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Abstract
Constrained Bayesian optimization optimizes a black-box objective function sub-
ject to black-box constraints. For simplicity, most existing works assume that mul-
tiple constraints are independent. To ask, when and how does dependence between 
constraints help?, we remove this assumption and implement probability of feasi-
bility with dependence (Dep-PoF) by applying multiple output Gaussian processes 
(MOGPs) as surrogate models and using expectation propagation to approximate the 
probabilities. We compare Dep-PoF and the independent version PoF. We propose 
two new acquisition functions incorporating Dep-PoF and test them on synthetic and 
practical benchmarks. Our results are largely negative: incorporating dependence 
between the constraints does not help much. Empirically, incorporating dependence 
between constraints may be useful if: (i) the solution is on the boundary of the fea-
sible region(s) or (ii) the feasible set is very small. When these conditions are satis-
fied, the predictive covariance matrix from the MOGP may be poorly approximated 
by a diagonal matrix and the off-diagonal matrix elements may become important. 
Dep-PoF may apply to settings where (i) the constraints and their dependence are 
totally unknown and (ii) experiments are so expensive that any slightly better Bayes-
ian optimization procedure is preferred. But, in most cases, Dep-PoF is indistin-
guishable from PoF.

Keywords  Bayesian Optimization · Multiple output Gaussian processes · 
Dependence · Expectation propagation

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-023-02047-z&domain=pdf
http://orcid.org/0000-0001-5473-8009


1458	 S. Zhang et al.

1 3

1  Introduction

Bayesian Optimization (BO) [1–3] optimizes an expensive-to-evaluate black-box 
function where derivative information cannot be obtained. BO uses a surrogate 
model, e.g. Gaussian Processes (GP) [4], to learn the response surface and designs 
an acquisition function to trade-off exploration vs. exploitation. BO maximizes the 
acquisition function at each iteration to locate the next sample. Classic BO stud-
ies unconstrained problems, but practical problems may involve constraints, e.g., a 
machine learning model may yield poor results for certain hyper-parameter com-
binations [5]. In chemistry, ingredient concentrations and environmental variables 
should lie inside safe intervals and/or satisfy extra constraints [6–8]. If these con-
straints are known a priori, they can be handled in the acquisition function [9–12]. 
Otherwise, constrained BO (cBO) can handle black-box constraints.

A popular treatment for cBO is using surrogate models to learn constraints and 
constructing an acquisition function that could lead to feasible region(s). Con-
strained Expected Improvement (cEI) [13], a widely-used acquisition function, 
multiplies Expected Improvement (EI) [14] and the Probability of Feasibility 
(PoF), i.e., the probability of a point satisfying all constraints. Variants of cEI 
may use alternatives to EI and/or different ways to calculate PoF. For example, 
a classic way to compute PoF is training a classifier [11, 15–20]. Training this 
classifier allows one to handle multiple constraints with binary or continuous out-
puts since the only information needed to train a classification model is whether 
a point is feasible or not. Alternatively, Boukouvala and Ierapetritou [9] applied 
a regression model to predict their proposed feasibility function. These type of 
approaches do not require prior knowledge and is flexible to types of constraints. 
As the number and complexity of constraints increases, however, a single model 
is insufficient to learn the feasible region(s), which could be multiple-piece, non-
convex, and very small. One solution is equipping each constraint with a sur-
rogate [5, 21–25]. Some papers propose acquisition functions beyond cEI [8, 22, 
24]. By incorporating constraints into the objective, some works transform con-
strained problems to unconstrained ones [23, 25, 26].

Table 1 compares the aforementioned methods: note that combining an acqui-
sition function from BO with PoF is common for cBO. For multiple models, most 
research assumes independence, which brings simplicity but loses correlations 
between constraints. The first cEI paper justified the independence assumption 
as the covariance between predictions for pairs of responses are not so tracta-
ble [13]. Other papers also mention dependence [8, 21, 25, 26]. Dependence cer-
tainly has merit, e.g. Multi-task BO [31] gains information about expensive tasks 
from cheap tasks by capturing the correlations between tasks. When Gelbart et al. 
[5] considered decoupled cases, in which scenario the objective and multiple 
constraints could be evaluated independently, they regarded all these functions 
as tasks and solved it using Multi-task BO. Our setting is different than Gelbart 
et al. [5] in two ways: we remove their independence assumption and assume that 
the objective and all the constraints are evaluated simultaneously. We ask: What 
happens if we do not assume independence between multiple surrogate models?
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To remove the widely-used independence assumption in cBO, we implement 
Multiple Output Gaussian Processes (MOGPs) [32] to capture the correlations 
between constraints, and use Expectation Propagation for Multivariate Gauss-
ian Probabilities (EPMGP) [33] to calculate PoF. Our modified, dependent PoF, 
or ’Dep-PoF’, replaces the commonly-used PoF in any acquisition function with-
out disturbing other parts in classical cBO. To verify its effectiveness, we substitute 
Dep-PoF into two acquisition functions and test them on a variety of case studies.

Paper structure. Section 2 introduces the background. Section 3 defines Dep-PoF 
and the acquisition functions and then provides convergence analysis of Dep-PoF 
and complexity analysis. Section 4 shows the experimental results. We further dis-
cuss Dep-PoF in Sect. 5 and conclude in Sect. 6.

Supplementary materials. Open Resource 1 gives implementation details for 
all methods and models involved in this paper. Open Resource 2 includes more 
experimental results for model consideration. Open Resource 3 provides detailed 
information for all benchmarks used in this paper.

Table 1   Different methods in cBO

IECI Integrated expected conditional improvement, FEI feasibility expected improvement, EV expect 
volume, PES predictive entropy search [27], cAS constrained adaptive sampling, GPC GP classification 
model [4], RF random forest [28], SVM support vector machine [29], LS-SVM least-squares SVM [30], 
GPR GP regression model [4]
�(x) : acquisition function. PoF: whether PoF is used ( 

√

 ) or not ( × ). Constraints: number of inequality 
(p) and equality (q) constraints. Status: whether the constraints are known. Dependent: when multiple 
GPs are used, whether assuming they are independent (’⋆ ’ for a single model). Models: the choice and 
number of models for constraints

Method �(x) PoF Constraints Status Dependent Models

[15] IECI
√

p ≥ 1, q = 0 Unknown ⋆ GPC
[16] cEI

√

p = 1, q = 0 Unknown ⋆ RF
[17] cEI

√

p ≥ 1, q = 0 Unknown ⋆ SVM
[18] cEI

√

p ≥ 1, q = 0 Unknown ⋆ LS-SVM
[11] cEI

√

p ≥ 1, q = 0 Both ⋆ GPC
[9] FEI × p ≥ 1, q = 0 Both ⋆ GPR
[5] cEI

√

p ≥ 1, q = 0 Unknown Independent GPR×p
[21] cEI

√

p ≥ 1, q = 0 Unknown Independent GPR×p
[26] EI × p ≥ 1, q = 0 Unknown Independent GPR×p
[23] EI × p ≥ 1, q ≥ 1 Unknown Independent GPR×(p + q)

[25] EI × p ≥ 1, q = 0 Unknown Independent GPR×p
[22] EV × p ≥ 1, q = 0 Unknown Independent GPR×p
[24] PES × p ≥ 1, q = 0 Unknown Independent GPR×p
[8] cAS

√

p = 1, q = 1 Unknown ⋆ GPR
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2 � Background

2.1 � Multiple output Gaussian processes (MOGPs)

A Gaussian Process (GP) generalizes the Gaussian probability distribution to infi-
nite variables, any finite subset of which owns a joint Gaussian distribution [4]. 
Mathematically, a GP is a distribution f (⋅) ∼ GP(�(⋅), k(⋅, ⋅�)) over a scalar func-
tion f ∶ X → ℝ on input domain X  . All properties of a GP is fully specified by its 
mean function �(⋅) and covariance function, or kernel k(⋅, ⋅�) . Conditioned on an 
observed dataset {(x

i
, f (x

i
))}n

i=1
 , a GP computes the predictive mean and covari-

ance for any finite number of query points in closed form. GPs are powerful tools 
for scalar functions. For a multi-output, or vector-valued function, a naive and 
common-used treatment is using equal number of GPs to separately model each 
output. The correlations between related outputs are thereby ignored. Multiple 
Output Gaussian Processes (MOGPs) [32] can represent the output correlations.

Consider a multi-output function f (⋅) ∶ X → ℝ
p with input domain X = ℝ

d . A 
prior over this function is a MOGP if the distribution of any vector with the form 
{fji(xi)}

n
i=1

∈ ℝ
n is Gaussian distributed, where fji(xi) denotes the ji th output at 

the ith input xi . Like a GP, a MOGP is determined by its mean function and ker-
nel (W.l.o.g., assume zero mean functions). For homotopic data, where we could 
observe all output dimensions for each input, MOGP kernels can be viewed as 
matrix-valued [34, 35]:

For heterotopic data from where only a subset of outputs is observed each time, a 
common treatment is including the indexes of outputs in input space, i.e., ’output as 
input’ [32, 35, 36]. In this paper, we consider homotopic data and inherit relevant 
notations of MOGP from [35] with corresponding implementation in GPflow [37].

2.2 � Expectation propagation for multivariate Gaussian probabilities (EPMGP)

Gaussian cumulative probabilities are difficult to compute for dimensions greater 
than one. Numerical integration can achieve an accurate approximation but is 
computationally expensive [38]. Instead, we use Expectation Propagation for 
Multivariate Gaussian Probabilities (EPMGP) [33] to calculate PoF. Given a 
mean vector m ∈ ℝ

n and a covariance matrix K ∈ ℝ
n×n , a multivariate Gaussian 

distribution p(x) = N(x;m,K), x ∈ ℝ
n is defined as:

We are interested in the probability that a sample from p(x) falls in a region A ⊂ ℝ
n , 

that is:

k ∶ X × X → ℝ
p×p

(x, x�) ↦ k(x, x�) = ℂ
f (⋅)[f (x), f (x

�)].

p(x) =
1

(2�)
n

2
|K|

1

2

exp
{

−
1

2
(x −m)TK−1(x −m)

}

.
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where li and ui denote the lower and upper bounds of A . Cunningham et al. [33] ana-
lytically approximate F(A) using Expectation Propagation [39]. Their EPMGP algo-
rithm approximates accurately for hyperrectangular A , which admits its application 
to most common cases including computing cumulative density function (cdf).

2.3 � The acquisition function

2.3.1 � Constrained expected improvement (cEI)

cEI, which incorporates constraint uncertainty into EI [14], holds many names, e.g., 
Integrated Expected Conditional Improvement [15], Constraint-Weighted EI [5], and 
Expected Constrained Improvement [21]. cEI is defined by:

where PoF(x) is the probability of x satisfying all constraints, and the target of EI is 
the optimal objective value for observed feasible points so far. Note cEI is not well-
defined if all current samples are infeasible. In this case, the EI term is not consid-
ered until a feasible point is sampled. Gelbart [40] fully analyzes cEI.

2.3.2 � Constrained adaptive sampling (cAS)

Acquisition functions using PoF commonly have a product form, about which we 
concern: (i) the probability term and improvement term directly influence each 
other, and (ii) the probability term has little exploration nature. Therefore, we con-
sider constrained Adaptive Sampling (cAS) [8] with a sum form and compare its 
performance with cEI. cAS is a weighted sum of three terms [8]: (i) a border-find 
term, (ii) a PoF term for a single constraint (the authors do not consider multiple 
constraints), (iii) an exploration term. Open Resource 1 describes cAS.

Remark  There are many state-of-the-art acquisition functions, for example those 
in Table  1. Our idea is to compare PoF versus Dep-PoF, so we chose acquisition 
functions cEI and cAS because they directly incorporate PoF. Most acquisition 
functions, including IECI [15], EV [22], and PESC [24], incorporate the assump-
tion of independence between the constraints. But the independence assumption in 
other methods is used in more sophisticated ways than cEI and cAS, for example 
approximating the acquisition function in PESC and integrating in IECI and EV. 
Initially, we considered a comparison incorporating additional acquisition functions. 
However, Eriksson and Poloczek [41] have already provided a detailed comparison 
between state-of-the-art methods including cEI and PESC. Our cEI approach may 
be compared, for instance, to the cEI line in [41].

F(A) =
∫A

p(x)dx =
∫

u1(x)

l1(x)

⋯

∫

un(x)

ln(x)

p(x)dxn ⋯ dx1,

cEI(x) = EI(x)PoF(x),



1462	 S. Zhang et al.

1 3

3 � Method

3.1 � The model

We optimize a black-box objective with multiple ( p > 1 ) black-box constraints:

over a compact set Ω ⊂ ℝ
d where f , ci ∶ Ω → ℝ, 1 ≤ i ≤ p . For any input x ∈ Ω , 

we can evaluate the objective and constraints with/without noise, but cannot get 
gradient information. Each black-box function evaluation is expensive. Under 
the independence assumption, we observe an i.i.d. (p + 1)-dimensional vector 
(y0(x), y1(x),… , yp(x)) given by y0(x) ∼ N(f (x), �2

0
(x)) and yi(x) ∼ N(ci(x), �

2
i
(x)) , 

i ∈ {1,… , p} . Without assuming independence between constraints, the observed 
vector is y0(x) ∼ N(f (x), �2

0
(x)) and (y1(x),… , yp(x)) ∼ N(m(x),K(x)) with 

m(x) = (c1(x),… , cp(x)) . The diagonal elements in K(x) are �2
1
(x),… , �2

p
(x) , so we 

ask: When are off-diagonal K(x) elements important?
In practice, the input domain Ω is rescaled to [0, 1]d . Under independence assump-

tion, we train p + 1 GPs for the p + 1 black-boxes. Otherwise, we train one GP for 
objective and one MOGP for constraints. For noise-free cases, we tend to find a feasible 
point with minimal objective value. For noisy cases, one can relax feasible region(s) 
with tolerance �i and confidence �i, 1 ≤ i ≤ p [5, 24]:

3.2 � Probability of feasibility with dependence (Dep‑PoF)

By independence/dependence in the paper we refer to the prior distributions yi over 
constraints ci instead of constraints themselves. Before discussing PoF with/without 
dependence, we clarify the concept of PoF. If we could easily evaluate the constraints 
at x , PoF reduces to a binary value:

Here, there is no need to consider dependence or non-trivial probability as:

where I(⋅) is indicator function. However, since ci are black-boxes, we cannot afford 
checking the feasibility for any queried input. PoF cheaply approximates the con-
straint feasibility. Mathematically, Dep-PoF is defined:

With the independence assumption, PoF is the product of univariate Gaussian distri-
butions’ cdf:

min
x∈Ω

f (x) s.t. ci(x) ≤ 0, 1 ≤ i ≤ p,

(1){x ∈ Ω | P(y1(x) ≤ �1) ≥ 1 − �1,… ,P(yp(x) ≤ �p) ≥ 1 − �p}.

PoF(x) = I(c1(x) ≤ 0,⋯ , cp(x) ≤ 0).

PoF(x) = I(c1(x) ≤ 0)⋯ I(cp(x) ≤ 0),

PoFdep(x) = P(y1(x) ≤ 0,… , yp(x) ≤ 0).
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Otherwise, calculating Dep-PoF involves the cdf for the multivariate Gaussian distri-
bution (y1(x),… , yp(x)) ∼ N(m(x),K(x)) , which is complicated. This partly explains 
why most works assume independence. EPMGP (see Sect. 2.2) approximates Dep-
PoF ( li = −∞, ui = 0 ) with an acceptable additional computational cost, and allows 
us to compute Dep-PoF and test whether dependence helps.

3.3 � Constrained acquisition function

3.3.1 � Constrained expected improvement with dependence (Dep‑cEI)

Implementing Dep-PoF for cEI is straightforward. Replacing the PoF term in cEI 
with Dep-PoF, we define Dep-cEI as:

where EI(x) is calculated by the predicted mean and variance from the trained GP 
model, PoFdep(x) is computed by using EPMGP algorithm given the predicted mean 
and covariance matrix from the trained MOGP model.

3.3.2 � Constrained adaptive sampling with dependence (Dep‑cAS)

This section implements cAS to our problem setting. To optimize our continuous 
objective function, we replace the Ludl et  al. [8] border-find term with the opti-
mization term in Adaptive Sampling (AS) strategy proposed by [42]. We still call 
our modified version ’cAS’, which consists of: (i) optimization, (ii) constraint, and 
(iii) exploration terms. Dep-cAS replaces the PoF in constraint term with Dep-PoF. 
Open Resource 1 gives details of cAS and Dep-cAS.

Note that Dep-cAS adds extra parameters, which is not preferred in machine 
learning even with the discussion of selecting these parameters [8] and the flexibility 
to different focus brought by weight parameters. The reason this paper introduces 
cAS and modifies it into Dep-cAS is neither to recommend nor criticize this acqui-
sition function. By considering Dep-PoF in both cEI and cAS, we want to check if 
dependence helps in different settings from different fields.

3.4 � Convergence analysis of Dep‑PoF

The section is motivated by experimental results, where we found Dep-PoF and 
PoF share similar performance even in cases that the covariance matrix K(x) 
has non-zero non-diagonal elements (which means that dependence exists). The 

PoF(x) =

p
∏

i=1

P(yi(x) ≤ 0).

cEIdep(x) = EI(x)PoFdep(x),
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following analysis only involves constraints and corresponding surrogate models 
as they are the only differences between Dep-PoF and PoF.

Intuitively, when we have sufficient samples and suitable hyper-parameters, 
GPs/MOGP well-represent the underlying functions. Mathematically, the mean 
yi(x) converges to true function ci(x) and the covariance ( �2

i
(x) for GPs, K(x) for 

MOGP) converges to 0 as the number of samples n → ∞ . Teckentrup [43] proved 
the convergence of GP with estimated hyper-parameters and provided explicit 
bounds for mean and covariance.

We analyze the performance of PoF and Dep-PoF in an ideal setting: the pre-
dictive mean functions match our constraints, i.e. m(x) = (c1(x), … , cp(x)) . In this 
way, we can exclude the influence of mean and focus on the covariance matrix, 
which is the key difference between PoF and Dep-PoF. Numerically, we report 
the predictive accuracy for both models in Open Resource 2 to support this set-
ting. Under this setting, Proposition  1 analyzes the convergence of Dep-PoF to 
PoF on non-boundary domain. Proposition 2 shows a ’decay’ behaviour of PoF on 
the boundary.

Proposition 1  (Non-boundary domain) For any non-boundary point x , we have 
PoFdep(x) → PoF(x), as n → ∞.

Proof  For a non-boundary feasible point x , we have ci(x) < 0 for 1 ≤ i ≤ p . Using 
the continuity of the cdf function of multivariate Gaussian distribution, for any 
𝛿 > 0 , there exists 𝜖 > 0 so that if ‖K(x)‖2 < 𝜖,

Recall that for any x ∈ Ω , we have ‖K(x)‖2 → 0, as n → ∞ , which means that there 
exists N� ∈ ℕ such that ‖K(x)‖2 < 𝜖 as long as n > N𝜖 , ∀x ∈ Ω.

Since P(yi(x) ≤ 0) ≥ PoFdep(x), 1 ≤ i ≤ p , then PoF(x) > (1 − 𝛿)p . Both PoF(x) 
and PoFdep(x) are bounded by (1 − �)p (since 1 − � ≥ (1 − �)p ) and 1. Therefore, we 
have

Same conclusion also holds for a non-boundary infeasible point x . 	�  ◻

Proposition 2  (Boundary) For any boundary point x , denote its number of active 
constraints is q, then we have PoF(x) → 1

2q
, as n → ∞.

Proof  For a point x on the boundary, without loss of generality, assume that the first 
q constraints are active, that is, ci(x) = 0 for 1 ≤ i ≤ q and cj(x) < 0 for q < j ≤ p . 
Following the proof of Proposition 1, we can show that

Since m(x) = (c1(x)… , cp(x)) and ci(x) = 0 for 1 ≤ i ≤ q , we obtain that 
P(yi(x) ≤ 0) =

1

2
 for 1 ≤ i ≤ q . Thus, as n → ∞ , we have

PoFdep(x) = P(y1(x) ≤ 0,… , yp(x) ≤ 0) > 1 − 𝛿.

|PoFdep(x) − PoF(x)| < 1 − (1 − 𝛿)p → 0, as 𝛿 → 0.

P(yq+1(x) ≤ 0,… , yp(x) ≤ 0) → 1, as n → ∞.
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	�  ◻

The ’decay’ shown in (2) slows down the optimization process if the global optimum 
is a boundary point with multiple active constraints. A way to handle it is relaxing fea-
sible regions (even for noise-free cases) as mentioned in (1), which turns the boundary 
optimum into an interior one. However, this relxation requires more hyper-parameters 
and possibly finds an infeasible ’optimum’.

Dep-PoF also suffers from the decay of probability near boundary. When the depend-
ence between constraints is slight, its decay is closed to (2). However, for some cases, 
dependence could relieve the decay and then speed up the process to find a boundary 
optimum. For instance, in Sect. 4.1 we construct a case with boundary optimum and 
repeated constraints. In such setting, Dep-PoF outperforms PoF since Dep-PoF is ide-
ally equivalent to PoF for one constraint. Although this case seems to overestimate the 
importance of dependence, we regard it as an upper bound for the improvement that 
Dep-PoF may bring. Practically, the correlations between unknown constraints are also 
unknown, so as the location of optimum. If Dep-PoF shares similar performance to PoF 
for general cases but outperforms PoF for some special cases, then it still has merit.

3.5 � Time complexity analysis

From a modeling perspective, the time complexity for training p independent GPs 
is O(pn3) , while for training a MOGP is O(p3n3) , where n is the number of samples 
and p is the number of constraints. The complexity for MOGP could be reduced 
through approximated inference, e.g., by introducing (latent) inducing points [35]. 
This paper implements exact inference for both choices of model to eliminate their 
possibility of influencing the comparison between Dep-PoF and PoF. From a prob-
ability perspective, calculating PoF is O(p) as computing the cdf for univariate Nor-
mal distribution is O(1), while calculating Dep-PoF using EPMGP [33] requires 
O(p3 + mp2) , where m is the number of iterations within EPMGP. Obviously, the 
time complexity of EPMGP is incomparable with univariate case. For moderate 
number of constraints, nevertheless, EPMGP is efficient.

4 � Experimental results

To consider the performance of Dep-PoF, we compare cEI, Dep-cEI, cAS, Dep-
cAS, and Random Search for all benchmarks. All benchmarks are observed without 
noise. All methods begin with 10 initial points given by a Latin hypercube design 
and have a budget of 100 evaluations. The plots also show the optimal objective 
value for each benchmark. For any infeasible point, set its value to the maximal 
objective value among all evaluated feasible points. All experimental results are 
realized by using GPflow [37] and Scipy [44], and we report the mean with one 

(2)PoF(x) =

q
∏

i=1

P(yi(x) ≤ 0) ⋅ P(yq+1(x) ≤ 0,… , yp(x) ≤ 0) →
1

2q
.
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standard error over 50 replications. Open Resource 1 provides full implementation 
details and justifies using GPflow. In this section, d means the input dimension, and 
p means the number of constraints.

4.1 � A toy example with repeated constraints

Although Sect. 3.2 discusses dependence between constraints, we do not know how 
to measure it for general cases. Therefore, to see the difference between Dep-PoF 
and PoF, we construct an extreme case based on the 2D Gardner [21] problem with 
1 black-box constraint (see Open Resource 3 for details), where we repeat this sin-
gle constraint several times. 2D Gardner problem itself is challenging due to two 
small feasible regions and two boundary optimum (one of which is a global opti-
mum). After repeating its constraint p times, denote p0(x) = P(c1(x) ≤ 0) , then 
PoFdep(x) = p0(x) while PoF becomes PoF(x) = p

p

0
(x) . Intuitively, as p increases, 

more samples are needed to increase the confidence for x being feasible. Experimen-
tal results in Fig. 1 verify this intuition, from which we notice:

Dep-PoF helps exploiting feasible regions. When the samples are scarce, Dep-PoF 
improves the objective earlier since it calculates the true probabilities which admit it 
samples points more confidently. For PoF, however, since the probabilities decay near 
the boundary, it needs more samples to gain more information about feasible regions.

Dep-PoF performs better when p increases. Ideally, Dep-PoF for different p 
should be identical in this example. Their different performances seem to be coun-
terintuitive. However, note that these (repeated) constraints will share information 
during training MOGP, which may explain better performance for larger p. This 
explanation is also supported by our experimental results in Open Resource 2.

4.2 � Synthetic benchmarks

This section tests synthetic benchmarks from literature. Table  2 introduces these 
benchmarks and Fig. 2 diagrams part of our experimental results. Open Resource 3 
gives full details about these problems and results for 2D benchmarks.

As shown in Fig. 2, cEI almost always outperforms cAS no matter what kind of 
PoF is used. This is not surprising since cAS only cares about immediate improve-
ment based on samples with currently optimal values. Then we consider the impact 
of considering dependence between constraints (i.e., comparison between PoF and 
Dep-PoF). Among these benchmarks, Dep-PoF outperforms PoF in G7 for both 
acquisition functions and in G10 for cAS, probably because that both G7 and G10 
have very small feasible region(s) (When computing G7’s feasible ratio in Table 2, 
we only sample 1 feasible point in 106 uniform samples!).

In the benchmarks other than G7 and G10 problem, the performances of Dep-
PoF and PoF are hard to differentiate. We identify several possible explanations: 
(i) as shown in Table  2, Gramacy, Sasena, and G4 problems have large feasible 
region(s). BO probably focuses on improving the objective instead of finding fea-
sible solutions, (ii) as shown in Open Resource 2, some problems such as G8 and 
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Fig. 1   Results for 2D Gardner function with repeated constraints, i.e. p = {2,… , 5}

Fig. 2   Results for synthetic benchmarks
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G9 problems have slight correlations between constraints, (iii) the strong correla-
tions between constraints are negative, for example, G4 and G6 problems. If two 
constraints are negatively correlated, a larger probability of satisfying one constraint 
implies a smaller probability of satisfying another one. In this case, considering 
dependence can barely help find the feasible domain(s).

4.3 � Real‑world applications

Practically, we compare PoF and Dep-PoF on four real-world scenarios:
3D tension-compression string design [41, 47, 50, 51]: minimize the weight of a 

tension or compression spring under 4 mechanical constraints.
4D pressure vessel design [41, 47, 50, 51]: minimize the cost of designing a 

cylindrical vessel subject to 4 constraints.
4D welded beam design [41, 47, 50, 51]: minimize the cost of design a welded 

beam satisfying 5 constraints.
7D speed reducer [41, 50, 51]: minimize the weight of a speed reducer con-

strained by 11 mechanical constraints.
Open Resource 3 provides more details about these applications. Figure 3 reports 

numerical results. Although Dep-PoF stills shares similar performance as PoF, both 
of them perform well in these practical problems with real constraints instead of 
artificial ones. It is noteworthy that these applications are also considered in [41], 
where the proposed SCBO algorithms and several state-of-art methods including 
cEI are tested and compared. The cEI’s performance reported in [41] is usually not 

Table 2   Benchmarks. Recall that d is the input dimension and p is the number of constraints. For each 
problem, we also give the type of optimal solution and the active set that consists of the indexes of active 
constraints at optimum. To roughly show the size of feasible region(s), we uniformly sample 106 points 
and check their feasibility

The � column shows the ratio of feasible points to all points

Problem d p Optimum Active set � (%) Studied by

Gardner 2 1 Boundary {1} 1.6226 [21, 25]
Gramacy 2 2 Boundary {1} 45.6916 [25–27, 41]
Sasena 2 3 Boundary {1, 3} 17.7891 [9, 17, 45]
G4 5 6 Boundary {1, 6} 26.9618 [46, 47]
G6 2 2 Boundary {1, 2} 1.1057 [46, 47]
G7 10 8 Boundary {1, 2, 3, 4, 5, 7} 0.0001 [46–49]
G8 2 2 Interior ∅ 0.9614 [46, 47]
G9 7 4 Boundary {1, 4} 0.5455 [18, 46–49]
G10 8 6 Boundary {1, 2, 3, 4, 5, 6} 0.0003 [46–49]
Tension–compression 3 4 Boundary {1, 2} 0.7644 [41, 47, 50, 51]
Pressure vessel 4 3 Boundary {1, 3} 16.8690 [41, 47, 50, 51]
Welded beam 4 5 Boundary {3} 37.4383 [41, 47, 50, 51]
Speed reducer 7 11 Boundary {5, 6, 8} 0.1468 [41, 50, 51]
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satisfying w.r.t. the speed and the extent of approaching the optimum. The differ-
ences between our results and theirs may result from our practical treatments (see 
Open Resource 1), whose effectiveness is shown here.

5 � Discussion

Based on the convergence analysis and empirical results, we observe:

Dep-PoF is not worse than PoF. Theoretically, Dep-PoF represents accurate prob-
ability while PoF is a special case for diagonal covariance matrix K . They are equiv-
alent for cases with very little dependence. For cases with dependence, Dep-PoF is 
more likely to positively influence the results because K is more accurate calcula-
tion. Practically, to conclude that Dep-PoF is not worse than PoF, several assump-
tions should be satisfied: (i) both models fit well, (ii) dependence is captured and 
learned, (iii) Dep-PoF is calculated correctly. Open Resource 2 verifies the first two 
assumptions are verified in Open Resource 2, and the results in [33] guarantee the 
last assumption.

Dep-PoF is very similar to PoF after sufficient samples. Intuitively, when surrogate 
models well-approximate the underlying constraints, Dep-PoF is largely determined 
by the predicted mean (equivalent to PoF) rather than the predicted covariance 

Fig. 3   Results for engineering benchmarks. Since the ranges of objective values for Pressure Vessel and 
Welded Beam are too wide, we set the maximal value to 30000 and 30, respectively
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matrix (where dependence matters). This ’convergence’ indicates that Dep-PoF only 
helps in early stages of the optimization process.

Improvement versus Additional cost. Though EPMGP is effective, it cannot be as 
quick as computing the cdf for univariate case. Moreover, training a MOGP model 
is more expensive than training p GPs as MOGP involves more parameters. The 
improvement of Dep-PoF, if exists, may be limited compared to the extra computa-
tional effort. The reason we still consider dependence is for real expensive black-box 
functions requiring days to evaluate: If we truly know nothing about the underlying 
constraints, then Dep-PoF may help. Otherwise, if the dependence does not help or 
helps little, a user will not feel guilty to assume independence.

6 � Conclusions

This paper removes the independence assumption between multiple black-box con-
straints and implements the Probability of Feasibility with dependence (Dep-PoF) 
via MOGP and EPMGP. Theoretically, we show that Dep-PoF converges to PoF 
with enough samples for a non-boundary region and we highlight their difference 
on/near the boundary. The former implies that Dep-PoF finally shares similar per-
formance to PoF, while the latter explores the potential benefit of Dep-PoF for cases 
with boundary optimum and constraints with strong correlations.

The experimental results are largely negative: Dep-PoF and PoF typically per-
form similarly. These (negative) results are useful because they allow us to make 
a simplifying assumption without concerns. If the dependence between constraints 
is slight, it hardly helps. For stronger dependence, the surrogate model cannot fully 
capture it when the samples are scarce. After we have enough samples, the depend-
ence is learned well but is not so important since Dep-PoF converges to PoF. These 
results encourage modeling simplicity and optimization efficiency.
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