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Abstract
The paper reexamines an agent-based model of opinion formation under bounded 
confidence with heterogeneous agents. The paper is novel in that it extends the 
standard model of opinion dynamics with the assumption that interacting agents 
share the desire to exchange opinion. In particular, the interaction between agents 
in the paper is modeled via a dynamic preferential-matching process wherein agents 
reveal their preferences to meet according to three features: coherence, opinion dif-
ference, and agents’ positive sentiments towards others. Only preferred matches 
meet and exchange opinion. Through an extensive series of simulation treatments, 
it follows that the presence of sentiments, on one hand, hardens the matching pro-
cess between agents, which leads to less communication. But, on the other hand, 
it increases the diversity in preferred matches between agents and thereby leads 
to a better-integrated social network structure, which reflects in a reduction of the 
opinion variance between agents. Moreover, at combinations of (a) high tolerance, 
(b) low sensitivity of agents to opinion volatility, and (c) low levels of confidence, 
agents are occasionally drawn away from the consensus, forming small groups that 
hold extreme opinions.

Keywords  Opinion dynamics · Sentiments · Bounded confidence · Matching · 
Simulation treatments · Agent-based model · Social network

 *	 Clemens Knoppe 
	 knoppe@economics.uni-kiel.de

	 Mitja Steinbacher 
	 mitja.steinbacher@kat-inst.si

	 Matjaž Steinbacher 
	 matjaz.steinbacher@gmail.com

1	 Faculty of Law and Business Studies, Catholic Institute, Ljubljana, Slovenia
2	 Fund for Financing the Decommissioning of the Krško Nuclear Power Plant and Disposal 

of Radioactive Waste, Krško, Slovenia
3	 Institute of Economics, Kiel University, Kiel, Germany

http://orcid.org/0000-0001-9465-8206
http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-023-10455-7&domain=pdf


736	 M. Steinbacher et al.

1 3

1  Introduction

The study of opinion dynamics is a part of a domain of social interaction. Early 
beginnings of the opinion update theory in social science go back at least to the 
seminal opinion update model by DeGroot (1974). Since then the study of the 
opinion dynamics has attracted growing attention across a number of disciplines. 
In the last decade, the tractability of computer simulation and the availability of 
sufficient computer power have attributed to the rise of agent-based models of 
social interaction, in which agents have been transforming from homogeneous 
factors to more and more comprehensive heterogeneous actors (Macy & Willer, 
2002). For instance, see an exemplary agent-based study into the collective 
behavior of social systems by Epstein and Axtell (1996), where authors grow eco-
nomic relations from bottom up and show that even simple rules of social interac-
tion among agents can produce stylized macro patterns. Similarly, Axelrod (1997) 
applied an interactive model of agents with a number of discrete features to study 
the dissemination of culture. The approach taken in the present paper falls in the 
domain of models of social interaction, based on opinion formation models with 
bounded confidence, as originally proposed by Hegselmann and Krause (2002, 
2005); Deffuant et al. (2000, 2002).

Ultimately, the dynamics in models of social interaction depend on the way 
agents receive, process, and respond upon information as well as upon their 
interaction patterns (Macal & North, 2005; Altafini, 2013). Agents’ responses to 
information and their interaction patterns necessarily evolve within the model. 
That is, the former are guided by behavioral features of agents that determine 
their preferences about own state or the state of their neighbors, while the latter 
depend on the way agents are connected among each other in their social environ-
ments and how they choose their counterparts.

However, in a current state of the literature, agents update their opinions 
according to own attitudes towards opinions of their counterparts. These attitudes 
are usually coupled to the opinion update rule and they might include features, 
such as stubbornness and confidence (Deffuant et  al., 2000; Weisbuch et  al., 
2002), quorum (Ward et  al., 2008), honesty (Dutta & Sen, 2012) or emotions 
(Schweitzer et  al., 2019; Sobkowicz, 2012). This setup prevents, for instance, a 
study of agents’ desire to meet a particular agent in isolation from the opinion 
update. In reality, the decision to meet with someone must be mutual for both 
agents taking place in the opinion exchange and it has to be made prior to their 
meeting.

To study the opinion update without the interference of coupling the opinion 
adoption to the meeting preferences, this paper sees the opinion update update 
as subordinated to the preference-based matching process. To achieve this aim, 
the paper decouples the matching of agents from the opinion update altogether. 
Here, note that the decoupling does not imply that the desire to meet with some-
one cannot not be driven by similar influences to those of the opinion update. It 
only means that the matching and the opinion update are two distinct processes 
that should stay decoupled. In our case, agents are first classified by their mutual 
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preferences to meet and only those agents that have been mutually paired ulti-
mately take place in the opinion exchange. The classification of pairs proceeds in 
lines of a matching theory, the approach particularly popular in economics and 
appropriate for our task at hand. See Gale and Shapley (1962), Roth and Soto-
mayor (1992) and Roth (1982) for more information on basic fundamentals and 
the use of the matching theory in economics and social sciences. Only after this 
matching stage, we adopt a common framework of the opinion update as used in 
the literature (Deffuant et  al., 2000; Hegselmann & Krause, 2002, 2005; Jadba-
baie et al., 2003; Blondel et al., 2009).

In our case, the ultimate decision to meet an agent or not will be mutual and will 
be made beforehand by both agents. Each agent will form own lists of preferred 
matches in her neighborhood. These lists will form a basis for the pairwise match-
ing of agents in preferred pairs. For this end, we will implement Irving (1985) effi-
cient roommate matching algorithm as proposed by Sotomayor (2005), whereby the 
preference lists for the efficient roommate matching will be implemented as rela-
tive radial-basis scores. This turns out to be a computationally simple solution that 
allows the inclusion of a rich set of behavioral features in the matching process as 
well as any combination of their eventual co-dependencies. Radial-basis scores 
as used here in this paper belong to the sub-field of the radial basis kernel (RBK) 
classification. The RBK is a widely used and highly appreciated technique within 
a broad scope of the implementation of the artificial intelligence methods (Patle & 
Chouhan, 2013). This flexibility of the matching theory and its suitability to be dealt 
with computationally efficient classification techniques seems a promising way of 
bridging together social psychology, behavioral economics, computational social 
science, and artificial intelligence not only within the scope of the opinion update, 
but also within a wider spectrum of models of social interaction and social learning.

The preference score depends on the opinion difference, as well as human sen-
timent, modelled as a random variable, and neighbors’ opinion coherence. In par-
ticular, the main focus of this paper is to stress the facilitating role of agents’ posi-
tive sentiments of approbation towards each other, first, for the opinion exchange, 
and, second, for the opinion dynamics as a whole. The sentiments will be added 
among behavioral features that will shape the matching process between agents dur-
ing the classification stage. Our motivation is straightforward. Namely, human senti-
ments of approbation are a long-forgotten concept in economics, despite the fact that 
they have been rooted in the study of interpersonal relations in economics since the 
inception of economics as a science (Smith & Wilson, 2019). Moreover, we add a 
coherence feature, so that agents only listen to those counterparts, whom they con-
sider holding a valid opinion. Validity is defined as opinion persistence, i.e. it con-
trols for the respect of a minimal coherence on part of agents in the opinion model. 
The coherence is an appealing behavioral feature that has yet to find its way into the 
main body of the opinion formation theory.

Results in this paper are intriguing and yet straightforward. In the presence of 
positive sentiments of approbation, agents meet less, as it is harder for them to 
find mutually preferred matches, but the matches that take place are more diverse. 
That is, agents are more prone to meet with various neighbours rather than always 
meeting with the same ones. Hence, the positive sentiments facilitate diversity in 
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the opinion exchange, as agents do not merely reinforce their own beliefs by meet-
ing the same people all of the time. Consequently, the population as a whole exhib-
its improved global opinion convergence. It is not surprising that this convergence 
turns out to be more efficient in simulation treatments with a stronger presence of 
sentiments, where we denoted less opinion exchange and more opinion changes per 
meeting. And lastly, results show that a greater presence of sentiments facilitates a 
substantial reduction in the opinion variance while sentiments might even reduce the 
impact of extremely in-confident agents1 upon others. In addition to that, the coher-
ence feature, if strict enough, prevents extremism by regulating the impact of hyper 
in-confident.

The paper is organized as follows. Section 2 discusses related literature. This sec-
tion intends to explain some of the main theoretical and conceptual backgrounds of 
the approach taken in this paper and link them to the relevant literature. The discus-
sion in this part tries to stay informative, but it is by no means exhaustive. In particu-
lar, the paper is grounded in social sciences and uses a simulation based approach 
to implement its main methodological contribution, which is a separation of the 
opinion dynamics in two phases, preference-based matching between agents and 
pairwise meetings of agents. Due to an interdisciplinary construction of the paper, 
a bit deeper exposition of theoretical backgrounds is necessary. Section 3 presents a 
standard opinion model within the preference based matching framework. A general 
formulation is followed by the presentation of the matching between preferred pairs 
that is developed as an independent preference based ranking. This section keeps 
a mathematical disposition of the standard opinion model at the minimum, as the 
model is well known in the literature and does not need much further introduction. 
However, some additional space in this section is dedicated to the presentation of 
the matching mechanism, which is at the core of the approach here, particularly to 
the classification of preference scores by the radial basis kernel. Section 4 starts with 
the presentation of simulation-based treatments and proceeds with a detailed exposi-
tion of the main results. The appearance and the role of extremely (hyper) in-confi-
dent agents is discussed first and it is followed by the findings about the role of the 
model’s parameters for the opinion update. The second part of this section is fully 
devoted to the presence of sentiments in the preference based matching process and 
how they can facilitate the opinion exchange. Finally, Sect. 5 sheds some light on the 
main conclusions and reveals some suggestions for future research with motivation 
for a further expansion of models of learning and social interaction.

2 � Related Literature

2.1 � Opinion Models: Background

Early contributions in opinion dynamics modelling, notably Weidlich (1971); 
Weidlich and Haag (1983) focused on discrete opinions, i.e. opinions s ∈ [−1, 1] , 
based on models from physics, such as the Ising spin model. However, the present 

1  As defined later in the sequel, extremely in-confident agents adopt changes in their opinions that are 
larger than overall distances to opinions they receive from their counterpart agents.
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paper primarily focuses on continuous opinions along the real line. A seminal 
contribution by DeGroot (1974) provided analytical solutions for the convergence 
of opinions, i.e. consensus, in the simplest possible form. This model is math-
ematically equivalent to a heat diffusion process (Weisbuch et  al., 2005), albeit 
discretized in space through the social network structure.

Subsequently, this model was expanded upon by Hegselmann and Krause 
(2002, 2005) (“HK model") and Deffuant et  al. (2000), Deffuant et  al. (2002) 
(“DW model"). Both models have in common that they incorporate confidence 
bounds, i.e. agents only change opinions upon hearing others’ opinions that are 
not too different, defined by a suitably chosen parameter. In the HK model, agents 
adopt opinions of all those that are within the confidence bound (or, in networked 
versions, all neighbors’ opinions that are sufficiently similar). In the DW model, 
agents interact pairwise and adopt and intermediate opinion, often the unweighted 
mean of both, as long as opinions are close enough to each other. These models 
form the basis of the model presented in this paper, as well as a vast body of 
research exploring additional mechanisms. The basic versions of these models 
have been comprehensively reviewed and analyzed by Lorenz (2007, 2010).

Another closely related research strand concerns social learning (Acemoglu & 
Ozdaglar, 2011), which employs similar mathematical structures to investigate 
the convergence of societies toward a ground truth (e.g. Golub & Jackson, 2010). 
Rather than assuming pure opinions, in these models it is typically assumed that 
a ground truth exists and convergence towards that truth through social interac-
tion is studied. Convergence features in these contributions are typically studied 
mathematically, as opposed to the common simulation-based approach in opinion 
dynamics models.

A more comprehensive review of the evolution of opinion formation model-
ling, including more recent contributions, is presented by Noorazar (2020), who 
studies milestones of the discrete and continuous opinion models. The paper is 
focused on extensions of the state of the art opinion models by biased agents, 
stubborn agents, manipulative agents, the emergence of power, repulsive agents, 
and various uses of opinion models with different noise-based features. Peralta 
et  al. (2022) provide a condensed and detailed review of the opinion dynamics 
models classified into models with discrete and continuous opinions. Particularly, 
empirical validation with data from elections and polls or experimental data is 
discussed.

2.2 � Structures of Social Interaction in Opinion Formation Models

Opinion formation models are particularly focused on the importance of interactive 
structures in society that leads from simple behavioral rules to non-trivial macro-level 
dynamics. The following subsection reviews some contributions that study individual 
rules of interaction, as well as meso-scale structures, such as diverse network archi-
tectures. These models often rely on simulations, as those allow for a wider range of 
mechanisms that can be studied.
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Examples of these lines of research include the study of the spread of extremism 
in society (Deffuant et al., 2002), the study of crime and social interaction (Glaeser 
et  al., 1996), the spread of cultural traits (Büchel et  al., 2014), the study of mass 
media and public opinions Hu and Zhu (2017), the study of social mobility (Topa & 
Zenou, 2015). The behavior of agents in these kinds of models is usually driven by 
features such as uncertainty (Deffuant et al., 2002), prejudice (Friedkin & Johnsen, 
1990), opposition (Galam, 2004), influence (Acemoglu et al., 2010; Watts & Dodds, 
2007).

An important feature in the literature that relates to our approach are hetero-
geneous confidence bounds. For instance, Lorenz (2010) studied the interaction 
of closed-minded (small confidence bounds) and open-minded (large confidence 
bounds) agents and found that, unlike in models of homogeneous bounds, there is a 
possibility that the consensus can drift off the center of the initial distribution. Kou 
et al. (2012) motivate heterogeneous confidence bounds with “complex physiologi-
cal or psychological factors". Finally, Zhang et al. (2017) model time-varying confi-
dence bounds. In our case, confidence bounds are drawn from a normal distribution, 
allowing for curious examples of extreme in-confidence.

Urena et al. (2019) review literature on how trust, reputation and influence propagate 
on on communication platforms, such as social networks. In line with the idea of trust, 
Duggins (2014) implements susceptibility to extreme opinions in computational experi-
ments. A high susceptibility score implies that agents exert less influence on others, i.e. 
they are not trusted as much. The notion of trust and influence is embedded in our model 
through the coherence feature, whereby agents’ opinions are considered invalid if they 
fluctuate too much. Rather than reacting to the amplitude of neighbors’ opinions, agents 
care whether there is much informational content to others’ stances on the subject matter.

Since the seminal contribution of DeGroot (1974), opinion formation models are typi-
cally implemented on some type of network structure through which agents communi-
cate. A variety of network structures have been applied for this purpose, such as random 
graphs, Watts-Strogatz small-world networks (Watts & Strogatz, 1998; Steinbacher & 
Steinbacher, 2019), and scale-free networks (Barabási & Albert, 1999; Das et al., 2014). 
As a typical prototype that replicates important characteristics of real-world social net-
works, specifically short distances between agents and high clustering, the underlying 
network in our model is also a small-world network. For instance, Pan (2012) uses proba-
bilistic approach to study the role of standard network topologies, such as small world net-
works, star networks,2 and scale-free networks, for the consensus in the opinion update. 
Alternatively, agents in the opinion update literature have also been placed in a social set-
ting based on the closeness of their opinions or beliefs without the use of network topolo-
gies (Glass & Glass, 2021).

Particularly interesting is also the emerging literature on dynamic network struc-
tures, as in Wu et al. (2022); Kozma and Barrat (2008). In these models, agents can 
cut connections to neighbors they disagree with and replace those with new links. 
While we rely on a static network structure, our idea of choosing whom to meet 
within a given neighborhood, implemented through a preference-based matching 

2  As a name suggests, in a star network every agent is connected to a central agent.
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algorithm (see the following subsection), is closely related to choosing suitable 
neighborhoods.

A potentially interesting extension on the use of network structures in opinion 
formation models are in multilayer networks. These allow the implementation of dif-
ferent types of connections (family, friends, colleagues), different topics etc. Dia-
konova et al. (2016) shows that the resulting dynamics from interaction on several 
layers cannot be reduced to a process on a single layer. This result has been con-
firmed analytically by Zhang et al. (2017). Battiston et al. (2017) applies a multilayer 
structure to Axelrod’s model of the cultural dissemination and shows that genuinely 
novel behavior emerges, which allows for the existence of multiculturality despite 
the combined pressures of globalization and imitation.

A common shortcoming in these models is a lack of empirical validation. A step 
in this direction has been made by Grimm and Mengel (2020), conducting labora-
tory experiments to study belief formation and finding that results tend to be incon-
sistent with the naive learning process in the standard DeGroot (1974) model.

2.3 � Preference‑Based Matching

Agents in this model do not meet their neighbors at random, as they usually 
would in most opinion formation models, but through a separate matching pro-
cess. At the core of this contribution is the idea that agents have preferences over 
whom to meet and act upon those. The particular matching algorithm that we 
implement is the roommate matching algorithm by Irving (1985). In the present 
paper, agents need to mutually agree to the meeting, which resembles the room-
mate matching problem. The approach has been particularly popularized by Roth 
and Sotomayor (1992) in the Handbook of Game Theory with Economic Applica-
tions. Since then, it has received many implementations in different domains of 
behavioral game theory (e.g. for more information on behavioral game theory, 
see the seminal work by Camerer, 2011) and social systems with heterogeneous 
and interacting agents, such as the ride-sharing matching (Wang et al., 2018), or 
the mentor-mentee matching on colleges (Haas et al., 2018), for instance. Closely 
related to the use of the matching of mutually preferred pairs of agents in the 
present paper, is the stable college admission and marriage problems, initiated 
long time ago in the works of Gale and Shapley (1962) and McVitie and Wilson 
(1971). Other related applications is the efficient matching of buyers and sellers 
in a bipartite network in Kranton and Minehart (2001), as well as job search and 
match problems (McCall, 1970).

The argument to include a preference-based matching process is essentially psy-
chological. In particular, confirmation bias (Wason, 1968; Ross & Anderson, 1982) 
motivates this behavior of agents to not only be more likely to trust others with simi-
lar opinions, implemented by confidence bounds, but also actively seek out informa-
tion that confirms their beliefs. Confirmation bias has been applied by authors such 
as Del Vicario et al. (2017), where agents rewire their connections in order to mini-
mize disagreement. It is also the foundation for the emergence of echo chambers due 



742	 M. Steinbacher et al.

1 3

to the segregation into like-minded groups, as studied by Levy and Razin (2019), as 
well as Brugnoli et al. (2019), who find empirical evidence for it in Facebook data. 
On the flip side, one can interpret this mechanism as an avoidance of cognitive dis-
sonance, that could arise through the exposure to opinions that contradict one’s own, 
as in Li et al. (2020). In the present paper, confirmation bias is implemented through 
the preference score, which partially consists of the similarity in opinions.

As for empirical studies of matching, Arteaga et al. (2022) analyze how online 
matching platforms shape applicants’ beliefs about schools. The confirmation 
bias has been assessed in laboratory experiments by (Zou & Xu, 2023), who show 
that not only similarity in opinions, but also similarity in other aspects matters. 
In our model, agents do not have other characteristics shaping their identities, but 
the idea can be subsumed under the notion of sentiments, which form part of the 
preference score.

2.4 � Sentiments in Social Interaction

Our paper tries to enrich the social simulation model of opinion dynamics by add-
ing a notion of a mutual desire to meet in a standard setting of opinion dynam-
ics. In particular, it relates to the concept of mutual self-interest in which coop-
erative outcomes emerge endogenously. Smith and Wilson (2019) pawed a way 
for a reconsideration of social interaction between people in economic science. 
According to their setting, people remain self-interested players, but are bound 
within social relationships, where they exert mutual feelings of approbation or 
disapprobation towards each other.

Feelings of emotions have been highlighted within agent-based models of social 
simulation. For instance, Lejmi-Riahi et  al. (2019) study emotional experience at 
workspace, whereby emotional state is assumed to be an important cognitive factor 
during work activities, such as decision-making, attention, memory, perception and 
learning. However, the study of emotions within the agent-based models of opinion 
dynamics is still in its early stage. Authors such as Bagnoli et al. (2007) have cou-
pled the opinion update rule with the the affinity towards other agents. Similarly, 
Schweitzer et al. (2019) include emotions as drivers for opinion polarization. These 
models can be seen complimentary to the approach taken in this paper, as we com-
pletely decouple sentiments from the opinion update rule.

3 � Standard Opinion Model with Preference‑Based Matching

3.1 � Standard Opinion Model: A General Formulation

In the standard opinion model (Deffuant et al., 2000; Hegselmann & Krause, 2002), 
agents update opinions at each time by incorporating some fractions of beliefs of 
their neighbors into their own beliefs. Let agent i have opinion xi(t) lying in some 
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interval [−1, 1] at time t. Now, let agent i meet with agent j at time t. The opinion of 
agent i is then updated as follows:

where �i represents a level of confidence that agent i exerts upon the opinion of 
agent j, dij(t) represents the absolute difference between i’s and j’s opinions at time t, 
and �i represents a boundary condition (usually understood in terms of agents’ toler-
ance towards opinion differences), above which agent i never changes own opinion.

Now, let us assume agents exchange opinion in a standard setting. Further, let 
xji(tf ) denote the opinion agent j expressed to agent i at their first meeting, and let 
xji(tl) be the opinion agent j expressed to agent i at their last meeting before time t. 
Now, let agent i be able to remember these two opinions of agent j and let it consider 
weighted differences between current opinion xj(t) and both past opinions of agent j 
as a measure of a propensity of agent j to the opinion change in the following simple 
manner:

such that the parameter � is the relative weight for the long-term shift in opinion ver-
sus the most recent shift in opinion. Let each agent i reassess sij after each encounter 
with the neighboring agent j and let these scores be private information.

Say, agent i is willing to adopt changes to own opinion, only if it considers the 
opinion of the neighboring agent j as sufficiently stable, that is, having a sufficiently 
low estimated propensity to the opinion change s. Now, say agent i classifies agent 
j as changing opinion too much, if sij(t) is above the highest acceptable level �i . One 
can easily extend the standard model with the propensity to opinion change:

The model in Eq. (3) will serve as a baseline model for the purposes of this paper.

3.2 � Independent Preference‑Based Ranking

In this subsection, we briefly describe the preference-based ranking for distinguish-
ing preferred agents from non-preferred agents. As depicted in Fig. 1, the ranking 
is based on the radial basis kernel, where the inputs consist of different criteria that 
determine agent’s personal preferences with respect to other agents.

By assumption, let each agent know exactly, which neighboring agents are her 
preferred agents for the next meeting. Let this information be learned through 
agents’ mutual interaction and let it be private. Now, imagine there exists a unique 
ideal agent j∗ for each agent i, such that she is always assigned a maximal possi-
ble preference score �∗

ij
= 1 by any agent i. Now, let each agent i score her neigh-

bors j ∈ N(i) by some �ij whereby each agent i appreciates the neighboring agents 

(1)xi(t + 1) = xi(t) +

{
�i
(
xj(t) − xi(t)

)
if dij(t) ≤ �i

0 otherwise,

(2)sij(t) = �
(
|xj(t) − xj(tf )|

)
+ (1 − �)

(
|xj(t) − xj(tl)|

)
, 0 ≤ � ≤ 1,

(3)xi(t + 1) = xi(t) +

{
�i
(
xj(t) − xi(t)

)
if dij(t) ≤ �i, sij(t) ≤ �i

0 otherwise.
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j at time t by her proximity to the ideal agent, such that the larger the gap, the 
lower the appreciation, and vice versa.

The question of ranking neighbors by their proximity to the ideal agent is a 
classification problem for agents in the model. In our case, the classification is 
rooted in different criteria. In particular, in order to implement computationally 
efficient classification, we transform this multidimensional information via the 
radial kernel into the rankings of neighbors �ij ∈ (0, 1] , such that the ideal agent 
has the score of 1. Note that the lowest score is zero at infinity, that is, the least 
ideal agent is infinitely less appreciated than the ideal agent, accordingly. We 
implement agents’ mutual scoring via the following radial basis kernel:

such that zij(t) is a feature vector of agent’s i personal preferences towards agent j. 
In principle, the feature vector may consist of any quantifiable feature that can be 
expressed as a score on the [0, 1] interval. Moreover, the feature vector can include 
multiples of different features (i.e. to account for the presence of dispersion) or their 
cross-products (i.e. to account for the co-variation of features).

Preference-based ranking in this paper will include a set of the following basic 
behavioral features that each agent can easily assess: agreeableness in the opinion 
(i.e. an opposite to the opinion difference), coherence in the opinion (i.e. opposite 
to the propensity to the opinion change defined in Eq. (2)), and sentiment noise � , 
defined as a random noise � ∼ U(0, �) to capture the presence of approbation felt by 

(4)�ij(t) = exp
�
−
1

2
‖zij(t) − z

∗‖2
�
,

Fig. 1   Criteria and the preference-based ranking of agents: An agent (red node) observes a feature vector 
of all its neighbours (blue nodes) and evaluates it against the ideal vector z′ , using Eq. 4. The higher the 
score, the greater the desire to meet that neighbor, resulting in a transitive ranking. The example feature 
vectors have only two entries, while we are using three in the model (functions of opinion differential, 
opinion persistence, and sentiment) (color figure online)
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a particular agent towards other agents in the neighbourhood. Hence, let each agent i 
assess a feature vector zij(t) of her neighbour j at time t as follows

such that |dij(t)| is the absolute difference in opinions of agents i and j, sij(t) is a pro-
pensity of agent j to the opinion change as defined in Eq. (2), and �ij is an independ-
ent sentiment-effect (uniform at random) that expresses a feeling of approbation felt 
by agent i towards agent j. Note that the feeling of approbation might be modelled 
as a process on its own within the opinion model, but this would depart us from the 
main focus of this paper that is to understand different ways in which changes in 
sentiments might facilitate the opinion exchange and ultimately affect the opinion 
dynamics via the matching process that is decoupled from the opinion update.

3.3 � The Matching of Preferred Pairs

Central to the present model is that agents do not meet at random, but create pref-
erence lists of their neighbors and always try to meet with the most preferred one. 
However, agents do not simply choose to meet with the highest-ranked neighbor. 
The preference to meet must be mutually ensured, as highest ranked neighbor of any 
agent might prefer someone else, not this particular agent on whose list it ranks high-
est. We face a matching issue here, such that enables a pairwise pairing of agents, 
where appropriate agents will ultimately meet based upon their mutual rankings. In 
order to solve this problem, we apply the Roommate Matching algorithm as pro-
posed by Irving (1985). This algorithm ensures stable matches, whereby every agent 
meets the highest-ranked neighbor, given this neighbors’ preferences. In particular, 
a stable matching (ij) is a matching, where no two agents i, j are left unmatched with 
each other, if they prefer each other over their matches k, l (Roth, 1982). Rigorous 
treatments, including formal proofs, of the algorithm can be found in many places 
(E.g., such as Gale & Shapley, 1962; Irving, 1985; Roth, 1982; Roth & Sotomayor, 
1992). Due to the importance of the algorithm to the model, a brief explanation of 
the main mechanisms of the algorithm is in place.

Starting with the agents’ rankings, the algorithm can be split into two phases: 
in phase 1, each agent i proposes to the highest ranked neighbor j on her list. The 
agent that has been proposed to tentatively accepts and eliminates all agents from 
her list that are lower in her own preference rankings. Note that any deletion of agent 
j in agent i’s list is matched by agent j deleting agent i from her own list, so that 
no proposals can be made to neighbors that have, implicitly or explicitly, rejected 
her already. The deletion is not going to have negative consequences for j, since by 
design of the algorithm, she cannot get a worse matching than i in anyway.

If agent j receives a second proposal from an agent k that is higher-ranked than 
the initial proposal by agent i, the agent j has to eliminate agent i from her list (and 
all other agents that are ranked lower than k). As the deletion is again mirrored by 
the agent i, the i is now without a match and gets to propose to the next highest on 

(5)zij(t) =
{
1 −

1

2
|dij(t)|, 1 −

1

2
sij(t),�ij ∼ U(0, �)

}
,
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her list. Once each agent has made a proposal that has not yet been rejected, or has 
run out of neighbors to propose to, the first phase is terminated.

Hence, at the end of phase 1, each agent has either a tentative confirmation by 
another or has been rejected by her entire neighborhood. If at this stage, any agent 
i has only one agent j left in her reduced list, it immediately follows, that this also 
holds true the other way around, so that the two agents form a stable match. They do 
not require to be processed any further in phase 2. Agents that have offers from more 
than one neighbor, i.e. their reduced lists contain several neighbors, are then treated 
in the second phase.

In the second phase, the algorithm detects cycles in preferences and uses them 
to reduce the lists further. The cycles consist of two steps. The cycling phase starts 
from any agent, say pi , and selects the next one, say qi , that has to be the second in 
the pi ’s preference list. It proceeds by selecting the next pi+1 agent that has to be the 
lowest-ranked neighbor in qi ’s preference list, and so forth, until agent pi reappears 
again as pi+k , this time having its worst ranked neighbor attached to it.3 Once this 
particular kind of cycle has been detected, all agents qi in the cycle delete their low-
est-ranked neighbors (i.e. pi+1 ) from their preference lists. This procedure continues 
until all preference lists are either of length 0 or 1. See the Appendix 1 for a graphi-
cal description of this process together with some examples,

Note that the algorithm does not ensure every agent to find a match in every itera-
tion of a particular simulation treatment. A trivial case represents an odd number 
of agents, where at least one agent always gets unmatched per iteration, or in spe-
cific network configurations that prevent social interaction by construction, such as 
in a star network, for instance. However, even in complete networks with an even 
number of nodes, complex configurations of network topology agent’s preferences 
to meet each other might evolve that do not warrant agents to succeed in finding 
their preferred matches. However, as shown in Sect. 4, this kind of complexity in 
behavior indeed characterizes the matching process in our case. Depending on some 
of the model’s parameters as well as on the presence or absence of sentiments, the 
number of matches per iteration can differ significantly, giving rise to differences in 
the opinion dynamics.

4 � Results

4.1 � Simulation Treatments: Setup

This section brings a condensed presentation of all parameters of the model as they 
were used in simulation treatments with their brief descriptions and initial values. In 
particular, Table 1 describes the distributions of parameters, while Table 2 comple-
ments these distributions with concrete values as they were used in simulation treat-
ments. Two versions of the standard opinion update model with preference-based 
matching were tested: 

3  Note that the cycle does not necessarily start from agent p0 , but could start at any other agent pk . In 
that case, agents p0,1,…,k−1 are called the “tail" of the cycle. Agents q0,1,…,k−2 in the tail do not delete any 
agents in their preference lists.
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1.	 The matching process goes on without coherence and agents do not validate 
opinion of their counterparts upon the meeting and

2.	 The matching process includes all three behavioral features including coherence 
and agents validate the opinion of their counterparts upon the meeting.

Both versions were separately tested in an environment with and without the 
presence of sentiments. In both versions, some agents appeared with 𝜆 > 1 . These 
agents will be called hyper in-confident. As we will see, in the second version of the 
model, hyper in-confident agents were neutralized particularly in those treatments, 
where agents were in general highly tolerant towards each other. In these treatments 
hyper in-confident agents were considered to be incoherent and other agents simply 
ignored them. The first setup is a baseline scenario, while the second setup enables 
a study of the role that sentiments might have as facilitators of the opinion exchange 
also in circumstances when agents possess also some rational guidance in the for-
mation of their preferred matching lists and some ability to asses coherence in the 
opinion of their counterparts upon the meeting.

The model is implemented in three main steps: first, agents form preferences over 
their neighbors and the matching algorithm determines the pairings. Then, agents 
meet, exchange opinions and update their opinions if the necessary conditions are 

Table 1   Parameter values for simulation-based treatments: general descriptions

Parameter Description Value

N A total number of agents in the model 300
⟨k⟩ Expected number of neighbors per each agent 8
p A share of distant connections per each agent in a 

network, i.e rewiring probability in the small-
world model (Watts & Strogatz, 1998)

0.15

 = (N, ⟨k⟩, p) Small-world network N = 300, ⟨k⟩ = 8, p = 0.15

xi(t) Opinion of agent i at some moment in time t xi(0) ∈ N(�(x) = 0, �(x) = 0.5)

�i A lower bound on the persistence score, below 
which agent i considers others’ opinions as invalid

�i ∈ N(�(�), �(�))

�i A geometric weight for the long-term versus the 
short term persistence. The weight � stresses the 
importance as seen by agent i of the distant opin-
ion of other agents relative to the latest opinion 
(1 − �i) of other agents

�i ∈ N(�(�), �(�))

�i An upper level of tolerance upon differences in 
opinions that is still acceptable to agent i

�i ∈ N(�(�), �(�))

�i A bounded confidence parameter that agent i places 
on agent j at changing own opinion

�i ∈ N(�(�), �(�))

�ij A noisy sentiment effect (feeling of approbation) 
in agent i after the latest opinion exchange with 
agent j

�ij ∈ U(0, �)

� An upper bound on the sentiment noise � . Note: � 
stays the same throughout a particular treatment

� ∈ [0, 1]
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met (Eq. 3). Finally, agents update their preference scores, in particular the coher-
ence score and the opinion difference, which depend on the last observed opinion 
of the neighbor. A completion of these three steps forms one iteration of the algo-
rithm. A more detailed presentation is provided in form of a pseudo-algorithm in 
the Appendix 1. We simulate the model with 300 agents, situated on a Small-World 
Network, such that each agent has an expected number of eight connections (see 
Table 1 for details on the set-up). Here, a single complete treatment means 1, 000 
iterations of the algorithm under a single parametrization of the opinion model. 
Altogether, in the second version of the model 93 different expected values of � , �, � 
were used within 19 different expected values of � and within 21 different values of 
upper bounds � on the sentiment effect � . This gives us a maximum overall num-
ber of 290,  871 independent simulation treatments that were implemented on the 
second version of the model. Note that the completion of all treatments within the 
first version includes a ninth of the overall number of independent simulation treat-
ments needed for the second version. Note also that each simulation treatment starts 
with the same network topology and that each agent in each independent treatment 
is given an independent set of the agent-based parameters obtained from the distri-
butions as provided in Tables 1 and 2.

4.2 � Minimum Variance and Hyper in‑Confident Agents

As for the conventional parameters of the standard opinion model, our results in this paper 
are in line with those from the baseline model in Steinbacher and Steinbacher (2019), i.e. 
at higher values of the mean tolerance parameter �(�) we observe a lower variance in 
opinion. Here, lower variance in opinion is usually a sign of convergent dynamics in the 
opinion distribution. This implies that as long as sufficiently diverse agents participate in 

Table 2   Parameter values for simulation-based treatments: a general setup

Parameter Description Value

�(�) Population mean of � �(�) = {0.1, 0.2,… , 0.9}

�(�) Population standard error of � �(�) = 0.1 ∗ �(�)

�(�) Population mean of � �(�) = {0.1, 0.2,… , 0.9}

�(�) Population standard error of � �(�) = 0.1 ∗ �(�)

�(�) Population mean of � �(�) = {0.1, 0.2,… , 0.9}

�(�) Population standard error of � �(�) = 0.1 ∗ �(�)

�(�) Population mean of � �(�) = {0.05, 0.1, 0.15, 0.2,… , 0.95}

�(�) Population standard error of � �(�) = 0.1 ∗ �(�)

� Upper bound on sentiment effect � � = {0, 0.05, 0.1,… , 1}

Initialization of the matching parameters (effective at 0 ≤ t < 5)
sij,0≤t<5 Initial persistence score by agent i 

towards agent j
𝛾i,0≤t<5 ∼ U(0, 1)

𝜔ij,0≤t<5 Initial sentiments felt by agent i towards 
agent j

𝜔i,0≤t<5 ∼ U(0, 1)
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the opinion exchange, the convergent features of the standard opinion update model are at 
play, driving opinions closer together and reducing variance in opinion thereby.

Moreover, given the results of both versions with and without sentiments in the 
matching process, presented in Fig. 2, the minimal variance in the final opinion distribu-
tion appears at around �(�) = 0.5 , which represents the well studied point of the strong-
est convergence in opinions. However, note that the turning point in the opinion variance 
is not necessarily exactly at �(�) = 0.5 , as the behavioral features of agents in the model 
are parameterised from symmetric distributions around given expected values. Moreo-
ver, in the presence of coherence (i.e. in the second variant), minimal variance appears 
to happen at slightly lower values of �(�) . This may be explained by the fact that � deter-
mines the size of opinion adjustments and the demand for coherence in the opinion of 
counterpart agents punishes too large movements in their opinions, i.e. this might reduce 
volatility. In other words, a particular independent set of parameters might be obtained, 
such that parameters are more favorable to lower variance than parameters in some other 
set of parameters from these same distributions, thus opinions of agents are not neces-
sarily the least dispersed when �(� = 0.5) . In addition, treatments with sentiments in 
the matching process (panel on the right in Fig. 2) show substantially lower variance 
than treatments without sentiments in the matching process. This finding corroborates 
our expected account of the facilitating role of the sentiments for the opinion exchange, 
a conclusion, to which we will gradually arrive in the sequel. In addition to overall lower 
variances when sentiments are present, we can observe that the minimum is achieved at 
a larger range of values of �(�).

Note an increase in variance at values of �(�) ≥ 0.9 . Such an increase is likely due 
to the appearance of some hyper in-confident agents i with 𝜆i > 1 . Their appearance 
is expected at sufficiently high values of �(�) ; see Table 1 for a general description 
of parameters that were used in the simulation treatments and Table 2 for their val-
ues. Hyper in-confident agents adopt changes in their own opinions which are larger 
in value than the absolute difference between their own opinions and opinions of the 
agents they were matched with. The presence of hyper in-confident agents in simulation 
treatments can lead to the occurrence of extreme groups, particularly if these agents get 
contacted by agents at the tail of the opinion distribution and get dragged away from the 
center. This increase in variance is facilitated by tolerance of agents, i.e. higher values 
of �(�) . While it enables convergence in the presence of “normal" levels of confidence, 
tolerance also allows for extreme groups on the fringes when hyper in-confident agents 
are present.

As we can see from the bottom panel of Fig.  2, referring to the treatments of 
the second version of the model, which includes coherence in matching and opin-
ion updates, the impact of fringe groups seems to disappear. We do not observe the 
phase transition in the variance of opinions at a combination of high values of �(�) 
and �(�) , but rather a continuous, well-shaped behavior of the opinion variance 
throughout the entire range of parameters. Variance is persistently lower the higher 
the tolerance parameter � is. The absence of coherence scoring supports the impact 
of hyper-in-confident agents in this case. We will elaborate on this finding in a bit 
more detail in the Sect. 4.3.

Figure 3 shows one such treatment, where extreme opinions are formed: a small 
group of agents appears in the left corner at opinion values of -4 in the plot on the 
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right hand side of the Figure. This is the treatment with the highest sentiment bound 
� = 1 supported by a sufficiently high level of average tolerance �(�) = 0.9 among 
agents. Namely, agents with higher tolerance are more likely to be affected in the 
sense that they easily readjust their own opinions.

However, as we will see in the latter part of this section, after first studying the 
role of model parameters for the opinion exchange (Sect.  4.3), the stronger the 
presence of sentiments in simulation treatments the more agents tolerate diversity 
in opinion (Sect. 4.4). Agents with these preferences show large overall number of 
opinion changes and promote the convergent forces of the standard opinion model. 
Despite the presence of sentiments, an extreme group appeared in treatments with-
out coherence in matching and opinion adjustment (Fig. 3). This was sufficient to 
substantially increase the variance of opinions, but the group remained isolated and 
the convergent features of the model prevailed in leading the society towards a con-
sensus. Moreover, extreme groups only appear in few treatments, and the dispersion 
of the variance measure among treatments with high values of �(�) was high.
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Fig. 2   Variance in opinion as a function of confidence; Left column: simulation treatments without sen-
timents (Sentiment OFF, � = 0 ); Right column: simulation treatments with sentiments (Sentiment ON, 
� = 1 ); Top row: simulations without coherence in either matching or opinion formation (averaged over 
independent simulation runs); Bottom row: simulations with coherence (averaged over values of � and � ). 
Note how punishing volatility in opinions avoids the extreme increase in variance for large values of �(�)
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In addition, we should also stress that in treatments with coherence in the match-
ing process and opinion validation in the opinion exchange, we might expect some 
dependence of the opinion dynamics upon the positioning of agents in their neigh-
borhoods. Some agents might get stuck in their social environment, such that their 
neighbors label them as holding an incoherent opinion early enough in the treat-
ment. Such agents might never get involved in the opinion exchange with others. 
Anyway, we have not studied the role of social environment and network effects in 
this paper.

4.3 � The Role of the Model’s Parameters for the Opinion Exchange

In what follows in this part are treatments to study the role of the main param-
eters in both versions of the standard opinion model with matching and coher-
ence discussed earlier [i.e. see Eqs. (1) and (3]. In this section, we disentangle the 
effect of the model’s parameters for the presence of convergent forces in the opin-
ion exchange, as captured by the opinion variance. Results are shown in Fig. 4.

In general, it can be assessed, that as the coherence requirements become 
stricter (i.e. at lower acceptance boundaries of perceived volatility of others’ 
opinion �(�) ), more and more opinions are considered invalid, which limits 
the convergence of opinions (top left panel). Convergence is driven by opinion 
changes on the micro-level, which are not tolerated in these set-ups, and hence 
opinions remain relatively widely dispersed.
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Fig. 3   Distribution of opinions: the appearance of extremes (2 agents in this case). Simulation without 
coherence features in matching or opinion adjustment. It seems that convergence has been reached early 
on ( t < 100 ), as is common in models without matching (e.g. Steinbacher & Steinbacher, 2019). While 
we have not studied the question in detail, it indicates that asymptotic convergence is achieved
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However, we detect a phase transition as the adjustment parameter �(�) gets 
large: at low values of �(�) , i.e. around 0.3, the role of � of reducing the opin-
ion variance, which we observed at lower values of � , reverses. We now observe 
a sharp increase in the dispersion of agents’ opinions as �(�) increases, i.e. as 
agents care less about the validity of opinions they encounter. The effect can also 
be observed in the top-right panel in Fig. 4: while a regular cyclical pattern occurs 
throughout the plots at 𝜇(𝛾) <= 0.8 , this pattern breaks down at �(�) = 0.9 . At 
large values of �(�) , i.e. in the presence of hyper in-confident agents, the variance 
of opinions sharply increases.

The constraint on the size of opinion adjustments is not binding when � is large. 
Hence, at large values of � , which is the size of opinion adjustments relative to opin-
ion differences, hyper in-confident agents are not effectively regulated by their social 
environment and they are able to build groups of extreme opinions away from the 
general consensus.

The bottom panel of plots in Fig. 4 reveals the effects of � and � on the opin-
ion variance and the opinion exchange. We can denote symmetric work of � on the 
variance, which is expected as the parameter measures geometric weights of distant 
versus recent differences in opinion in the coherence score. The less important are 
both differences for agents, the lower the variance in opinion, and vice versa, i.e. 
the more important is either of these differences to agents, the larger the variance 
in opinion. At � = 0.5 , agents are indifferent between distant and recent changes in 
opinion. When agents put more emphasis on longer-term persistence, i.e. when �(�) 
is large, � binds the accumulated opinion adjustments towards the center, rather than 
individual opinion changes. Hence, agents that start in the tails of the distribution 
are limited in their ability to converge towards the center. On the other hand, when 
�(�) is small, i.e. agents emphasize short-term persistence, any substantial change 
in opinion adjustment invalidates the opinion of the agent and prevents the matches 
from adjusting theirs. At intermediate values of � ≈ 0.5 , agents allow for individual 
changes, as well as accumulations thereof. Hence, fewer agents’ opinions are invali-
dated, which supports gradual convergence of opinions, as observed through lower 
variance.

Having said so, the bottom-right plot is more interesting. Remember, the variance 
is approximately the same at lower and at higher end of the � (i.e. in treatments with 
and without sentiments). The more agents care about long-term changes in opinions, 
i.e. at larger values of �(�) , the more relevant the value of � becomes. At low values 
of � , agents care mostly about recent changes in opinion, which do not accumulate 
over time as agents converge towards the centre of the opinion distribution. At larger 
values however, the accumulated differences begin to matter and create binding 
boundaries on the adjustment of opinions, reducing the number of opinion changes 
over the duration of the simulation.

Ultimately this boils down to the fact that the existence of memory on the part 
of agents is a precondition for the concept of coherence. However, we observe that 
it is not only the existence of memory as such that matters, but also how agents 
remember, as defined in our case by the Eq. 2, through the dependence on the value 
of � . Coherence becomes more binding, and relevant to the willingness of agents 
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to reconsider their opinions, as long-term memory (larger � ) gains importance and 
therefore opinion changes accumulate.

And lastly, a striking result that actually comes “for-free" alongside this study, 
is the variance reducing feature of the coherence parameter � . Recall for a moment 
a sharp increase in the dispersion of opinion in treatments without coherence in 
the top panel of Fig. 2. Namely, what happens here is as follows: once agents are 
allowed to observe changes in the opinion of others and ignore agents with high 
propensity to change their opinions, they effectively reduce the dispersion in the 
opinion across the whole society. This effect can be seen by comparing the upper 
panel to the lower panel in Fig. 2. Agents in the second setting of the opinion model 
with coherence can neutralize the impact of hyper in-confident agents in the society, 
effectively preventing extremism.

4.4 � Introducing Sentiments: How do they Facilitate the Opinion Exchange?

Finally, let us now turn our attention to the presence of sentiments and study their 
role as facilitators of the opinion exchange. Note that sentiments in our case are 
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independently determined for each agent as a measure of approbation towards other 
agents. Sentiments enter each agent’s preference score (i.e. see the Eq. 4) as a part of 
the matching that takes place before the meetings between agents are implemented. 
In what follows, we present the main results of a rich set of treatments obtained at 
various levels of the upper bound � on sentiments.

In particular, let us first focus on the number of meetings in treatments with and 
without coherence features. According to the results in the top panel of Fig. 5, the 
presence of sentiments in the matching process reduces the number of meetings in 
both treatments with, and without coherence. This happens, because the presence of 
sentiments broadens the pool of potential preferred matches that can be made. Given 
that sentiments are independent and non-symmetric between pairs of agents, this 
complicates the matching between preferred pairs. As a result, they are expected to 
be more willing to listen to agents that hold more diverse opinions than in the case 
where the matching of agents depends only upon the opinion-based criteria, such as 
the absolute opinion difference or coherence.

However, this is only one part of the story. Let us now see, i.e. for the same set-
ting, how sentiments interplay with the number of opinion changes. According to 
the bottom panel of Fig. 5, in the presence of sentiments, agents show larger willing-
ness to adopt changes in their opinion than in treatments without sentiments, even 
though sentiments play no role in the decisions to adopt opinion changes. In addi-
tion, note the trajectory of a zero sentiment curve and compare it to the trajectories 
of nonzero sentiment curves. What we can observe here, is a comparison of two 
different behaviors. In the zero sentiment case, the number of opinion changes fol-
lows the level of tolerance �(�) in a predictable and well-known way, i.e. the larger 
the level of tolerance in society, the more agents are willing to change their own 
opinions. On the other hand, according to our simulation treatments, even a weak 
presence of sentiments is sufficient to mix preference lists of agents so much that it 
increases the diversity of mutual pairings between agents, which can dramatically 
increase the number of opinion changes, particularly at the lowest to medium levels 
of tolerance �(�).

This finding permeates through the results of our investigation into sentiment 
effects: upon adding sentiments into the matching process, we observe a change in 
the qualitative behavior of the model. This qualitative change appears in Fig. 5 as 
a discontinuous drop in the number of meetings and a difference in the relation-
ship between � and the number of opinion changes between sentiment bounds 0 and 
0.05. Further increases of the sentiment bound � however only create quantitative 
changes, as we will discuss in detail below.

In addition, we can also detect the effect of � and its interplay with sentiments. At 
𝜇(𝜃) > 0.7 (without coherence) and 𝜇(𝜃) > 0.8 (model with coherence), the effect of 
sentiments on bringing diverse people together dissipates as agents at high enough 
levels of tolerance might start getting more alike faster. The tendency to mix them 
with diverse agents in such setting can be expected to have negligible effect for an 
increase in the number of opinion changes. At some point, agents are so much alike 
that sentiments just play no role anymore. Reinforcing beliefs by meeting similar 
minded agents in the no-sentiment case starts dominating in terms of the overall 
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number of opinion changes over the tendency of agents to see the diversity in opin-
ion (i.e. at higher sentiment bounds �).

Now, let us combine our views of meeting numbers with numbers in opinion 
changes at Fig. 5 and think for a while of the meeting efficiency shown in Fig. 6. 
Again we observe the above-mentioned qualitative difference between the zero-
sentiment and non-zero sentiment treatments. By adding any level of sentiments 
into the matching process, the ratio of opinion changes to total meetings increases 
sharply compared to zero sentiments. Upon increasing sentiments, this ratio con-
tinues to rise gradually until � ≈ 0.3 , after which it decreases. At high values of � , 
agents that are too different in opinions are matched and therefore cannot exchange 
opinions as frequently as they do at medium levels of � . Moreover, the meeting effi-
ciency is lower in the presence of coherence features at all levels of sentiment bound 
� , due to the added constraint on opinion updates.

Figure 7 shows the relative increase of meeting efficiency between sentiment bounds 
0.05 and 0.95 (left panel), and 0 and 1 (right panel) over the tolerance parameter � , 
respectively. Note that comparing of two non-zero levels of � yields a qualitatively 
different result than comparing zero sentiments with a non-zero level. The qualitative 
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Fig. 5   Effects of sentiments on numbers of meetings and opinion changes. Top: Number of meetings; 
bottom: number of opinion changes; left: model without coherence features in matching and opinion 
adjustment; right: model with coherence features
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difference lies in the difference of comparing levels of sentiments, given they are pre-
sent, and analyzing the presence of sentiments. However, in both cases the effects of 
sentiments dissipate as � increases. On the one hand, in comparing the treatments when 
� = 0 with treatments when � = 1 , we can observe a monotonous relationship. The pres-
ence of sentiments matters less the more tolerant agents are.

Comparing non-zero levels of the sentiment bound � (left panel) shows a different 
interaction between tolerance � and sentiments. At very low levels of tolerance � = 0.1 , 
the increasing sentiments leads to a reduction in meeting efficiency. The agents are too 
intolerant to accept the added diversity of opinions they are exposed to in their meet-
ings. However, as tolerance increases, we detect an increase in meeting efficiency as a 
result of increasing the sentiment bound. Hence, low levels of tolerance can be mitigated 
by sufficient levels of sentiment and a willingness to adopt new opinions upon meet-
ing more diverse agents. The effect approaches 0 as � ≥ 0.5 . At this level of tolerance, 
higher levels of sentiment do not add to the meeting efficiency. This stands in contrast to 
the right plot, which shows the increase in meeting efficiency upon the presence of senti-
ments: for all levels of �(�) , the efficiency of meetings is substantially higher.

During our discussions so far, we have pointed to the role of sentiments to 
increase the diversity of meetings. Namely, with the addition of a random vari-
able in the matching process, agents are more willing to meet agents that are not 
necessarily the most similar in the opinions they hold. On the other hand, with-
out sentiments, they would prefer to meet the most similar agents only, and the 
preferences would be mutual between pairs of agents. The exchange of opinions 
would reinforce those preferences as they become more similar in opinion. Upon 
adding sentiments to the matching process, we can identify an increased diversity 
of meetings between agents. Figure  8 presents a comparison of the number of 
unique pairs of agents that have met, i.e. the density of the network of effective 
interactions, with the total number of edges in the network. The largest increase 
happens immediately upon adding sentiments to the model, but it increases 
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further as the sentiment bound � increases. Sentiments ensure a well-integrated 
and connected society, whereas in their absence, the matching process stabilizes 
and always connects the same pairs. This effect is observed in both versions of 
the model, with and without coherence features.

Last, but not least, after we have identified the facilitating role of the senti-
ments for the efficiency in the opinion exchange as they allow more diversity in 
mutual pairings of agents before their meetings. Let us take a look at the disper-
sion in the opinion among agents at the presence of sentiments in the matching 
process. The evolution of the variance of opinions is shown in Fig. 9.

The trajectory of the variance is strikingly clear: a change in variance as a func-
tion of varying sentiment bounds � follows a continuous and monotonous relation-
ship, except for the jump from zero sentiment case to the first non-zero sentiment 
case at � = 0.05 . The variance curve shows that the convergent forces increase when 
agents, due to the impact of positive sentiments, prefer to meet diverse agents.

Furthermore, on a side note, the reduction in variance is also driven by � , as shown in 
Fig. 10. Without a sufficient level of tolerance among agents, positive sentiments would 
only contribute to opinion exchange, but not also to the reduction of dispersion in the 
opinion within the society. Hence, if agents are too intolerant too change their opinions, 
in almost every meeting, a partial randomization of the matching process (i.e. due to 
the presence of sentiments), is not able to improve consensus-finding. In particular, at 
� ∈ [0.1, 0.2] , sentiments fail to improve opinion convergence. Only at sufficiently high 
tolerance levels (i.e. at � ≥ 0.3 ), the presence of sentiments reduces the dispersion in 
opinion, with the highest effect being denoted at medium levels of tolerance. In line with 
these results, the improvement due to the presence of sentiments is less pronounced at 
high values of � , as agents are highly tolerant and opinions might also converge in the 
absence of sentiments, given some other conditions are met (i.e. such as the absence of 
hyper in-confident agents).
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5 � Discussion and Perspectives

We have disentangled the opinion model and split it into two parts: the preference-
based matching of agents and the opinion exchange. This enabled us to see behind 
the process of choosing counterpart agents before the opinion exchange takes place.

Some of the most standard convergent features from the opinion dynamics litera-
ture were also underlined in this paper. For a more detailed discussion about math-
ematical foundations of convergence in the standard opinion model, see Acemoglu 
and Ozdaglar (2011) and Acemoglu et al. (2013). In addition, the dynamics in con-
vergence might depend also on the initial distribution of opinion as well as on the 
inter-connectivity of agents, particularly to their ability to reach out to other agents 
in the model. It would be interesting to see how the network structure of agents’ 
interconnections inter-plays with the opinion trajectory.

By increasing the sentiment noise in the matching process, we were able to gen-
erate a smooth reduction in the opinion variance and an increase in the meeting 
efficiency. Particularly striking is the reduction in the variance, exhibiting a smooth 
pattern of a geometric decay. In particular, the presence of sentiments dramatically 
increases the meeting efficiency, measured as realized opinion changes in an overall 
number of meetings that took place, while the level of sentiments does not matter as 
much. In addition to showing the positive effects of sentiments on the opinion con-
vergence, we have shown that the strong presence of positive sentiments facilitates 
meetings between diverse agents. As the interaction network becomes denser, opin-
ions are propagated through the network more efficiently, strengthening the converg-
ing forces.

Along these lines, our simulation treatments support the notion that society might 
reach consensus also at lower tolerance levels, as long as agents are willing to meet 
due to, for instance, feeling strong positive sentiments towards each other. The finding 
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complements simulation-based study in Steinbacher and Steinbacher (2019), where 
authors linked a sharp reversal towards extremism at the presence of higher tolerance, 
suggesting to the existence of the Paradox of Tolerance (Popper, 1945), according to 
which a highly tolerant society could be seized by the intolerant members.

In addition to the main finding is the discovery of the potentially positive role of keep-
ing agents alert to valid opinions of their counterparts. Namely, at some point, the hyper 
in-confident agents appeared, who are able to facilitate the appearance of opinion clus-
ters that might push the extreme poles of the opinion spectrum wide-apart and drag the 
most tolerant agents alongside this route. In particular, when a combination of hyper in-
confident agents, high levels of tolerance, and low sensitivity to the validity of opinions 
is present, small groups of agents that hold extreme opinions can emerge. It is striking 
that we do not need hard-coded extremists, stubborn agents or contrarians, but the pres-
ence of hyper in-confident agents, i.e. agents with very weak attachment to their beliefs, 
is enough to endogenously produce fringe groups.
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We have not shown, however, if and how the introduction of sentiments might 
explain the rise of extremists in the society, particularly, when they, on one hand, 
appeal to the sentiments of others and then, on the other hand, behave as stub-
born agents who rarely or never change their opinion (Watts & Dodds, 2007). For 
instance, in Hu and Zhu (2017), the existence of stubborn agents and mass media 
was able to produce divided societies. Another important field of study might be to 
show via simulation treatments the rise of racist resentments and anti-minority senti-
ments in the modern societies (Hooghe & Dassonneville, 2018; Semyonov et  al., 
2006). Hopefully, the approach taken in this paper offers some potential also for fur-
ther research along these lines.

To conclude, by splitting the standard opinion model in two parts, we were able to 
show that even simple models of social interaction can help us shed some light on the 
stabilizing nature of the complexity of social interaction. A striking increase in communi-
cation emerged in the standard opinion model after agents were allowed to be motivated 
not only by mere rational choice, but also by noisy sentiments (i.e. emotions). It appears 
that the addition of randomness increases the search space in the agents’ collective quest 
for consensus-finding and alignment. Moreover, we hope that the here presented results 
might motivate the arrival of additional research that would further expand models of 
social interaction by human traits, such as trust, integrity, knowledge, memory, truth, 
compassion. The first necessary step in this direction would be to look at the models of 
social interaction through the lens of the matching theory as well. We hope that some of 
these avenues to our main results might show a valid reference for investments of research 
also within the broader scope of the theory of social interaction.

5.1 � Model Documentation

The algorithm is written in C++ (compiled for 64-bit Visual Studio 12). The source code 
is available in the following GitHub repository: https://​github.​com/​Mitja-​ABM-​source/​
OpiFo​rmSen​timen​ts. Original simulation data, as well as Python codes to replicate all fig-
ures in the paper are available at https://​github.​com/​CKnop​pe/​OpiFo​rmAna​lysis.

Appendix

Roommate Matching Examples

Preference Rankings

The roommate matching algorithm takes as given the preference lists of agents over all 
their neighbors. This is exemplified in Fig. 11: given the network structure (LHS of the 
figure), agents create a ranking of their neighbors (RHS). The task of the algorithm is then 
to take these preference-rankings as input and determine the best possible match for each 
agent.

https://github.com/Mitja-ABM-source/OpiFormSentiments
https://github.com/Mitja-ABM-source/OpiFormSentiments
https://github.com/CKnoppe/OpiFormAnalysis
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Phase 1

Given the specific preference ranking, agents are allowed to propose to their favorite 
choice one after another. This process, which is phase 1 of the algorithm, is depicted in 
Fig. 12. First, agents 1 and 2 propose to each other, as they are each others favorite neigh-
bors. They form a stable match. For the other three agents, 3, 4 and 5, it is not as simple: 

Fig. 11   Agents’ preferences (calculated with the RBK, see Sect. 3.2), given a network structure they find 
themselves in. This is the starting point of the roommate matching algorithm

Fig. 12   In phase 1 of the algorithm, agents propose to their favourite neighbors. If they are proposed 
to, they accept and delete all neighbors from their preference lists that are below the one who proposed. 
The deletion is mirrored by those that have been deleted. In this example, agents 1 and 2 are each others’ 
favorites and therefore form a stable match by the end of this round. Agents 3, 4 and 5 only hold offers 
from their second choices, and therefore have reduced lists of length n > 1 . Only these agents are further 
processed in the second phase
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3 proposes to 4, 4 to 5, and 5 to 3. Hence, each holds a proposal from their second-best 
options and only a tentative acceptance from their first choices. While agents 1 and 2 do 
not require any further attention, agents 3,4 and 5 therefore move on to phase 2 of the 
algorithm, which treats cyclical preferences.

Figure 13 shows an example where an initial acceptance is revoked. First, agent 1 pro-
poses to the highest-ranked neighbor, which is agent 2. As agent 2 does not have a better 
offer yet, she tentatively accepts. As agent 3 proposes to her too however, and agent 3 is 
ranked higher than 1 in agent 2’s preference list, the initial acceptance is revoked. Since 
agent 1 is now without a potential match, she gets to choose again.

Fig. 13   At first, agent 2 had tentatively accepted agent 1’s proposal (a). As it then received a better one, 
the acceptance is revoked however (b), so that agent 1 gets to choose again (c). In this example it leads to 
a stable matching in the first round, hence phase 2 of the algorithm would not be necessary

Fig. 14   The second phase starts with agent 1 in position p0 in this example. The second agent in its 
reduced preference list is agent 4, which hence becomes q0 . p1 then has to be the last agent in agent 4’s 
list, i.e. agent 2, q0 is agent 3, and at p2 , agent 1 appears for the second time. Hence the cycle is com-
pleted. Next, agent in the q column delete their least favorite neighbors from their lists. These deletions 
are, as usual mirrored by the deleted agents in their lists. In this example, it was enough to find one cycle, 
such that we find stable matches for all agents (1 with 4, and 2 with 3)
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Phase 2

In the second phase, we set up a p-q table, where p0 is the root agent, and q0 is the second-
highest agent in p0 ’s preference list. p1 is the lowest-ranked agent in q0 ’s list, and from 
there we continue. This process is exemplified in Fig. 14: agent 4 is the lowest ranked in 
agent 1’s list. The second pair consists of the lowest-ranked in agent 4’s list (agent 2) and 
the second in its list. I.e. qi is the second in pi ’s list, and pi+1 is the last in qi ’s list. Once we 
have detected a cycle, i.e. an agent is found in either of the columns for the second time, 
all the q-agents delete the lowest-ranked neighbors in their lists. This process typically has 
to be repeated multiple times, until no agent is left with several neighbors in its preference 
list anymore (Fig. 15).

Fig. 15   Example for preferences that require two cycles until stable matches have been found for all 
agents. In a complete network of these agents, this would be the reduced table after phase 1, if agents 1 
and 2 had been each other’s least favorite neighbor in the beginning of the round
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Model Algorithm

As elucidated by the Algorithm  1, agents will, during the simulation treatments, 
meet others in their neighborhoods according to the preference matching, whereby 
multi-featured preference scores �ij(t) will determine preference lists, and whereby 
agents will modify their opinions according to the standard model with bounded 
confidence from Eq. (3). To facilitate the launch of the matching process, agents are 
given random scores for the initial five periods of time t.
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