>>>>><

>>>>>>:

ð7Þ

p
ðkÞ
rebuyðN

ðkÞ
used; pnew;pused;prebuyÞ

:¼

minðcvirgin � h; max
i2f1;:::;Kgnfkg

p
ðiÞ
rebuy

n o
þ hÞ ;N

ðkÞ
used\M=15

max
i2f1;:::;Kgnfkg

p
ðiÞ
rebuy

n o
� h ;N

ðkÞ
used\M=8

max
i2f1;:::;Kgnfkg

p
ðiÞ
rebuy

n o
� 2h ; else

8
>>>>>><

>>>>>>:

ð8Þ

Note, while the price for new items depends on the unit

costs cvirgin, the used and repurchase prices depend on the

own stock level. If the inventory level is small (high), used

prices are chosen slightly higher (lower) compared to the

competitors in order to increase (decrease) the inventory

level. All prices are restricted to the action space (in case

the calculation determines results smaller or larger prices

than framed via the sets Anew, Aused, and Arebuy).
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4.1.2 Consumer Arrival and Behavior

For ease of simplicity, in our experiments, we use a

deterministic arrival model. In each sub-period of length 1/

K associated with the subsequent updates of all competi-

tors, see Sect. 4.1.1, we consider B arrivals of customers

with an independent buying behavior sampled from the

probabilities P
ð0Þ
no buy, Pnew, and Pused , cf. (1).

In our experiments, we define the buying behavior for

given prices pnew and pused as follows. To compare prices

of different competitors, we use the following two prefer-

ence functions unewðpÞ, with p 2 Anew, and uusedðpÞ, with

p 2 Aused, hnew 2 ½0; 1�, hused 2 ½0; 1�, jused 2 ½0; 1�, defined

by

unewðpÞ :¼
p
ðmaxÞ
new

p
� ep�hnew�pðmaxÞ

new

and

uusedðpÞ :¼
jused � pðmaxÞ

used

p
� ep�hused �pðmaxÞ

used :

Based on the preference functions unew and uused and the

fixed preference value of one associated to the no buy

option, we use R :¼ e1 þ
P

i¼1;:::;K eunewðp
ðiÞ
newÞ þ

P
j¼1;:::;K euusedðp

ðjÞ
used

Þ and the softmax function to define

P
ð0Þ
no buy, P

ðkÞ
new, and P

ðkÞ
used, k ¼ 1; :::;K, as:

P
ð0Þ
no buyðpnew; pusedÞ :¼ e=R ð9Þ

PðkÞ
newðpnew; pusedÞ :¼ eunewðp

ðkÞ
newÞ=R ð10Þ

P
ðkÞ
usedðpnew; pusedÞ :¼ euusedðp

ðkÞ
used

Þ=R: ð11Þ

Next, we define the consumers reselling behavior. In each

sub-period of length 1/K associated with the subsequent

updates of all competitors, see Sect. 4.1.1, we consider

dNuse � we arrivals of customers interested in reselling,

where we use the share w 2 ½0; 1�. Each arriving consumer

observes the current prices prebuy and the reselling behavior

is independently sampled from P
ð0Þ
no sell and P

ðkÞ
sell.

In our experiments, for given rebuy prices prebuy, we

define the buying behavior using the reference price pmin :

¼ mini2f1;:::;Kg minðpðiÞnew; pðiÞusedÞ
n o

as well as the preference

functions urebuyðaÞ :¼ 2 � e
a�pmin
pmin , a 2 Arebuy, and

drebuyðprebuyÞ :¼ 2= maxi2f1;:::;KgfpðiÞrebuyg þ 1
� �

. Based on

the preference functions drebuy and urebuy we use ~R :¼

e1þdrebuyðprebuyÞ þ
P

i¼1;:::;K eurebuyðp
ðiÞ
rebuy

Þ and the softmax func-

tion to define P
ð0Þ
no sell and P

ðkÞ
sell, k ¼ 1; :::;K, as:

P
ð0Þ
no sellðpnew; pused; prebuyÞ :¼ e1þdrebuyðprebuyÞ= ~R: ð12Þ

P
ðkÞ
sellðpnew; pused; prebuyÞ :¼ eurebuyðp

ðkÞ
rebuy

Þ= ~R: ð13Þ

Note, the consumers reselling behavior depends on the

different competitors’ rebuy prices and the current prices

for new and used items as a reference to discard rebuy

offers.

4.1.3 Reproducible Example

In the following examples and experiments, if not chosen

differently, we use the dynamics defined in Sects. 4.1.1 and

4.1.2 as well as the parameters summarized in Table 1.

4.1.4 Hyperparameters

The absence of theoretical knowledge about the determi-

nation of optimal hyperparameters requires exhaustive

experimental efforts within various settings for our specific

problem. This is not within the scope of this work. Instead,

as we look for solutions avoiding tedious tuning, as a

reasonable simple choice, we use the default hyperparam-

eters of the original methodological papers and test their

suitability for our recommerce problem. These can be

found in the Appendix (available online via http://link.

springer.com) in the Tables 4, 5, and 6. Nevertheless, it

might be possible to identify better hyperparameter setups

than the ones used for the following experiments. While no

full parameter sweep was performed by us, in some cases

the conclusions about the algorithms were validated over

several hyperparameter combinations.

4.1.5 Implementation Setup

The comparison of the RL algorithms takes place on the

market defined in Sect. 3.2. This market is simulated on the

test platform developed by us. The agents are communi-

cated via the Gym interface, see Brockman et al. (2016).

For the algorithms to be compared, the implementations of

the library Stable Baselines, cf. Hill et al. (2018), are used.

Stable Baselines is an open-source RL library written in

Python. It is built on PyTorch, see Paszke et al. (2019). In

most cases, the algorithms implemented in Stable Baselines

directly correspond to the proposed algorithms of the

original papers and are characterized by high code read-

ability. All hyperparameters are configurable.

4.2 Experiment A: An RL Agent Against the Rule-

Based Strategy RBB in a Duopoly

In this experiment, we consider a duopoly against the rule-

based benchmark competitor (RBB). We compare the
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performance of the three RL algorithms: A2C, PPO, and

SAC.

First, we discuss the results for the on-policy algorithms

A2C and PPO. Figure 2 shows the learning curves of both

algorithms. Each of these experiments was run four times

independently for one million steps (two thousand episodes

of 500 steps each), cf. Table 1. The learning curves depict

the running averages of the episode returns (cf. profits)

over a window of 100 episodes. The range between max-

imum and minimum episode returns of these four runs is

colored. The bold line represents their average. In this

graph, the loss region (i.e., values below zero) is hidden to

allow a more accurate comparison in the upper-perfor-

mance region. We observe that all agents reach the profit

zone. However, with average scores of about 8000 per

episode, we find that PPO clearly outperforms A2C. Fur-

ther, we observe that PPO’s learning stability is signifi-

cantly higher compared to A2C. Figure 3 illustrates a

detailed view of a typical PPO training run. The perfor-

mance develops in a narrow band, and catastrophic for-

getting does not occur. Its average performance increases

to 8160 by the end and shows a consistently stable trend in

return and price selection. Results for single runs of A2C

are given in the Appendix, see Fig. 13.

The difference in learning speed and stability between

PPO to A2C is not surprising as it exists by design. These

experiments show that PPO is successful in its intention to

increase training stability. This effect is achieved by lim-

iting the stochastic policy change in each training step. On

the other hand, this leads to the observed lower learning

speed.

One observation in Fig. 3 deserves special attention

because it seems paradoxical at first: Although with regard

to profit the RL agent outperforms the rule-based agent

after some time, it is later outperformed again. This gives

the impression that the agent gets worse during training.

Table 1 Parameters with brief

explanation and default values

used for our experiments

Symbol Explanation Default value

d Discount factor per period 0.99

cvirgin Purchase or production price for new products 3

cinv Price per stored used product per period (step) 0.1

A Price sets Anew ¼ Aused ¼ Arebuy ¼ A [0, 10]

pðmaxÞ Maximum price for all three price sets Anew, Aused , Arebuy 10

B Number of customers visiting the store per step 20

w Proportion of owners considering resale per step 0.05

hnew Parameter for preference function (new items) 0.8

hused Parameter for preference function (used items) 0.5

jused Parameter for preference function (used items) 0.55

K Number of competing firms 2

h Price decrease for the RBB strategy 1

M Upper reference value for used products in stock 100

E Number of periods (steps) per episode 500

Fig. 2 Learning curves (mean

rewards) of A2C, PPO, and

SAC on the duopoly with the

rule-based undercutting

competitor RBB. The shaded

areas show the minimum and

maximum rewards of 4 runs

123

J. Groeneveld et al.: Self-learning Agents for Recommerce Markets, Bus Inf Syst Eng 66(4):441–463 (2024) 449



However, the opposite is true. The PPO agent first learns to

price new and used goods higher. For new sale prices

greater than four, it experiences that the rule-based com-

petitor always underbids its price by 1. Through reciprocal

undercutting, a downward price spiral leads to the price

settling just above the purchase price. However, the

extremely low rate of return allows only low profits. While

the agent gains experience through exploration, it learns

that it can increase its overall profit by moving the market

to a higher price band. The competitor then continues to

undercut the agent, but only by the value of one. In doing

so, the agent accepts that more customers will buy from the

competitor due to the low price and that the competitor will

also earn more from each customer as prices increase.

However, it can still increase its profits compared to the

low-priced market. The effect is, therefore, that the RL

agent, in reaction to the competitor who is always under-

cutting him, allows the latter an increase in profits in order

to be able to achieve higher profits for himself as well. The

existence of this effect is due to the fact that the only

optimization criterion for the agent is its own profit. A

reward formulation that includes outperforming the com-

petitor as an objective is discussed in Sect. 4.3.

On the same duopoly market, we also evaluated SAC.

Figure 2 shows the learning curve of four SAC agents in a

training run of 2000 episodes as in the experiments for PPO

and A2C. Within the 2000 episodes, SAC achieves slightly

less mean rewards compared to PPO.

SAC was developed as an off-policy algorithm for two

main goals besides achieving competitive results: First, it is

intended to have high sample efficiency, meaning that it

requires significantly fewer steps during training. Second,

SAC aims at a high training stability. The learning curve

confirms that SAC achieves these two main goals. At about

250 to 300 episodes, agents are already close to their peak

performance. The rest of the training yields only small

performance gains.

Similar to Figs. 3 and 4 shows more details during

training. The average prices start – apparently due to a

different parameter initialization – at higher levels than for

PPO. They then drop and end at 6.4 and 5.4, similar to

PPO.

With the implementation and hardware used for these

experiments, training per step with SAC takes about 3.7

times as long as with PPO. Collecting the examples from

the market takes about 25% of the training time with PPO,

and only about 6% with SAC. The speed of training is very

similar for A2C and PPO. If we calculate the actual

training time, the higher sampling requirement for PPO is

put into perspective. A2C is superior to the other algo-

rithms in pure time requirements.

Note, because the SAC training is time-consuming and

the learning progress is slow later on, the number of

training steps is reduced in some of the subsequent

experiments. The same is done with A2C since its maxi-

mum performance is achieved very early on.

4.3 Experiment B: An RL Agent against the Rule-

Based Strategy RBB in a Duopoly (Opportunistic

Version with Adapted Reward Function)

In Experiment A, the RL agents achieved overall good

profits but were still outperformed by the rule-based

competitor. In Sect. 4.2, we explained that this should not

be interpreted as a weakness of the algorithms, but can be

attributed to the reward function, which only evaluates its

profit. Now, maximizing one’s own profit is not an inap-

propriate metric, yet firms will be reluctant to leave more

profit to their competitors than to themselves in a sym-

metric market. Therefore, it is obvious to evaluate not only

one’s own profits in the reward function but also whether

the competitor is outperformed.

One way is to formulate the market as a zero-sum game

in that the reward is precisely the difference between one’s

own profits and those of the competitor. This formulation

puts a clear focus on outperforming the competitor and

further potentially opens up the market scenario to insights

from game theory for zero-sum games. However, this

Fig. 3 Detailed view of a PPO training run to visualize stability: (left) learning curve; (center) average selection of new prices; (right) average

selection of used prices
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formulation is not practical because the goal of maximizing

profit is not valued at all. Thus, optimizing solely the dif-

ference may result in significantly outperforming the

competitor, but with overall low profits.

Therefore, a mixed reward function was used for the

following series of experiments. It simply calculates the

sum of (i) profit and (ii) the difference to the competitor’s

profit. For these experiments, both summands were

weighted equally, but a hyperparameter could be inserted

to balance the two goals of maximizing profit and outper-

forming the competitor.

The results, see Fig. 5, show that the competitor can be

clearly outperformed, but naturally, the agents’ profits are

lower than compared to the original implementation, but

this difference turns out to vary in its strength among the

algorithms.

4.4 Experiment C: RL vs. RL Training via Self-Play

In Experiment A and B, the RL agents all trained against

the undercutting rule-based competitor RBB. This satisfies

the theoretical requirements of an MDP with fixed and

known dynamics but poses a number of problems for

practical applications. First, the competitor’s policy must

be known for this to work. However, because it can be

assumed that the competitor will not reveal its pricing

strategy, it would have to be estimated from historical data,

accepting inaccuracies. Second, the strategy trained using

RL is only reliable against that particular rule-based

strategy. If the competitor suddenly changes its pricing

strategy, this weakens the performance of the RL strategy

and necessitates further expensive training.

Therefore, the user wants a policy that can hold up

against various different competitor strategies rather than

being overfitted to a specific one. DeepMind had a similar

challenge in training go and chess strategies, which was

solved by self-play, see, e.g., Silver et al. (2017).

For our market, we developed a self-play variant in

which an RL agent continues to train on a duopoly market,

but the competitor’s policy is its own policy. In the pro-

gramming implementation, a pointer to the RL agent is

passed to the opponent, which eventually also implements

the policy function. Naturally, as the agent is playing

against itself and continuously updates its strategy, the

Markov property is violated. Yet, the training still leads to

relatively stable rewards in most cases. The motivation

behind self-play is that the agent constantly develops

strategies against its own, which are then, in turn, chal-

lenged. This is to prepare the agent for a variety of oppo-

nents’ policies.

Our experiments with self-play were again conducted

with the algorithms A2C, PPO, and SAC. In this context,

the entire series of experiments was performed with the

Fig. 4 Detailed view of a SAC training run analogous to Fig. 3

A2C PPO SAC

Fig. 5 Representative single runs of A2C, PPO, and SAC with opportunistic reward function
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normal reward function and the mixed reward function

from Experiment B, cf. Sect. 4.3.

Figure 6 shows the learning curves of the three algo-

rithms when trained against themselves. The learning

curves under mixed reward look similar and can be found

in the Appendix, see Fig. 14. These curves initially show

that learning success is achieved for all of these three

agents. However, they alone cannot tell us whether the

agents can actually compete against an opponent with an

arbitrary pricing strategy. Therefore, the returns of these

learning curves should not be directly compared to those

from the previous sections. To establish comparability, a

model was saved every 50 episodes during self-play and

each of these models was subsequently tested for 25 epi-

sodes. This created accurate learning curves comparing the

model trained during self-play to the rule-based agent

RBB. A mean run was selected for the three algorithms and

the two reward functions and illustrated in Fig. 7.

For both reward functions, the agents have successfully

learned to cope with the market and show that they are also

successful against the rule-based benchmark competitor.

Note, the peak rewards of all agents in the evaluation are at

8000 or just below. A2C suffers from strong fluctuations,

some of the A2C agents do not reach a level of 5000, see

Fig. 6.

The effects of the mixed reward function can also be

seen in the training runs. During training, the difference

between the agent’s and the opponent’s profit is also

tracked as an optimization criterion. When evaluated

against RBB, the agent trained by self-play via PPO and

SAC beats the competitor. While the benchmark results do

not achieve the same results as by training directly against

the rule-based agent, we observe that they are close. This is

noteworthy because these successes were achieved without

ever having observed the rule-based competitor before.

Thus, these experiments can be considered successful,

particularly for PPO and SAC.

4.5 Experiment D: Study for Different Observable

State Spaces

In this section, we study cases in which different elements

of the state are hidden from the agent. In our model, the

fully observable state space contains: (i) current prices, (ii)

the number of resources in use, and (iii) all competitors’

inventory levels. However, observing some of these

quantities is often not feasible in practice. For example, the

competitor will not let competitors look into his or her

warehouse and the number of products in circulation is not

directly observable and not easy to estimate. Therefore, the

question arises whether the algorithms work without these

two pieces of information.

Figure 8a–c shows the learning curves of the three

algorithms when trained against the undercutting rule-

based strategy RBB under different observable state

spaces. The result here is surprising. The expectation that

less information would lead to worse results is not fulfilled.

For PPO, except for a slight deterioration in stability,

performance is similar for the three scenarios (cf. blue,

orange, and green plots). This slight drop in stability can

probably be explained directly by the lack of information.

For A2C, performance improves without additional infor-

mation, and also for SAC, mean rewards improve signifi-

cantly. The SAC agents that are only deprived of the

competitor’s stock level perform quite similarly (slightly

better) than those with complete information; the agents

that additionally lack the information about the number of

products in circulation perform significantly better. Not

only does it lower the time to peak performance to below

100 episodes, but it actually improves the peak perfor-

mance. This brings the maximum closer to that of PPO.

Fig. 6 RL vs. RL in a

symmetric duopoly: Learning

curves for A2C, PPO, and SAC

at self-play; algorithms were

trained for 2000 episodes (with

normal reward function, 4 runs

each)
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This is an important finding (cf. practical applicability),

and yet, it raises the question of how to explain unex-

pectedly good performance under incomplete information.

The first explanation is that the omitted information plays

only a subordinate role. They do explain to some extent the

future action of the competitor and the number of owners

willing to sell, but the effects are so indirect that they are

difficult to exploit for improving a policy.2 Further, a

higher-dimensional observation space also poses a chal-

lenge in principle for machine learning methods. The need

for samples increases and patterns in the data are harder to

detect.

However, the higher dimension is not sufficient to

explain the specific phenomenon in SAC. Another theory

might serve as the underlying reason here. Figure 9 (mid-

dle) displays that an exemplary SAC agent has a strong

sensitivity with regard to the two arguments, number of

resources in circulation and the stock level of the com-

petitor. Thus, the mean of the SAC policy for used prices

differs between 2 and 10 for similar situations, a jump

through the entire action space. That a near-optimal policy

should behave this way can be ruled out given the low

importance of the two arguments, confirming the policy of

the clearly more successful PPO agent. As one would

expect, the policy of the PPO agent hardly depends on

these two arguments. The lower performance maxima of

SAC can be explained by this weakness.

An explanation can be found in the internal replay

buffer Soft Actor-Critic relies on. It is based on the fact that

more products are in circulation when policies are evolved

in the market. This is shown in Fig. 9 (left) and is due to

the fact that little-trained policies often buy back too much

(and spend too much money in the process) in contrast to

the more evolved ones. This means that, especially in early

episodes, the experience buffer is filled only with state

transitions with low in-circulation values. These samples

remain in the experience-buffer, but are no longer useful

for later training and can explain the anomalies in the

policy. For example, a strong anomaly in the policy is in

the range between 50 and 150 products in circulation,

exactly the range from which the early samples come.

Thus, omitting the in-circulation entry arguably improves

the performance of SAC because it then no longer has the

opportunity to overfit early to relationships that are not

sampled from the market reliably in the long term. It is thus

noted as a weakness of SAC compared to the on-policy

method PPO that it is less able to ignore this bias in the

early generated data.

4.6 Experiment E: Monopoly and Oligopoly Scenarios

In the previous experiments A-D, the algorithms were

tested in duopoly scenarios. Naturally, in real-world

applications, there are also different scenarios to master. In

Experiment E, we investigate how the RL algorithms

perform on market scenarios such as monopoly setups (cf.
2 The rule-based competitors do not use this information either.

Fig. 7 Performance of representative runs for RL agents trained via self-play for x episodes and then evaluated against RBB

(x ¼ 0; 50; :::; 2000); column-wise by agent: (left) A2C, (center) PPO, (right) SAC; top row with normal reward, bottom row with mixed reward

123

J. Groeneveld et al.: Self-learning Agents for Recommerce Markets, Bus Inf Syst Eng 66(4):441–463 (2024) 453



(a) A2C

(b) PPO

(c) SAC

Fig. 8 Learning curves of A2C,

PPO, and SAC with full versus

partial observation; (blue) full

observation, (orange) without

competitor’s stock level, and

(green) without competitor’s

stock level and the number of

products (respective minimum,

maximum, and mean results are

based on 4 runs) (color

figure online)
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Sect. 4.6.1) and, in particular, oligopoly scenarios (cf. Sect.

4.6.2).

4.6.1 Monopoly Scenario

Compared to duopolies, a monopoly scenario is likely to be

less complex. Here, the RL agent is the only merchant,

while the same stream of customers continues to visit the

market. The other dynamics of the market are unchanged.

The agent’s reward function optimizes expected profits –

comparisons with competitors are unnecessary.

Figure 10 shows the learning curves of the three agents

in the described monopoly market with complete infor-

mation. The parallels to the duopoly results are immedi-

ately striking:

1. The relative order of the agents in the learning curve is

the same: PPO performs best, then SAC ahead of A2C.

2. A2C is the first to reach the profit zone, followed by

SAC and finally PPO.

3. The training of PPO and SAC is stable, A2C’s training

is characterized by catastrophic forgetting.

We observe that, even though the monopoly market is

simpler (cf. the size of the state space), the demand for

samples does not decrease noticeably. Comparing the point

at which the algorithms stop achieving significantly better

results, A2C reaches this at around 150 episodes in both

setups, SAC at around 300 episodes, and PPO at around

600 episodes, cp. Figure 2. In the monopoly, the algorithms

achieve about twice as high profits as in the duopoly. This

is plausible as they no longer have to share the market. In

the Appendix, see Fig. 17, a PPO run in a monopoly is

compared with one in a duopoly in terms of sales figures.

4.6.2 Oligopoly Scenario

Next, oligopoly scenarios are examined. In our experiment,

we now consider K ¼ 5 players. Here, the RL agent

competes against the following set of four rule-based

agents:

Fig. 9 View of agents with complete information: (left) progression

of in-circulation counter in SAC training, (center and right) used price

policy as a function of in-circulation and competitor’s stock level for

SAC and PPO; for the illustration, other state arguments were pinned

to a representative value that is typical in a training run (own stock

level: 25, competitor’s new price: 6, competitor’s used price: 4,

competitor’s repurchase price: 0)

Fig. 10 Learning curves of

A2C, PPO, and SAC in a

monopoly scenario over 1000

episodes (4 runs)
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1. a generalization of the known rule-based agent RBB

(which for used and new products undercuts the

minimum price of the other players by h ¼ 1),

2. a rule-based agent that uses prices to regulate its stock

but does not react to other agents’ actions,

3. a passive agent that has fixed prices (6 as new price, 3

as used price, and 2 as buyback price), and

4. an agent created specifically for the oligopoly scenario:

As a new price, it undercuts the median of the other

sellers and regulates its stock to contain about 7 items.

Each step here is decomposed into fifths, cf. K, and the

players set their prices in turn. In each of these fifths,

B=K ¼ 4 customers come to the marketplace (B ¼ 20, cf.

Table 1). The other parameters of the marketplace remain

unchanged. The observation space is 18-dimensional (in-

circulation, own stock level, and for each of the four

competitors’ three prices as well as the stock level). With

regard to the state space, the scenario is more complex than

the duopoly setup.

Figure 11 shows the learning curves on our oligopoly

scenario (same scaling as in Fig. 2). The RL agents achieve

learning success here as well, although the gains are nat-

urally lower given the increased competition for the same

demand. Consistent with our other experiments, PPO and

SAC show stable learning curves. A2C shows familiar

instabilities, but its performance at the peak actually lags

only slightly behind that of the other algorithms. What is

interesting in this experiment is that the SAC algorithm

performs better than PPO, which was superior in peak

performance in the other experiments. Because only 1000

episodes were trained due to the high training effort and the

PPO curves still show a slight increase at the end, it cannot

be ruled out that PPO catches up at a later time, but nev-

ertheless, based on this learning curve SAC can be classi-

fied as superior.

The algorithm comparison on the oligopoly was also

performed with the mixed reward function. Its results are

similar, but the SAC runs there scatter much more. The

learning curves for this experiment are given in the

Appendix, see Fig. 18.

Figure 12 shows a typical training run for each of the

three algorithms. The results here are positive. Each of the

RL agents is able to significantly outperform all of its rule-

based competitors during its training run. As expected, the

agent with fixed prices performs the worst, as it is neither

able to regulate its inventory nor to react to competitors’

prices. The agent that only regulates its inventory ends up

in second to last place, while the two rule-based agents that

also react to competitor prices perform passably.

As in this oligopoly experiment the RL agents already

outperform their competitors, cp. Experiment A, there is no

need for the mixed (opportunistic) reward function, cp.

Experiment B. Therefore, experiments on this setup were

omitted.

4.7 Ablation Study for Steady State Results

In this section, we provide an ablation study with respect to

various model parameters in order to verify the general

applicability of the proposed model framework as well as

the robustness of the market results.

We summarize the results of the ablation experiments,

cf. Table 2, in the following remark.

4.7.1 Remark 1

(i) The steady state of the Base Case is characterized

as follows. In the presence of the aggressive and

unyieldingly undercutting RBB competitor the RL

agent sells less new items and less used items.

However, the agent charges on average higher

Fig. 11 Learning curves of

A2C, PPO, and SAC in an

oligopoly scenario over 1000

episodes with normal reward

and full observation (4 runs)
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prices within both channels. Further, the RL agent

repurchases less items at lower prices compared to

the competitor. Overall, stock levels and rewards

are similar for both firms.

(ii) An increasing customer arrival intensity B leads to

overall plausible results: more sales, more repur-

chases, higher rewards for both firms, more virgin

resources, more resources in use, and also more

garbage. Both firms sell more new items at higher

prices. Offer prices and sales prices for used items

and repurchases are less affected. The RL agent

meets demand using higher stocks.

(iii) Higher production costs cvirgin lead, as expected,

to higher offer prices and higher sales prices for

new items. We also observe higher rebuy prices as

resources are more valuable. Overall, we have less

in resources in use, less garbage, and less rewards

for both firms. Compared to the Base Case, the RL

agent sells more used items and repurchases more

items; the competitor sells less new items. For

higher cvirgin the RL agent beats the RBB strategy.

(iv) If the customers’ propensity to resell, cf. w,

increases rebuy prices drop and repurchases

increase (for both firms). Offer and sales prices

for used items are reduced and sales of used items

increase for both firms. As expected, also the

number of resources in use is smaller. Prices for

new items are lower, however, while the RL agent

sells more new items the competitor sells less new

items compared to the Base Case. For larger w the

competitor loses competition. While the RL agent

effectively adapts his/her policy to the new

conditions, the competitor’s policy seems less

well suited for the setup and should be re-tuned,

which, however, is not straightforward.

(v) We varied the number of players K by considering

different selections of competitors of the oligopoly

experiment shown in Sect. 4.6.2. As expected, the

RL agent’s rewards are influenced by the com-

petitiveness of the market, i.e. rewards decrease

the more firms take part in the competition. In line

with Fig. 12, we obtain that the RL agent (using

PPO) again beats his/her competitors in the

considered setups with 3, 4, and 5 players.

(vi) To test an alternative competitor policy, we

consider an exemplary two-bound-like rule-based

strategy (denoted by RSS) that avoids a race to the

bottom and represents a less aggressive heuristic

benchmark strategy:

pðkÞnewðN
ðkÞ
used; pnew;pused;prebuyÞ

:¼
min

i2f1;:::;Kgnfkg
p
ðiÞ
new

n o
� h ; min

i2f1;:::;Kgnfkg
p
ðiÞ
used

n o
[ cvirgin

p
ðmaxÞ
new ; else

8
<

:

ð14Þ

p
ðkÞ
usedðN

ðkÞ
used;pnew; pused; prebuyÞ

:¼
min

i2f1;:::;Kgnfkg
p
ðiÞ
used

n o
� h ; min

i2f1;:::;Kgnfkg
p
ðiÞ
used

n o
� 2

7 ; else

8
<

:

ð15Þ

p
ðkÞ
rebuyðN

ðkÞ
used; pnew;pused; prebuyÞ

:¼
max

i2f1;:::;Kgnfkg
p
ðiÞ
rebuy

n o
þ h ; max

i2f1;:::;Kgnfkg
p
ðiÞ
rebuy

n o
\cvirgin � h

h ; else:

8
<

:

ð16Þ

Overall, we obtain similar results, see Table 2.

Note, since the RSS policy is less aggressive, the

RL agent is able to achieve higher rewards. Fur-

ther, the RSS policy suffers from holding costs as

the inventory is not explicitly managed. This again

shows that it is not easy to define a well balanced

rule-based strategy in complex markets.

Ablation results for the choice of further model parameters

characterizing the consumer behavior (hnew, hused, jused),

the threshold parameters of the RBB policy as well as the

holding costs (cinv) can be found at the end of the

Appendix, see Table 7.

A2C PPO SAC

Fig. 12 Profits of typical training runs of A2C, PPO, and SAC compared to their rule-based peers in an oligopolistic setup
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5 Calibrating Environments from Observable Data

5.1 Using Synthetic Test Environments for Pre-training

Naturally, the question arises of how to integrate the pro-

posed model and solution framework into real-world

information systems to solve companies’ individual rev-

enue management challenges. In this regard, it would be

necessary to calibrate the environment of our model, cf.

Section 3, to the use case such that it mimics the market

under consideration. One way to do this is based on domain

knowledge and corresponding experts. Alternatively, a

suitable environment could also be defined by using his-

torical data. First, besides known or easy-to-estimate

market and cost parameters, one would have to estimate

consumers’ demand probabilities under competition, see,

e.g., Schlosser and Boissier (2018a, b). For this purpose,

established methods and sophisticated forecasting tools are

available, see, e.g., Salinas et al. (2020) and references

therein. Second, the underlying competitors’ price reac-

tions need to be imitated. Based on suitable data regarding

own price adjustments and competitors’ price reactions,

Table 2 Ablation Study: Steady state results, i.e., average offer and sales prices, sales, resource flows, stock levels, and rewards (per period) for

the RL agent and the competitor, cf. ‘‘C’’

Base B cvirgin w K RSS

Case 10 30 2 4 0.025 0.075 3 4 5

Offer prices �pRLnew;offer 6.12 5.84 6.58 5.94 6.63 6.25 5.26 6.02 5.64 5.60 6.01

�pCnew;offer 5.12 4.48 5.57 4.95 5.64 5.25 4.34 5.01 4.60 4.01 4.99

�pRLused;offer 3.92 4.42 4.12 4.24 4.01 3.84 3.26 3.92 4.15 3.35 3.93

�pCused;offer 3.34 3.79 3.56 3.60 3.64 3.36 2.68 2.96 2.82 2.60 2.92

�pRLrebuy;offer 0.23 0.00 0.15 0.01 0.42 0.24 0.10 0.22 0.42 0.68 0.41

�pCrebuy;offer 0.72 0.56 0.84 0.62 0.88 0.80 0.70 1.19 1.38 1.48 2.00

Sales prices �pRLnew;sold 6.01 5.84 6.50 5.88 6.56 6.16 5.21 6.00 5.68 5.56 5.85

�pCnew;sold 5.09 4.83 5.53 4.94 5.63 5.23 4.33 5.02 4.61 4.01 4.95

�pRLused;sold 3.61 4.04 4.01 3.81 3.89 3.65 3.16 3.61 3.70 3.26 3.76

�pCused;sold 3.07 3.61 3.37 3.33 3.44 3.11 2.51 3.19 2.84 2.63 2.88

�pRLrebuy;sold 0.39 0.00 0.20 0.00 0.64 0.49 0.16 0.34 0.59 0.79 0.58

�pCrebuy;sold 0.92 0.89 1.05 0.87 1.04 0.95 0.87 1.29 1.31 1.38 2.00

Sales �X
RL
new

3.96 2.42 4.74 4.44 4.04 3.40 4.14 2.84 2.72 1.86 3.74

�X
C
new

6.52 3.78 9.88 6.74 5.60 6.76 6.24 4.30 4.32 3.62 6.74

�X
RL
used

1.72 0.62 2.50 1.46 1.98 1.88 2.42 1.24 0.88 1.12 2.06

�X
C
used

3.63 0.98 5.14 3.00 3.42 3.82 4.20 3.34 2.90 2.06 3.56

�X
RL
rebuy

1.74 0.68 2.54 1.44 2.08 1.78 2.34 1.18 0.84 1.14 2.06

�X
C
rebuy

3.62 1.04 5.20 3.00 3.42 3.74 4.12 3.34 2.84 2.12 7.92

Resource flows, stocks & rewards �Nin use 258 156 349 265 232 482 173 184 238 293 244

�Ngarbage 5.11 4.46 7.20 6.84 4.16 4.84 3.90 0.62 0.18 0.18 0.82

�Nvirgin 10.50 6.31 14.56 11.18 9.64 10.16 10.38 7.14 7.04 5.48 10.48

�N
RL
stock

8.77 4.24 13.56 8.24 8.04 22.04 11.46 11.42 3.92 5.04 6.42

�N
C
stock

8.35 8.06 9.28 8.78 7.98 8.74 8.64 6.02 5.60 5.24 29.88

�G
RL
reward

15.60 8.94 24.72 21.96 15.89 14.54 15.30 11.45 9.66 5.81 15.74

�G
C
reward

16.91 8.00 28.93 24.40 12.80 18.38 9.48 6.56 6.43 3.12 11.69

We vary different parameters with respect to our Base Case ( c ¼ 0:99, cvirgin ¼ 3, cinv ¼ 0:1, B ¼ 20, w ¼ 0:05, hnew ¼ 0:8, hused ¼ 0:5,

jused ¼ 0:55, in a duopoly (K ¼ 2) vs. the RBB policy with h = 1, M = 100, cf. Sect. 4.1.3). K ¼ 3; 4; 5 subsequently extends the Base Case by a

3rd player ‘‘Rule Based (non competitive)’’, a 4th player ‘‘Fixed Price’’, and a 5th player ‘‘Storage Minimizer’’, as used in Sect. 4.6.2, see Fig. 12;

the table contains results for the competitor RBB. RSS, cf. (14)–(16), exchanges the policy RBB
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standard methods can be used to compute and predict data-

driven price anticipations, see, e.g., Schlosser and Richly

(2019).

These two dynamics can then be used within an artificial

model environment to generate price reactions, sales, and

inventory levels for multiple parties, i.e., the agent and the

competitors. Finally, the calibrated artificial environment

can be used to train an RL agent without being forced to do

that in practice. Finally, if obtained pricing strategies are

plausible, they can be applied and trained further in the

specific real-life application.

5.2 Test Example for the Base Case

To test the applicability of the sketched approach, we

distinguish between an original test environment A (which

is used to produce realized market data) and a fitted aux-

iliary environment B (which is used supposed to be used

for training). We consider the following example.

Example 1 As environment A, we consider the setup of

the Base Case, cf. Section 4.1, where the competing firm 2

plays again the RBB strategy. (Our) firm 1 initially plays

the two-bound RSS strategy, see (14)–(16). To ensure a

sufficiently diversified dataset, we add an exploration rate

of e ¼ 0:1 (for i.i.d. uniform prices within set A) to firm 1’s

policy. For this setup, we simulate test data for D ¼ 20

episodes (with E ¼ 500 periods each) representing an

available set of historic market data.

5.2.1 Fitting Sales Probabilities

Given the test data produced by environment A, cf.

Example 1, we estimate the consumer behavior via

expected sales and repurchases. We consider time intervals

of length 1/2, i.e., half periods ðt; t þ 0:5Þ, t ¼ 0; 0:5; :::; T ,

where T ¼ E � 20. Next, we seek to explain the number of

sales of new items for firm 1 within ðt; t þ 0:5Þ, i.e., the

dependent variable is X
ð1Þ
newðt; t þ 0:5Þ. As explanatory

variables we use the corresponding prices of new and used

items for both firms, i.e., p
ð1Þ
newðt; t þ 0:5Þ; pð1Þusedðt; t þ

0:5Þ; pð2Þnewðt; t þ 0:5Þ; pð2Þused ðt; t þ 0:5Þ. Using, e.g., simple

OLS regression providing corresponding b coefficients,

allows to predict average new sales for firm 1

(X̂
ð1Þ
newðt; t þ 0:5Þ) for half periods for any given prices.

Further, to simulate integer sales we sample the neighbors

of X̂
ð1Þ
newðt; t þ 0:5Þ with corresponding probabilities. Recall,

to include the standard deviation more accurately also

alternatives could be used.

Moreover, to simulate new sales for the competing firm

2, we exploit a symmetric setup, i.e., we use the same

regression result and switch the perspectives of both firms

regarding their prices. Note, this way, the competitor’s

sales do not need to be part of firm 1’s observable dataset.

Further, sales for used items and repurchases can be

predicted analogously for both firms. Note, for used sales,

we also include the firm’s own inventory level as an

additional feature. For repurchases, we of course also

include the current rebuy prices of both firms, cf.

p
ð1Þ
rebuyðt; t þ 0:5Þ and p

ð2Þ
rebuyðt; t þ 0:5Þ.

Overall, for Example 1, the described regressions for

demand obtained results with an R2 ¼ 0:52.

5.2.2 Fitting Competitor’s Price Reactions

Given the test data produced by environment A, cf.

Example 1, we estimate the competitor’s price reactions as

follows. We consider time intervals of length 1, i.e., full

periods ðt; t þ 1Þ, t ¼ 0; 0:5; :::; T , where T ¼ E � 20.

First, we seek to explain the competitor’s price for new

items for period ðt þ 0:5; t þ 1:5Þ, i.e., the dependent

variable is p
ð2Þ
newðt þ 0:5; t þ 1:5Þ. As explanatory variables

we use the previous competitor price p
ð2Þ
newðt � 0:5; t þ 0:5Þ

as well as, e.g., a family of binary features 1fpð1Þnewðt;tþ1Þ\jg,

j ¼ h; 2 h; :::; p
ðmaxÞ
new , h ¼ 1, p

ðmaxÞ
new ¼ 10, which particularly

allow to express nonlinear response functions to firm 1’s

price p
ð1Þ
newðt; t þ 1Þ. Note, this approach provides deter-

ministic predictions. Naturally, also extended models to

predict mixed strategies are possible (but not in focus of

this example). Further, firm 2’s price reactions for used

items as well as repurchases can be predicted analogously.

Finally, for the fitted price reactions (of the deterministic

RBB policy, cf. Example 1), the described regressions

obtained results with an R2 ¼ 0:90.

5.2.3 Training an Agent on the Fitted Environment B

The fitted sales probabilities (Sect. 5.2.1) and the fitted

price reactions of the competitor (Sect. 5.2.2) are now used

to define an auxiliary test environment B that mimics

environment A without using explicit knowledge of the

original dynamics. While model parameters such as cvirgin,

c, and cinv can be assumed to be given, previous parameters

describing the consumer behavior (B, hnew, hused, jused) or

the competitor’s policy (M, h) are not required anymore.

The simulation of the environment B is straightforward.

Price updates, sales realizations, evolutions of stock levels,

and (accumulated) rewards are evaluated as before, cf.

Sect. 3.2. Similarly, also the training of RL agents, cf. Sect.

3.3, remains unchanged in the fitted environment B. Recall,

opposed to real-life applications the number of training

runs in environment B is not limited and can be fully
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exploited. In this example, we used 2000 episodes to train a

PPO agent on environment B.

5.2.4 Evaluation of the Trained Agent on the Original

Environment A

Finally, the PPO agent trained on environment B, cf.

Section 5.2.3, is evaluated in the original (hidden) envi-

ronment A. Note, the Base Case solution against RBB, cf.

Section 4.2, serves as a baseline and provides an upper

bound for agents that were not allowed to interact with

environment A, see Table 3. In our example, the pre-

trained PPO agent received a performance of 94% com-

pared to the Base Case solution, which shows that the

overall approach works well as long as the fit of environ-

ment B is accurate.

In further examples using less data or abstain from

exploration to obtain diversified data – as expected –

results were significantly worse. Typically, an inaccurate or

incomplete fit of the environment B leads to learned poli-

cies that are too optimistic in certain regions of the state

space, which fires back in the original market. To actively

resolve such issues and to improve the fit of environment B

(besides exploration) one could iteratively enrich the

dataset by shortly testing the current policy on environment

A and subsequently continue to train on an updated fit of

environment B.

Table 3 Performance Comparison: Steady state results for Agent B (i) after training on the auxiliary Environment B and (ii) evaluated in the

original Environment A, cf. Example 1

Base case Trained agent B applied on Env. A Agent B trained on Env. B

Offer prices �pRLnew;offer 6.12 5.52 (0.90) 5.34 (0.87)

�pCnew;offer 5.12 4.57 (0.89) 4.57 (0.89)

�pRLused;offer 3.92 3.94 (1.01) 4.03 (1.03)

�pCused;offer 3.34 3.19 (0.95) 2.44 (0.73)

�pRLrebuy;offer 0.23 0.02 (0.11) 0.03 (0.15)

�pCrebuy;offer 0.72 0.61 (0.84) 0.25 (0.34)

Sales prices �pRLnew;sold 6.01 5.42 (0.90) 5.19 (0.86)

�pCnew;sold 5.09 4.57 (0.90) 4.55 (0.89)

�pRLused;sold 3.61 3.79 (1.05) 3.94 (1.09)

�pCused;sold 3.07 2.84 (0.93) 2.44 (0.79)

�pRLrebuy;sold 0.39 0.04 (0.09) 0.05 (0.12)

�pCrebuy;sold 0.92 0.82 (0.89) 0.25 (0.27)

Sales �X
RL
new

3.96 4.50 (1.14) 3.26 (0.82)

�X
C
new

6.52 6.98 (1.07) 5.00 (0.77)

�X
RL
used

1.72 1.38 (0.80) 2.62 (1.52)

�X
C
used

3.63 3.62 (1.00) 3.14 (0.87)

�X
RL
rebuy

1.74 1.58 (0.91) 2.68 (1.54)

�X
C
rebuy

3.62 3.62 (1.00) 3.14 (0.87)

Resource flows, stocks & rewards �Nin use 258 277 (1.08) 219 (0.85)

�Ngarbage 5.11 6.58 (1.29) 2.54 (0.50)

�Nvirgin 10.50 11.48 (1.09) 8.26 (0.79)

�N
RL
stock

8.77 9.12 (1.04) 5.64 (0.64)

�N
C
stock

8.35 9.40 (1.13) 1.58 (0.19)

�G
RL
reward

15.60 14.70 (0.94) 16.75 (1.07)

�G
C
reward

16.91 14.20 (0.84) 13.53 (0.80)

The numbers in brackets show the relative comparison to the Base Case, where Agent A is directly trained on Environment A
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6 Discussion

In the following, we summarize our main insights, discuss

limitations, and propose ideas on how to introduce RL

agents in real-life markets.

6.1 Main Insights

Our main insights can be summarized as follows:

• RL algorithms can successfully be applied to complex

recommerce markets with unknown underlying dynam-

ics regarding consumers’ and competitors’ behaviors.

• RL agents are able to clearly outperform commonly

established rule-based agents.

• In our experiments, at most a few thousand episodes

were necessary to train the agents.

• PPO and SAC performed best in duopoly as well as in

oligopoly scenarios.

• The default hyperparameters of the RL algorithms

worked well; hardly any tuning was necessary.

• Steady-states of controlled markets are obtained after

about a few hundred periods.

• The non-observability of both the number of resources

in use and the competitors’ inventories is not critical;

results hardly depend on whether they are part of the

state space.

• Applying self-play allows finding robust pricing strate-

gies which are effective against different competitor

strategies, even ones not seen in training.

• Our numerical examples show that changes in the

parameters or the setup lead to good-natured and

plausible solutions, which verifies the general applica-

bility of the model.

• Agents can be successfully applied to incompletely

known markets by pre-training them on auxiliary

markets that are calibrated based on realized market

data of the (hidden) target market.

6.2 Limitations and Extensions

The lack of more or better benchmark strategies and

alternative RL algorithms, cf. Section 3.3.2, is a limitation.

Also, results are to some degree stochastic and a larger

number of runs would have to be used to quantify mean

values and their standard deviations accurately. Further, the

successful calibration of auxiliary training environments

deserves further analysis. However, in the existing frame-

work, alternative competitor strategies, calibration tech-

niques, and other RL algorithms can be easily added and

tested in greater detail. Moreover, the basic model could

also be extended to capture more complex settings. For

instance, for each firm, we may additionally consider a

technology state serving as a sustainability image (cf.

greenness, signaling, etc.), which increases demand. Fur-

ther, this state could be stimulated via corresponding

investment efforts and otherwise depreciates over time.

Another research direction is to include strategic consumer

behavior.

7 Conclusion

In this paper, we have proposed a market simulation

framework for recommerce markets under competition.

The framework has modular components, which allow to

study different pricing strategies in different market sce-

narios. The simulation is designed in such a way that self-

learning RL algorithms can be easily integrated and com-

pared. Further, we have studied the performance of state-

of-the-art RL algorithms in different recommerce markets.

We find that PPO and SAC performed best while being

tested in various market setups as well as different infor-

mation structures.

Detailed analyses of the policies obtained allow to better

understand resource flows in recommerce markets and to

infer managerial insights. Further, we show that RL agents

can be promising candidates for practical applications as

long as a sufficient amount of historic data is available and

synthetic training environments can be calibrated

accurately.
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