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Abstract
Ensuring customer satisfaction is one of the main objectives of a call center. We 
focus on the question of how many agents are necessary and how they should be 
allocated to maintain a service level threshold and reduce the expected waiting time 
of the customers. In this paper, we consider a multistage call center that consists of a 
front and a back office, impatient customers, and an overflow mechanism. Based on 
the performance evaluation of such a system using a continuous-time Markov chain, 
a configuration of agents is determined using a binary search algorithm. We focus 
on structural insights, e.g., convexity conditions, to obtain a quick solution for the 
staffing problem. Since monotonicity does not always hold, the approach is heuris-
tic. The numerical results show the performance of the algorithm. The influence of 
the fraction requiring second-level service in the back office and the impatience rate 
for the minimum number of agents is shown.

Keywords Call center · Queueing · Impatient customer · Staffing

1 Introduction

A call center is usually organized in multiple stages where most customers are served 
in the front office, but a fraction need additional service in the back office. The cus-
tomers arrive at the call center randomly over time, the service time expended by 
agents is stochastic, and the patience time of the waiting customers is random. Due 
to this stochasticity, it is difficult to predict the number of agents needed. Having too 
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few agents can lead to unsatisfying service, such as a long wait time. If a caller’s 
patience is exceeded, the call is lost due to abandonment. Therefore, the minimum 
number of agents and their allocation to the front and back office is determined to 
meet one or more performance measures.

To the best of our knowledge, this paper is the first to solve the staffing problem 
in a serial call center with an overflow mechanism based on a waiting-time thresh-
old, impatient customers and a limited capacity. We show that the monotonicity of 
the performance indicators does not always hold and propose a heuristic approach 
that addresses the problem.

The aim of the work is to develop a fast algorithm that uses these effects to deter-
mine the minimum number of agents. Due to the fast computation time, different 
scenarios can be analyzed, such as different values for the required performance 
measures. This algorithm can also be applied to other performance measures not 
mentioned in this paper.

In Sect. 2, the analyzed serial system is presented, and the relevant performance 
measures used in the optimization problem introduced in Sect. 5 are described. Sec-
tion 3 provides an overview of the literature, and Sect. 4 explains the influence of 
agent allocation on the service measures. In Sect. 6, we present the solution method-
ology based on applying a double binary search. The numerical results of the staff-
ing algorithm are shown in Sect.  7 for one period under the assumption that the 
system is in a steady state. Finally, Sect. 8 summarizes our conclusions and offers 
suggestions for further research.

2  Problem description

We analyze a two-stage call center consisting of a front office and a back office with 
a time-dependent overflow mechanism and impatient customers. This is an equiva-
lent queuing system as presented in Stolletz and Manitz (2013), see Fig. 1.

The customers arrive at the front office according to a Poisson call-arrival pro-
cess with an arrival rate �F to receive first-level service by a front office agent. The 
front office consists of CF agents, and CB agents are working in the back office. A 

Fig. 1  Serial call center with time-dependent overflow and impatience
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fraction b of these calls need second-level service and are routed to the back office 
with arrival rate �B = �F ⋅ b . If all agents CF or CB are busy, the next customer enters 
a queue. The call center is considered to be a loss-delay system. The length of the 
queue in terms of the number of simultaneous calls that are in the system is limited 
by the number of trunks. It is possible to determine the size of the infrastructure, 
but that is beyond the scope of this paper. The capacities of the front office and back 
office are limited to KF and KB customers. Hence, the number of waiting positions is 
also limited. A customer is queued if all agents are busy and there is at least one free 
waiting position. A customer gets blocked if either KF or KB or both are exhausted. 
If the waiting time WF in the front office exceeds a threshold t and at least one back 
office agent is available, the customer flows over to the back office. An additional 
queue for overflow calls does not exist, which results in relief for the front office 
queue. An overflow is not possible if no agent CB is available and the customers must 
wait longer than t minutes. A customer leaves the system if the service is finished in 
the front office with (1 − b) or in the back office or because of limited patience in the 
front office queue without service. The limited patience is assumed to be exponen-
tially distributed with rate � . If the capacity of the back office KB is exhausted, the 
customer is blocked and leaves the system without second-level service. The service 
times are exponentially distributed random variables. Here, �F denotes the service 
rate of agent CF in the front office. The service rate of agent CB in the back office is 
�B1 in the case of an overflow call and �B2 in the case of second-level support.

For the performance evaluation, the queueing system is modeled as a continu-
ous-time Markov chain (CTMC), as presented in Stolletz and Manitz (2013). The 
Markov property is satisfied by approximating the overflow rule with a fixed thresh-
old t for the waiting time using a direct overflow. For simplicity for the Markov 
property, we set the threshold t equal to the service level requirement Y because 
we can then measure the amount of overflow. P(Y)

n
 represents the probability that an 

arriving customer overflows immediately and depends on the number n of customers 
queueing in the line ahead of the arriving customer and on Y. We use the queue-
length based overflow (QLBO) for P(Y)

n
 rather than the waiting-time based over-

flow (WLBO) because there is no relevant difference in the results, as mentioned 
in Stolletz and Manitz (2013). In this approach, an overflow to the back office is 
possible if the expected number of customers in queue n̄ that can be served during 
Y minutes is reached. For further information, see Stolletz and Manitz (2013). The 
determination of the performance measures is presented in Barth et al. (2010), and 
the extension made for impatience customers is presented in Stolletz and Manitz 
(2013). We focus on the performance measures that are influenced by the threshold 
of the waiting time t, the X/Y service level with Y = t , and the expected waiting time. 
We define the service level for all calling customers as follows:

The probability X that a calling customer receives service in a time span of Y 
minutes is called the X/Y service level, which is the product of the conditional 
service level as described in Barth et al. (2010), and the counter probability that 
a calling customer is blocked (1 − P(blocking)) and the counter probability that 
a randomly selected customer eventually reneges (1 − P(reneging)) . The service 
level refers to the front office because all customers first arrive in the front office 
or join the front office queue. Therefore, only the waiting time of the front office 
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customers is accounted for in the service level. Similar to Stolletz and Manitz 
(2013), reneging is also only considered for customers that enter the front office 
queue and are then potentially served or routed to the back office by overflow. 
Therefore, we define the X/Y service level for all calling customers with respect 
to the blocking probability P(blockingF) of the front office customers as follows:

We see one possibility for the indirect consideration of back office customers at 
the service level in the blocking probability. The blocking probability is divided 
into the blocking probability of front office P(blockingF) and back office custom-
ers P(blockingB) . The number of calling customers in the front office is usually 
significantly higher than the number of back office customers. For this reason, it 
makes sense to weight the probability of blocking with the arrival rate. The larger 
the fraction of the arrival rate in the total rate �g = �F + �effB , the more significant it 
is to consider the corresponding weighted blocking probability. Thus, the weighted 
blocking probability P(blockingF+B) is defined as:

with

Hence, we define the X/Y service level for all calling customers with regard to front 
and back office customers as follows:

Using only the service level as a performance measure may result in a high waiting 
time for customers waiting longer than Y. In our numerical experiments, we observe 
that in addition, the performance in the back office could be low if only the service 
level is used. For this reason, we consider the expected waiting time of a customer in 
the front office (served and reneged) as a second performance measure in addition to 
the service level, which is defined as follows:

� describes the probability that an arriving customer is routed directly to a back 
office agent by overflow. For more details, see Stolletz and Manitz (2013).

The mean waiting time for back office customers is:

(1)SLF = P(WF ≤ Y ∣ served) ⋅ (1 − P(reneging)) ⋅ (1 − P(blockingF)).

(2)

P(blockingF+B) =
∑

g∈G �g ⋅ P(blockingg)
∑

g∈G �g

=
�F ⋅ P(blockingF) + �effB ⋅ P(blockingB)

�F + �effB

(3)P(blockingB) =

KF∑

nF=0

cB∑

nB1
=0

P
{
nF, nB1

,KB − nB1

}
.

(4)SLF+B = P(WF ≤ Y ∣ served) ⋅ (1 − P(reneging)) ⋅ (1 − P(blockingF+B)).

(5)E[WF] =
E[QF]

�effF

+ � ⋅ Y .
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E[QF] and E[QB] describe the expected queue lengths in the front and back offices, 
respectively. The rate at which a call is not blocked is described by �effF in the front 
office and �effB in the back office; see Barth et al. (2010). The total expected waiting 
time is then the sum of (5) and (6). Similar to the service level, a weighted aver-
age of the expected waiting time is relevant because the numbers of customers and 
agents in the front and back offices are different. Thus, we define:

Other possible disaggregated service measures can be considered. In the first step, 
we focus on an aggregated service measure comprising all relevant aspects.

3  Literature

The literature on the topic of call center management is vast. For an overview 
of research on operational call center issues, see Aksin et al. (2007), Gans et al. 
(2003), Grossman et  al. (2001), and Pinedo et  al. (2000). Stolletz (2003) and 
Koole and Mandelbaum (2002) provide a review of the literature on various 
queueing models in the context of call center modeling. Liao et al. (2012), Cheva-
lier and van den Schrieck (2008), Pot et  al. (2008), Wallace and Whitt (2005) 
discuss related analytical approaches to staffing in call centers.

There are two parts to our problem. First, we evaluate the system behavior of 
the call center and thus determine performance measures, which in this case are 
the service level and the waiting time. This is used as input to our optimization 
problem in which the staffing requirements are minimized. In this chapter, we 
therefore first compare evaluation models and then optimization approaches. We 
choose only publications that analyze call centers that consider either a single-
stage or multistage system and an overflow mechanism with a fixed value for the 
waiting time or no overflow. For this, we use the following classification scheme:

• Performance evaluation method: The system behavior can be analyzed in 
two ways, by simulation or analytically. For the papers considered, the per-
formance evaluation is analytical. An example of evaluation by simulation is 
provided in Wallace and Whitt (2005).

• System: The system design can be a single-stage (sis) or multistage (ms) sys-
tem. In this case, a multistage system is a serial system with two stages.

(6)E[WB] =
E[QB]

�effB

.

(7)
E[WF+B] =

∑
g∈G �g ⋅ E[Wg]
∑

g∈G �g
=

�F ⋅ E[WF] + �effB ⋅ E[WB]

�F + �effB

=
�F ⋅ E[WF] + E[QB]

�F + �effB

.
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• Capacity: The total number of customers in the system is infinite ( ∞ ) as well 
as finite according to the number of agents (C) or the limit of capacity (K, with  
K > C).

• Abandonments: Customers abandon due to impatience (Y = Yes, N = No).
• Overflow: In the literature, there exist three types of overflows in call centers. 

A state-dependent overflow depends on the number of customers in the system. 
Furthermore, it can depend on a random threshold value for the waiting time. 
Another possibility is an overflow that depends on a fixed value for the waiting 
time. In the selected papers, only such an overflow mechanism is considered. 
More detailed descriptions can be found in Stolletz and Manitz (2013) and the 
references therein. An overflow mechanism occurs (Y = Yes, N = No).

• Staffing: The evaluation is used to solve a staffing model (Y = Yes, N = No).

Staffing method:

• Objective function: In the selected articles, the following two objective func-
tions are found. First, the minimization of the total costs of agents, and second, 
the minimization of the number of agents.

• Constraints: In addition to the most common measure, the service level (SL), 
the expected waiting time (EW) are used as performance constraints in the arti-
cles studied.

All approaches under consideration assume a Poisson call-arrival process, exponen-
tially distributed service times and consider multiple parallel servers ( C > 1).

3.1  Performance evaluation

Table 1 summarizes the articles that are considered to relate to classification by per-
formance evaluation.

Kim and Park (2010) considered a two-stage call center and proposed an ana-
lytical solution on the basis of queueing theory. To solve a staffing problem, this 
approach is applied. The capacity of the call center is limited to K. However, no 
overflow or reneging is considered.

Table 1  Classification by performance evaluation

Reference System Capacity Abandon-
ments

Overflow Staffing

 Barth et al. (2010) ms K N Y N
 Kim and Park (2010) ms K N N Y
 Bekker et al. (2011) sis ∞ N Y N
 Koole et al. (2012) sis ∞ N Y N
Stolletz and Manitz (2013) ms K Y Y N
 Koole et al. (2015) sis ∞ N Y N
This paper ms K Y Y Y
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Bekker et al. (2011), Koole et al. (2012) and Koole et al. (2015) analyzed an over-
flow mechanism with a fixed threshold by using a CTMC. In this approach, Koole 
et al. (2012) and Koole et al. (2015) use an Erlang approximation to model the wait-
ing time of the first customer in the queue. However, they consider an infinite single-
stage system with parallel queues. They do not consider abandonments, and no use 
of the evaluation is applied to solve a staffing problem.

For the performance evaluation, we used an analytical approach, and as a baseline 
for our analysis, we used the call center system first introduced in Barth et al. (2010) 
and extended by Stolletz and Manitz (2013). Therefore, the evaluation is performed 
by using a CTMC. We consider a serial call center with impatience and an overflow 
mechanism with a fixed threshold on the waiting time and back-office agent avail-
ability. We further consider a finite system in which the next calling customer is 
blocked when all slots in the queue are occupied. Our contribution integrates this 
performance evaluation when solving staffing problems using a heuristic approach.

3.2  Optimization methods

Kim and Park (2010) solved the staffing problem by using numerical tests. Their 
objective is to minimize the total costs of agents under the condition that the “80/20 
standard service level" must be fulfilled, i.e., that 80 % of the calling customers are 
served within 20 s.

In this paper, we minimize the total number of agents under the condition that the 
service level and the expected waiting time must be fulfilled. We use an algorithm 
based on binary search to solve the staffing problem.

An overview of routing and staffing algorithms in multi-skill call centers can be 
found in Koole and Pot (2006). As mentioned in Koole and Pot (2006) and outlined 
in Koole and van der Sluis (2003), a staffing algorithm using local search is efficient 
when it is assumed that the service level is concave with respect to the minimum 
number of agents. Since we consider the impatience of callers, the service level can 
no longer be concave. Contrary to Koole and van der Sluis (2003), we consider a 
serial call center and solve the staffing problem for only one period. Therefore, we 
do not consider constraints on global performance measures. Our staffing algorithm 
can be used to extend the staffing problem to several periods, e.g., one day. In this 
case, the resulting problem can be solved using a local search. Therefore, it is impor-
tant to study the properties of the performance measures.

4  Influence of agent allocation on performance measures

In this section, we provide insights into how agent allocation influences service 
measures. For that purpose, we use an example with corresponding parameters 
KF = 50,KB = 20, Y = 8, � = 0.1,�F = 0.25,�B1 = 0.2,�B2 = 0.125, �F = 10, b = 0.6, so �B = 6 . 
Due to the high arrival rate and fraction b, the call center is overloaded.
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4.1  Service level

When considering the service level that only considers the blocking probability 
of the front office customers SLF , the function shows the typical S-shape. The 
S-shaped curve of this service level is a typical observation and was already 
noted by Henderson and Mason (1998); it implies that having only a few agents in 
service results in low service. By adding an additional agent, the service does not 
improve strongly. After a certain point, the service increases more. If the number 
of agents is high enough, then an increase has only a small impact on the service. 
This phenomenon implies that for each allocation, the service level increases 
monotonically.

In our numerical experiments, the monotonicity of SLF and SLF+B in Ctot does 
not hold if the proportion b of callers requiring second-level service is too high, 
for instance, if b = 1 . For this reason, we analyze its influence in Sect. 7.2.1.

Related to the previous example, the service level SLF is not always monotonic 
for b = 1 . In this case, for example, with CF = 1 and increasing CB , SLF increases 
monotonically. On the other hand, for CB = 1 , SLF first increases and then 
decreases from CF = 1 to CF = 17 . After that, SLF decreases again until CF = 50.

The service level SLF+B , which accounts for the weighted blocking probabili-
ties, can be found in Fig. 2.

It can be observed that the course is similar to an S-shape, and if, for instance, 
CF = 5 and CB are running, the service level initially increases monotonically in 
Ctot . From CB = 17 , however, the service level decreases again. With CF = 17 and 
increasing CB , the service level increases monotonically all the time.

Fig. 2  SL
F+B as a function of the number of agents C

F
 and C

B
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For a fixed CB = 2 and running CF , the service level initially decreases from 
CF = 1 to CF = 5 and then increases for CF = 6 to CF = 50 . The service level 
increases monotonically from CB = 16 to CB = 20 and CF running. It can be clearly 
seen from the figure that the service level function has concave and nonconcave 
areas. Furthermore, it can be observed that monotonicity does not hold in all cases, 
as one might expect with increasing Ctot.

For further detail, we would like to give the following example, which reflects 
the observations from our numerical experiments, to demonstrate the reasons for a 
decrease in the service level even when the total number of agents Ctot increased:

We apply the same instance that was mentioned before for CB = 10 and CF = 1 to 
20. Figure 3 shows the progression of the service level SLF and SLF+B , the blocking 
probabilities for the front and back office, and the weighted blocking probability. 
Furthermore, the reneging probability is plotted.

For CF = 7,CB = 10 , the service level is SLF = 26.17 % and SLF+B = 31.75 % . 
The reneging probability P(reneging) is 41.46 % . For the blocking probabilities, we 
obtain P(blockingF) = 38.03 % and P(blockingB) = 2.29 % . As a result, the weighted 
blocking probability is 24.68 %. Due to the high load, the utilization in the front 
office is 100 %, and in the back office, it is 98.31 %.

Increasing Ctot by 1, i.e., CF = 8,CB = 10 , SLF increases to 26.50 %. SLF+B , on 
the other hand, decreases to 31.58 %. P(reneging) decreases to 40.49 %. The mean 
number of calls E[N] increases from 62.50 to 63.30, of which the mean number 
of customers in the front office E[NF] increases slightly from 48.46 to 48.49. The 

Fig. 3  Comparison of SL
F
, SL

F+B and reneging and blocking probabilities as a function of the number of 
agents C

F
 and C

B
= 10
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mean number of customers in the back office with second-level service require-
ments E[NB2

] increases from 10.80 to 13.03. Front office utilization remains at 100 
%. In the back office, utilization increases to 99.08 %. As a result, P(blockingF) also 
increases slightly to 38.45 %. In the back office, P(blockingB) increases to 6.17 %. 
As a result, the weighted blocking probability P(blockingF+B) is 26.82 %.

The service level SLF+B initially increases. While P(blockingF+B) increases 
slightly, P(reneging) decreases. As the blocking probability in the back office 
P(blockingB) increases more strongly, P(blockingF+B) also increases more strongly. 
As a result, SLF+B decreases.

The jump from CF = 16 to CF = 17 can be explained as the probability that a 
calling customer will wait at least Y time units P(WF > Y) drops from 17.68 to 0 %, 
which occurs when the number of customers served within Y exceeds the average 
number of customers in the front office queue (n̄ > n) . As a result, the probability 
P(WF ≤ Y ∣ served) that a customer waits at most Y time units under the condition 
that he is eventually served increases since P(WF ≤ Y ∣ served) = 1 − P(WF > Y) . 
As P(reneging) decreases and although the blocking probability increases, SLF and 
SLF+B increase as well.

We would like to note that the monotonicity of SLF holds when considering real-
istic scenarios. We consider a call center from the financial sector as it is used in 
Barth et al. (2010). Here, it is a realistic assumption that 10 % of customers need 
additional service in the back office.

4.2  Expected waiting time

Figure 4 shows the curve of the weighted expected waiting time E[WF+B] relating 
to the example. For CB = 1 and CF running, the waiting time increases significantly 
initially. Here, the waiting time in the front office decreases with increasing CF . 
However, more customers are routed to the back office, which increases the waiting 
time for customers there. After that, E[WF+B] decreases again. For instance, with 
CF = 1 and increasing CB , E[WF+B] initially decreases. From CB = 5 , the waiting 
time increases again. In this case, we observe a reverse effect since the waiting time 
in the front office increases and the waiting time for customers in the back office 
decreases. As the number of agents Ctot increases, it can be observed that the waiting 
time function has areas where convexity does not hold. Notably, monotonicity does 
not hold in all cases.

The nonmonotonicity complicates the finding of an optimal solution. We propose 
a heuristic that determines a feasible solution in Sect. 6.

5  Optimization model

We propose a decision support model that quantifies the minimum number of agents 
and their allocation across both offices while meeting a given X/Y level of service and 
a maximum value for the expected waiting time. This problem is similar to the buffer 
allocation problem in which a decision is made about the buffer capacities and their 
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allocation; see, for example, Papadopoulos et al. (2009). We use the idea presented in 
Gershwin and Schor (2000) to solve the buffer allocation problem. Contrary to Gersh-
win and Schor (2000), we consider two performance measures, the service level and 
the expected waiting time. In general, it is not possible to find a unique allocation that 
maximizes the service level and minimizes the expected waiting time. Thus, it is suf-
ficient to find a feasible allocation. Instead of formulating a dual problem to maximize 
the service level and minimize the waiting time, we consider a constraint satisfaction 
problem. Therefore, we split the whole problem into a primal and a constraint satisfac-
tion problem. We now introduce the Primal Staffing Model, which is used to describe 
the primal problem. This introduction is followed by the Feasible Allocation Model 
denoting the constraint satisfaction problem.

5.1  Primal staffing model

The objective (8) of the Primal Staffing Model is the determination of the number of 
agents on both stages (CF,CB) that minimize the total number of agents Ctot so that the 
X/Y service level SL is greater than or equal to a specified value SLmin (9) and that the 
expected waiting time EW(CF,CB) = E[WF+B] is lower than or equal to a fixed maxi-
mal value EWmax (10).

(8)minCtot = CF + CB

Fig. 4  E[W
F+B] as a function of the number of agents C

F
 and C

B
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subject to

Constraints  (11) and (12) ensure that the number of agents is between the mini-
mal amounts Cmin

F
 and Cmin

B
 and the maximal amounts, which are determined by the 

capacity in the front office KF and in the back office KB . CF and CB are elements of 
the set of natural numbers (13), so they are nonnegative integers.

5.2  Feasible allocation model

To find a feasible allocation for the agents C= (CF,CB) on both stages 
that satisfies the X/Y service level SL and the expected waiting time 
EW(CF,CB) = E[WF+B] so that the total number of agents is equal to a desired 
value Ctot (16), we propose the following constraint satisfaction model:

Because we only have two decision variables, we can reduce the Feasible Alloca-
tion Model by one variable in (16). Constraints (17) and (18) are equivalent to con-
straints (11) and (12) of the Primal Staffing Model. CB is also an element of the set 
of natural numbers (19).

(9)SL(C
F
,C

B
) ≥ SL

min

(10)EW(C
F
,C

B
) ≤ EW

max

(11)C
min

F
≤ C

F
≤ K

F

(12)C
min

B
≤ C

B
≤ K

B

(13)C
F
,C

B
∈ ℕ

(14)SL(C
F
,C

B
) ≥ SL

min

(15)EW(C
F
,C

B
) ≤ EW

max

(16)CB = Ctot − CF

(17)C
min

F
≤ C

F
≤ K

F

(18)C
min

B
≤ C

B
≤ K

B

(19)C
B
∈ ℕ
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6  Methods

A general solving method for the buffer allocation problem and thus also for our 
problem is the usage of a Markovian evaluative method (see, e.g., Papadopou-
los et  al. (2009)). For optimization, the use of complete enumeration is a com-
mon approach. Since the computing time for an enumeration can be very long, 
we developed a bisection method for a reduction. The next section presents the 
solution method.

6.1  Primal staffing algorithm

Contrary to Gershwin and Schor (2000), we consider two performance measures, 
the service level and the expected waiting time. We calculate the minimal num-
ber of agents Ctot needed to satisfy one or two performance measures, which is 
determined in the primal problem, with the Primal Staffing Algorithm. In each 
iteration, the determined Ctot is transferred to the Feasible Allocation Algorithm. 
Using this algorithm, an allocation C = (CF,CB) to the front and back office is 
determined. This allocation is then the input to the next iteration of the Primal 
Staffing Algorithm. This procedure is repeated until all performance measures 
are satisfied and a minimal number of agents or no solution is found. The solu-
tion procedure can be applied to one or two performance measures. We solve the 
Staffing Model - Primal problem with the Primal Staffing Algorithm (see Appen-
dix A for the pseudocode). In contrast to Gershwin and Schor (2000), the perfor-
mance measures to be considered are not always monotonic, as already shown in 
Sect. 4. In the Primal Staffing Algorithm, we use a binary search. In our numeri-
cal experiments, it has been shown that good results are obtained if the assump-
tion that monotonicity holds in the Primal Staffing Algorithm is made. The input 
to the algorithm is the capacity of the front and back office, KF and KB ; the mini-
mum number of agents in both offices, Cmin

F
,Cmin

B
 ; and the values for the desired 

performance measures, e.g., SLmin and EWmax . Other inputs include the threshold 
for overflow Y, the arrival rates �F , �B , service rates �F,�B1

,�B2
 , impatience rate � 

and the fraction of calls b for second-level calls.
In the first iteration, the elements of the interval [(Cmin

F
+ Cmin

B
),(Cmin

F
+ Cmin

B
) + 1

,...,(KF+KB )] to be searched are sorted in ascending order of size. In each itera-
tion, we reduce the interval by half. First, a lower bound for Ctot is defined by 
l = Cmin

F
+ Cmin

B
 and an upper bound by u = KF + KB . Therefore, we define the 

middle of the interval m = ⌊ l+u

2
⌋ , which is transferred to the Feasible Allocation 

Algorithm described in Sect.  6.2. Now, we have two cases regarding the solu-
tion of the value for the middle m of the interval. In case one, SL(m) ≥ SLmin and 
EW(m) ≤ EWmax , and all performance measures are satisfied. Assuming that the 
service level is monotonic and that the expected waiting time is given, all solutions 
of the interval [(m + 1), u] also satisfy the performance measures. Since we minimize 
the number of agents, these solutions are suboptimal. Therefore, we must search for 
a minimum in the interval [l, m]. The upper bound of Ctot is updated to u = m.
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In the second case, one or two of the performance measures are not sufficient. 
Again, because of the assumption of the monotonicity property, in this case, all 
solutions in the interval [l, m] are infeasible. We must search for a minimum in 
the interval [(m + 1), u] , and the lower bound is updated to l = m + 1.

We repeat the binary search until it is no longer possible to reduce the interval 
because the variables are integers. If a solution exists, the minimal number of agents 
is either the lower bound or the upper bound.

If no monotonicity is given, it cannot be excluded that during the binary search in 
the Primal Staffing Algorithm, the interval in which the minimum exists is cut off. 
In the case that a solution was found, the interval from [(Cmin

F
+ Cmin

B
),Ctot∗] must 

be searched for a better solution. In case no solution was found, in the worst situa-
tion, all values for Ctot must be searched until either a solution was found or until all 
values of Ctot were tested (complete enumeration). Regarding the expected waiting 
time E[WF+B] , if it is ensured that the monotonicity of the service level holds, we 
can neglect compliance with the waiting time. If the waiting time in the Primal Staff-
ing Algorithm is not met, then the interval [(Cmin

F
+ Cmin

B
),m] can be cut off. In the 

remaining interval [m + 1, (KF + KB)] , whether the waiting time is fulfilled is tested.

6.2  Feasible allocation algorithm

As mentioned before, an allocation for the agents is found by the Feasible Allocation 
Algorithm based on the total number of agents Ctot obtained using the Primal Staff-
ing Algorithm. A bisection method is used in the Feasible Allocation Algorithm. 
Each element of the interval consists of two parts, each of which, when summed, 
equals the value of the total number of agents. Therefore, the number of agents in 
the front and back office is defined as follows:

where Ci represents the number of agents for allocation i, resulting in 
n = (CBn − CB1) + 1 allocations. The values for �

�
 are sorted in descending order, 

and the values for �
�
 are sorted in ascending order. Depending on the combination, 

the smallest value for �
�
 is CB1 = Max(Cmin

F
,Cmin

B
,Ctot − KF) , and the largest value 

is CBn = Min(KB,C
tot − Cmin

B
) . This constraint ensures that the capacity is main-

tained and that the number of agents in both offices is at least Cmin
F

 and Cmin
B

.
In each iteration, the middle m�

= ⌊ left+right

2
⌋ of the interval to be searched is 

determined, with left = 1 and right = n . Thus, the index of the allocation considered 
is determined by m′ . In our numerical experiments, we observe that the curve of SL 
has concave and nonconcave areas. In addition, the expected waiting time EW has a 
minimum. See Fig. 5 as an example. For this reason, we do not know at which point 
of the curve a feasible solution is found, and therefore, we do not want to cut off the 

(20)
�

�
= (C

F1
,… ,C

Fi
,… ,C

Fn
)

= (Ctot − C
B1
,… ,C

tot − C
Bi
,… ,C

tot − C
Bn
),

(21)�
�
= (CB1,… ,CBi,… ,CBn),
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interval in which the solution is located. To avoid this issue, we calculate the first 
derivatives of the service level SL�(Cm� ) and expected waiting time EW �(Cm� ) . The 
derivatives are numerically approximated by the forward difference:

where the number of agents in the back office increased by 1. The function values of 
the service level are determined by (1) or (4) and those of the expected waiting time 
are determined using (7). By using the first derivatives, we can distinguish the four 
following cases (see Appendix B for the pseudocode):

1. In the first case, both desired performance measures are met. Hence, the Feasible 
Allocation Algorithm terminates and returns the feasible allocation to the Primal 
Staffing Algorithm.

2. In the second case, EW is sufficient, but SL is not. The SL improves if SL�(Cm� ) > 0 . 
For this reason, we need to reallocate an agent from the front office to the back 
office in the next iteration. If SL�(Cm� ) < 0 , SL decreases. Thus, one agent CB must 
be reallocated from the back office to the front office in the next iteration of the 
algorithm.

3. In the third case, SL is sufficient, but the desired EW is not sufficient. Therefore, 
the derivative of EW is accounted for. If EW �(Cm� ) > 0 , then reallocating an agent 
from the front office to the back office would increase the waiting time. Therefore, 
CB must be reallocated in the next iteration of the algorithm. The interval to the 
right of the middle m′ is cut off.

(22)SL�(Cm� ) = SL(Cm�+1) − SL(Cm� ),

(23)EW �(Cm� ) = EW(Cm�+1) − EW(Cm� ),

Fig. 5  An example of the service level and waiting time curves for the Feasible Allocation Algorithm
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4. If both measures are not met and if EW �(Cm� ) > 0 and SL�(Cm� ) < 0 , EW will 
increase and SL will decrease. Since it cannot be excluded that EW and SL will 
improve again, we must reallocate an agent CB from the back office to the front 
office during the next iteration, and the algorithm is not aborted. If SL�(Cm� ) > 0 , 
we need to reallocate an agent from the front office to the back office during the 
next iteration. This process improves SL, but EW continues to increase. Since 
it is not known whether EW will decrease again (which may well happen), the 
algorithm is not aborted. If EW �(Cm� ) < 0 , then a reallocation of a front office 
agent to the back office occurs if either SL�(Cm� ) > 0 or SL�(Cm� ) < 0 . In the first 
option, both measures are improved. In the last option, SL will be reduced. As 
it cannot be excluded that SL will improve again, a reallocation of a front office 
agent to the back office during the next iteration is required.

7  Numerical results

To evaluate the performance of the staffing approach, we performed a number of 
numerical experiments. For this purpose, the performance analysis and algorithms 
were implemented in MATLAB (R2022b). The steady-state equations are solved 
with the so-called backslash operator. We compare the results and computation time 
of the presented solution method with complete enumeration to highlight the rel-
evance of the algorithm. Furthermore, we compare the results of the two service 
levels SLF and SLF+B.

The aim of our sensitivity analysis in this section is to study the impact of the 
fraction of second-level service b and the impatience rate � on the minimum number 
of agents Ctot.

7.1  Performance

We compare the results of a small and a medium-sized call center. The capacity of 
the small call center is KF = 25 and KB = 10 . For a medium-sized call center, we 
double the capacity. The arrival rate �F varies in steps to increase the load, which 
may imply a period during the day when few customers call ( �F = 2 ) or a signifi-
cant peak load ( �F = 6 or �F = 12 ). The waiting-time limit is set to Y = 1∕3 , which 
corresponds to 20 s. The fraction of second-level service is set to b = 0.1 . The val-
ues � = 0.1 , � = 3 and � = 10 are considered for the impatience rate. Thus, three 
possibilities are analyzed in terms of reneging and waiting until overflow occurs. 
On average, customers can wait longer until overflow occurs instead of reneging 
(Y > 1∕𝜈) , they may renege before an overflow becomes possible (Y < 1∕𝜈) , or both 
occur at the time threshold (Y = 1∕�) . The target values for the performance meas-
ures are selected realistically, such that, e.g., the 80/20 rule is used for the service 
level ( SLmin = 80 % ). This rule includes that 80 % of the customers receive service 
within 20 s. The target expected waiting time is half a minute, e.g., EWmax = 0.5 . 
All cases are tested with identical processing rates and with unbalanced processing 
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rates 𝜇F > 𝜇B1
> 𝜇B2

 . Cmin
F

 and Cmin
B

 are set to 1 in each office. The combination of 
the parameters results in 36 instances, listed in Table 2a.

The cases are each calculated considering the service level with respect to the 
blocking probability of front office customers SLF and weighted blocking probability 
SLF+B in addition to the expected waiting time E

[
WF+B

]
.

The results of the algorithm in regard to a small call center (instances 1–18) and 
a medium-sized call center (instances 19–36) are identical to the results of the com-
plete enumeration with respect to the minimization of Ctot ; see Table 2b. The staff-
ing algorithm is devised to terminate if a feasible allocation is found that minimizes 
Ctot . This approach was taken to reduce the computation time. The number of alloca-
tions that minimize Ctot and are determined by the enumeration are listed in the last 
column of Table 2b. In most cases, a unique solution exists. The solutions to the 
enumeration and the algorithm are therefore identical. We note that an optimal solu-
tion is found for the test cases using the staffing algorithm.

Table  3 shows a comparison of the results, considering SLF+B and E
[
WF+B

]
 as 

performance measures. Up to 3 optimal allocations are found by applying enumera-
tion. The solution determined by the algorithm is in bold. For instance, in case 10, 
increasing CB degrades SLF+B and improves E

[
WF+B

]
 . Both allocations result in a 

minimum number of agents Ctot of 21.
Comparing the solutions using SLF and SLF+B of Table  2b, they are identical 

regarding the minimum number of agents Ctot . As the same allocations were found, 
the results are also identical regarding the expected waiting time E

[
WF+B

]
 . The 

results are the same because the blocking probability of the back office customers 
P(blockingB) is low and the weighting by �effB is marginal. Therefore, the difference 
between the two service levels is at most approximately 1 percentage point; see, for 
example, case 16.

Table 3  Comparison of the 
results

SL
F+B in [%], E[W

F+B] in [min.]

Case Solution C
F

C
B

SL
F+B E

[
W

F+B

]

10 1 18 3 83.30 0.24
2 17 4 80.21 0.22

19 1 35 8 82.78 0.30
2 34 9 81.05 0.23

20 1 29 6 81.90 0.44
2 28 7 80.35 0.18

25 1 43 8 87.16 0.49
2 42 9 84.36 0.31
3 41 10 81.48 0.24

26 1 36 7 81.46 0.47
2 35 8 80.54 0.23

28 1 42 5 84.58 0.29
2 41 6 81.97 0.20

32 1 42 8 80.78 0.42
2 41 9 80.00 0.23
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It can be concluded that if the impatience of the customers increases, the number 
of agents Ctot is reduced. If the impatience rate is increased from � = 3 to � = 10 , 
Ctot can be reduced further (e.g., cases 26 and 27) or Ctot can be stable (e.g., cases 35 
and 36). The reduction of Ctot is at most 4 (cases 10 and 11) for the small call center 
and 9 for the medium-sized call center (cases 25–27).

An exception is case 12. Here, Ctot increases by 1 again. When comparing 
cases 11 and 12, it is noticeable that the service level SLF+B(15, 2) is fulfilled in 
case 11 and not in case 12. This result occurs because the reneging probability is 
P(reneging) ≈ 18 % for � = 3 . For � = 10 (case 12), P(reneging) increases to 
20.23 % , and the service level is therefore lower. Hence, the service level SLF+B is 
fulfilled with CF = 16 and CB = 2.

Using Table  2b, the time savings of the staffing algorithm compared to com-
plete enumeration is significant. The greater the front and back office capacities are, 
the greater the computation time. For smaller call centers, the algorithm is clearly 
faster, but the computing time between 8 and 11 seconds using complete enumera-
tion is still acceptable. For medium-sized call centers (e.g., KF = 50,KB = 20 ), 
a computing time reduction up to 98.55 % (case 22) demonstrates the speed and 
importance of the algorithm because the number of Markov chains that are solved 
increases at complete enumeration. For example, for KF = 25 and KB = 10 , there 
are KF ⋅ KB = 250 evaluations, and for KF = 50,KB = 20 , the number of evaluations 
rises to 1,000. The computing time increases due to the increased number of evalu-
ations and because of the state space’s size. For instance, this phenomenon can be 
observed when comparing case 18 and case 19 in the results for the staffing algo-
rithm. The number of evaluations has increased by only 5, but the calculation time 
has increased by 4,654 % due to the increase in the state space. The significance of 
reducing the computing time becomes clear when a calculation is made for more 
than just one period. In a call center, for example, the working day is divided into 24 
periods of 30 min each. For each period, a calculation by the algorithm is needed. In 
addition, different targets for the service conditions are tested.

7.2  Sensitivity analysis

7.2.1  Influence of fraction b requiring second‑level service in the back office

In this section, we analyze the influence of the fraction b of calls that require sec-
ond-level service. When b grows, more customers require second-level service in 
the back office. For that purpose, we use case 9 and increase the capacity to KF = 50 
and KB = 20 . Figure 6 shows that the number of agents Ctot more than doubles when 
b is increased. The number of agents in the back office CB increases almost to the 
capacity limit at b = 0.7 and b = 0.8.

In addition to the increase in CB , the number of front office agents CF also 
increases to meet the performance measures. From b = 0.9 , the required perfor-
mance measures can no longer be met by additional front office agents. When the 
capacity limit KF + KB is reached, the weighted expected waiting time E[WF+B] is 
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sufficient. Due to a high blocking probability of 74.69 % in the back office and thus a 
weighted blocking probability of 22.90 %, the service level is only 77.10 %.

As mentioned in Sect.  4, the monotonicity of the service level in Ctot does not 
always hold. To check the monotonicity, we vary the value b from 0.1 to 1 with a 
step size of 0.1. We use instance 32. For b = 0.1 , SLF and SLF+B are monotonic in 
Ctot . As an example, Fig. 7 shows the curves of the service levels, blocking probabil-
ities P(blockingF) , P(blockingB) and reneging probability P(reneging) with b = 0.1.

Then, the service level is no longer monotonically increasing in Ctot for b = 0.2 
since at CF = 49 , the value first increases and then decreases again at CF = 50.

In general, it can be observed that a higher value for b increases the reneging 
probability for CB = 1 and running CF . At b = 0.1 and CF = 49 , the reneging prob-
ability is 2.79 %, and at b = 0.2 , it is 4.26 %. The reneging probability P(reneging) 
decreases to 0 % at CF = 50 . Therefore, the service level of arriving customers, e.g., 
which only takes reneging into account, increases. Simultaneously, the blocking 
probabilities P(blockingF) and P(blockingB) in the front and back office increase. As 
a result, SLF and SLF+B decrease.

7.2.2  Influence of impatience rate � on the number of agents Ctot

The expected waiting time E[WF+B] and the X/Y service level are affected by the 
impatience rate � . To analyze the impact of � , we use case 9 with KF = 50 and 

Fig. 6  Impact of b on the minimum number of agents Ctot and on the allocation
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KB = 20 and vary the fraction b to receive second-level service in the back office 
from 0.1 to 0.8 with a step size of 0.1.

Figure  8 shows the results for very patient customers ( � = 0.1 ), very impatient 
customers ( � = 10 ) and those in between ( � = 3 ). The performance measures are 
fulfilled for all values shown for Ctot.

It should be noted that in the case of very patient customers, the minimum 
number of agents Ctot is higher by up to 21 % ( b = 0.1, � = 3 ). For very impatient 
customers and those in between, Ctot is identical for b = 0.3 to b = 0.5 and differs 
by 1 agent at most. For b = 0.6 to b = 0.8 , the minimum number of agents Ctot is 
lower the more impatient the callers are. The minimum staffing requirement is thus 
dependent on the impatience rate �.

8  Conclusions

We have extended the performance analysis from Stolletz and Manitz (2013) to 
an optimization problem to determine the minimum number of agents in multi-
stage call centers. We introduced a fast algorithm to determine the minimum total 
number of agents and their allocation. The algorithm can be applied arbitrarily 
if the properties of the performance indicators to be considered are known. The 

Fig. 7  Comparison of SL
F
, SL

F+B and reneging and blocking probabilities as a function of the number of 
agents C

F
 for case 32 and C

B
= 1
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proposed staffing algorithm always found the optimal solution for all test cases. 
We can show it with a complete enumeration for small test cases. Nevertheless, 
it is a heuristic approach; thus, an optimal solution is not guaranteed. However, 
this limitation is negligible if, for example, too many back-office agents have been 
scheduled. These agents are in the office anyway and are only activated when 
they are needed. If an extra agent is added and is not busy, the agent can work on 
something else during this time, e.g., e-mails. If an unexpectedly high call load 
occurs, then this agent can be seen as a buffer. An advantage of this method is the 
short computation time compared to a complete enumeration or a simulation.

The calculated staffing requirements can be combined with a shift scheduling 
problem when considering multiple periods. For a multiple-period model, we can 
aggregate stationary service measures. In this case, the day is divided into vari-
ous periods, and the presented solution approach is applied to each period. The 
stationary backlog-carryover (SBC) approach as proposed by Stolletz (2008) or 
the stationary independent period-by-period (SIPP) approach can then be used 
for approximation; see, e.g., Green et  al. (2001). The staffing and scheduling 
problem can be solved in two steps. First, the required staffing levels for vari-
ous periods are calculated, and based on the result, the agents are scheduled into 
shifts. The scheduling problem can be solved by determining the staffing levels 
with our method using the approach presented in Bhulai et al. (2008). In this con-
text, global performance measures can be considered to avoid overstaffing. Other 

Fig. 8  Impact of � on the minimum number of agents Ctot for various values of fraction b to receive 
second-level service in the back office
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extensions are the consideration of multi-skill agents in one or both offices and 
solutions to optimization problems in which the waiting time value Y = t is a 
managerial decision variable which of course can be done with the methods we 
have presented.

Appendix A Pseudocode primal staffing algorithm
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Appendix B Pseudocode feasible allocation algorithm
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