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Abstract
Orthonormality constraints are common in reduced rank models. They imply that 
matrix-variate parameters are given as orthonormal column vectors. However, these 
orthonormality restrictions do not provide identification for all parameters. For this 
setup, we show how the remaining identification issue can be handled in a Bayesian 
analysis via post-processing the sampling output according to an appropriately spec-
ified loss function. This extends the possibilities for Bayesian inference in reduced 
rank regression models with a part of the parameter space restricted to the Stiefel 
manifold. Besides inference, we also discuss model selection in terms of posterior 
predictive assessment. We illustrate the proposed approach with a simulation study 
and an empirical application.

Keywords Bayesian estimation · Post-processing · Reduced rank regression · 
Orthogonal transformation · Model selection · Stiefel manifold · Posterior predictive 
assessment

JEL Classification C11 · C31 · C51 · C52

1 Introduction

Bayesian analysis of reduced rank regression models is a well-established tool in 
economics, psychology, and neuroscience, see Aguilar and West (2000), Chib et al. 
(2006), Woolley et al. (2010), Edwards (2010), Sadtler et al. (2014), Geweke (1996), 
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and Baştürk et al. (2017). Factor models constitute a special case of reduced rank 
regression models, see Man and Culpepper (2020), Chan et al. (2018), and Aßmann 
et  al. (2016) for corresponding Bayesian approaches. The same holds for vector 
error correction models, which are discussed in Koop et al. (2010) from a Bayesian 
perspective. Eventually, Zellner et al. (2014) relate reduced rank regression models 
to models with instrumental variables.

Typically, reduced rank regression models require identifying restrictions to 
come up with interpretable estimation results. In certain setups, this has troublesome 
consequences, as the choice of ex-ante identifying restrictions can influence model 
evidence, see Chan et  al. (2018). Moreover, the posterior distribution can exhibit 
multimodality, see Gelman and Rubin (1992), Lopes and West (2004), and Ročková 
and George (2016). With regard to factor models, which are a prominent class of 
reduced rank regression models, multimodality can occur if identification is reached 
by constraining the loading matrix to a positive lower triangular (PLT) matrix a pri-
ori as proposed by Geweke and Zhou (1996). More generally, if the constraints are 
imposed on particular elements of the loading matrix, inference results may depend 
on the ordering of the variables. This is likewise observed by Carvalho et al. (2008). 
Altogether, ex-ante identification, which is achieved by constraining the parameter 
space, may influence inference results for the quantities of interest, i.e., the model 
parameters and functions of these parameters. Hence, Chan et al. (2018) advise to 
refrain from this kind of identification. In this line, Aßmann et al. (2016) and Ero-
sheva and Curtis (2017) suggest ex-post approaches to achieve directed inference 
on factors and loadings.1 The post-processing algorithm proposed in Aßmann et al. 
(2016) addresses static and dynamic factor models whose scaling restrictions are 
formulated in terms of restricted moments of the prior distribution. This approach 
is hence not suited to handle factor models with orthonormality restrictions. If the 
restrictions are placed such that they reflect the classical model assumptions of 
Thurstone (1935), regarding zero-mean unit-scale uncorrelated factors, draws from 
the posterior distribution produce correlated factors with non-zero mean and non-
unit scaling. This also carries over to the posterior factor estimates. As the major 
contribution of this paper, we provide a modified post-processing algorithm that 
yields perfectly orthonormal factor estimates. In fact, the modified approach allows 
for Bayesian inference on factors and loadings corresponding to inference on factors 
via principal component analysis in a frequentist setup. Furthermore, the approach 
can be applied not only to static factor models, but also to other reduced rank regres-
sion models with orthonormality restrictions. The new post-processing approach 
proposed in this paper is based on the sampler by Koop et al. (2010) for vector error 
correction models.

1 Ex-post identification has also attracted wider use in the literature on finite mixture models, compare 
Celeux (1998), Celeux et  al. (2000), and Stephens (2000). Ex-post identification can be motivated in 
terms of a decision-theoretic approach, see e.g., Stephens (2000), where a loss function is used to assess 
the difference between the parameter and the corresponding estimator.
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Due to cointegration, vector error correction models also belong to the class of 
reduced rank models. Cointegration spaces are only identified up to an arbitrary lin-
ear combination of the corresponding cointegration vectors. Several authors, e.g., 
Villani (2005), Kleibergen and van Dijk (1994), and Kleibergen and Paap (2002), 
suggest to enforce linear identifying restrictions a priori. Enforcing linear restric-
tions a priori, however, can likewise induce estimation results to depend on the 
ordering of the variables. To address this issue, several papers, e.g., Strachan (2003), 
Strachan and van Dijk (2003), and Strachan and Inder (2004), follow an alternative 
identification strategy related to the classical setup in Johansen (1988, 1991) and 
provide order-invariant Bayesian estimation approaches. Also, Villani (2006) argues 
that point estimates based on the method in Strachan (2003) may provide counter-
intuitive interpretations and proposes an alternative ex-post point estimator for the 
cointegration space. Further, resulting Bayesian estimation is typically straightfor-
ward in terms of Markov chain Monte Carlo (MCMC) techniques. Villani (2005) 
proposes an MCMC sampler where identification is imposed by means of linear 
identifying restrictions on the cointegration space implying, via a Cauchy density on 
the unrestricted elements, a uniform distribution of the entire cointegration space. 
The resulting ex-post point estimator has the drawback that inference is only feasi-
ble for the cointegration space as a whole and not for a specific cointegration vec-
tor. Thus, identifying assumptions that permit structural interpretations cannot be 
incorporated. Finally, Koop et al. (2010) propose an approach that is order-invariant 
and computationally efficient. In this approach, cointegrating vectors stem from the 
Stiefel manifold, and Koop et al. (2010) also suggest an MCMC sampling approach 
that is easy to implement. Chan et al. (2018) adapt this sampling approach to factor 
models, albeit with a set of identifying restrictions different from the one discussed 
in the following. Note that in Koop et al. (2010) the identification problem is solved 
up to an orthogonal transformation. The sampler by Koop et al. (2010) is the start-
ing point for the novel ex-post identification approach in the light of orthonormality 
restrictions proposed in this paper.

To implement the ex-post approach, we discuss two appropriate loss functions 
formulated in terms of squared Frobenius norms, either involving orthogonal trans-
formations or orthogonal complements to assess estimation loss when the parameter 
space is partly restricted to the Stiefel manifold. We assess similarities and differ-
ences of the loss functions and derive corresponding post-processing algorithms that 
fit the model setup based on the MCMC sampling approach of Koop et al. (2010). 
The post-processing scheme allows to employ different additional identifying 
assumptions to reach inference for directed factors and loadings, like e.g., Varimax 
or Quartimax. In the context of vector error correction models, inference is possible 
for single cointegration vectors and not just the entire cointegration space. The sug-
gested ex-post identification also provides the point estimator of Villani (2006) in 
terms of a decision-theoretic approach under an appropriately defined loss function. 
In a further contribution of this paper, we assess the possibility to use posterior pre-
dictive assessment for model selection in reduced rank models. For factor models 
with orthonormality restrictions, Chan et al. (2018) point at possible computational 
difficulties when using the Savage-Dickey density ratio to determine the number of 
factors. The same also applies to the calculation of marginal model likelihoods for 
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model selection. Thus, we propose to use a posterior predictive assessment approach 
for model selection and discuss its performance by means of a simulation study for 
static factor models. The simulation study confirms the possibility to identify the 
reduced rank dimensionality correctly.

The paper proceeds as follows. Section  2 states the considered reduced rank 
regression models and discusses the involved identification issues. Section  3 pro-
vides the suggested ex-post approach toward identification in reduced rank regres-
sion models and discusses two alternative loss functions. Section  4 evaluates the 
suggested approach via simulation and numerical experiments. Section 5 provides 
details regarding the selection of rank order in terms of posterior predictive assess-
ment. Section 6 provides an empirical illustration. Section 7 concludes.

2  Model setup, identification, and estimation

Following Geweke (1996), the reduced rank regression model setup including the 
vector error correction and the factor model can be stated as

where Y = (y1,… , yT ) is the P × T  matrix of dependent variables. E = (e1,… , eT ) 
is the corresponding matrix of error terms with vec(E) following a multivariate nor-
mal distribution with mean zero and covariance IT ⊗ Σ , where Σ denotes a P × P 
covariance matrix.2 Further, W is a Q × T  matrix of explanatory variables with cor-
responding parameter matrix Ξ of size P × Q . ΠX incorporates the reduced rank 
structure of the model, where Π denotes a P × J matrix and X a corresponding J × T  
matrix. The vector error correction model, see e.g., Villani (2006), arises when Y 
corresponds to first differences of observed variables, i.e., Y = (Δy1,… ,ΔyT ) with 
appropriately chosen initial conditions for y0, y−1,… y2−K and corresponding values 
for Δy1,Δy0,… ,Δy1−K . Accordingly, we have X = (y0,… , yT−1) and W summariz-
ing K lagged differences and exogenous variables, i.e., 

where Zt , t = 1… , T  denotes the vectors of exogenous variables of dimension M × 1 
each. Hence, we have J = P and Q = KP +M . A static factor model arises for 
X = IT , W = (Z1,… , ZT ) and Ξ = � , J = T  , and Q = M.

The reduced rank structure is captured via decomposing Π = ��� with � denot-
ing a parameter matrix of dimension P × R and � a parameter matrix of dimension 

(1)Y
(P×T)

= Π
(P×J)

X
(J×T)

+ Ξ
(P×Q)

W
(Q×T)

+ E
(P×T)

,

W =

⎛⎜⎜⎜⎝

Δy0 ⋯ ΔyT−1
⋮ ⋮

Δy1−K ⋯ ΔyT−K
Z1 ⋯ ZT

⎞⎟⎟⎟⎠
and Ξ = (Φ1,… ,ΦK ,�),

2 Note that in the following, ⊙ and ⊗ denote Hadamard and Kronecker tensor products as defined in Lüt-
kepohl (1996), respectively, and I denotes an identity matrix of indicated size.
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J × R , with R ≪ min{J,P} . In the case of the vector error correction model, � gov-
erns the adjustment back to equilibrium and �′X denotes the T vectors of station-
ary departures from the R long run equilibria, while in the case of the static factor 
model, � denotes the matrix of factor loadings and � the matrix of factors. Then with

the resulting likelihood for both models is given as

For Σ and Ξ , we choose the commonly used conjugate priors as independent inverse 
Wishart and multivariate normal distributions with probability densities given as

and

The prior for � and � has to address the identification problem arising in factor and 
cointegration analysis, as for an invertible matrix D of dimension R × R , we have

Thus, the likelihood is invariant under this transformation. One part of the implied 
identification problem is typically addressed by restricting the scaling of � or � , 
where restrictions on the scaling of � are prominent within the literature, see Vil-
lani (2005). We follow Strachan and Inder (2004), Villani (2006), and Koop et al. 
(2010) and restrict the scaling of � by assuming that ��� = IR , i.e., � is a semiorthog-
onal matrix and therefore has orthonormal column vectors. The corresponding prior 
distribution is hence defined on the Stiefel manifold.3 Moreover, � and � can be 

(2)Θ = (vec(�)�, vec(�)�, vec(Ξ)�, vech(Σ)�)�,

(3)

L(Y|Θ,X,W) =
|Σ|− T

2

(2�)
TP

2

exp
{
−
1

2
tr
[(
Y − ���X − ΞW

)�
Σ−1

(
Y − ���X − ΞW

)]}
.

�(Σ) ∝ |ΩΣ|
�Σ
2 |Σ|− �Σ+P+1

2 exp
{
−
1

2
tr[ΩΣΣ

−1]
}

�(Ξ) ∝ exp
{
−
1

2
tr[(Ξ − �Ξ)Ω

−1
Ξ
(Ξ − �Ξ)

�]
}
.

(�D)(�(D−1)�)� = �DD−1��.

3 In restricting the parameter space to the Stiefel manifold via orthonormality restrictions, the model 
deviates from the static factor models applied, e.g.,  in Aßmann et al. (2016), where the scaling restric-
tions are formulated in terms of moment restrictions given as E[���] = IR or E[vec(��)vec(�)�] = IRJ . 
The orthonormality restrictions ensure that the estimated factors are uncorrelated and have unit variance. 
Without the orthonormality restrictions, the posterior distribution may exhibit correlation between the 
factors, and the factor scaling depends on the prior variance of the loadings and may deviate from one. 
The prior is hence constructed in relation to the free elements in � and � , where the number of free 
elements can be calculated as follows. With the orthonormality restriction imposed on � , i.e., ��� = IR , 

it must hold that �J,r = ±
�

1 −
∑J−1

j=1
�2
j,r

 , where the sign is determined by the equality Π = ��� . This 

reduces the number of free elements in � by R.
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replaced by �∗ = �D and �∗ = �D , where D is an orthogonal matrix.4 Then D can 
be represented as D = ED ⋅ diag(sgn(l1,1), sgn(l2,2),… , sgn(lR,R)) , where ED and L 
result from the QR decomposition �� = EDL

� with sgn(⋅) providing the sign of the 
argument, see e.g., Golub and van Loan (2013). This reduces the number of free ele-
ments in � by another R(R − 1)∕2 . Thus, the number of free elements in � is RP, and 
the number of free elements in � is RJ − R(R + 1)∕2 . Koop et al. (2010) suggest to 
use a prior setup for � and � given as

where I(⋅) denotes the indicator matrix. This joint prior distribution corresponds to 
a marginal matrix angular central Gaussian distribution with parameter C� for � and 
a conditional multivariate normal prior for � conditional on � with expected value 
zero and covariance matrix 𝜈(𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ with � denoting a shrinkage parameter, 

see Appendix 1 for further details.5 Although this prior distribution for � and � iden-
tifies the scaling of � , the so far implied posterior distribution

remains invariant when D is an orthogonal matrix. To formalize, define for any 
orthogonal R × R matrix D the transformation

with

(4)�(�, �|Σ) ∝ |Σ|− R

2 exp
{
−
1

2
tr
[
�−1��C−1

�
���Σ−1�

]}
I(��� = IR),

p(Θ|Y ,X,W) ∝ L(Y|Θ,X,W)�(Ξ)�(�, �|Σ)�(Σ),

(5)
H(D)Θ = (vec(𝛼D)�, vec(𝛽D)�, vec(Ξ)�, vech(Σ)�)�

= (vec(�̃�)�, vec(𝛽)�, vec(Ξ)�, vech(Σ)�)� = Θ̃,

4 As suggested by a reviewer, it is instructive to study a simplified setup, namely

The invariance of � with respect to orthogonal transformations implies that ��� = �∗��∗ , where �∗ = �D , 
and D is a conformably dimensioned orthogonal matrix. In this simplified setup, we therefore have 
D ∈ {−1,+1} , and for any choice of D and � , � is semiorthogonal, as (± sin �)2 + (± cos �)2 = 1 always 
holds, and for R = 1 , we need not care about mutually orthogonal columns in � . Further assume that 
� ∈ ℝ , and hence, Π = ��� is a bivariate vector. Now assume that Π has identical elements, which 
implies that � =

�

4
 or � =

3�

4
 , where the latter is simply the former with D = −1 . In this simplified setup, 

it would be possible to restrict the prior and allow for 𝜃 < 𝜋 only, but instead, we choose an orthogonally 
invariant prior for � and � as this is tractable for higher dimension of � as well.

� =

[
cos �

sin �

]
.

5 Following Koop et al. (2010), C� is constructed as C𝜏 = CC� + 𝜏C̃C̃� , where � denotes a scaling hyper-
parameter and C̃ denotes the null space matrix of C, i.e., its orthogonal complement, and C = Ĉ(Ĉ�Ĉ)−.5 
where the elements of Ĉ , denoted as c, are each independently drawn from the uniform density 
1

2
I(−1 < c < 1) . The choice of � = 1 ensures a uniform prior on the Stiefel manifold, where 0 < 𝜏 < 1 

induces shrinkage of the cointegration space toward CC′ . This setup ensures that C� is positive definite 
as required and provides the flexibility to possibly consider different a priori orientations and scalings, 
see Appendix 1 for further details. A discussion of the matrix angular central Gaussian distribution is 
provided in Chikuse (1990, 2003).
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Taking into account that the transformation described in Eq. (5) has no impact on 
the range of parameters and dΘ̃ = |det(H(D)−1)|dΘ with |det(H(D)−1)| = 1 , the mar-
ginal likelihood

is also invariant and thus is the posterior distribution 
p(Θ|Y ,X,W) = p(H(D)Θ|Y ,X,W) . The invariance arises hence for a model setup 
conditional on � , in contrast to the marginalized model setup used in Aßmann et al. 
(2016) to assess the invariance.

The considered model setup allows for sampling from the posterior distribution 
using an MCMC sampler which we call the rotation-invariant sampler in the follow-
ing, as it ensures that � has zero-mean uncorrelated unit-length column vectors, but 
does not impose an orientation. Accordingly, we also refer to the obtained samples 
and the posterior distribution they originate from as rotation-invariant. To facili-
tate efficient closed form sampling, Koop et al. (2010) discuss a reparametrization 
using the transformation A = �(���)−

1

2 and B = �(���)
1

2 with corresponding inverse 
functions given as � = A(B�B)

1

2 and � = B(B�B)−
1

2 implying ��� = AB�.6 As stated in 
Koop et al. (2010), this transformation yields

The considered reparametrization corresponds to Θ
AB

= (vec(A)�, vec(B)�,

vec (Ξ)�, vech(Σ)�)� with posterior distribution

Note that the posterior is also invariant when considering the reparametrization in 
terms of A and B and under any permutation of the P variables in Y, the correspond-
ing rows of each � , � , Ξ , and the corresponding rows and columns of Σ , see also 
Appendix 1. Following Koop et  al. (2010) and considering the reparametrization 
in terms of A and B, allowing for efficient sampling, yields the following set of full 
conditional distributions. For the covariance matrix Σ we have

(6)H(D) =

(
(D� ⊗ IP+J) 0

0 IPQ+P(P+1)∕2

)
.

(7)M(Y|X,W) = ∫ p(Y ,Θ|X,W)dΘ = ∫ p(Y , Θ̃|X,W)dΘ̃,

�(A,B|Σ) ∝ |Σ|− R

2 exp
{
−
1

2
tr
[
�−1A�Σ−1AB�C−1

�
B
]}

I(A�A = IR).

(8)p(ΘAB|Y ,X,W) ∝ L(Y|ΘAB,X,W)�(Ξ)�(A,B|Σ)�(Σ).

f (Σ|Y ,X,W, �, �,Ξ) ∝ |Σ|− �Σ+P+R+1

2 exp
{
−
1

2
tr[ΨΣΣ

−1]
}
,

6 Note that the absolute value of the determinant of the Jacobian matrix of this transformation is unity, 
since �vec(�)

�vec(A)�
= 0 , 𝜕vec(𝛼)

𝜕vec(A)�
= (B�B)

1

2 ⊗ IP , and 𝜕vec(𝛽)

𝜕vec(B)�
= (B�B)−

1

2 ⊗ IP , where the normalized matrix 

(B�B)−
1

2 is unaffected by changes in B, see also proof of Proposition 1 in Koop et al. (2010) and proof of 
Theorem 4.2 in Villani (2005).
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with �Σ = �Σ + T − 1 and ΨΣ = ΩΣ + (Y − ���X − ΞW)(Y − ���X − ΞW)�

+
1

�
���C−1

�
��� . For the parameters Ξ , the full conditional distribution is given as

where ΨΞ = ((WW � ⊗ Σ−1) + Ω−1
Ξ
)−1 and �Ξ = ΨΞ(vec(Σ

−1(Y − ���X)W�) + Ω−1
Ξ
�Ξ) . For 

the full conditional of � we have

with Ψ𝛼 = ((𝛽�
XX

�𝛽 ⊗ Σ−1) +
1

𝜈
(𝛽�

C
−1
𝜏
𝛽 ⊗ Σ−1))−1 and �� = Ψ�(vec(Σ

−1(Y − ΞW)X��)) . 

This draw of � is then transformed into A = �(���)−
1

2 . Given A, we have the full 
conditional of B as

with Ψ
B
= ((A�Σ−1

A⊗ X
�
X) + (A�Σ−1

A⊗
1

𝜈
C

−1
𝜏
))−1 and �

B
= Ψ

B
(vec(X�(Y − ΞW)Σ−1

A)) . 

The draw of B is then transformed into � = B(B�B)−
1

2 . The prior hyperparameters 
used in estimation and simulation are documented in Table 1.

With this sampling algorithm, a posterior sample can be obtained. However, 
this sample and the involved draws are subject to the identification invariance as 
described above. This makes estimation and inference feasible merely for quanti-
ties not subject to the identification problem, such as ��′ . To obtain estimates and 
posterior distributions for all quantities, we propose the following post-processing 
procedure.

f (Ξ|Y ,X,W, �, �,Σ) ∝ exp
{
−
1

2
(vec(Ξ) − �Ξ)

�Ψ−1
Ξ
(vec(Ξ) − �Ξ)

}
,

f (�|Y ,X,W, �,Ξ,Σ) ∝ exp
{
−
1

2
(vec(�) − ��)

�Ψ−1
�
(vec(�) − ��)

}
,

f (B|Y ,X,W,A,Ξ,Σ) ∝ exp
{
−
1

2
(vec(B) − �B)

�Ψ−1
B
(vec(B) − �B)

}
,

Table 1  Prior hyperparameter setting

Parameter Distribution Hyperparameter

Σ Inverse Wishart �Σ = 3, ΩΣ = 1∕1000IP

Ξ Multivariate normal �Ξ = 0, ΩΞ = 100IPQ

� Matrix angular central Gaussian C𝜏 = CC� + 𝜏C̃C̃� , with � = 1 and C̃ denoting the

null space matrix of C, and C = Ĉ(Ĉ�Ĉ)−.5 where

elements of Ĉ , say e.g., c, are each independently

drawn from uniform density 1
2
I(−1 < c < 1) , see

Appendix 1 for further details
� Multivariate normal 𝜇𝛼 = 0, Ω𝛼 = 𝜈(𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ, 𝜈 = 1

 A Matrix angular central Gaussian CA = 𝜈(B�C−1
𝜏
B)−1 ⊗ Σ, 𝜈 = 1

 B Multivariate normal 𝜇B = 0, ΩB = 𝜈(A�Σ−1A)−1 ⊗ C𝜏 , 𝜈 = 1
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3  Solving the identification problem via post‑processing

In the following, we outline the post-processing approach for reduced rank models 
with the parameter space of � restricted to the Stiefel manifold. The presentation fol-
lows Aßmann et al. (2016), as it is a modification of the approach for factor models 
involving prior moment restrictions. The modification guarantees that the estimator 
based on post-processing lies on the Stiefel manifold and hence satisfies the imposed 
orthonormality restrictions.

A loss function L(Θ∗,Θ) defines a mapping of the estimators Θ∗ from the set of 
possible estimators and each of the parameter values Θ within the parameter space 
onto the real line. The optimal estimator in terms of minimal expected loss is then 
defined as

To solve the identification problem, we propose to extend the loss function approach 
in order to discriminate between invariant losses of estimators invoked under the 
transformation described in Eq. (5) depending on an orthogonal matrix D. The 
extended loss function then takes the form

with LD(Θ∗,H(D),Θ) denoting for given Θ∗ the loss invoked for any transformation 
of Θ as described in Eq. (5).7 As this minimization is done for each Θ , the parameter 
space of Θ is restricted ex-post via the corresponding first order conditions. Since 
the integral involved in the expected posterior loss is approximated via Monte Carlo 
(MC) methods, the corresponding minimization problem takes the form

subject to �∗��∗ = IR and D(s)�D(s) = IR for all s = 1,… , S , where Θ(s) , s = 1,… , S 
denotes a sample from the rotation-invariant posterior distribution. Note that all 
samples taking the form {H(D(s))Θ(s)}S

s=1
 for arbitrary sequences of orthogonal 

matrices {D(s)}S
s=1

 have the same posterior probability.
Loss functions are typically formulated in terms of squared Frobenius norms 

given as

Θ̂∗ = argmin
Θ∗ ∫Θ

L(Θ∗,Θ)p(Θ|Y ,X,W)dΘ.

L(Θ∗,Θ) = min
D

{LD(Θ
∗,H(D),Θ)}, s.t. D�D = IR,

(9){{D̂(s)}S
s=1

, Θ̂∗} = arg min
{D(s)}S

s=1
,Θ∗

S∑
s=1

LD(Θ
∗,H(D(s)),Θ(s)),

(10)LD
(
Θ∗,H

(
D(s)

)
,Θ(s)

)
= tr

[
K
(
Θ∗,H

(
D(s)

)
,Θ(s)

)
K
(
Θ∗,H

(
D(s)

)
,Θ(s)

)�]
,

7 Note that this extension corresponds to the choice of an optimal permutation that is proposed in the 
aforementioned relabeling literature, see e.g., Jasra et al. (2005), Subsection 5.1.
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where K(⋅) denotes a function of the involved quantities Θ∗ , Θ(s) , and H(D(s)) for 
s = 1… , S.8 A typical choice is the Euclidean norm, which results in our first loss 
function

which involves an orthogonal transformation affecting the directed quantities � and 
� and is hence labelled as EOT. Larsson and Villani (2001) discuss the properties 
of the Euclidean norm without involving an orthogonal transformation for assess-
ing losses on the Stiefel manifold and suggest the use of a squared Frobenius norm 
involving orthogonal complements (FOC) of the quantities defined on the Stiefel 
manifold. This concept is incorporated in our second loss function, which is

with ⟂ denoting the orthogonal complement, i.e.,  the null space, of the indicated 
matrix. We will consider both possibilities to assess the loss, illustrate and dis-
cuss the strong similarities of the two loss functions in assessing and minimiz-
ing expected loss, and point at the implied differences with regard to handling of 
the orthogonal invariance. For all elements of Θ∗ not referring to � , the estimator 
implied by the defined loss functions takes the form of an arithmetic mean given as

For � , however, the elements of H(D)Θ do not fulfill the restriction �∗��∗ = IR.
This restriction in combination with the considered EOT loss function turns the 

minimization of the posterior expected loss with regard to � into an orthogonal Pro-
crustes problem. The defined EOT loss functions implies

KEOT

�
Θ∗,H

�
D(s)

�
,Θ(s)

�
=

⎛
⎜⎜⎜⎝

vec
�
�(s)D(s) − �∗

�
vec

�
�(s)D(s) − �∗

�
vec

�
Ξ(s) − Ξ∗

�
vech

�
Σ(s) − Σ∗

�

⎞
⎟⎟⎟⎠

�

,

KFOC

�
Θ∗,H

�
D(s)

�
,Θ(s)

�
=

⎛
⎜⎜⎜⎝

vec
�
�(s)D(s) − �∗

�
vec

�
�∗�
⟂
�(s)D(s)

�
vec

�
Ξ(s) − Ξ∗

�
vech(Σ(s) − Σ∗)

⎞⎟⎟⎟⎠

�

,

(11)H(D)Θ =
1

S

S∑
s=1

H(D(s))Θ(s).

(12)𝛽∗
EOT

= argmin
𝛽∗

tr

[
−𝛽∗�

S∑
s=1

𝛽(s)D(s)

]
, s.t. 𝛽∗�𝛽∗ = IR.

8 Note that under general regularity conditions, see Cheng et al. (1999), the suggested loss function is 
first-order equivalent to the Kullback–Leibler distance, see Clarke and Andrew, and Barron, R. (1990) for 
a discussion of corresponding properties.
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Note that the structure of the minimization problem for determining D(s) as arising 
from Eq. (10) under the EOT loss takes the form

with Λ̄∗ denoting the estimator of the stacked matrix Λ̄ = (𝛼�, 𝛽�)� and Λ̄(s) denoting a 
draw of Λ̄ from the rotation-invariant sampler. The post-processing approach as dis-
cussed here transforms the output from the rotation-invariant sampler given a fixed 
point, i.e., the estimator.

In case the loss is assessed in terms of the FOC loss function, the estimator is 
based on orthogonal complements. Hence, in this loss function, the sequence of the 
orthogonal transformation matrices D(s) , s = 1,… , S is not linked to the correspond-
ing sequence �(s) , s = 1,… , S . Considering D� = D−1 and

see also Larsson and Villani (2001), the minimization problem for �∗ in case of the 
FOC loss function takes the form

Since

given the relations stated in Eq. (14), the minimization problem stated in (15) is 
equivalent to

The structure of the minimization problem for determining D(s) as arising from Eq. 
(10) takes the form

Given this, the similarities and differences between the two loss functions shall 
be discussed. The implied estimators for the undirected quantities Σ and Ξ are 
the same. The loss functions, however, have a slightly different approach toward 
assessing distances on the Stiefel manifold. As pointed out by Larsson and Villani 
(2001), the Euclidean distance not involving an orthogonal transformation between 
two P-dimensional vectors is strictly increasing with respect to the angle between 

(13)argmin
D(s)

tr[(Λ̄(s)D(s) − Λ̄∗)�(Λ̄(s)D(s) − Λ̄∗)], s.t. D(s)�D(s) = IR,

(14)

vec(�∗�
⟂
�D)�vec(�∗�

⟂
�D) = tr

[
(�D)��∗

⟂
�∗�
⟂
(�D)

]
= tr

[
D����∗

⟂
�∗�
⟂
�D

]

= tr
[
���∗

⟂
�∗�
⟂
�
]
= tr

[
�∗��

⟂
��
⟂
�∗
]
= tr

[
�∗�(IR − ���)�∗

]
,

(15)𝛽∗
FOC

= argmin
𝛽∗

tr

[
𝛽∗�

(
S∑

s=1

𝛽
(s)

⟂
𝛽
(s)�

⟂

)
𝛽∗

]
, s.t. 𝛽∗�𝛽∗ = IR.

tr

[
�∗�

(
S∑

s=1

�
(s)

⟂
�
(s)�

⟂

)
�∗

]
= tr

[
�∗�

(
S∑

s=1

(IR − �(s)�(s)�)

)
�∗

]
= RS − tr

[
�∗�

(
S∑

s=1

�(s)�(s)�

)
�∗

]

(16)𝛽∗
FOC

= argmax
𝛽∗

tr

[
𝛽∗�

(
S∑

s=1

𝛽(s)𝛽(s)�

)
𝛽∗

]
, s.t. 𝛽∗�𝛽∗ = IR.

(17)argmin
D(s)

tr
[
(�(s)D(s) − �∗)(�(s)D(s) − �∗)�

]
, s.t. D(s)�D(s) = IR.
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them. For instance, the Euclidean and FOC loss functions for R = 1 are given as 
∝ 1 − cos(�) and ∝ sin2(�), respectively, where � ∈ (0,�) denotes the angle between 
the two considered vectors on the Stiefel manifold. While the Euclidean loss func-
tion reaches its maximum at � , the FOC loss function increases between 0 and �∕2 
and decreases between �∕2 and � . Thus, the situation with maximal loss for the 
Euclidean loss function is in fact the situation where both vectors span the same 
space.

This setup changes if the Euclidean loss function takes an orthogonal trans-
formation into account, resulting in the EOT loss function. The sequence D(s) , 
s = 1,… , S captures the information about the orientation in the �(s) and �(s) , 
respectively, thus solving the aforementioned problem in the Euclidean loss func-
tion. Consider as a simple example the case R = 1 , where the orthogonal trans-
formation takes the form ±1 . The corresponding EOT loss function is given as 
∝ min{1 − cos(�), 1 − cos(� − �)} , which also increases between 0 and �∕2 and 
decreases between �∕2 and � , just like the FOC loss function. Note, however, that 
the FOC loss function deliberately works with quantities in which unwanted orthog-
onal transformations in the �(s) cancel out, see Eq. (15).9 Hence, for arbitrary orthog-
onal transformations in the �(s) and �(s) , which occur in the sampling process, there 
is no effect on the estimator for �∗ if the FOC loss function is used, but the estimator 
for �∗ is affected by such transformations if the EOT loss function is used. How-
ever, in such a situation, the orthogonal transformations are fully captured in the 
sequence D(s) , s = 1,… , S . If the FOC loss function is used, an according sequence 
is also obtained, albeit only based on the �(s) , see Eq. (17). Thus the estimator for 
�∗ changes under both loss functions for orthogonal transformations in the �(s) and 
�(s) . To summarize, the FOC loss function is able to provide an estimator for �∗ 
that is entirely unaffected by orthogonal transformations in the draws, whereas the 
EOT loss function is able to provide estimators for �∗ and �∗ that are aligned with 
each other such that the D(s) , s = 1,… , S affect both of them in virtually the same 
manner.10

Both in simulation and empirical studies, the obtained estimates for �∗ and �∗ 
undergo a final orthogonal mapping, either onto the parameters used in the simula-
tion, or to satisfy an identification constraint, for instance, a lower triangular form 
with positive diagonal elements, or according to some criterion, such as Varimax. If 
the EOT loss function is used, the mapping involves the same orthogonal matrix for 
�∗ and �∗ . For the FOC loss function, on the other hand, the information in the D(s) , 
s = 1,… , S affects the initial estimation of �∗ , but not that of �∗ , which is an undi-
rected estimator. In simulation studies, where the parameter values for � and � are 
at hand, this simply means that the orthogonal mappings for �∗ and �∗ are distinct. 
In applications, on the other hand, this is not possible. As the initially obtained esti-
mates for �∗ and �∗ are not aligned with each other in the first place, an orthogonal 
mapping that turns �∗ into a positive lower triangular matrix, see Sect. 2, or results 

9 Note that for an orthogonal matrix D, it holds for 𝛽 = 𝛽D that 𝛽𝛽� = 𝛽𝛽� and 𝛽
⟂
𝛽�
⟂
= 𝛽

⟂
𝛽�
⟂
.

10 As � and � are sampled conditional on each other within the collapsed sampler, the rotational vari-
ation present in a single draw �(s) is highly correlated with the rotational variation present in the corre-
sponding draw �(s) for all s = 1,… , S , but nevertheless is not exactly the same.
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in the Varimax solution for �∗ , would yield an arbitrary estimator if applied to �∗ . 
If �∗ is of interest beyond the mere cointegration space that it spans, it is therefore 
advisable to align the FOC estimators �∗

FOC
 and �∗

FOC
 with each other prior to this 

step. Two approaches to achieve this are described below. As will be shown in the 
simulation study and the empirical illustration, not only the differences between the 
estimators for �∗ are negligible, but also those between the estimators for �∗ . In this 
sense, this paper points out that the Euclidean norm involving an orthogonal trans-
formation is well suited for estimators defined on the Stiefel manifold. Further, the 
equivalence of the optimization problems stated in Eqs. (15) and (16) implies that 
the estimator resulting from the FOC loss function is the posterior mean cointegra-
tion space (PMCS) estimator discussed in Villani (2006).

The following paragraphs outline how a solution for the reduced rank regression 
models can be obtained via sequential algorithms in case of the EOT and FOC loss 
functions. The post-processing approach as discussed here transforms the output 
from the rotation-invariant sampler given a fixed point, i.e., the estimator. The algo-
rithms need an initialization with regard to Θ∗ , where we choose the last draw of the 
rotation-invariant sampler for convenience. 

EOT For the EOT loss function, the algorithm takes the following steps.

EOT 1 For given Θ∗ the minimization problem implied by Eq. (13) 
resembles the orthogonal Procrustes problem discussed by Kristof (1964) 
and Schönemann (1966), see also Golub and van Loan (2013). The solution 
involves the following calculations. 

EOT 1.1 Define ΥD(s) = Λ̄(s)�Λ̄∗.
EOT 1.2 Do the singular value decomposition ΥD(s) = UD(s)MD(s)V �

D(s)
 , where 

UD(s) and VD(s) denote the matrix of eigenvectors of ΥD(s)Υ�
D(s)

 and Υ�
D(s)

ΥD(s) , 
respectively, and MD(s) denotes a diagonal matrix of singular values, which 
are the square roots of the eigenvalues of ΥD(s)Υ�

D(s)
 and Υ�

D(s)
ΥD(s) . Note 

that the nonzero eigenvalues of ΥD(s)Υ�
D(s)

 and Υ�
D(s)

ΥD(s) are identical.
EOT 1.3 Obtain the orthogonal transformation matrix as D(s) = UD(s)V �

D(s)
.

  For further details on the derivation of this solution, see Schönemann 
(1966).

EOT 2 Choose �∗ , Ξ∗ , and Σ∗ as implied by Eq. (11). With regard to �∗ , the 
minimization problem given in Eq. (12) also takes the form of an orthogonal 
Procrustes problem, where the solution then involves the following calcula-
tions. 

EOT 2.1 Define S� =
∑S

s=1
�(s)D(s).

EOT 2.2 Do the singular value decomposition S� = U�M�V
�
�
 , where U� 

denotes the matrix of the eigenvectors of S�S
′
�
 , and V� denotes the matrix 



590 C. Aßmann et al.

1 3

of eigenvectors of S′
�
S� . Further, M� denotes a diagonal matrix of singu-

lar values, which are the square roots of the eigenvalues of S′
�
S� , which 

are also the nonzero eigenvalues of S�S
′
�
.

EOT 2.3 Obtain the semiorthogonal matrix �∗
EOT

= U�JEOTV
�
�
 , where the 

matrix JEOT = [IR 0R×(P−R)]
� selects the R largest eigenvectors of S�S

′
�
 based 

on a corresponding implicit sorting. The information from the D(s) , 
s = 1,… , S matrices contained in S� accordingly rotates the eigenvectors such 
that �∗

EOT
 is aligned with �∗.

FOC For the FOC loss function, the sequential algorithm involves the following 
steps.

FOC 1 For given Θ∗ the minimization problem implied by Eq. (17) resem-
bles again an orthogonal Procrustes problem but involves only �∗ and �(s) , 
s = 1,… , S . The solution involves the following calculations.

FOC 1.1 Define Υ̃D(s) = 𝛼(s)�𝛼∗.
FOC 1.2 Do the singular value decomposition Υ̃D(s) = ŨD(s)M̃D(s) Ṽ �

D(s)
 , where 

ŨD(s) and ṼD(s) denote the matrix of eigenvectors of Υ̃D(s) Υ̃�
D(s)

 and Υ̃�
D(s)

Υ̃D(s) , 
respectively, and M̃D(s) denotes a diagonal matrix of singular values, which 
are the square roots of the eigenvalues of Υ̃D(s) Υ̃�

D(s)
 and Υ̃�

D(s)
Υ̃D(s) . Note 

that the nonzero eigenvalues of Υ̃D(s) Υ̃�
D(s)

 and Υ̃�
D(s)

Υ̃D(s) are identical.
FOC 1.3 Obtain the orthogonal transformation matrix as D(s) = ŨD(s) Ṽ �

D(s)
.

FOC 2 Choose �∗ , Ξ∗ , and Σ∗ as implied by Eq. (11). With regard to �∗ , 
the minimization problem under FOC loss given in Eq. (15) is solved by the 
following calculations, see also Lütkepohl (1996). 

FOC 2.1 Calculate the orthogonal complement �(s)
⟂

 for each s = 1,… , S as the 
null space of the involved matrix, i.e., �(s)

⟂
= null(�(s)�) for all s = 1,… , S.

FOC 2.2 Define S̃𝛽 =
∑S

s=1
𝛽
(s)

⟂
𝛽
(s)�

⟂
 . As discussed above, step FOC 2.2 could 

alternatively be based on the optimization problem stated in Eq. (16). 
The resulting estimator consists of the eigenvectors corresponding to the 
R largest eigenvalues of the matrix 

∑S

s=1
�(s)�(s)� and is thus the PMCS 

estimator of Villani (2006).
FOC 2.3 Do the spectral decomposition of S̃𝛽 = Ṽ𝛽D̃𝛽 Ṽ

�
𝛽
 , where Ṽ𝛽 denotes 

the matrix of the eigenvectors and D̃𝛽 denotes the diagonal matrix of 
eigenvalues.
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FOC 2.4 Obtain the semiorthogonal matrix 𝛽∗
FOC

= Ṽ𝛽JFOC , where the matrix 
JFOC = [0R×(P−R) IR]

� selects the R smallest eigenvectors of S̃𝛽 based on a 
corresponding implicit sorting.

 Note that S̃𝛽 in FOC 2.2 is unaffected by arbitrary orthogonal transformations of 
the �(s) , s = 1,… , S . Hence, �∗

FOC
 is an undirected estimator, whereas �∗ is a directed 

one. It is possible, however, to obtain an orthogonal mapping that aligns the esti-
mators for �∗ and �∗

FOC
 with each other with regard to Π∗ =

1

S

∑S

s=1
�(s)�(s)

� . The 
required matrix DA can be obtained via minimizing the squared Frobenius norm, i.e., 

 taking the form of an orthogonal Procrustes problem as well. This approach, how-
ever, only provides a directed point estimator for 𝛽∗

FOC
= 𝛽∗

FOC
DA . To allow for infer-

ence, the orthogonal transformation matrices D(s) , s = 1,… , S from FOC 1.3 can 
be used to transform the corresponding �(s) , s = 1,… , S matrices. This aligns each 
�(s) with the corresponding �(s) , and hence turns �∗

FOC
 into a directed estimator, as 

does the matrix DA if the orthogonal transformation matrices are not applied. The 
cointegration space remains the same under this transformation, so information on 
the orientation and on the distribution of � is added, while none of the previously 
contained information is lost.

With regard to convergence of the post-processing algorithms, we have found 
that for arbitrary initial choices of Θ∗ taken from the rotation-invariant sampler out-
put, less than ten iterations usually suffice to achieve convergence to a fixed point 
Θ̂∗ providing the Bayes estimator. Convergence is assumed if the sum of squared 
deviations between two successive Θ̂∗ does not exceed a predefined threshold value, 
where we use 10−9 . In case of the EOT loss function, the iterative procedure of the 
algorithm suggests to use the transformed output of the rotation-invariant sample, 
i.e.,  H(D(s))Θ(s) , as input for the next iteration, thus reducing required computer 
memory capacities. In this line, De Vito et al. (2021) have found that also a single 
iteration may result in estimates sufficiently close to the final estimates. The post-
processed posterior sample then provides the basis to calculate posterior summary 
statistics including uncertainty measures allowing for inference. Note that all esti-
mation and simulation routines have been implemented in  MATLAB® and are avail-
able from the authors upon request. Within the supplementary material all necessary 
files to reestimate the empirical illustration are provided in form of a zip-archive.

4  Simulation and numerical experiments

To illustrate the properties of the suggested post-processing approach, we perform a 
simulation experiment for a vector error correction model. We show that the point 
estimator under EOT loss and the FOC estimator are extremely close, thus showing 

DA = argmin
D

tr
[
(�∗(�∗

FOC
D)� − Π∗)�(�∗(�∗

FOC
D)� − Π∗)

]
,
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the adequacy of the EOT and the FOC loss functions. The results obtained from the 
simulation experiment are based on the following setup. We simulate T = 500 obser-
vations following a vector error correction model with R = 2 cointegrating vectors 
for P = 4 variables. Moreover, we set K = 3 . We assume throughout the simulation 
study y0 = … = y2−K = 0 and correspondingly Δy1 = y1 and Δy0 = … ,Δy1−K = 0 
as initial conditions for the data generating process (DGP), where parameter values 
used within the DGP with regard to ��′ and thus � and � are given in the first col-
umn of Table 2 and Table 3, respectively. To obtain a sample from the posterior dis-
tribution of � and � , we run the rotation-invariant sampler of Koop et al. (2010) with 
S =20,000 after a burn-in phase of 5,000 iterations. Note that the rotation-invariant 
sampler ensures that the orthonormality restriction ��� = IR holds for each draw.

Figure 1 illustrates the identification problem by showing the circular shape of the 
posterior distribution when plotting pairwise parameter trajectories arising from the 
rotation-invariant sampler of Koop et al. (2010). The � matrices are semiorthogonal, 
so their columns have unit length. An illustration analogous to Fig. 1 could show 
this in four dimensions only, hence we add Fig. 2, which depicts the distribution of 
the lengths of the row vectors (upper part) and the column vectors (lower part). Note 
that the vector lengths are invariant under the transformation described in Eq. (5), 
and that the distribution of the lengths of the column vectors of � is degenerate due 
to the scale restriction implied by ��� = IR.

Since the quantity ��′ is invariant under the aforementioned transformation, 
we can use the output from the rotation-invariant Koop et  al. (2010) sampler for 
inference on this quantity with no post-processing required. The second column 
of Table  2 shows the point estimates for ��′ based on the output of the rotation-
invariant Koop et al. (2010) sampler, which is quite accurate. Note that in the EOT 
approach, the estimates for � and � , and indeed the entire samples from the respec-
tive posterior distributions, can be transformed by a single orthogonal matrix to sat-
isfy identifying assumptions. In the FOC approach, this is only possible for � , as � 
is an undirected estimator. We can augment the information contained in the D(s) 
matrices, however, to obtain directed point estimates for � and the according distri-
butions, and then proceed in the same way as in the EOT approach. The third col-
umn shows the product of the point estimate for � and the transpose of the point esti-
mate of � . We observe a substantial deviation between this result and the estimate 
for the invariant quantity ��′ if the output from the sampler without post-processing 
is used. This reflects the equally imprecise estimates for � and � , which are not sepa-
rately reported, and point out that both, sampling of � and � within the rotation-
invariant sampler, are sources of the orthogonal invariance. If the output is post-
processed, the estimate for the invariant quantity ��′ stays the same, as can be seen 
in the fourth column of Table 2. The product of the point estimates for � and � under 
the two considered loss functions FOC and EOT as shown in the last two columns 
of Table 2, are now almost identical to the invariant estimate. This, in turn, indicates 
that the estimates after post-processing for � and � must be much more precise than 
if no post-processing is applied. Further, the results obtained for the two alternative 
loss functions are almost identical. This underlines the conceptual similarities as 
discussed above. The effects of post-processing the output of the rotation-invariant 
sampler can also be seen by looking at the shape of the posterior distribution of � . 
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The lower panels of Fig. 1 indicate that the posterior distributions of the rows are no 
longer circular. They also allow for proper inference on the elements of � and �.

The point estimates and highest posterior density intervals (HPDIs) in Table 3 
show the results of two different transformations applied to the same output after 
post-processing in that respect. HPDIs were calculated using the HPDI estimation 
algorithm according to Chen and Shao (1999), following Chen et al. (2000). In the 
upper part of Table 3, we choose the transformation that minimizes the Frobenius 
norm of the distance between the estimates and the parameters � and � used to simu-
late the data.

In the lower part of Table  3, on the other hand, we choose the rotation that 
minimizes the Frobenius norm of the distance between the EOT estimate and the 
FOC estimate for �.11 The resulting point estimates for � and � show that estimates 
obtained under the two alternative loss functions can both be well transformed to 
match the parameters of the DGP. In fact, the point estimates for the FOC and the 
EOT approach are very similar. The Frobenius norm of the distance for � is 0.1306 
in both cases. The Frobenius norm of the distance for � is 0.0172 for the FOC 

Table 2  Parameter values and 
estimates for ��′

DGP refers to parameter values used in the data generating process. 
The second-last and last columns, respectively, show the estimates 
obtained under the suggested EOT loss function and the FOC loss 
function following Larsson and Villani (2001)

DGP ��� = I
R

post-processed ��� = I
R

FOC EOT

vec(���) vec(�̂��) vec(�̂�𝛽�) vec(�̂��) vec(�̂�𝛽�) vec(�̂�𝛽�)

−0.0177 −0.0256 −0.0039 −0.0256 −0.0254 −0.0255
0.0826 0.0938 0.0148 0.0938 0.0943 0.0941
0.0559 0.0647 0.0103 0.0647 0.0652 0.0650

−0.0375 −0.0527 −0.0091 −0.0527 −0.0531 −0.0531
−0.3033 −0.3310 −0.0533 −0.3310 −0.3310 −0.3310

0.2151 0.2560 0.0408 0.2560 0.2561 0.2560
0.0249 0.0534 0.0083 0.0534 0.0535 0.0533
0.0800 0.0146 0.0021 0.0146 0.0147 0.0147

−0.4022 −0.4209 −0.0674 −0.4209 −0.4211 −0.4210
0.1913 0.2299 0.0364 0.2299 0.2299 0.2300

−0.0399 −0.0104 −0.0019 −0.0104 −0.0105 −0.0104
0.1626 0.0885 0.0144 0.0885 0.0884 0.0884

−0.0992 −0.1096 −0.0177 −0.1096 −0.1096 −0.1096
0.0710 0.0853 0.0136 0.0853 0.0853 0.0853
0.0086 0.0182 0.0028 0.0182 0.0181 0.0181
0.0258 0.0044 0.0007 0.0044 0.0045 0.0045

11 Note that the estimator obtained under FOC loss is equivalent to the PMCS estimator suggested by 
Villani (2006).
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Table 3  Parameter values and estimates for � and �

DGP denotes data generating process, FOC the estimates obtained for the Frobenius norm involving orthog-
onal complements and EOT the estimates for the Euclidean norm involving an orthogonal transformation

Mapped onto DGP

DGP FOC EOT

vec(�) vec(�̂�) 95% HPDI vec(�̂�) 95% HPDI

−0.1981 −0.2236 −0.2596 −0.1854 −0.2237 −0.2662 −0.1813
0.1991 0.2349 0.1929 0.2787 0.2346 0.1941 0.2746
0.0618 0.0867 0.0462 0.1267 0.0865 0.0473 0.1280
0.0170 −0.0350 −0.0754 0.0038 −0.0349 −0.0756 0.0042
0.4740 0.4995 0.4269 0.5723 0.4994 0.4278 0.5713

−0.2347 −0.2818 −0.3491 −0.2165 −0.2820 −0.3517 −0.2114
0.0399 0.0050 −0.0655 0.0805 0.0049 −0.0670 0.0815

−0.1861 −0.0983 −0.1709 −0.0328 −0.0982 −0.1693 −0.0312

vec(�) vec(𝛽) 95% HPDI vec(𝛽) 95% HPDI

0.7308 0.7365 0.6840 0.7851 0.7358 0.6877 0.7863
0.6427 0.6370 0.5910 0.6820 0.6379 0.5955 0.6798

−0.0776 −0.0732 −0.1310 −0.0106 −0.0709 −0.1093 −0.0295
0.2166 0.2156 0.1807 0.2492 0.2159 0.1811 0.2490
0.2682 0.2767 0.2363 0.3169 0.2786 0.2515 0.3064

−0.3712 −0.3787 −0.4217 −0.3309 −0.3770 −0.4047 −0.3513
−0.8810 −0.8746 −0.8971 −0.8499 −0.8747 −0.8957 −0.8508
−0.1188 −0.1233 −0.1484 −0.0983 −0.1228 −0.1434 −0.1024

Mapped onto FOC

DGP FOC EOT

vec(�) vec(�̂�) 95% HPDI vec(�̂�) 95% HPDI

−0.0516 −0.0413 −0.0594 −0.0225 −0.0412 −0.0634 −0.0173
−0.0633 −0.0723 −0.0924 −0.0522 −0.0720 −0.0953 −0.0493
−0.0733 −0.0786 −0.1014 −0.0564 −0.0784 −0.1007 −0.0556

0.0737 0.0776 0.0548 0.1025 0.0775 0.0536 0.1014
0.5111 0.5457 0.4658 0.6253 0.5457 0.4653 0.6255

−0.3012 −0.3597 −0.4356 −0.2823 −0.3597 −0.4386 −0.2828
0.0056 −0.0369 −0.1171 0.0446 −0.0369 −0.1179 0.0457

−0.1717 −0.0697 −0.1445 0.0061 −0.0697 −0.1471 0.0046

vec(�) vec(𝛽) 95% HPDI vec(𝛽) 95% HPDI

−0.7703 −0.7796 −0.8345 −0.7226 −0.7796 −0.8344 −0.7233
−0.3883 −0.3814 −0.4377 −0.3202 −0.3813 −0.4281 −0.3314

0.4879 0.4791 0.4186 0.5324 0.4790 0.4332 0.5214
−0.1339 −0.1314 −0.1701 −0.0893 −0.1314 −0.1688 −0.0918
−0.1123 −0.1055 −0.1376 −0.0729 −0.1055 −0.1137 −0.0970
−0.6325 −0.6354 −0.6619 −0.6083 −0.6354 −0.6473 −0.6225
−0.7377 −0.7353 −0.7660 −0.7041 −0.7353 −0.7481 −0.7235
−0.2077 −0.2108 −0.2237 −0.1973 −0.2108 −0.2192 −0.2018
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approach and 0.0170 for the EOT approach. More substantial differences can be 
found for the HPDIs, which are overall slightly narrower for � , but wider for � in 
the FOC approach, compared to the EOT approach. This is due to the fact that the 
FOC approach relies only on the information in � to determine the transformation 
matrices, which results in reduced variation in the draws of � and increased variation 
for the draws of � . Similar results are obtained when mapping the estimates onto 
the FOC estimate. The resulting Frobenius norms are necessarily identical here. 
Again, the HPDIs for � are slightly narrower in the FOC approach, and those for � 
are wider.

5  Model selection via posterior predictive assessment

In a Bayesian context, model selection and specification is conceptually straight-
forward in terms of the marginal model likelihood M(Y|X,W) stated in Eq. (7), 
see Chib (1995) and Kass and Raftery (1995). In reduced rank regression models, 
model selection amounts to specifying the reduced rank dimension, i.e., the num-
ber of latent factors or the number of cointegrating vectors on the Stiefel mani-
fold. Evaluating the marginal model likelihood for this type of model, however, 
involves substantial computational difficulties. Typically, the computation of the 
marginal model likelihood is based on the full conditional distributions including 
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Fig. 1  Distribution of row vectors of � and of � without post-processing (first and second row) and with 
post-processing (third and fourth row)
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the corresponding normalizing constants, see Chib (1995) and Chib and Jeliaz-
kov (2001). As the functional form of the involved full conditional distribution 
for � is given as a Bingham-von Mises-Fisher distribution, as discussed by Chi-
kuse (2003), Gupta and Nagar (2000) and Hoff (2009), the integrating constant 
required for computation of the marginal model likelihood involves Hayakawa 
polynomials, see Mathai et al. (1995) and Crowther (1975), or the hypergeometric 
function with matrix argument, see Herz (1955) and Koev and Edelman (2006). 
However, the analytical calculation is nontrivial and the saddlepoint approxima-
tion suggested by Kume et al. (2013), generalizing the work of Butler and Wood 
(2003) and Kume (2005), does not provide sufficient numerical precision for typi-
cal dimensions relevant in application contexts. The same holds for alternative 
numerical approaches as power posterior sampling, see Friel and Pettitt (2008), 
as a version of thermodynamic integration closely related to annealed importance 
sampling, see Neal (2001), bridge sampling, see Meng and Wong (1996), and 
path sampling, see Gelman and Meng (1998). Chan et al. (2018) report computa-
tional difficulties for the Savage-Dickey density ratio as well.

Given the aforementioned difficulties with common model selection 
approaches, we propose to make use of posterior predictive assessment, see Gel-
man et  al. (1996), to perform model selection with regard to the dimensional-
ity of the reduced rank structure. Note that this approach involves only invariant 
quantities and thus does not depend on an assumed loss function. For this pur-
pose, a defined fraction of the data Y, e.g., within the range from 1 to 10%, are 
discarded. Hence, we can partition the data into discarded ( YDIS ) and remaining 
( YREM ) observations, where O = PT = ODIS + OREM where ODIS and OREM denote 
the number of discarded and remaining observations, respectively. The partition 
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implies yDIS
t

= LDIS
t

yt and yREM
t

= LREM
t

yt for all t = 1,… , T  , where LDIS
t

 and LREM
t

 , 
t = 1,… , T  denote appropriately defined elimination matrices. The discarded 
observations are then augmented to the parameter vector and subject to sampling 
within the Gibbs sampling algorithm. Kaufmann and Kugler (2010) provide a 
similar approach for handling outlying and missing values. Posterior predictive 
assessment is then based on extending the Gibbs sampling scheme with the full 
conditional distributions of the discarded observations YDIS . For the factor model 
setup, this set of full conditional distributions is directly arising from the likeli-
hood function given in Eq. (3). Since the likelihood in the static factor model 
setup (F) can be factorized as

the corresponding posterior predictive distribution is given as

where f (yDIS
t

|yREM
t

,Θ,Zt) is given as multivariate normal as implied by multivariate 
normal distribution theory.

For the vector error correction model (VECM) setup, sampling from the set of 
full conditional distributions of the discarded observation values is more elabo-
rate. First, the VECM is reformulated as a vector autoregressive model in levels 
yt , i.e.,

where ΦK+1 = 0 . The corresponding state space representation has yDIS
t

= LDIS
t

yt as 
the measurement equation, whereas the corresponding transition equation is given 
by

where Ỹt = (yt, yt−1,… , yt−K)
�,

Ỹt−1 = (yt−1, yt−2,… , yt−K−1)
� , Z̃t = (Zt, 0,… 0)� , and Ẽt = (et, 0,… , 0)� . A sample of 

all discarded values YDIS in the VECM context can then be obtained by iteratively 

LF(Y|Θ,X,W) =

T∏
t=1

fF(yt|Θ,Zt),

fF(Y
DIS|YREM,Θ,X,W) =

T∏
t=1

f (yDIS
t

|yREM
t

,Θ,Zt)

yt = (I + ��� + Φ1)yt−1 +

K∑
k=1

(Φk+1 − Φk)yt−k + et,

Ỹt = ΓỸt−1 + Z̃t𝜙 + Ẽt,

Γ =

⎛⎜⎜⎜⎜⎝

IP + ��� + Φ1 Φ2 − Φ1 Φ3 − Φ2 … −ΦK

IP 0 0 … 0

0 IP 0 0

⋮ ⋱ ⋮

0 … 0 IP 0

⎞⎟⎟⎟⎟⎠
,
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sampling from the set of full conditional distributions of yt for all yt included in YDIS . 
The full conditional distribution of yt corresponds to the smoothed distribution aris-
ing from forward (predicting) and backward (smoothing) recursion of the Kalman 
filter. The corresponding sample provides the basis for posterior predictive model 
assessment. Note that the involved predictive distribution (PR) is directly provided 
by the transition equation, whereas the full conditional distribution (SM) is implied 
via the backward smoothing recursion. Given the model setup, we have

where f (yt+k|yt+k−1,… , y1, Z1,… , ZT ,Θ) for k = 0,… ,K corresponds to the predic-
tive distribution as implied by the transition equation corresponding to a normal dis-
tribution with expected value and covariance matrix given as

Hence, the full conditional distribution corresponds to a normal distribution as 
implied by

The corresponding full conditional expectation ( �SM
yt

 ) and covariance ( ΩSM
yt

 ) are 
given as �SM

yt
= ΩSM

yt
�SM
yt

 , where

and

Using the observed values as initializations of the discarded values, sampling of the 
set of discarded values {yDIS

t
}T
t=1

 is then possible via iteratively sampling from

fVECM(yt|y1,… , yt−1, yt+1,… , yT , Z1,… , ZT ,Θ) ∝

K∏
k=0

f (yt+k|yt+k−1,… , y1, Z1,… , ZT ,Θ),

�PR
yt

= (IP + ��� + Φ1)yt−1 +

K∑
k=1

(Φk+1 − Φk)yt−k and ΩPR
yt

= Σ.

f
VECM

(yt|y1,… , yt−1, yt+1,… , yT , Z1,… , ZT ,Θ) ∝

K∏
k=0

exp

{
−
1

2
(yt+k − �PR

yt+k
)�Σ−1(yt+k − �PR

yt+k
)
}
.

ΩSM
yt

= [Σ−1 + (IP + ��� + Φ1)
�Σ−1(IP + ��� + Φ1) +

K∑
k=2

(Φk − Φk−1)
�Σ−1(Φk − Φk−1)]

−1

�SM

yt
= Σ−1

�
(IP + ��� + Φ

1
+

K�
k=1

(Φk+1 − Φk)yt−k−1)

�

+

�
(Ip + ��� + Φ

1
)�Σ−1(yt+1 −

K�
k=1

(Φk+1 − Φk)yt−k)

�

+

K�
k=1

⎛⎜⎜⎜⎝
(Φk+1 − Φk)

�Σ−1

⎛⎜⎜⎜⎝
yt+k+1 − (IP + ��� + Φ

1
)yt+k −

K�
k�=1
k�≠k

(Φk�+1 − Φk� )yt−k�+1

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
.

fVECM(y
DIS
t

|yCOM
1

,… , yCOM
t−1

, yREM
t

, yCOM
t+1

,… , yCOM
T

, Z1,… , ZT ,Θ),
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as implied by multivariate normal theory and with yCOM
t

 denoting, if applicable, 
the completed vector yt , where the discarded values are replaced by their sampled 
counterparts.

Given a sample of the discarded values drawn from the posterior predictive distri-
butions, model fit is measured as SSE =

∑S

s=1

1

ODIS

vec(Y − Y
(s)

COM
)�vec(Y − Y

(s)

COM
) , 

where Y (s)

COM
 denotes the matrix of completed observations with discarded values 

replaced by the draws from the posterior predictive distribution at each iteration 
s = 1,… , S.12 Model selection using posterior predictive assessment does not 
require a post-processed sample, as the quantities involved in the posterior predic-
tive distribution, i.e., the full conditional distribution of the discarded values, are all 
invariant quantities.

To highlight the precision of the posterior predictive assessment approach, we 
vary the number of cross-sections P, the number of observations in time T, the 
signal-to-noise ratio, and the way the information from the incomplete data sets is 
used in a simulation study involving a static factor model setup. We set the fraction 
of discarded values to 1%, but the correspondingly implied partition is different for 
each incomplete data set.13 The SSE is then calculated for all of these data sets, con-
ditional on the same specific choice of the number of factors R. The choices for the 
parameters are P = {10, 20, 40, 80} , T = {100, 200} , and R = {2, 3} , and the signal-
to-noise ratio is varied between 10 and 1. The simulation study hence covers the 
arising 32 scenarios. For each scenario, G = 50 data sets are simulated. From each 
data set, J = 100 incomplete versions are generated, removing 1% of the data at ran-
dom. For each incomplete data set per scenario, the model is estimated for a set of 
candidate values given as RC = {1, 2, 3, 4, 5} , thus providing five Gibbs sequences 
of length S = 5,000 after discarding burn-in sequences of length 2,000. Now for 
each simulated data set, there are J = 100 five-dimensional vectors, containing the 
SSE values for the set of candidate values RC . Hence SSEg,j(R̃) with g = 1,… ,G and 
j = 1,… , J denotes the sum of squared errors for the jth incomplete version of the 
gth simulated data set when the number of factors in the estimation is set to R̃.

Next, in a bootstrap step, we obtain samples of size Q = 25 and Q = 100 , respec-
tively, by drawing with replacement from the J = 100 vectors of SSE values obtained 
for the set of candidate values RC . Proceeding accordingly, we create L = 10,000 
such bootstrap samples for each of the G = 50 simulated data sets per scenario. Each 
bootstrap sample can be referred to by the index set Bl,g , which contains the indices 

12 In order to reduce the computational burden in terms of the required memory capacity, calculation of 
the SSE is based on the set of discarded values only, as non-discarded values do not contribute to SSE. 
The SSE also involves a trade-off between computational burden and variance, where larger values of 
ODIS increase computational burden, but also reduce the variance of the SSE.
13 Note that this choice implies reduced computational burden but possibly larger uncertainty in the 
calculation of the SSE compared to higher fractions of discarded data. We have also inspected higher 
rates of discarded data, i.e., 2%, 5%, and 10%. While such higher rates of discarded values generally 
only slightly increase the accuracy of model detection, the involved computational burden arising from 
required storage capacity increases substantially. The reported combination of 1% discarded values and 
100 incomplete versions of a data set can hence be recommended to handle the implicit trade-off between 
model detection accuracy and computational burden.
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of the bootstrapped elements in bootstrap sample l for the simulated data set g. 
These indices range from 1 to J, and the index set may contain duplicate entries. We 
then calculate the average SSE for each bootstrap sample for every candidate value 
in RC , i.e., Cl,g(R̃) =

1

Q

∑
q∈Bl,g

SSEg,q(R̃) for all R̃ ∈ RC . Eventually, we estimate for 
each l and each g the number of factors as the R̃ from RC that yields the lowest aver-
age SSE, i.e., R̂l,g = argminR̃∈RC Cl,g(R̃) . With l ∈ {1,… , L} and g ∈ {1,… ,G} , this 
gives us 500,000 estimates for the number of factors per scenario and per value cho-
sen for Q, denoted as R̂.

Table 4 reports the corresponding shares for R̂ from RC for each scenario. Over-
all, the obtained results indicate that the chance to underestimate R is virtually zero 
for all scenarios, except those with P = 10 and R = 3 , where a signal-to-noise ratio 
of 1 results in frequent underestimations. The underestimation is more pronounced 
for the scenarios with T = 100 . In the following, the scenarios withP = {20, 40, 80} 
are summarized. In these 24 scenarios the number of factors is sometimes overesti-
mated, but it must be noted that in all of these scenarios, the correct model is identi-
fied in more than 90% of the cases. On average, models are correctly identified in 
about 97% of all cases for the signal-to-noise ratio of 1 and in about 96% of all cases 
for the signal-to-noise ratio of 10. If Q is reduced to 25, the correct model is identi-
fied in more than 88% of the cases. On average, models are correctly identified in 
about 94% of all cases for the signal-to-noise ratio of 1 and in about 92% of all cases 
for the signal-to-noise ratio of 10.14

6  Empirical illustration

In this section, we illustrate the suggested ex-post approach using a data set from 
financial economics. This empirical illustration closely follows Frühwirth-Schnatter 
and Lopes (2018). The data set consists of monthly log returns of 22 exchange rates 
against the Euro from February 1999 to September 2018, see Fig. 3.15 The data are 
demeaned and standardized. In the first step, the posterior predictive assessment 
is used to determine the appropriate number of factors. The method described in 
Sect.  5 is applied via generating J = 100 incomplete data sets from the available 
one, and then using the bootstrap procedure to produce L = 10, 000 samples of size 
Q = 100 to determine R̂ . Discarding 1% of the data, R̂ = 2 is chosen in 96.9% of all 
cases, and R̂ = 3 is chosen in 3.1% of all cases. If we discard 5% of the data, R̂ = 2 

14 We have also tried bootstrap samples of size Q = 10 and Q = 1 , respectively, the latter corresponding 
to model choice based on a single incomplete data set. While for Q = 10 , models are still correctly iden-
tified in about 85% of all cases on average, for Q = 1 , this share drops to less than 60%.
15 Data have been extracted from the European Central Bank’s Statistical Data Warehouse on Septem-
ber 20, 2018. The considered currencies are Australian Dollar (AUS), Canadian Dollar (CAD), Swiss 
Franc (CHF), Czech Koruna (CZK), Danish Krone (DKK), UK Pound Sterling (GBP), Hong Kong Dol-
lar (HKD), Indonesian Rupiah (IDR), Japanese Yen (JPY), South Korean Won (KRW), Mexican Peso 
(MXN), Malaysian Ringgit (MYR), Norwegian Krone (NOK), New Zealand Dollar (NZD), Philippine 
Peso (PHP), Polish Złoty (PLN), Romanian Leu (RON), Russian Rouble (RUB), Swedish Krona (SEK), 
Singapore Dollar (SGD), Thai Baht (THB), US Dollar (USD).
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is chosen in 100% of all cases. We therefore estimate the model with two factors. To 
allow for directed estimates and inference for � in the FOC approach, we again aug-
ment the information contained in the sequence D(s) , s = 1,… , S.

After estimation, both the factors and factor loadings are orthogonally trans-
formed to obtain an economically interpretable solution. The orthogonal transforma-
tion performed here turns the first factor into a US Dollar factor, maximizing the 
loading on the first factor for the exchange rate between the US Dollar and the Euro. 
The loading on the second factor for this pair of exchange rates is zero accordingly. 
The resulting loading matrix is hence a version of the positive lower triangular form 
of � mentioned in Sect. 3. The required orthogonal transformation matrix DPLT is 
obtained by reordering the rows of �∗ such that the USD/EUR exchange rate forms 
the first row, and all remaining rows of �∗ are shifted downwards. This yields the 
row-permuted matrix

Next, the QR decomposition �∗
P

� = EDL
� is used to obtain 

DPLT = ED ⋅ diag(sgn(l1,1),… , sgn(lR,R)) , as described in Sect. 2. The reported esti-
mates then correspond to �∗DPLT. The estimates of rotated factor loadings and cor-
responding 95% HPDIs are shown in Table  5, whereas the estimated factors and 
corresponding 95% HPDIs are displayed in Fig. 4. Again, estimates resulting from 
both FOC and EOT loss functions are reported. The upper parts of Table  5 and 
Fig. 4 corresponds to FOC estimates, whereas the lower parts correspond to EOT 
estimates. Further, we like to stress that HPDIs can only be interpreted for a each 
loading on its own. Indeed, the rotated first factor is virtually perfectly correlated 
with the exchange rate between the US Dollar and the Euro, with a factor loading of 
1.0026 as the FOC estimate and 1.0027 as the EOT estimate. The  US Dollar factor 
also clearly shows the (flexible) peg between the US Dollar and the Hongkong Dol-
lar, which has a factor loading of 1.0026 (FOC) and 1.0027 (EOT), respectively, and 
strong loadings with a number of south east Asian currencies, such as the Indonesian 
Rupiah, the Malaysian Ringgit, the Philippine Peso, the Singapore Dollar, and the 
Thai Baht. Less pronounced loadings are found for the Japanese Yen, the Canadian 
Dollar and the Korean Won. The factor is virtually orthogonal to the Czech Koruna, 
the Mexican Peso, the Norwegian Krone, the Swedish Krona and the Romanian Leu 
and affects the Polish Złoty slightly negatively. The second factor cannot be linked 
to any particular exchange rate, but shows the largest loadings for the Australian 
Dollar and the Korean Won. From the perspective of investors from the Euro area 
this gives rise for the opportunity to diversify exchange rate risks. Overall, the esti-
mation uncertainty for the  US Dollar factor is substantially lower than that for the 
second factor. With regard to differences between the FOC and EOT loss function, 
we find the point estimates to be virtually identical, whereas the empirical illustra-
tion shows slightly broader HPDIs for the EOT loss function approach. This reflects 
that for the EOT loss function orthogonal invariance is contributed by � and �.

�∗
P
=

(
01×(R−1) 1

IR−1 0(R−1)×1

)
�∗.
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Table 4  Results of the posterior predictive simulation study

R denotes the number of factors used for data generation, T denotes the number of observations for each 
of the P variables, R̂ denotes the estimated number of factors. For each scenario (combination of T, R, 
P and signal-to-noise ratio), a distinct parameter set was simulated, for each of which G = 50 distinct 
data sets were generated. Out of each of these data sets, J = 100 different incomplete data sets were cre-
ated, with 1% of the data discarded from each incomplete data set. The J incomplete data sets were used 
to create bootstrap samples of size Q. The number of bootstrap samples per scenario was L = 10,000 
throughout

R̂ proportion for signal-to-noise ratio 1 R̂ proportion for signal-to-noise ratio 10

{Q,T,R,P} 1 2 3 4 5 1 2 3 4 5

{100, 100, 2, 10} 0.0000 0.9993 0.0007 0.0000 0.0000 0.0000 0.9953 0.0047 0.0000 0.0000
{100, 100, 2, 20} 0.0000 0.9862 0.0137 0.0000 0.0000 0.0000 0.9247 0.0737 0.0012 0.0004
{100, 100, 2, 40} 0.0000 0.9238 0.0675 0.0087 0.0000 0.0000 0.9463 0.0524 0.0013 0.0000
{100, 100, 2, 80} 0.0000 0.9949 0.0051 0.0000 0.0000 0.0000 0.9435 0.0562 0.0002 0.0001
{100, 100, 3, 10} 0.1540 0.2774 0.5656 0.0030 0.0000 0.0000 0.0000 0.9773 0.0227 0.0000
{100, 100, 3, 20} 0.0000 0.0000 0.9949 0.0048 0.0003 0.0000 0.0000 0.9195 0.0803 0.0002
{100, 100, 3, 40} 0.0000 0.0000 0.9437 0.0554 0.0009 0.0000 0.0000 0.9330 0.0424 0.0245
{100, 100, 3, 80} 0.0000 0.0000 0.9944 0.0056 0.0000 0.0000 0.0000 0.9125 0.0852 0.0023
{100, 200, 2, 10} 0.0000 0.9994 0.0006 0.0000 0.0000 0.0000 0.9999 0.0001 0.0000 0.0000
{100, 200, 2, 20} 0.0000 0.9751 0.0249 0.0000 0.0000 0.0000 0.9818 0.0180 0.0003 0.0000
{100, 200, 2, 40} 0.0000 0.9464 0.0492 0.0043 0.0000 0.0000 0.9582 0.0306 0.0111 0.0001
{100, 200, 2, 80} 0.0000 0.9561 0.0439 0.0000 0.0000 0.0000 0.9776 0.0224 0.0001 0.0000
{100, 200, 3, 10} 0.0000 0.5488 0.4512 0.0000 0.0000 0.0000 0.0000 0.9966 0.0034 0.0000
{100, 200, 3, 20} 0.0000 0.0000 0.9569 0.0431 0.0000 0.0000 0.0000 0.9691 0.0309 0.0000
{100, 200, 3, 40} 0.0000 0.0000 0.9587 0.0378 0.0035 0.0000 0.0000 0.9453 0.0537 0.0010
{100, 200, 3, 80} 0.0000 0.0000 0.9821 0.0179 0.0000 0.0000 0.0000 0.9402 0.0596 0.0002
{25, 100, 2, 10} 0.0000 0.9876 0.0124 0.0000 0.0000 0.0000 0.9717 0.0280 0.0004 0.0000
{25, 100, 2, 20} 0.0000 0.9465 0.0495 0.0028 0.0012 0.0000 0.8688 0.1212 0.0067 0.0033
{25, 100, 2, 40} 0.0000 0.8804 0.0918 0.0265 0.0013 0.0000 0.8921 0.0906 0.0159 0.0014
{25, 100, 2, 80} 0.0000 0.9753 0.0244 0.0003 0.0000 0.0000 0.9101 0.0841 0.0040 0.0019
{25, 100, 3, 10} 0.1689 0.2769 0.5397 0.0146 0.0000 0.0000 0.0000 0.9520 0.0472 0.0008
{25, 100, 3, 20} 0.0000 0.0000 0.9631 0.0289 0.0080 0.0000 0.0000 0.8731 0.1178 0.0091
{25, 100, 3, 40} 0.0000 0.0000 0.9043 0.0838 0.0120 0.0000 0.0000 0.8673 0.0981 0.0346
{25, 100, 3, 80} 0.0000 0.0000 0.9802 0.0192 0.0006 0.0000 0.0000 0.8802 0.1109 0.0089
{25, 200, 2, 10} 0.0000 0.9887 0.0112 0.0000 0.0000 0.0000 0.9933 0.0066 0.0000 0.0000
{25, 200, 2, 20} 0.0000 0.9329 0.0649 0.0013 0.0009 0.0000 0.9292 0.0643 0.0062 0.0002
{25, 200, 2, 40} 0.0000 0.9038 0.0791 0.0154 0.0018 0.0000 0.9085 0.0719 0.0168 0.0028
{25, 200, 2, 80} 0.0000 0.9427 0.0569 0.0004 0.0000 0.0000 0.9413 0.0547 0.0035 0.0005
{25, 200, 3, 10} 0.0000 0.5508 0.4492 0.0000 0.0000 0.0000 0.0000 0.9856 0.0144 0.0000
{25, 200, 3, 20} 0.0000 0.0000 0.9083 0.0875 0.0042 0.0000 0.0000 0.9397 0.0594 0.0009
{25, 200, 3, 40} 0.0000 0.0000 0.9194 0.0641 0.0165 0.0000 0.0000 0.8915 0.0949 0.0136
{25, 200, 3, 80} 0.0000 0.0000 0.9695 0.0287 0.0018 0.0000 0.0000 0.8985 0.0917 0.0098
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7  Conclusion

This paper discusses the handling of orthonormality restrictions constraining parts 
of the parameter space to the Stiefel manifold in the context of reduced rank regres-
sions via a novel post-processing algorithm. The output of the rotation-invariant 
sampler of Koop et  al. (2010) is the starting point for the ex-post algorithm. We 
consider appropriate formulations of loss functions and propose corresponding 
post-processing algorithms for the posterior sample that allow for identification and 
directed inference. Thereby, the possibilities to conduct valid inference for cointe-
gration vectors or factors restricted to the Stiefel manifold are extended. We discuss 
the differences and similarities implied by defining as a loss function for the parame-
ters defined on the Stiefel manifold either a Euclidean distance function involving an 
orthogonal transformation or the Frobenius norm involving orthogonal complements 
for handling the orthogonal invariance present in the output of the rotation-invariant 
sampler. We illustrate how the post-processing works for vector error correction 
models in a simulation study and show an application of the sampling procedure 
suggested by Koop et al. (2010) for factor models. Further, we propose to use poste-
rior predictive assessment to obtain model evidence and to compare models. We do 
so, because obtaining the marginal likelihood is computationally extremely demand-
ing when the Stiefel manifold is involved. Overall, the results suggest that the two 
alternative loss functions lead to virtually equivalent results. Finally, our approach 
to the analysis of reduced rank models is illustrated in an empirical example. Future 
research may focus on alternative possibilities to provide model comparison and 
assessment in a Bayesian framework.

Appendix A: Prior distribution on ̨  and ˇ

The prior distribution for � and � provided in Eq. (4) corresponds to a marginal 
matrix angular central Gaussian distribution with parameter C� for � , see Chi-
kuse (1990, 2003), and a conditional multivariate normal prior for � conditional 
on � with expected value zero and covariance matrix 𝜏(𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ , hence 

�(�, �|Σ) ∝ �(�|�,Σ)�(�) , where

�(�) ∝ |C� |−
R

2 |��C−1
�
�|− P

2 I(��� = IR)

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018
-8
-6
-4
-2
0
2
4
6

Fig. 3  Demeaned and standardized monthly log returns based on the first trading day in a month for 22 
currencies against the Euro from February 1999 until September 2018
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and

This implies the form for �(�, �|Σ) given in Eq. (4) since we have that

and

Note that with regard to �(�) the choice � = 1 implies a noninformative, i.e., uni-
form prior on the Stiefel manifold, see Chikuse (1990). Opting additionally for � = 1 
implies for �(�|�,Σ) that scaling is proportial to (𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ with no further 

shrinkage considered.

Appendix B: Invariance of the posterior when considering 
the reparametrization in terms of A and B

The posterior distribution is also invariant under the reparametrization of � and � 
considered to facilitate efficient sampling, i.e.,

as vec(�D) and vec(�D) imply vec(AD) and vec(BD) , i.e.,

and

This follows from the singular value decomposition of a real symmetric matrix as 
defined in Lütkepohl (1996), since

where S1 and S2 are orthogonal matrices and Λ is the diagonal matrix of eigenvalues 
of both the matrix �′� and the matrix D′�′�D , as multiplying � by an orthogonal 
matrix D does not change the eigenvalues. Then

𝜋(𝛼|𝛽,Σ) ∝ |𝜈(𝛽�C−1
𝜏
𝛽)−1 ⊗ Σ|− 1

2 exp
{
−
1

2
vec(𝛼)�(𝜈(𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ)−1vec(𝛼)

}
.

|𝜈(𝛽�C−1
𝜏
𝛽)−1 ⊗ Σ|− 1

2 = 𝜈
−

RP

2 |(𝛽�C−1
𝜏
𝛽)| P

2 |Σ|− R

2

−
1

2
vec(𝛼)�(𝜈(𝛽�C−1

𝜏
𝛽)−1 ⊗ Σ)−1vec(𝛼) = −

1

2
vec(𝛼)�

(
𝜈−1(𝛽�C−1

𝜏
𝛽)⊗ Σ−1

)
vec(𝛼)

= −
1

2
tr
[
𝜈−1𝛽�C−1

𝜏
𝛽𝛼�Σ−1𝛼

]
.

A = �(���)−
1

2 , B = �(���)
1

2 ,

(18)(�D)((�D)�(�D))−
1

2 = �(���)−
1

2D = AD,

(19)(�D)((�D)�(�D))
1

2 = �(���)
1

2D = BD.

(���) = S1ΛS
�
1

and ((�D)�(�D)) = S2ΛS
�
2
,

S2ΛS
�
2
= D����D = D�S1ΛS

�
1
D,
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implying S2 = D�S1 . Then from the definition of the square root matrix given, 
e.g., in Abadir and Magnus (2005), we have

Therefore, we obtain

(D����D)−
1

2 = S2Λ
−

1

2S
�
2
= D�S1Λ

−
1

2S
�
1
D = D�(���)−

1

2D.
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Fig. 4  Estimated factors for the exchange rate data, after rotation. Blue denotes the  US dollar factor, and 
red denotes the second factor. Shaded areas denote 95% HPDIs. Top two graphs show estimates with the 
FOC loss function, bottom two graphs show estimates with the EOT loss function
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The result from Eq. (3) can be derived analogously, using the square root of the 
elements in Λ instead of the inverse square root. Inserting AD and BD into the cor-
responding posterior distribution provided in Eq. (8) reveals invariance under the 
orthogonal transformation described in Eq. (5).
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