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Higher moments of MSVARs and the business cycle

Alexander Karalis Isaac∗

October 2014

Abstract

I derive the first four moments of the Markov-switching VAR and use the results to reconsider

the conflict between the Great Moderation and Financial Crisis literatures. In contrast to the

linear model, a three-regime Markov-switching model captures the skewness and kurtosis of US

GDP growth 1954-2011. However, a specification with four regimes splits the sample in 1984, a

result familiar from the Great Moderation literature. The higher moments of the MSVAR, not

previously studied in the literature, reveal the Great Moderation to be a trade off between variance

and kurtosis. U.S. GDP growth shifts from an almost Gaussian structure 1954-84 into a pattern

with low variance, negative skewness and high kurtosis. The Markov-switching model which splits

the sample accurately captures the new moment structure.

1 Introduction

Since their introduction in Hamilton [1989] Markov-switching models have proved a popular method

for studying parameter instability in macroeconomics. Hamilton considered the classical business cy-

cle, Sims and Zha [2006] used a multivariate Bayesian extension to measure the contribution of policy

regimes and variance regimes to uncertainty in the US macroeconomy. Recently, Hubrich and Tet-

low [2012] have used Markov-switching methods to consider the transmission of financial crises while

Svensson and Williams [2007] and Farmer et al. [2011] have pioneered the extension of Markov switch-

ing techniques to forward looking and micro-founded-DSGE models. The work most closely related

to this is Bianchi [2013]. Bianchi derives the first two moments of the MS-VAR and systematically

analyses the evolution of expectations and uncertainty in an economy with regime changes. This can
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have important consequences for forecasts, variance decompositions and welfare calculations. Once we

accept a non-Gaussian world, variance does not completely characterise uncertainty and I show below

that the Markov-switching approach can also have important consequences for our understanding of

the higher moments of macroeconomic data.

One attractive feature of Markov-switching models in the light of the financial crisis is that they allow

the researcher to model non-Gaussian features of the data in a simple way. Despite this, little attention

has been paid to the higher moments of the MS-VAR. This paper fills a gap in the literature by deriving

explicit solutions for the third and fourth moments of the MS-VAR. This will allow researchers to

consider information in the higher moments when estimating and evaluating competing macroeconomic

models. The results should be of use to those working in both the applied and theoretical literatures.1

The remainder of this introduction considers a simple application: can consideration of the higher

moments, through a Markov switching approach, improve our understanding of the change in the

behaviour of U.S. GDP growth suggested by the ‘Great Moderation’ literature but called into question

by the financial crisis?

The large empirical and theoretical literature on the Great Moderation finds the period since the mid-

1980s to be one of increased stability, as measured by the lower variance of macroeconomic aggregates

such as GDP, consumption and inflation, see for example McConnell and Perez-Quiros [2000], Kim

and Nelson [1999] and Stock and Watson [2003]. Models with financial frictions, however, can suggest

that more intense financial management will lead to more extreme uncertainty. For example, in the

theoretical framework proposed by Brunnermeier and Sannikov [2011] the financial sector provides

diversification for firms and households which, facing lower variation in returns, increase their leverage.

This results in an economy with more extreme behaviour - more time is spent in the very good and

very bad parts of the state space, with little time in transition between the two.

Despite the growing criticism of the Great Moderation literature in the wake of the financial crisis,

a reduction in the variance of many macroeconomic variables in the mid 1980s remains a distinct

possibility. The gap between the moderation literature and the financial crisis literature may be due

to the limited focus of the moderation literature on the first two moments of the variables considered.

This focus on two moments is evident also in the recent literature concerned with the ‘end’ of the

Great Moderation, for example Broer and Kero [2011].

This paper considers the first four moments of U.S. GDP growth. Measured on the whole sample the

empirical standardised moments reveal a mild non-Gaussianity with slight negative skew and excess

kurtosis. Linear autoregressions necessarily ignore information in the higher moments. However, a

1In theoretical models the MSV solution to the DSGE is a Markov-switching VAR, Farmer et al. [2011].
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Markov-switching model with one lag and three regimes matches the first four standardised moments

well. This is discussed in Section 3.1. The one low-growth regime in this estimation recurs throughout

the sample period. Due to this recurrence, the ergodic probability is shared across all regimes and the

unconditional moments reflect the empirical moments estimated on the whole sample.

Closer inspection of the smoothed regime probabilities reveals that a high-growth, high-variance regime

is present in the period 1954-1984 and is then replaced by a high-growth, low-variance regime. This

suggests a one off change in the behaviour of U.S. GDP growth which the three-regime model is not

fully able to capture. A more complex model, with four regimes, is presented in Section 3.2. With

four regimes the model breaks the sample into two periods: a pair of regimes alternate on the 1954-

1984 period and a further pair alternate on the 1984-2011 period. As a result the ergodic probability

is assigned only to the regimes holding in the second half of the sample. The implied unconditional

moments are significantly less Gaussian, with a skewness of -1.4 and a kurtosis of 6.9. When compared

to the sample moments estimated on the same period, skewness -1.5 and kurtosis 8.2, it is clear the

four-regime Markov-switching model more accurately reflects the recent U.S. business cycle than either

the linear model or the three-regime estimation.

Modelling the higher moments closes the gap between the Great Moderation literature and the Fi-

nancial Crisis literature. Since the financial liberalisation of the early 1980s variance has declined but

the risk of tail events has increased. Rather than pronouncing the end of the Great Moderation, I find

that low-variance and high-kurtosis characterise the post 1984 business cycle; the estimations do not

try to return to the business cycle of the pre-1984 era. This is an important difference. We should

not try to characterise the financial crisis as announcing the return of the high-variance, near Gaus-

sian structure which characterised the 1954-84 economy. Rather policy makers, households and firms

should try to better understand how to make decisions in a low-variance, high-kurtosis world. One

way to read these results is therefore as supporting evidence for the wider Markov-switching research

agenda which is able to accommodate such a moment structure.

The Markov-switching approach in the paper is similar to that pioneered by Hamilton [1989], though

the autoregressions here are written in terms of intercepts rather than means. This is in line with much

of the recent literature on Markov-switching in macroeconomics. As suggested in the title of Hamilton’s

classic paper, such a modelling approach is concerned with business cycles, in the traditional sense of

expansions and contractions in economic activity. Hamilton’s paper considered U.S. GNP growth and

its association with the NBER definition of the business cycle. Similarly the regimes in GDP growth

extracted in this paper often have an association with the NBER cycle dates. This is different from,

but no less important than, the levels concept of the business cycle as a deviation from a long-run
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trend which dominates the DSGE literature. The negative skewness and high kurtosis of the post-1984

period suggest the modern business cycle may be better characterised by the asymmetry of its large

deviations than by alternation between periods of positive and negative growth.

Before presenting the estimation results summarised in this introduction, it is necessary to derive ex-

pressions for the first four unconditional moments of the Markov-switching VAR, in intercept switch-

ing form. This is the object of Section 2 which gives results for the third and fourth moments of

the MSI(N)-VAR(p) in r variables, assuming Mean Square Stability. The first and second moments

are similar to the Markov Jump Linear System considered by Costa et al. [2005] and are treated in

Appendix A. The unconditional first and second moments are also available in Bianchi [2013], where

the main focus is on the conditional moments. Although not the focus of this paper, the conditional

higher moments follow straightforwardly from the recursions employed here to find expressions for

the limiting, unconditional, moments. Appendix B studies the special case of the MSI(M)-AR(1)

and derives results under the stationarity assumption employed in Francq and Zaköıan [2001] who

consider the first two moments of a general MS-VARMA system. This is quite a costly restriction in

the context of Markov-switching models and would rule out the kind of degenerate distribution over

regimes reported by the four-regime estimation.

2 Moments of the MSI(M)-VAR(p)

This section derives the unconditional moments, up to order four, of the Markov-switching VAR in

which the intercept, autoregressive parameters and variance matrix are all regime dependent. There

may be r variables, p lags and N regimes in the model. The stability concept employed is ‘mean

square stability’, which requires the system to be ergodic, but not necessarily stationary.

The MS-VAR is given by

y(t+ 1) = Γθ(t+1)y(t) + ψθ(t+1) +Gθ(t+1)w(t+ 1) (1)

where y(0) and θ(0) are given. θ(t) and w(l) are independent for all t, l and w(0) is independent of

y(0) and θ(0), so that y(t), w(l) are independent for l > t. The innovation w is assumed multivariate

standard normal. y is an n.1 vector; if the original model has p lags and r variables, then n = rp and

(1) is the ‘companion form’ of the VAR.

The timing convention in econometrics changes the first and second moment operators slightly, relative
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to the benchmark model in Costa et al. [2005]. Costa et. al.’s matrix B for the first moment is replaced

by the matrix M1, defined in Appendix A. The second moment operator is thier V rather than their

T .

2.1 The Fourth Moment of the MSVAR

In this section the fourth moment of the Markov-Switching model (1) is studied. The first sub-section

considers the homogeneous version of the system, and establishes an operator L(.) and a matrix M4

that play a role equivalent to V(.) and M2 in the case of the second moment. Dealing with the

non-homogenous version of the system in Section 2.1.2 introduces further complication as various

third-moment terms are required.

2.1.1 The Homogenous System

The fourth moment of the vector process y can be defined as E[yy′ ⊗ yy′], see for example, Schott

[2005] or Magnus and Neudecker [1988]. First, consider the system

y(t+ 1) = Γθ(t+1)y(t) (2)

Define the fourth moment of the joint process (y(t), θ(t)), and the fourth moment of y(t) itself

Hi(t) = E[y(t)y(t)′ ⊗ y(t)y(t)′ 1{θ(t)=i}]

H(t) =
[
H1(t) . . . HN (t)

]
H(t) = E[y(t)y(t)′ ⊗ y(t)y(t)′]

Now we find a recursion for the fourth moment of the joint process (y(t), θ(t)).

5



Hj(t+ 1) = E[y(t+ 1)y(t+ 1)′ ⊗ y(t+ 1)y(t+ 1)′ 1{θ(t+1)=j}]

=
N∑
i=1

E[
(

Γθ(t+1)y(t)y(t)′Γ′θ(t+1)

)
⊗
(

Γθ(t+1)y(t)y(t)′Γ′θ(t+1)

)
1{θ(t+1)=j} 1{θ(t)=i}]

=

N∑
i=1

E[
(

Γjy(t)y(t)′Γ′j

)
⊗
(

Γjy(t)y(t)′Γ′j

)
1{θ(t)=i}]pij

=

N∑
i=1

(
Γj ⊗ Γj

)
E[
(
y(t)y(t)′ ⊗ y(t)y(t)′

)
1{θ(t)=i}]

(
Γ′j ⊗ Γ′j

)
pij

=
N∑
i=1

pij
(
Γj ⊗ Γj

)
Hi(t)

(
Γj ⊗ Γj

)′
(3)

= Lj(H(t))

The third line of (3) used the fact that Γθ(t+1) is non-random given θ(t+ 1) = j; the fourth line used

the property of the Kronecker product that

(A⊗B)(C ⊗D) = AC ⊗BD

while the final line defines the fourth moment operator Lj(.). As usual, let L(.) = [L1(.), . . . ,LN (.)].

In order to study the spectral radius of L(.), consider the vectorised recursion below, and recall

ϕ(ABC) = (C ′ ⊗A)ϕ(B).

ϕ
(
H(t+ 1)

)
=


ϕ
(∑

i pi1
(
Γ1 ⊗ Γ1

)
Hi(t)

(
Γ1 ⊗ Γ1

)′)
...

ϕ
(∑

i piN
(
ΓN ⊗ ΓN

)
Hi(t)

(
ΓN ⊗ ΓN

)′)


=


∑

i pi1

((
Γ1 ⊗ Γ1

)
⊗
(
Γ1 ⊗ Γ1

))
ϕ
(
Hi(t)

)
...∑

i piN

((
ΓN ⊗ ΓN

)
⊗
(
ΓN ⊗ ΓN

))
ϕ
(
Hi(t)

)
 (4)

Notice that each row in (4) can be written as an inner product

[
p1j(Γj ⊗ Γj)⊗ (Γj ⊗ Γj) . . . pNj(Γj ⊗ Γj)⊗ (Γj ⊗ Γj)

]
ϕ
(
H1(t)

)
...

ϕ
(
HN (t)

)
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Let Γ̄i = (Γi ⊗ Γi), then we can write (4) as ϕ(H(t+ 1)) =M4ϕ(H(t)), where M4 is given by

M4 =


p11

(
Γ̄1 ⊗ Γ̄1

)
. . . pN1

(
Γ̄1 ⊗ Γ̄1

)
...

. . .
...

p1N

(
Γ̄N ⊗ Γ̄N

)
. . . pNN

(
Γ̄N ⊗ Γ̄N

)


= diag
(
Γ̄i ⊗ Γ̄i

)(
P ′ ⊗ In4

)
(5)

If the largest eigenvalue of M4 < 1 then the fourth moment of (2) will converge to zero.

2.1.2 The Non-Homogeneous System

We now return to (1) as the system equation. In much of the following, notation concerning the

specific regime and the time period is supressed but the meaning should be clear from the previous

derivations. As with the second moment, the fourth can be written as the sum of the homogeneous

term and the non-homogeneous terms, say Sj(t).

Hj(t+ 1) = Lj(H(t)) + Sj(t) (6)

If (1) is Mean Square Stable, that is if the vector of ergodic probabilities exists, π = P ′π, and M2 is

a stable matrix, first and second moment terms in the non-homogenous part, Sj(t), converge to long

run values, Qi, qi, see Appendix A for definitions. If we further have that all third moment matrices

Mi3 discussed in Section 2.1.3 are stable, then Sj(t) will itself converge to a long-run value Sj . In

such a case we will be able to solve a recursion based on (6) for the unconditional fourth moment of

(1).

Substituting (1) into the recursion for the fourth moment we find (7)

Hj(t+ 1) =E[
((

Γy + ψ +Gw
)(

Γy + ψ +Gw
)′)⊗ ((Γy + ψ +Gw

)(
Γy + ψ +Gw

)′)
1{θ(t+1)=j}]

=E[
(

Γyy′Γ′ + Γyψ′ + Γyw′G′ + ψy′Γ′ + ψψ′ + ψw′G′ +Gwy′Γ′ +Gwψ′ +GwwG′
)

(7)

⊗
(

Γyy′Γ′ + Γyψ′ + Γyw′G′ + ψy′Γ′ + ψψ′ + ψw′G′ +Gwy′Γ′ +Gwψ′ +Gww′G′
)

1{θ(t+1)=j}]
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The first term E[Γyy′Γ ⊗ Γyy′Γ 1{θ(t+1)=j}] is the homogeneous term Lj(H(t)), and the remaining

terms define Sj(t). Considering each term in this product individually, the problem of finding the

fourth moment of the vector y(t) is reduced to finding second moment terms for the random matrices

in (7). The theorems in Section 4 of Ghazal and Neudecker [2000] apply; theorems (4.3) and (4.4) are

particularly useful and are stated below without the proof, which appears in the original article.

Theorems on second moments of random matrices, Ghazal and Neudecker

(4.3) E[X ⊗X] =
∑
ij

(E′ij ⊗ In)ΩXX(In ⊗ E′ij) +M ⊗M

(4.4) E[X ′ ⊗X] =
∑
ij

(E′ij ⊗ In)ΩXX(E′ij ⊗ In)Knn +M ′ ⊗M

where E[X] = M , Eij are the n × n basis matrices and Knn is the n2 × n2 commutation matrix. To

apply the theorems note that ΩXX = var(x) where x = ϕ(X), see Magnus and Neudecker [1979].

Conditionally on the regime θ(t+1) = j, most non-zero terms in (7) contain only one random element,

y or w. For such terms it is quite easy to derive the expectation without specific reference to basis

matrices and the commutation matrix, as we are not dealing with products of random matrices; rather

there will be a random matrix and various fixed multiplying factors. In cases where y(t) and w(t+ 1)

enter only on opposite sides of the Kronecker product, independence of w(t + 1) and y(t) allows us

to take expectations on each side of the product so these terms are again straightforward. However,

terms where y(t) and w(t + 1) both enter twice, once on each side of a Kronecker product, require

more care. Examples are given by E[(Γyw′G′)⊗ (Γyw′G′)] and E[(Γyw′G′)⊗ (Gwy′Γ′)].

Consider the term E[(Γyw′G′) ⊗ (Γyw′G′)]. Put X = yw′, giving E[X] = E[y] · E[w′] = 0n.n by the

independence of y(t) and w(t+1). Therefore var(x) = E[xx′] = E[(w⊗y)(w⊗y)′] = E[w⊗w′⊗y⊗y′] =

In2 ⊗Qi(t). This used the property of the Kronecker product that, for a, b both vecotors

ab′ = a⊗ b′ = b′ ⊗ a, ϕ(ab′) = b⊗ a

Then we have

E[
(
Γyw′G′

)
⊗
(
Γyw′G′

)
] =

(
Γ⊗ Γ

)
E[X ⊗X]

(
G′ ⊗G′

)
=
(
Γ⊗ Γ

)∑
kl

(E′kl ⊗ In)ΩXX(In ⊗ E′kl)
(
G′ ⊗G′

)
with ΩXX = In2 ⊗ Qi(t). For the second term, E[(Γyw′G′) ⊗ (Gwy′Γ′)], put X = wy′ so that

8



ΩXX = Qi(t)⊗ In2 . Then

E[
(
Γyw′G′

)
⊗
(
Gwy′Γ′

)
] =

(
Γ⊗G

)
E[X ′ ⊗X]

(
G′ ⊗ Γ′

)
=
(
Γ⊗G

)∑
kl

(E′kl ⊗ In)ΩXX(E′kl ⊗ In)Knn

(
G′ ⊗ Γ′

)

The terms in S will depend on all lower moments, including the third. To see consider the second

term in (7)

E[(Γyy′Γ′)⊗ (Γyψ′) 1{θ(t+1)=j}]

=
∑
i

E[(Γyy′Γ′)⊗ (Γyψ′) 1{θ(t+1)=j} 1{θ(t)=i}]

=
∑
i

pij
(
Γj ⊗ Γj

)
E[y(t)y(t)′ ⊗ y(t)ψ′j 1{θ(t)=i}]

(
Γ′j ⊗ In

)
=
∑
i

pij
(
Γj ⊗ Γj

)
Fi(t, ψj , 4)

(
Γ′j ⊗ In

)

The central term is a third moment term E[yy′⊗yc′]. The notation Fi(t, c, l) is adopted to describe third

moment terms, with c standing for the appropriate constant and l ∈ {1, 2, 3, 4} describing the position

of the constant in terms of the four vectors. In this notation E[y(t)y(t)′⊗y(t)ψ′j 1{θ(t)=i}] = Fi(t, ψj , 4),

giving the final line above. This third-moment term is discussed in detail in Section 2.1.3.

For the final term in Sj(t), E[Gww′G′ ⊗ Gww′G′] define ΩWW = E[ww′ ⊗ ww′]. Recall, w(t) =

[ε(t)′, 01,n(p−1)]
′ and ε ∼ N(0r.1, Ir), are the shocks to the r variables in the VAR. This gives E[εε′⊗εε′] =

Ir2 +Krr + ϕ(Ir){ϕ(Ir)}′ := Ωεε, see for example Schott, Theorem 10.19. Then

ΩWW =

[
Ωεε 0r,r2(p2−1)

0r2(p2−1),r 0r2(p2−1),r2(p2−1)

]

Provided all lower moments converge, Sj(t) will converge to a matrix Sj , in which all probabilities

πi(t) are replaced by their long-run values πi and all time-dependent lower moments qi(t) etc. are

replaced by their ergodic values, qi. Definitions of these long-run values are given in Appendix A.

Further provided that M4 is a stable matrix, the fourth moment of the intercept-switching MSVAR

will be well defined. Section 2.1.4 lists the non-zero terms in (7), while the section below gives the

intermediate third moment terms that this will require.
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2.1.3 Calculating the third moment terms, Fi(t, c, l)

Consider a third moment matrix

E[y(t)y(t)′ ⊗ y(t)c′ 1{θ(t)=i}] := Fi(t, c
′, 4) ∈ Rn

2,n2

To start the recursion, as usual put

Fj(t+ 1, c′, 4) =E[y(t+ 1)y(t+ 1)′ ⊗ y(t+ 1)c′ 1{θ(t+1)=j}]

=
N∑
i=1

E[y(t+ 1)y(t+ 1)′ ⊗ y(t+ 1)c′ 1{θ(t+1)=j} 1{θ(t)=i}]

=

N∑
i=1

E[
((

Γθ(t+1)y(t) + ψθ(t+1) +Gθ(t+1)w(t+ 1)
)(

Γθ(t+1)y(t) + ψθ(t+1) +Gθ(t+1)w(t+ 1)
)′)

⊗
((

Γθ(t+1)y(t) + ψθ(t+1) +Gθ(t+1)w(t+ 1)
)
c′
)

1{θ(t+1)=j} 1{θ(t)=i}]

=
N∑
i=1

E[
(
Γyy′Γ′ + Γyψ′ + Γyw′G′ + ψy′Γ′ + ψψ′ + ψw′G′ +Gwy′Γ′ +Gwψ′ +Gww′G′

)
⊗
(
Γyc′ + ψc′ +Gwc′

)
1{θ(t+1)=j} 1{θ(t)=i}] (8)

There are 27 terms in (8). The following discusses a couple of the archetypal terms, then all non-zero

terms in (8) are listed. Consider the first term in (8)

∑
i

E[Γyy′Γ′ ⊗
(
Γyc′

)
1{θ(t+1)=j} 1{θ(t)=i}]

=
∑
i

E[
(
Γjy(t)y(t)′Γ′j

)
⊗
(
Γjy(t)c′

)
1{θ(t)=i}]pij

=
∑
i

pij
(
Γj ⊗ Γj

)
E[y(t)y(t)′ ⊗ y(t)c′ 1{θ(t)=i}]

(
Γ′j ⊗ In

)
=
∑
i

pij
(
Γj ⊗ Γj

)
Fi(t, c

′, 4)
(
Γ′j ⊗ In

)

This first term is the term associated with the homogenous version of the system, (2). For the

homogenous case, define a ‘third moment operator matrix’ by noticing
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ϕ
(
Fi(t+ 1)

)
= ϕ

(∑
i

pij
(
Γj ⊗ Γj

)
Fi(t)

(
Γ′j ⊗ In

))
=
∑
i

pij

((
Γj ⊗ In

)
⊗
(
Γj ⊗ Γj

))
ϕ
(
Fi(t)

)

We can write the final line as a dot product:

[
p1j(Γj ⊗ In)⊗ (Γj ⊗ Γj) . . . pNj(Γj ⊗ In)⊗ (Γj ⊗ Γj)

]
ϕ
(
F1(t)

)
...

ϕ
(
FN (t)

)


Giving

ϕ̂(F (t+ 1)) =
{

diag[
(
Γj ⊗ In

)
⊗ Γ̄j ][P

′ ⊗ In4 ]
}
ϕ̂
(
F (t)

)
=M31ϕ̂

(
F (t)

)
where we re-use the notation Γ̄j = (Γj ⊗ Γj). Taking the second term of (8) we have

∑
i

E[
(
Γyy′Γ′

)
⊗
(
ψc′
)

1{θ(t+1)=j} 1{θ(t)=i}]

=
∑
i

E[Γjy(t)y(t)′Γ′j ⊗ ψjc′ 1{θ(t)=i}]pij

=
∑
i

(
ΓjE[y(t)y(t)′ 1{θ(t)=i}]Γ

′
j ⊗ ψjc′

)
pij

=
∑
i

pij
(
ΓjQi(t)Γ

′
j

)
⊗ ψjc′ (9)

which demonstrates the dependence of the third moment terms on the second moment, Q(t). Provided

that the second moment converges, and the summation in (9) is also stable, this term will converge.

The fourth term is also useful to study. Again the properties of the Kronecker product for a, b both

vectors are employed. This gives
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E[Γyψ′ ⊗ Γyc′ 1{θ(t+1)=j}]

=
∑
i

pij
(
Γj ⊗ Γj

)
E[y(t)ψ′j ⊗ y(t)c′ 1{θ(t)=i}]

=
∑
i

pij
(
Γj ⊗ Γj

)(
ψ′j ⊗ E[y(t)⊗ y(t) 1{θ(t)=i}]⊗ c′

)
=
∑
i

pij
(
Γj ⊗ Γj

)(
ψ′j ⊗ ϕ

(
Qi(t)

)
⊗ c′

)

Proceeding similarly, we find the following non-zero terms in (8):

E[Γyψ ⊗ ψc′ 1{θ(t+1)=j}] =
∑
i

pij(Γjqi(t)ψ
′
j)⊗ (ψjc

′)

E[Γyw′G′ ⊗Gwc′ 1{θ(t+1)=j}] =
∑
i

pij(Γj ⊗Gj)
(
qi(t)⊗ In ⊗ c′

)
(G′j ⊗ In)

E[ψyΓ′ ⊗ Γyc′ 1{θ(t+1)=j}] =
∑
i

pij(In ⊗ Γj)
(
ψj ⊗Qi(t)⊗ c′

)
(Γ′j ⊗ In)

E[ψy′Γ′ ⊗ ψc′ 1{θ(t+1)=j}] =
∑
i

pij(ψjqi(t)
′Γ′j)⊗ (ψjc

′)

E[ψψ′ ⊗ Γyc′ 1{θ(t+1)=j}] =
∑
i

pij(ψjψ
′
j)⊗ (Γjqi(t)c

′)

E[ψψ′ ⊗ ψc′ 1{θ(t+1)=j}] =
∑
i

pijπi(t)(ψjψ
′
j ⊗ ψjc′)

E[ψw′G′ ⊗Gwc′ 1{θ(t+1)=j}] =
∑
i

pijπi(t)(In ⊗Gj)
(
ψj ⊗ In ⊗ c′

)
(G′j ⊗ In)

E[Gwy′Γ′ ⊗Gwc′ 1{θ(t+1)=j}] =
∑
i

pij(Gj ⊗Gj)
(
qi(t)⊗ ϕ(In)⊗ c′

)
(Γ′j ⊗ In)

E[Gwψ′ ⊗Gwc′ 1{θ(t+1)=j}] =
∑
i

pijπi(t)(Gj ⊗Gj)
(
ψj ⊗ ϕ(In)′ ⊗ c′

)
E[Gww′G′ ⊗ Γyc′ 1{θ(t+1)=j}] =

∑
i

pij(Gj ⊗ Γj)
(
In ⊗ qi(t)c′

)
(G′j ⊗ In)

E[Gww′G′ ⊗ ψc′ 1{θ(t+1)=j}] =
∑
i

pijπi(t)
(
GjG

′
j ⊗ ψjc′

)

Finally, note that other third moment terms, E[cy′ ⊗ yy′] etc., can be defined analogously.

We are now ready to complete the definition of the fourth moment of the MSI(M)-VAR(p). The

non-zero terms in the fourth moment recursion are listed in the following tables.
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2.1.4 Terms in the 4th moment Hj(t+ 1)

The ‘Term’ column refers to the number of the term in the expansion of (7), the column ‘Number’

refers to the page of the array NHT in the Matlab code which implements these expressions.

Table 1: First twenty terms

Term Value Number

1 Lj(H(t)) NA

2
∑

i pij
(
Γj ⊗ Γj

)
Fi(k, ψj , 4)

(
Γ′j ⊗ In

)
1

4
∑

i pij
(
Γj ⊗ In

)
Fi(k, ψj , 3)

(
Γj ⊗ Γj

)′
2

5
∑

i pij
(
ΓjQi(t)Γ

′
j

)
⊗
(
ψjψ

′
j

)
3

9
∑

i pij
(
ΓjQi(t)Γ

′
j

)
⊗
(
GjG

′
j

)
4

10
∑

i

(
Γj ⊗ Γj

)
Fi(k, ψj , 2)

(
In ⊗ Γ′j

)
5

11
∑

i pij
(
Γj ⊗ Γj

)(
ψ′j ⊗ ϕ

(
Qi(t)

)
⊗ ψ′j

)
6

13
∑

i pij
(
Γj ⊗ In

)(
ψ′j ⊗Qi(t)⊗ ψj

)(
In ⊗ Γ′j

)
7

14
∑

i pij
(
Γjqi(t)ψ

′
j

)
⊗
(
ψjψ

′
j

)
8

18
∑

i pij
(
Γjqi(t)ψ

′
j

)
⊗
(
GjG

′
j

)
9

21
∑

i pij
(
Γj ⊗ Γj

)∑
kl(E

′
kl ⊗ In)(In ⊗Qi(t))(In ⊗ E′kl)

(
Gj ⊗Gj

)′
10

24
∑

i pij
(
Γj ⊗ In

)(
qi(t)⊗ ϕ

(
In
)′ ⊗ ψj)(Gj ⊗Gj)′ 11

25
∑

i pij
(
Γj ⊗Gj

)∑
kl(E

′
kl ⊗ In)(Qi(t)⊗ In)(E′kl ⊗ In)Knn

(
Gj ⊗ Γj

)′
12

29
∑

i pij
(
Γj ⊗Gj

)(
qi(t)⊗ In ⊗ ψ′j

)(
G′j ⊗ In

)
13

28
∑

i pij
(
In ⊗ Γj

)
Fi(k, ψj , 1)

(
Γj ⊗ Γj

)′
14

29
∑

i pij
(
In ⊗ Γj

)(
ψj ⊗Qi(t)⊗ ψ′j

)(
Γ′j ⊗ In

)
15

31
∑

i pij

((
ψj ⊗ ψj

)
⊗ ϕ

(
Qi(t)

)′)(
Γj ⊗ Γj

)′
16

32
∑

i pij
(
ψjqi(t)

′Γ′j
)
⊗
(
ψjψ

′
j

)
17

36
∑

i pij
(
In ⊗Gj

)((
ψjqi(t)

′)⊗ In)(Γj ⊗Gj)′ 18

37
∑

i pij
(
ψjψ

′
j

)
⊗
(
ΓjQi(t)Γ

′
j

)
19

38
∑

i pij
(
ψjψ

′
j

)
⊗
(
Γjqi(t)ψ

′
j

)
20

13



Table 2: Second twenty terms

Term Value Number

40
∑

i pij
(
ψjψ

′
j

)
⊗
(
ψjqi(t)

′Γ′j
)

21

41
∑

i pijπi(t)
(
ψjψ

′
j

)
⊗
(
ψjψ

′
j

)
22

45
∑

i pijπi(t)
(
ψjψ

′
j

)
⊗
(
GjG

′
j

)
23

48
∑

i pij
(
In ⊗ Γj

)(
ψj ⊗ ϕ

(
In
)′ ⊗ qi(t))(Gj ⊗Gj)′ 24

51
∑

i pijπi(t)
(
ψj ⊗ ϕ

(
In
)′ ⊗ ψj)(Gj ⊗Gj)′ 25

52
∑

i pij
(
In ⊗Gj

)(
ψj ⊗ In ⊗ qi(t)′

)(
Gj ⊗ Γj

)′
26

53
∑

i pijπi(t)
(
In ⊗Gj

)(
ψj ⊗ In ⊗ ψ′j

)(
G′j ⊗ In

)
27

57
∑

i pij
(
Gj ⊗ Γj

)∑
kl(E

′
kl ⊗ In)(In ⊗Qi(t))(E′kl ⊗ In)Knn

(
Γj ⊗Gj

)′
28

60
∑

i pij
(
Gj ⊗ In

)(
qi(t)

′ ⊗ In ⊗ ψj
)(

Γj ⊗Gj
)′

29

61
∑

i pij
(
Gj ⊗Gj

)∑
kl(E

′
kl ⊗ In)(Qi(t)⊗ In)(In ⊗ E′kl)

(
Γj ⊗ Γj

)′
30

62
∑

i pij
(
Gj ⊗Gj

)(
qi(t)

′ ⊗ ϕ
(
In
)
⊗ ψ′j

)(
Γ′j ⊗ In

)
31

66
∑

i pij
(
Gj ⊗ Γj

)(
ψ′j ⊗ In ⊗ qi(t)

)(
In ⊗G′j

)
32

69
∑

i pijπi(t)
(
Gj ⊗ In

)(
ψ′j ⊗ In ⊗ ψj

)(
In ⊗G′j

)
33

70
∑

i pij
(
Gj ⊗Gj

)(
ψ′j ⊗ ϕ

(
In
)
⊗ qi(t)′

)(
In ⊗ Γ′j

)
34

71
∑

i pijπi(t)
(
Gj ⊗Gj

)(
ψ′j ⊗ ϕ

(
In
)
⊗ ψ′j

)
35

73
∑

i pij
(
GjG

′
j

)
⊗
(
ΓjQi(t)Γ

′
j

)
36

74
∑

i pij
(
Gj ⊗ Γj

)(
In ⊗ qi(t)ψ′j

)(
G′j ⊗ In

)
37

76
∑

i pij
(
Gj ⊗ In

)(
In ⊗ ψjqi(t)′

)(
Gj ⊗ Γj

)′
38

77
∑

i pijπi(t)
(
Gj ⊗ In

)(
In ⊗ ψjψ′j

)(
G′j ⊗ In

)
39

81∗
∑

i pijπi(t)
(
Gj ⊗Gj

)
ΩWW

(
Gj ⊗Gj

)′
40

* ΩWW described in the text

As with the lower moments, given the terms above, wich define S(t), it is possible to solve

H(t+ 1) = L
(
H(t)

)
+ S(t)

⇒ H = ϕ−1
((
INn4 −M4

)−1
ϕ(S)

)
H =

∑
i

Hi

where S replaces all terms q(t), Q(t) and F (t) in S(t) with their long run equivalents.
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3 Unconditional moments of U.S. GDP growth

This section examines the behaviour of U.S. GDP growth. The results in Section 2 are applied to

linear and Markov-switching autoregressions. Considering the higher moments suggests that, in the

light of the financial crisis, the Great Moderation can be better understood as an exchange of variance

for kurtosis. The results below are reported in terms of the first four standardised moments, which

can be constructed from the unconditional moments according to Table 3, which also gives the sample

approximations employed.

Table 3: Raw, standardised and sample momets

Std. moment Definition Sample Construction from raw

1 µ = Eyt ȳ = 1
T

∑
t yt Eyt

2 σ2 = E(yt − µ)2 σ̂2 = 1
T

∑
t(yt − ȳ)2 Ey2

t − (Eyt)2

3 E(yt−µ)3

σ3

1
T

∑
t(yt−ȳ)3

(σ̂2)3/2
(Ey3

t − 3µσ2 − µ3)/σ3

4 E(yt−µ)4

σ4

1
T

∑
t(yt−ȳ)4

(σ̂2)2
(Ey4

t − 4Ey3
t µ+ 6Ey2

t µ
2 − 3µ4)/σ4

3.1 The whole sample 1954-2011

US GDP growth since 1954 is plotted in Figure 1; the second column Table 4 gives the first four

standardised sample moments. There is some evidence of negative skew and excess kurtosis.

Table 4: Standardised Moments of US GDP growth 1954-2011

Moment Sample moment Linear AR(1) MSI(3)-AR(1)

mean 0.7591 0.7561 0.7462

variance 0.8547 0.8613 0.8016

skew -0.4314 eps∗ -0.4956

kurtosis 4.5735 3.000 4.6463

*Machine zero

Although very simple, the AR(1) remains a popular model for GDP growth. Inspection of sample

ACF and PACF often suggest an AR(1) structure, and it performs well in forecasting relative to more

complex ARMA models. The standardized moments implied by the linear AR(1) are given in the

third column of Table 4. While the linear AR(1) is able to match the first two moments well, it is by
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construction unable to match the higher moments. The AR(1) is a Method of Moments estimator,

using only the information contained in the first two moments.

The final column of Table 4 shows the standardised moments implied by the MSI(3)-AR(1) model. In

this estimation the intercept and variance parameter are regime dependent, while the autoregressive

parameter is constant across regimes. Some accuracy may be lost in fitting the first two moments,

but the Markov-switching model is clearly able to replicate key features of the data which the linear

model is not. The MSI-AR(1) is not - to my knowledge - a method of moments estimator, rather the

flexible Markov-mixture of normals assumed for the errors allows the model to capture the skewness

and kurtosis of the sample much better than the linear model. In itself this could be a useful result

for long-horizon planning, suggesting there will be more bad shocks coming from the business cycle

than the linear model would indicate. However, a review of the smoothed probabilities in Figure 2

suggests this is not the only story.

Fitting all the cycles in the period 1954-2011 with a Markov-Switching regression is not as easy as

it once seemed. The natural two-state approach, pioneered by Hamilton [1989], does not fare well

in in the longer sample, especially if switching variance is allowed, Clements and Krolzig [1998]. A

brief glance at Figure 1 suggests switching variance is at least as important as switching in the mean

or intercept of the model, and many authors now insist on this. Sims and Zha [2006] discuss the

importance of switching variance further. Figure 2 demonstrates that a three-regime model with

switching intercept and variance fits the NBER pattern of recessions quite well. However, the plot

also suggests a one off change in the variance of the high-growth regime around 1984.

What is the picture of the business cycle which emerges from this estimation? Turning to the es-

timation results in Table 7 we see the intercepts are all positive. However in regime two, which is

the regime most likely to occur during NBER recessions, the intercept is statistically zero, and the

variance is high. In particular the variance of this low (statistically zero) growth regime is 2.8 times

that of the regime most likely to hold in the expansionary phases of the business cycle 1954-84 and

8 times that of the high growth regime likely to hold 1984-2011. While regime 2 is not a negative

growth regime, we can interpret it as a ‘high risk’ regime, with low average growth and large shocks,

negative outcomes are likely in this state. Returning to the expansionary regimes, the intercept of the

54-84 regime is nearly twice that of the 84-11 regime. However, 54-84 regime is associated with a 14.5

percent chance of moving into the low (zero) growth regime in one period, while for the 84-11 regime

this one-step transition probability is only 4.5 percent.
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3.2 A change in the variance and the higher moments

Figure 2 suggests a change in the variance of the high-growth regime around 1984. To make the picture

clearer, Figure 3 displays the most likely regime to have held on each date in the sample according to the

MSI(3)-AR(1) model. The one-time switch between regimes 1 and 3 in 1984.3 is clear. Both regimes

are expansion regimes, but the variance of the second expansion regime (regime 3) is much lower. This

decline in variance is well known and the split in the smoothed regime probabilities between the 1-2

and 3-2 transitions invites us to look again at the sample moments in the two subperiods identified

by the Markov switching model. These results are displayed in Table 5.

Table 5: Sample Moments of US GDP growth in subperiods

Moment 1954-1984.3 1984.4-2011

mean 0.8682 0.6522

variance 1.2731 0.3989

skew -0.4145 -1.5601

kurtosis 3.3432 8.4844

The great exchange of variance for kurtosis and the resulting decline in the accuracy of the lognormal

approximation for GDP growth is very clear in Table 5. The Markov- switching VAR identifies

these well known subperiods quite clearly, but does not manage to match this change in the moment

structure. Although there are no transitions between regimes 1 and 3, the three-regime structure

ensures that all regimes have positive weight in the long-run probabilities: the state variable can move

in principle from regime 3 to 2 to 1. There is no irreversible change in regimes and the resulting

moments, like their whole-sample empirical equivalents, average those for the two sub-periods.

The AR(1)-MSI(3) structure may be overly restrictive. The AIC suggests the linear model prefers two

lags to one. In an estimation with two lags an extra regime becomes a plausible feature of the data

generating process. The AR(2)-MSI(4) model splits the sample in 1984, with the ergodic probability

confined to regimes 1 and 4, the blue and cyan regimes in Figure 4. 1984q3 is taken as the date

of the irreversible change in the the MSI(4)-AR(2) estimation. This is slightly later than 1984q1

identified by McConnell and Perez-Quiros [2000] as the break date for U.S. GDP. This discrepancy

arises because I date the break at the point where the new regime, regime 1 in the estimation table,

becomes dominant, rather than at the point where it begins to receive positive probability, which is

closer to the McConnel and Perez-Quiros date.

The estimated moments from this model are reported in Table 6, with the estimation results in Table
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Table 6: Estimated Moments of US GDP growth: MSI(4)-AR(2)

Moment Estimate

mean 0.6480

variance 0.4058

skew -1.5387

kurtosis 6.9132

8. The estimates for all four standardised moments are much closer to the empirical moments in the

the post 1984 period than for the linear model or the MSI(3)-AR(1). The unconditional moments

required to calculate the standardised moments were found by applying the expressions in Tables 1

and 2 to the companion form of the MSI(4)-AR(2).

While the model is effective in terms of unconditional moments in the second half of the sample, the

separation between regimes in the first half is quite poor. In the second half of the sample there is

a sharp division between a low variance expansionary regime, and a contractionary regime estimated

to have held during the 1990 and 2009 recessions. In the second half of the sample therefore, the

traditional contraction/expansion interpretation of the hidden states applies. More interesting in

the current context may be the interaction between the estimated variances and the unconditional

moments reported in Tabel 6. In the second half of the sample the variance of the good and of bad

regime both decline. However, the kurtosis in the second half of the sample is very high. The complex

interaction between the model parameters described in Section 2 allows the Markov-switching VAR

to accommodate both declining variance and an increased probability of tail events.

4 Conclusions and directions

The unconditional moments for the MSI(M)-VAR(p) model have been derived under a stability con-

dition that allows for the possibility of one-off changes in the parameter structure. These results are

likely to be useful to researchers concerned with non-linearity in modern business cycles and can be

applied to a wide range of VAR models. As a special case, the unconditional moments of the AR(1)

version of the model were also derived under the stronger stationarity condition more common in the

econometrics literature.

The AR(1) model is a reasonable model of GDP growth and its unconditional moments are relatively

easy to derive even when all parameters are switching. Table 4 shows that the MSI(3)-AR(1) is able to
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capture the first four moments of GDP growth more accurately than the linear model. However, the

smoothed probabilities from this estimation suggest a one-off change in the model parameters which

the ergodic probabilities of the three-regime model cannot account for. The sample moments change

dramatically if they are calculated on the two sub periods suggested by the smoothed probabilities

of the Markov-switching estimations. The near lognormal result for the 1954-1984 period is in sharp

contrast to the low-variance, high-kurtosis character of the 1984-2011 period.

The Markov-switching model with two lags and four regimes identifies a permanent change in the

model parameters in 1984q3 and replicates the low-variance, high-kurtosis behaviour of recent data

far more accurately than the simpler models. The view of the business cycle that emerges is one in

which large shocks are important, and far more likely to be negative than positive. Rather than signal

the return of the traditional high-variance near Gaussian business cycle, the financial crisis reveals

new information about the change in the moment structure of U.S. GDP growth that occurred in the

mid 1980s.

Considering the higher moments of GDP growth closes the gap between the Great Moderation and

Financial Crisis literatures, but the estimations presented only scratch the surface. A priority for

future work is to find a specification which can make plausible conditional forecasts over the medium

term, while also matching th higher moments well. The results for GDP growth suggest that the non-

Gaussian behaviour of the modern business cycle is important, and that Markov-switching models

provide a simple way of modelling this. The derivation of the higher moments could be applied to

the generation of Markov-switching DSGE models now being developed, giving these researchers the

ability to exploit non-Gaussian features of the data in designing and choosing between models.

5 Appendix A: First and Second Moment

This section applies the recursive method of Costa et al. [2005] to the first and second moments of

the MSI(M)-VAR(p). The timing convention in econometrics changes the first and second moment

operators slightly, relative to their benchmark model. In particular, Costa et. al.’s matrix B for the

first moment is replaced below by the matrixM1, while the second moment operator is thier V rather

than their T .

The stability concept employed is Mean Square Stability (MSS). If system (1) is MSS then, for µ(t) :=
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E[y(t)] and Q(t) := E[y(t)y(t)′], as t→∞

‖µ(t)− µ‖ → 0

‖Q(t)−Q‖ → 0

and µ and Q are taken as the unconditional first and second moments of the system. To find the limiting

values µ and Q, we first define recursions for the joint moments E[y(t), θ(t) = i] and E[y(t)y(t)′, θ(t) =

i]; if such recursions converge then µ(t) and Q(t) will converge to the unconditional moments.

The (hidden) state variable θ(t) follows an N -state Markov chain with transition matrix P , where

elemets pij = Pr(θ(t + 1) = j|θ(t) = i) and
∑N

i=1 pij = 1. Further, let πi(t) := Pr(θ(t) = i). As

the approach of Costa et al. [2005] does not require the stationarity of θ(t), these unconditional

probabilities can vary with time. However, we do require the ergodicity of the discrete Markov chain,

that is, limt→∞ πi(t) = πi, where the ergodic probabilities πi solve the equation π = P ′π.

Introduce the following definitions related to the first moment. To aid comparison with results in

Costa et. al., the joint expectation of the pair (y(t), θ(t)) is written in terms of the indicator function.

qi(t) : = E[y(t), θ(t) = i] = E[y(t) 1{θ(t)=i}]

= E[y(t)|θ(t) = i] Pr(θ(t) = i)

q(t) : =


q1(t)

...

qN (t)


µ(t) : = E[y(t)] =

∑
i

qi(t)

To apply the approach in Costa et. al. plug the system equation (1) into the definition of the first

moment of the joint process (y(t), θ(t))
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qj(t+ 1) = E[y(t+ 1) 1{θ(t+1)=j}]

=

N∑
i=1

E[y(t+ 1) 1{θ(t+1)=j} 1{θ(t)=i}]

=
N∑
i=1

E[
(
ψθ(t+1) + Γθ(t+1)y(t) +Gθ(t+1)w(t+ 1)

)
1{θ(t+1)=j} 1{θ(t)=i}]

=
N∑
i=1

ψjpijπi(t) +
N∑
i=1

ΓjE[y(t) 1{θ(t)=i}]pij +
N∑
i=1

pijπi(t)GjE[w(t+ 1)]

= ψj

N∑
i=1

pijπi(t) + Γj

N∑
i=1

pijqi(t) (10)

Notice that the second summation can be written in vector form,

Γj

N∑
i=1

pijqi(t) =
[
p1jΓj . . . pNjΓj

]
q1(t)

...

qN (t)


Introduce the following definitions related to the non-homogenous term and the matrix summation

ψ̃j(t) =
N∑
i=1

pijψjπi(t)

ψ̃(t) =


ψ̃1(t)

...

ψ̃N (t)


M1 = diag[Γi][P

′ ⊗ In]

Again diag[Γj ] refers to the direct sum of the Γj matrices, j = 1 . . . N . Using these definitions, (10)

can be re-written giving a recursion for the stack of joint expectations, q(t)

qj(t+ 1) = Γj

N∑
i=1

pijqi(t) + ψ̃j(t)

⇒ q(t+ 1) =M1q(t) + ψ̃(t) (11)
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Next, define limiting values for the non-homogeneous term ψ̃i(t)

ψ̃j =
N∑
i=1

pijψjπi

ψ̃ =


ψ̃1

...

ψ̃N



By the ergodicity of the Markov chain θ(t), as t → ∞, ψ̃i(t) → ψ̃i, so that we can solve for q :=

limt→∞ q(t) by employing Proposition 2.9 of Costa et al. [2005]. The unconditional expectation is

then striaghtforward. As t→∞, (11) tends to

q(t+ 1) =M1q(t) + ψ̃

⇒ q = (INn −M1)−1 ψ̃

⇒ µ =
N∑
i=1

qi

For the second moment we study

Qi(t) := E[y(t)y(t)′ 1{θ(t)=i}]

Q(t) :=
[
Q1(t), . . . , QN (t)

]
Q(t) := E[y(t)y(t)′] =

∑
i

Qi(t)

Again, begin by plugging the system equation (1) into the definition of the joint second moment

Qj(t+ 1)

22



Qj(t+ 1) =E[y(t+ 1)y(t+ 1)′ 1{θ(t+1)=j}]

=

N∑
i=1

ΓjE[y(t)y(t)′ 1{θ(t)=i}]Γ
′
jpij +

N∑
i=1

(
ΓjE[y(t) 1{θ(t)=i}]ψ

′
jpij

+ ψiE[y(t) 1{θ(t)=i}]
′Γ′j + (ψjψ

′
j +GjG

′
j)pijπi(t)

)
=

N∑
i=1

ΓjQi(t)Γ
′
jpij +

N∑
i=1

pij

(
Γjqi(t)ψ

′
j + ψjqi(t)

′Γ′j + (ψjψ
′
j +GjG

′
j)πi(t)

)
(12)

Again, define a sequence for the non-homogeneous term

Rj(t, q) =
N∑
i=1

pij

(
Γjqi(t)ψ

′
j + ψjqi(t)

′Γ′j + (ψjψ
′
j +GjG

′
j)πi(t)

)

which is very similar to (3.33) in Costa et al. [2005] except for the slight differences in the way the

intercept behaves, and the restriction that the covariance of the w(t) innovations is identity. We let

R(t, q) = [R1(t, q), . . . , RN (t, q)] stack these terms in an n.Nn matrix. Further, notice that the first

matrix summation in (12) corresponds to the operator Vj as defined in (3.9) of Costa et al. [2005].2

We can then rewrite (12), and so derive a recusion for the block-row of second moments, Q ∈ Rn,Nn.

Qj(t+ 1) =

N∑
i=1

ΓjQi(t)Γ
′
jpij +Rj(t, q)

= Vj(Q(t)) +Rj(t, q) (13)

⇒ Q(t+ 1) = V(Q(t)) +R(t, q)

In order to solve (13) for the unconditional second moment Q, the sequence {R(t, q)} must converge.

Given the ergodicity of the Markov chain, set

Rj(q) =
N∑
i=1

pij

(
Γjqiψ

′
j + ψjq

′
iΓ
′
j + (ψjψ

′
j +GjG

′
j)πi

)
R(q) =

[
R1(q) . . . RN (q)

]
2For reference if X = [X1, . . . , XN ] where Xi is an n × n, p.d.s. matrix, then Vj(X) =

∑
i pijΓjXiΓ

′
j and V(X) =

[V1(X), . . . ,VN (X)].
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then we have

R(t, q)→ R(q)

From equation (13) and Proposition 2.9 of Costa et al. [2005] we can find the limiting value of the

{Q(t)} sequence.

Q = (I − V)−1R(q)

The limiting moments q and Q can only exist if the spectral radii of the matrixM1 and of the operator

V are less than 1. This is striaghtforward to calculate numerically forM1 = diag[Γi][P
′⊗ In]. To find

the radius of V first let ϕ(.) denote the standard vec operator, and ϕ̂(.) its operation on the block-row

matrices Q, R etc. If Xi is any n.n matrix with X = [X1, . . . , XN ], and individual element xijk on the

jth row and kth column of the ith matrix, then

ϕ(Xi) :=
[
xi11 xi2,1 . . . xin,1 xi1,2 xi2,2 . . . xin,2 . . . xin,n

]′

ϕ̂(X) :=


ϕ(X1)

...

ϕ(XN )

 = ϕ(X)

With these definitions we can see

ϕ̂(Q) =
(
INn2 − diag[Γi ⊗ Γi][P

′ ⊗ In2 ]
)−1

ϕ̂(R(q))

Q = ϕ̂−1
((
INn2 −M2

)−1
ϕ̂(R(q))

)
(14)

The second line of (14) simply defines the matrix M2, which is identical to the matrix A3 in the

discussion of the operator V(.) in Costa et al. [2005], Chapter 3. We have that the spectral radius of

V is therefore equal to that ofM2, which can again be calculated, for a given set of parameters in (1).

To summarize the results on the first two moments,
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µ(t) =
N∑
i=1

qi(t)

µ =

N∑
i=1

qi (15)

Q(t) =

N∑
i=1

Qi(t)

Q =
N∑
i=1

Qi (16)

var(y) = Q− µµ′

The second moment matrix, M2 = diag[Γi ⊗ Γi][P
′ ⊗ In2 ], determines the stability of the system.

If the largest eigenvalue of M2 < 1 then both first and second moment recursions converge and the

unconditional mean and variance of the MSVAR are well defined. See Costa et. al., Chapter 3 for

more on this stability concept. This completes the discussion of the first two moments.

6 Appendix B: The first-order autoregressive model

Consider the Markov-switching autoregression with N regimes and one lag. In deriving the moments

all parameters are assumed to change. The model is given by

yt = ψθt + Γθtyt−1 +Gθtεt (17)

where the intercept ψt, autoregressive parameter Γt and regime-conditional variance, G2
t are functions

of the hidden state varible θt. θt follows a first-order, discrete, Markov chain with N states, where

pij = Pr(θt = j|θt−1 = i), are the transition probabilities, collected in P , the rows of which sum to

one. Finally, it is assumed that εt ∼ N(0, 1).

There are three approaches to the unconditional moments in the literature of closely related models.

First, Timmermann [2000] studies the Markov-switching mean (MSM-AR(p)) model and derives its

first four unconditional, centred moments. Francq and Zaköıan [2001] on the other hand find expres-

sions for the first two moments of the intercept-switching form of the MS-VARMA(p,q) process, of
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which the model (17) is a particular case. Finally Costa et al. [2005] study the stability properties and

first two moments of a general Markov-Jump Linear System similar to the MSI(M)-VAR(p), though

with different timing conventions between the continuous and discrete components. This section fol-

lows Timmermann [2000] and Francq and Zaköıan [2001] in assuming that E[yrt ] = E[yrt−1], provided

these moments exist. The notation, however, is chosen to be most similar to Costa et. al. Their

approach is followed closely in Section 2, for the general MSI(M)-VAR(p) specification.

Timmerman and Francq and Zaköıan differ slightly in their approach to the uconditional moments.

The relation between their methods is examined in the derivation of the unconditional mean. The

higher moments are then derived using the Fancq and Zaköıan method. In the approach of Timmer-

man, begin from the conditional expectations E[yt|θt = j] and use the law of iterated expectations

E[yt] = E[E[yt|θt]] = π′E[yt|θt] to find the unconditional first moment. Here π are the steady-state

probabilites of the transition matrix, P , and E[yt|θt] stacks theN conditional probabilities, E[yt|θt = j],

in a column vector. Timmerman employs the ‘backward transition matrix’ B which naturally arises

in this approach. The backward transition probabilities are given by

bji = Pr(θt−1 = i|θt = j) =
Pr(θt = j, θt−1 = i)

Pr(θt = j)

=
Pr(θt = j|θt−1 = i) Pr(θt−1 = i)

Pr(θt = j)
(18)

=
pijπi
πj

Using (18) the regime-conditional first moments follow

E[yt|θt = j] = E[ψθt + Γθtyt−1 +Gθtεt|θt = j]

= ψj + ΓjE[yt−1|θt = j]

= ψj + Γj
∑
i

E[yt−1, θt−1 = i|θt = j] (19)

= ψj + Γj
∑
i

E[yt−1|θt−1 = i] Pr(θt−1 = i|θt = j)

= ψj + Γj
∑
i

E[yt−1|θt−1 = i]bji

The N conditional first moments can be stacked up as follows

26




E[yt|θt = 1]

...

E[yt|θt = N ]

 =


ψ1

...

ψN

+


Γ1 0 . . . 0

0 Γ2 0
...

. . .

0 . . . ΓN




b11 b12 . . . b1N

b21 b22 . . . b2N
...

. . .

bN1 bN2 . . . bNN



E[yt−1|θt−1 = 1]

...

E[yt−1|θt−1 = N ]



Writing in a more condensed notation gives

E[yt|θt ] = ψ + diag[Γj ]BE[yt−1|θt−1
] (20)

where diag[Xj ] is the direct sum of the Xj matrices. The unconditional first moment follows by solving

the recursion (20) under the stationarity assumption and applying the law of iterated expectations

E[yt|θt] = (IN − diag[Γj ]B)−1ψ

E[yt] = π′(IN − diag[Γj ]B)−1ψ

Alternatively, Francq and Zaköıan use the joint expectations E[yt, θt = j], which removes the backward

probabilities altogether. This is closer to the approach in Costa et. al. and is used in the remainder

of this section. The joint expections can be derived from the above by multiplying both sides by the

ergodic regime probability Pr(θt = j) := πj and using E[yt, θt = j] = E[yt|θt = j] Pr(θt = j).

πjE[yt|θt = j] = πjψj + Γj
∑
i

E[yt−1|θt−1 = i]pijπi

⇒ π � E[yt|θt] = π � ψ + diag[Γj ]P
′(π � E[yt−1|θt−1]) (21)

where � stands for element-wise multiplication. π � E[yt|θt] is a stack of joint expectations over the

Markov process (yt, θt). Solving (21) the unconditional expectation is obtained

π � E[yt|θt] = (IN − diag[Γj ]P
′)−1(π � ψ)

E[yt] = 1′N (IN − diag[Γj ]P
′)−1ψ̃ (22)

where ψ̃ = (π � ψ) and 1N is an N × 1 column of ones. The second line of (22) adds the N joint

probabilities to obtain the unconditional mean of the yt process. For future reference, introduce the
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notation qi = E[yt, θt = i] for the joint expectation, and let q = [q1, . . . , qN ]′ be the stack of these

expectations.

To derive the unconditional variance notice that

E[y2
t |θt = j] = E[(ψθt + Γθtyt−1 +Gθtεt)

2|θt = j]

= ψ2
j + 2ψjΓjE[yt−1|θt = j] + Γ2

jE[y2
t−1|θt = j] +G2

j

= ψ2
j + 2ψjΓj

∑
i

E[yt−1|θt−1 = i]
pijπi
πj

+ Γ2
j

∑
i

E[y2
t−1|θt−1 = i]

pijπi
πj

+G2
j

then stack the joint expections E[y2
t , θt = j] and employ the stationarity condition to solve for the

unconditional second moment of the yt process. To save some notation, let x·2 represent the vector

x� x.

π � E[y2
t |θt] =π � ψ·2 + diag[2ψjΓj ]P

′(π � E[yt−1|θt−1])

+ diag[Γ2
j ]P
′(π � E[y2

t−1|θt−1]) + π �G·2 (23)

=
(
IN − diag[Γ2

j ]P
′)−1(

π � (ψ·2 +G·2) + diag[2ψjΓj ]P
′(π � E[yt−1|θt−1])

)
=
(
IN − diag[Γ2

j ]P
′)−1(

π � (ψ·2 +G·2) + diag[2ψjΓj ]P
′q
)

The final line of (23) employs the earlier definition, q, of the joint expectations. In turn define

Qi = E[y2
t |θt = i] · πi

= E[y2
t , θt = i]

Again let Q = [Q1, . . . , QN ]′. The marginal expectation of the square then follows directly

E[y2
t ] = 1′NQ

To derive the higher moments, proceed in the same way. In the scalar case it is strightforawrd to see

28



E[y3
t |θt = j] =E[(ψθt + Γθtyt−1 +Gθtεt)

3|θt = j]

=ψ3
j + 3ψjG

2
j + 3(ψ2

jΓj +G2
jΓj)E[yt−1|θt = j]

+ 3ψjΓ
2
jE[y2

t−1|θt = j] + Γ3
jE[yt−1|θt = j]

=ψ3
j + 3ψjG

2
j + 3(ψ2

jΓj +G2
jΓj)

∑
i

qipij

+ 3ψjΓ
2
j

∑
i

Qipij + Γ3
j

∑
i

E[y3
t−1|θt−1 = i]pijπi

Stacking the joint expectations, E[y3
t , θt = i] := Fi, in the vector F = [F1, . . . , FN ]′ and again solving

under stationarity gives

F =
(
IN − diag[Γ3

j ]P
′
)−1(

π � (ψ·3 + 3ψ �G·2) +
(
3 diag

[
ψ2
jΓj +G2

jΓj
]
P ′
)
q

+
(
3 diag

[
ψjΓ

2
j

]
P ′
)
Q
)

(24)

Finally, for the conditional fourth moment of yt we have

E[y4
t |θt = j] =E[(ψθt + Γθtyt−1 +Gθtεt)

4|θt = j]

=ψ4
j + 3G4

j + 6G2
jψ

2
j + (4ψ3

jΓj + 12ψjΓjG
2
j ))E[yt−1|θt = j]+

+ 6(ψ2
jΓ

2
j +G2

jΓ
2
j )E[y2

t−1|θt = j] + 4ψjΓ
3
jE[y3

t−1|θt = j]

+ Γ4
jE[y4

t−1|θt = j]

=νj +A1jE[yt−1|θt = j] +A2jE[y2
t−1|θt = j]

+A3jE[y3
t−1|θt = j] + Γ4

jE[y4
t−1|θt = j]

where the final line simply defines the scalars νj and Ak,j , k = 1, 2, 3. Again using that

E[yrt−1|θt = j] =
∑
i

E[yrt−1|θt−1 = i]pij
πi
πj

it is clear that
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πjE[y4
t |θt = j] =πjνj +Aij

∑
i

qipij +A2j

∑
i

Qipij

+A3j

∑
i

Fipij + Γ4
j

∑
i

E[y4
t−1|θt−1 = i]pijπi

Let Hi = E[y4
t , θt = i] and stack these expectations in the vector H = [H1, . . . ,HN ]′. Then once again

solve the equation for H assuming stationarity.

H =
(
IN − diag[Γ4

j ]P
′
)−1(

π � ν + diag[A1j ]P
′q+

+ diag[A2j ]P
′Q+ diag[A3j ]P

′F
)

(25)

From (25) we have E[y4
t ] = 1′NH.
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Figure 1: GDP growth 1954-2011

33



1950 1960 1970 1980 1990 2000 2010 2020
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
States and recessions: 3 state AR1

Student Version of MATLAB

Figure 2: US recessions and smoothed state probabilites MS(3)-AR(1). State 2, green, is clearly a

recession state
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Figure 3: Most likely state from MS(3)-AR(1) model. There is a switch in expansion states in 1984.3
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Figure 4: The MSI(4)-AR(2) model assigns a distinct pair of regimes to pre and post 1984 data.
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Table 7: MSI(3)-AR(1)

Regime j ψj γj σj pj1 pj2 pj3

1 1.1363 0.2406 0.4635 0.8302 0.1449 0.0250

(0.2730) (0.0747) (0.0842) (0.1193) (0.1136) (0.0392)

2 0.2191 0.2406 1.308 0.0935 0.8581 0.0484

(0.1807) (0.0747) (0.1294) (0.0628) (0.0747) (0.0334)

3 0.5913 0.2406 0.1616 0 0.045 0.9550

(0.0772) (0.0747) (0.0186) (0) (0.0279) (0.0279)

Table 8: MSI(4)-AR(2)

Regime j ψj γj1 γj2 σj pj1 pj2 pj3 pj4

1 0.5401 0.1652 0.1456 0.1784 0.9747 0 0 0.0253

(0.0731) (0.0699) (0.0619) (0.0289) (0.0200) (0) (0) (0.0200)

2 0.9450 0.1652 0.1456 0.4685 0.0242 0.8787 0.0971 0

(0.2285) (0.0699) (0.0619) (0.1387) (0.0258) (0.0995) (0.0961) (0)

3 0.3725 0.1652 0.1456 1.3853 0 0.0599 0.9401 0

(0.1750) (0.0699) (0.0619) (0.2748) (0) (0.0597) (0.0597) (0)

4 -0.6415 0.1652 0.1456 0.6369 0.2944 0 0 0.7056

(0.4700) (0.0699) (0.0619) (0.3780) (0.1849) (0) (0) (0.1849)
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