~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make Your PUbllCCltlonS VZSlble. h for Economics ' '

Bodory, Hugo; Huber, Martin; Lechner, Michael

Article — Published Version

The Finite Sample Performance of Instrumental Variable-
Based Estimators of the Local Average Treatment Effect
When Controlling for Covariates

Computational Economics

Provided in Cooperation with:
Springer Nature

Suggested Citation: Bodory, Hugo; Huber, Martin; Lechner, Michael (2023) : The Finite Sample
Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect
When Controlling for Covariates, Computational Economics, ISSN 1572-9974, Springer US, New
York, NY, Vol. 64, Iss. 4, pp. 2053-2078,

https://doi.org/10.1007/s10614-023-10507-y

This Version is available at:
https://hdl.handle.net/10419/317930

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

-. http://creativecommons.org/licenses/by/4.0/
Mitglied der
WWW.ECOMSTOR.EU K@M 3
. J . Leibniz-Gemeinschaft


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s10614-023-10507-y%0A
https://hdl.handle.net/10419/317930
http://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Computational Economics (2024) 64:2053-2078
https://doi.org/10.1007/510614-023-10507-y

®

Check for
updates

The Finite Sample Performance of Instrumental
Variable-Based Estimators of the Local Average Treatment
Effect When Controlling for Covariates

Hugo Bodory' - Martin Huber?® - Michael Lechner®*>67

Accepted: 16 October 2023 / Published online: 14 November 2023
© The Author(s) 2023

Abstract

This paper investigates the finite sample performance of a range of parametric,
semi-parametric, and non-parametric instrumental variable estimators when control-
ling for a fixed set of covariates to evaluate the local average treatment effect. Our
simulation designs are based on empirical labor market data from the US and vary
in several dimensions, including effect heterogeneity, instrument selectivity, instru-
ment strength, outcome distribution, and sample size. Among the estimators and
simulations considered, non-parametric estimation based on the random forest (a
machine learner controlling for covariates in a data-driven way) performs competi-
tive in terms of the average coverage rates of the (bootstrap-based) 95% confidence
intervals, while also being relatively precise. Non-parametric kernel regression as
well as certain versions of semi-parametric radius matching on the propensity score,
pair matching on the covariates, and inverse probability weighting also have a decent
coverage, but are less precise than the random forest-based method. In terms of the
average root mean squared error of LATE estimation, kernel regression performs
best, closely followed by the random forest method, which has the lowest average
absolute bias.

Keywords Instrumental variables - Local average treatment effects - Empirical
Monte Carlo study

JEL Classification C21 - C26

1 Introduction

The evaluation of the causal effect of a treatment (e.g., fertility) on an outcome (e.g.,
labor supply) is frequently complicated by endogeneity, implying that the treatment
is associated with unobserved characteristics affecting the outcome (e.g. personal-
ity traits, preferences, and values concerning family and working life). One may
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nevertheless assess treatment effects in the presence of an instrumental variable (IV)
which affects the treatment of (at least) some subjects in a monotonic way, does not
directly affect the outcome (other than through treatment) and is as good as ran-
domly assigned. Under these conditions, the local average treatment effect (LATE)
on the compliers, the subpopulation whose treatment state reacts positively to the
instrument, is identified, as discussed in Imbens and Angrist (1994), Angrist et al.
(1996). In many empirical contexts, it may seem unlikely that the IV assumptions
hold unconditionally, in particular when the treatment evaluation relies on obser-
vational data in which the instrument is not explicitly randomized like in an experi-
ment. Depending on the application, it might, however, appear plausible that the IV
assumptions hold conditional on covariates observed in the data. In this case, the
LATE is identified and can be consistently estimated under certain conditions, see
the discussions in Abadie (2003), Tan (2006), and Frolich (2007).

This paper assesses the finite sample performance of various parametric, semi-
parametric, and non-parametric IV estimators when controlling for a fixed (i.e.,
pre-defined and low-dimensional) set of covariates by Monte Carlo simulations that
are based on empirical labor market data from Angrist and Evans (1998). The latter
study assesses the effect of fertility, defined as having at least three vs. two chil-
dren, on mother’s labor supply (for instance, a binary employment status or weeks
employed per year), using twins at the second birth as instrument. The intuition for
this IV strategy is that if a mother with one child get twins at the second birth, then
fertility immediately increases to three rather than two children, implying a first
stage effect of the twins instrument on the treatment. In the spirit of Huber et al.
(2013), our empirical Monte Carlo simulation makes to a certain extent use of the
empirical associations in the labour market data when assessing the various IV esti-
mators, with the aim that our analysis is more closely linked to real world applica-
tions. We vary the simulation designs with respect to several dimensions, includ-
ing treatment effect heterogeneity, instrument selectivity across observed covariates
(namely age, race, and quarter of birth), instrument strength, the outcome distribu-
tion, and sample size. We analyse the performance of a range of estimators com-
monly considered in treatment and policy evaluation based on instruments, includ-
ing two stage least squares, inverse probability weighting (IPW), matching, doubly
robust estimation, and parametric as well as non-parametric regression based on the
so-called Wald formula for LATE estimation.

We find that overall, non-parametric estimation based on the random forest, a
machine learning algorithm controlling for covariates in a data-driven way, performs
best in terms of coverage rates, which are defined as the share of simulations in
which the true LATE is included in the 95% confidence interval of a LATE estima-
tor. We note that the estimators’ standard errors required for constructing confidence
intervals are obtained by the non-parametric bootstrap, which naturally accounts for
heteroscedasticity as well as uncertainty e.g. related to the first-step estimation of
the instrument propensity scores and has performed very well in a simulation study
by Bodory et al. (2020) on the variance estimation of treatment effect estimators.
Furthermore, the random forest-based estimator is relatively precise, implying that
the confidence interval is comparably short, which (conditional on having a decent
coverage) appears desirable from the perspective of statistical power. The highest
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overall precision has parametric regression based on the Wald formula, which has an
acceptable coverage rate, too (albeit somewhat worse than the random forest-based
estimator). Non-parametric kernel regression as well as certain versions of semi-
parametric radius matching on the propensity score, pair matching on the covariates,
and inverse probability weighting also have a decent coverage, but are less precise
than the random forest-based method. Concerning the average root mean squared
error of LATE estimation, kernel regression performs best (and also has the smallest
average standard deviations), closely followed by the random forest method, which
has the lowest average absolute bias. Overall, the random forest approach appears to
be the (or among the) most favorable method(s) in terms of a combined assessment
of coverage, precision, and model flexibility.

Our study contributes to a growing literature of simulation studies investigating
the finite sample behavior of treatment effect estimators (such as IPW, matching,
or doubly robust methods), see for instance (Frolich, 2004; Zhao, 2004; Lunceford
& Davidian, 2004; Busso et al., 2014; Huber et al., 2013; Frolich et al., 2017).
However, these previous studies focus on the selection-on-observables framework,
implying that the treatment is exogenous (i.e., as good as random) conditional on
covariates. The main contribution of the current study is that it appears to be the
first empirical Monte Carlo simulation that offers a comprehensive analysis of the
finite sample performance of a range of instrument-based estimators of the LATE,
under the assumption that the instrument (rather than the treatment) is conditionally
exogenous.

The remainder of this paper is organized as follows. Section 2 discusses the
identifying assumptions for IV-based LATE evaluation in the presence of covari-
ates. Section 3 introduces various parametric, semi-parametric, and non-parametric
LATE estimators, as well as a bootstrap procedure for computing standard errors.
Section 4 presents our empirical Monte Carlo simulation approach, namely the
empirical data and the simulation designs. Section 5 presents the results on the finite
sample performance of the LATE estimators. Section 6 concludes.

2 ldentification of the LATE

In this section, we present the assumptions underlying the identification of the Local
Average Treatment Effect (LATE) when controlling for covariates. To formalize the
discussion, let us denote by D; a possibly endogenous treatment received by unit i,
and by Y, the outcome variable based on which the treatment effect is to be eval-
uated. In their seminal paper, Imbens and Angrist (1994) define the LATE as the
mean effect of ¥, in response to a change in D; among the compliers, a subgroup
whose D; reacts to an exogenous shift in the instrumental variable, which is denoted
by Z,. To discuss the identification of the LATE, we make use of the potential out-
comes framework introduced by Rubin (1974), which expresses causal effects as dif-
ferences between potential outcomes under treatment and non-treatment. We adapt
this concept to our instrumental variable setting with binary indicators D, and Z,,
and define potential outcome and treatment variables for unit 7 in the following way:
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YZZZ =Y1(Dl = di’Zi = Zi) (1)

D;. =DZ; = z)), 2)

with d;, z; € {0, 1}. Using this framework, Angrist et al. (1996) show that units can
be divided into two subgroups, compliers and noncompliers. Compliers are those
induced to take the treatment when being assigned to it. Formally, this type of units
is characterized by D;; — D;, = 1. The subgroup of noncompliers may consist of
three further types, namely always-takers with D;; = D;, = 1, never-takers with
D, = D;, =0, and defiers with D; ;| — D;, = —1. Note that the type of a single unit
cannot be identified because the counterfactual potential treatment (that would have
occurred under the alternative, rather than the factual instrument assignment) is not
observed.

Abadie (2003), Tan (2006), and Frolich (2007) consider non-parametric LATE
identification and estimation when controlling for observed covariates, denoted by
X;. We subsequently present the identifying assumptions in this context, which con-
sist of (i) a monotonicity restriction on the treatment, (ii) the existence of compli-
ers, (iii) conditional independence of the instrument and the share of compliance
types, (iv) conditional mean independence of the outcome and the instrument, and
(v) common support.

Assumption 1 (Monotonicity) P(D;, > D; ) = 0.
Assumption 2 (Existence of compliers) P(D;, < D;;) > 0.

Assumption 3 (Unconfounded type) P(z; = 1|X; = x;, Z; = 0) = P(z; = 1|X; = x;,, Z; = 1) for
t €{a,n,c}.
The types 7 include always-takers a, never-takers n, and compliers c.

Assumption 4 (Conditional mean independence of the outcome) E[Yl.OZ_|Xi =Xx;,
Z,=0,7,=1] = E[Y’, |X, =x,,Z; = 1,7, = f] for 1 € {n,c},
ElY! |X;=x,Z,=0,7;,=t] =E[Y, |X; = x;,Z; = 1,7, =] for 1 € {a,c}.

Assumption 5 (Common support) Supp(X;|Z; = 1) = Supp(X;|Z; = 0).

Assumption 1 rules out the presence of defiers, a type whose treatment never
complies with the instrument. Assumption 2 implies that the subgroup of compliers
exists. Due to the conditional independence of the instrument and the shares of com-
pliers, always-takers, and never-takers stated in Assumption 3, the first stage effect
of the instrument on the treatment is identified conditional on covariates, such that
any variables affecting both the instrument and the treatment are controlled for. The
conditional mean independence in Assumption 4 rules out a direct average effect of
the instrument on the outcome (exclusion restriction) and unobservables that jointly
affect the instrument and the outcome when controlling for covariates. Finally,
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Assumption 5 ensures that for all covariate values occurring in the population, either
instrument value Z; € {0, 1} exists such that the instrument is not deterministic in
the covariates.

Under Assumptions 1 to 5, the LATE, denoted as ,- EIY!, 0, D,y — Dy = 115 is iden-
tified by

_ E\[ElY,|Z, = 1,X;] — E[Y|Z; = 0,X,]] 3

B Ey[EID,|Z; = 1,X,] — E[D;|Z; = 0, X,]]’ G

Based on the insights of Rosenbaum and Rubin (1983), Frolich (2007) shows that
identification is also obtained by conditioning on the instrument propensity score
p(x) 1= P(Z; = 1|X; = x) rather than the covariates, because it possesses the so-
called ‘balancing property’. That is, conditioning on the one-dimensional propensity
score balances the distribution of the covariates across the states of the instrument.
For this reason, the LATE is alternatively identified by

_ EBEIY,1Z, = 1,p(X)] - ELY1Z, = 0,p(X))] \
Ey[EID;1Z; = 1, p(X)] = EID,1Z, = 0. p(X)11 @

3 Estimation and inference

In this section, we present parametric, semi-parametric, and non-parametric meth-
ods for estimating the LATE parameter 6 introduced in Sect. 2. We also discuss a
trimming rule that tackles limited common support in covariate values across instru-
ment states, based on dropping observations which would obtain large weights in
the estimator because their covariate values occur (almost) exclusively in only one
of the instrument states. Finally, we provide an bootstrap procedure for estimating
the standard errors of the LATE estimators.

3.1 Estimation

One method for the estimation of 6 frequently applied in empirical work is two-stage
least-squares (2SLS), which is easy to implement and computationally fast. How-
ever, the linearity assumption of the 2SLS estimator implies effect homogeneity, a
restriction that may not hold in empirical studies. We consider 2SLS as a benchmark
method, but also include more general LATE estimators that allow for effect hetero-
geneity of the LATE across values of the covariates.

Equations 3 and 4 imply that 6 can be expressed as the ratio of two treatment
effect estimators that account for covariate differences in the presence and absence
of the instrument. The numerator gives the reduced form effect of Z; on Y; and the
denominator the first stage effect of Z; on D,. Thus, a natural choice for the con-
struction of estimators for 6 is to substitute the expressions in the numerators and
denominators of Eqs. 3 and 4 by estimators standardly applied in treatment or policy
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evaluation, see for instance the surveys by Imbens (2004) and Imbens and Wool-
dridge (2009). Many treatment effect estimators are semi-parametric in the sense
that (parametric) propensity score estimation is combined with non-parametric treat-
ment effect estimation, using weighting, matching, or doubly robust methods. We
consider such methods to estimate the LATE based on estimates of the instrument
propensity score. We also vary the degree of flexibility of the estimators and imple-
ment parametric, semi-parametric, and non-parametric approaches to compute the
reduced form and first stage effects in the numerators and denominators of Egs. 3
and 4.

Smith and Todd (2005), among others, regard treatment effect estimators as
weighted differences in outcomes. We apply this definition to the Wald formula and
express the LATE as:

1 n A 1 n A
w Z,'=1 Wiy — o 2j=1(1 - Zj)wjyj

0= )
1 n A 1 n A
o 2oy ZWid; — o Zj:l(l — Z)Wid;

®)

n denotes the size of an i.i.d. sample of realizations of {Y;, D;, Z;, X;} with obser-
vation i € 1,...,n. ny = Y._, Z; is the size of the subsample of those with Z; = 1,
ny =n —n;, and W; are weights that may depend on X; or p(x), an estimate of the
propensity score p(x). Next, we discuss different methods of estimating p(x) and w;.

3.2 Instrument propensity scores

We consider two different approaches to balance the covariates across groups for
units with Z; = 0 and Z; = 1. One is to directly control for covariates X;, but some
LATE estimators alternatively control for estimates of p(x), which is motivated by
the propensity score’s balancing properties discussed in Rosenbaum and Rubin
(1983). Their results imply that p(x) is capable of equalizing the covariate distribu-
tions across instrument states, such that the instrument is conditionally independent
of potential outcomes and treatments given the propensity score whenever independ-
ence holds conditional on the covariates. A practical advantage of controlling for the
propensity score (rather than a vector of covariates) is that it is one-dimensional and
thus, avoids the curse of dimensionality.

We compute p(x) in three different ways. Firstly, we specify a probit model to
estimate the conditional probability P(Z; = 1|X; = x;) by

POy = ] i), (6)

where f,,; denotes the estimated probit coefficients based on maximum likelihood
and CD(xl.TﬁML) is the cumulative distribution function of the standard normal distri-
bution evaluated at X" 8, .

Secondly, we apply the covariate balancing propensity score (CBPS) method by
Imai and Ratkovic (2014) to compute p(x). This methodology maximizes covari-
ate balancing when predicting treatment assignment using the generalized method-
of-moments (GMM) framework. Imai and Ratkovic (2014) show that the CBPS
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method is robust to mild misspecifications of the propensity score model, which is
estimated by the following expression:

POOEPS = AT By (7

where fi;,,, are coefficients estimated by GMM and A(xiTBGMM) is the cumulative
distribution function of the standard logistic distribution evaluated at xiTEGMM. We
use the overidentified version of CBPS, with more moment conditions (based on the
covariate balancing condition and the score of a logit model) than coefficients S,
which are estimated by continuously updated GMM estimation:

Powu = arg min 25(Z, X)" 25(Z, X)™' 2,2, X). @)

gﬂ(Z, X) is the sample mean of the moment conditions and Zﬂ(Z, X) is a consistent
variance estimator, described in more detail in Chapter 2.2 of Imai and Ratkovic
(2014). See Heiler (2022) for a more detailed discussionof LATE estimation based
on the CBPS.

Our third estimator of the instrument propensity score is fully non-parametric
and based on kernel regression:

f)(x)lc = w )
k(%)

Equation 9 corresponds to the Nadaraya-Watson (local constant) kernel estima-
tor, where K denotes the Epanechnikov kernel and bandwidth % is chosen by least-
squares cross-validation, i.e., by minimizing the least squares cross validation error
w.r.t. h, see Li and Racine (2006). As an alternative to using p(x)* as weighting
function, we also apply the Nadaraya-Watson estimator for estimating the outcome
and treatment models in Eq. 3, see our discussion on non-parametric estimation
methods in Chapter 3.7.

A practically relevant issue of treatment effect methods is thin or lacking com-
mon support (or overlap) in the propensity score, which may compromise esti-
mation due to a non-comparability across groups, see the discussions in Imbens
(2004), Imbens and Wooldridge (2009), and Lechner and Strittmatter (2019). If
specific propensity score values among one group are either very rare (thin com-
mon support) or absent (lack of common support) among the opposite group,
as it may occur close to the boundaries of the propensity score, some units may
receive a very large weight w; in LATE estimation as provided in Eq. 5. In the
case of thin common support, these observations could dominate the estimator
of the LATE which may potentially entail an explosion of the variance. In the
case of lacking common support, this even introduces asymptotic bias by giving a
large weight to observations that are not comparable to observations in the oppo-
site group in terms of the propensity score.

Huber et al. (2013) and Bodory et al. (2020) consider a trimming procedure to
tackle common support issues in the sample also discussed in Imbens (2004), which
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is asymptotically unbiased if common support holds asymptotically. It is based on
setting the weights of those observations to zero whose relative share of all weights
within either instrument state in Eq. 5 exceeds a particular threshold value in %
(denoted by 7):

A %/P)" (1 —z)/(1 = p)’)
=V ot o —— <1t% . 10
R {ZFI G/pr T ZL (= 5/ = ) } (10

We set the threshold 7 to 5% and trim observations based on the weights of normal-
ized IPW, see (3.3), irrespective of the LATE estimator considered. This changes
(in finite samples) the target parameter due to discarding observations with extreme
weights, but ensures common support prior to estimation. Note that our bootstrap
variance estimators discussed in Sect. 3.8 account for the stochastic nature of
trimming.

3.3 Inverse probability weighting (IPW)

Inverse probability weighting (IPW) reweighs (instrument) group-specific outcomes
such that the distribution of the covariates in the total population is matched, see
Hirano et al. (2003) for a more detailed discussion. We consider a normalized IPW
estimator in our simulations, which performed well in several simulation studies on
conditionally exogenous treatments, see for instance (Huber et al., 2013) and Busso
et al. (2014). The IPW-based LATE estimator corresponds to

e 1
n p(U 1-p(x;)
Zizl Ziyi Zn j Zz 1(1 Zi)yi " -
N =1 p(X) Zj:] T(«‘])
Opw = o | .
P00 n 1-p(x;)
X ud; S -2 (1= 2)d; T
=1 plxj) =1 1-pixj)

1-
The normalizations Z - ( 5 and ZJ’.’ZI — ( 5

ets add up to one. It is easy to see that (11) corresponds to (5) when setting W, in the

L 1
latter to z;n, { Z"i) o } + (1 —z)n, { EIL} IPW possesses the desirable
=1 p(x;) i

POy =1 1-p(x;)

(1D

ensure that the weights in curly brack-

property that it can attain the semiparametric efficiency bound (implying the small-
est possible asymptotic variance) derived by Hahn (1998), if the propensity score is
estimated non-parametrically (while this is generally not the case for parametric pro-
pensity scores). Furthermore, it is computationally inexpensive and easy to imple-
ment. However, evidence in the treatment effect literature suggests that IPW also has
an important drawback: at the boundaries of the support of the propensity score,
estimation may be unstable and the variance may explode in finite samples, see
Frolich (2004) and Khan and Tamer (2010).
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3.4 Doubly robust estimation

Doubly robust (DR) estimation combines IPW with outcome regression. It reweighs
outcome models for different instrument states by the inverse of the propensity
scores. Denoting the conditional mean outcomes in the presence and absence of the
instrument by 2 (x) := E[Y;|Z = z;, X; = x;] and pd(x) := E[D;|Z; = z;, X; = x;], the
DR LATE estimator corresponds to :

1 (i~ (X)) A (1-2) ;= iy ()
‘Z,l( 100 + —1— g(x)_#o>

A n p() —p()

15 (~d ad=fl@) g o (U=5)E=g) |
w D (”1(x) R A 1=p(x)

(12)

For non-binary outcomes, we run OLS regression to compute f)(x) = x . OLs-
For binary outcome and treatment variables, we apply probit regression to com-
pute /i (x) = db(xiTﬁAz?ML). The coefficients f, are estimated in the subgroups with
Z; € {0, 1}. Differently to IPW, which exclusively relies on reweighing by the pro-
pensity score, the DR estimator remains consistent even if either p(x) or fi_(x) is
misspecified, as it makes use of both, the treatment and outcome models. If both are
correctly specified, the DR estimator is semi-parametrically efficient, as discussed in
Robins et al. (1994).

3.5 Matching

Matching is based on assigning (matching) to each observation in one instrument
state one or more units in the other instrument state with comparable covariates, in
order to estimate the LATE based on the ratio of average differences in the outcome
and the treatment across units with and without instrument in the matched sample.
We implement multiple variants of two types of matching methods, pair and radius
matching, to estimate 6.

Pair (or one-to-one) matching with replacement (implying that an observation
may be matched several times) as discussed in Rubin (1973) matches to each ref-
erence observation exactly the observation with the most similar covariates in the
opposite instrument state. This implies the following weights in Eq. 5:

{ lf(xzax )l - mln lf('xn-xk)l} (13)

W, is the weight of the outcome (or treatment) of observation j in one instrument
group (e.g., Z; = 0) when matched to unit i in the opposite group (e.g., Z; = 1), with
Z, =1-Z2.1{-} is the indicator function, which is one if its argument is true and
zero otherwise. f(-) is a function of the difference in covariates between observa-
tions i and j. For example, the function could be defined as the difference in propen-
sity score estimates of observations i and j in the case of propensity score matching
or as a distance metric w.r.t. the covariate values of i and j like the Euclidean dis-
tance in the case of matching directly on the covariates. In pair matching, all weights
are zero except for the observation j with the smallest difference with reference
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unit i, which receives a weight of one. For propensity score matching, we base the
weights on the distance of the one-dimensional propensity score, while for direct
matching, we use a normalized Euclidean distance metric, where differences in
the covariates are weighed by the inverse of the variances of X;. Because only one
observation is matched to each unit irrespective of the sample size and the potential
availability of several suitable matches with similar covariates, pair matching is not
efficient (i.e., does not attain the smallest possible variance asymptotically). On the
other hand, it is likely more robust to propensity score misspecification than IPW, in
particular if the misspecified propensity score model is only a monotone transforma-
tion of the true model, see for instance Zhao (2008), Millimet and Tchernis (2009),
Waernbaum (2012), and Huber et al. (2013).

Radius matching as discussed in Rosenbaum and Rubin (1985) and Dehejia
and Wahba (1999) uses all matches with propensity scores within a predefined
radius around the reference unit, which trades off some bias in order to increase
efficiency (or precision). This approach expectedly works relatively well if sev-
eral comparable potential matches are available for a reference unit. In the sim-
ulations, we consider the radius matching algorithm of Lechner et al. (2011),
which performed well in Huber et al. (2013), who also provide details on the
radius matching-related weighting function w; in Eq. 5. The estimator combines
distance-weighted radius matching, where units within the radius are weighted
proportionally to the inverse of their distance to the reference unit, with a regres-
sion-based bias correction, see Rubin (1979) and Abadie and Imbens (2011). For
the bias correction, we apply an OLS regression adjustment for Y and a probit
regression adjustment for D to remove small and large sample bias due to mis-
matches. Horowitz et al. (2014) provide a detailed description of the estimator.
As in Lechner et al. (2011), the radius size in our simulations is defined as a
function of the distribution of distances between reference units and matches in
pair matching. Namely, it is set to 3 times the maximum pair matching distance.
Note that we include radius matching both with and without conditioning on the
covariate ‘age at first birth’ in addition to the propensity score to account for this
influential confounder.

3.6 Parametric regression estimators

In our simulations, IPW, DR estimation, and matching are implemented with var-
ious degrees of flexibility in terms of parametric assumptions. We consider both
semi-parametric versions based on parametric propensity score models, p(x)""ob
and p(x)“BPS, as well as fully non-parametric estimators using the non-paramet-
ric propensity scores p(x)* (based on a local constant kernel regression) or when
directly conditioning on X;. For non-parametric DR estimation, also the condi-
tional means of the binary treatment and binary (or non-binary) outcome /i (x) are
estimated by local constant (or local linear) kernel regressions.

In addition, we also consider several parametric treatment effect estima-
tors. The first parametric approach computes the LATE by differences in the
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conditional mean functions /. (x), which are estimated by OLS regressions for
non-binary outcomes and by probit regressions for the treatment and binary out-
come variables (see Sect. 3.4). Formally, this regression-based LATE estimator
corresponds to the following expression:

LY CIET(E9)

Ly e - adeo)

Orecr = (14)

Furthermore, we apply two-stage least-squares (2SLS) estimation, which was also
applied by Angrist and Evans (1998) for analysing the data our simulations are
based on. 2SLS may be regarded as a benchmark method for instrumental variable
estimation under the assumption of homogeneous treatment effects. Formally, the
2SLS estimator is given by

1+ 1+ AR _
A _ ~T~ ~T~ T~
Osis =\ - 2, 5% )| - 2,%% LR

i=1 i=1 i=1

(15)

where ; 1= (Lx; 55X ), Z; = (%, z;), and K denotes the number of covariates
X,. Note that in our just-identified settings with one treatment and one instrumen-
tal variable, the 2SLS estimator is numerically identical to the limited information
maximum likelihood (LIML) estimator.

3.7 Further non-parametric estimators

We analyze the performance of three further non-parametric estimation methods
that do not impose any functional form assumptions on the regression functions of
the outcome or the treatment.

Firstly, we apply the generalized random forest (GRF) method, a non-parametric
estimator introduced by Athey et al. (2019). GRF is a variant of random forest algo-
rithms, a machine learning approach, see for instance the discussion in Lee et al.
(2020) and citations therein. As described in Breiman (2001), random forests consist
of averaging the predictions of many decision trees applied to different subsamples
that are repeatedly drawn from the original data. In each of these samples, a decision
tree partitions the space of X; into a set of rectangles and computes the fitted value
of Y; as the average outcome in each of the rectangles. The partitions are chosen in
a data-driven way such that the predictive performance is maximized (e.g. by mini-
mizing the squared residuals based on the fitted values in each rectangle). A popular
estimation algorithm for decision trees is CART (classification and regression tree),
see for instance Chapter 9.2 in the textbook of Hastie et al. (2001).

GRF shares the core features of ‘traditional’ random forest algorithms like
recursive partitioning, subsampling from the original data, and the random
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selection of a subset of covariates at each partitioning step. However, as a meth-
odological twist, GRF uses a gradient-based partitioning scheme and a par-
ticular (so-called ‘honest’) sample splitting technique (within any of the drawn
sub-samples) that avoids overfitting the predictive models to the specificities of
the data, see Wager and Athey (2018). Using the conditional expectation func-
tion . (X;) in Sect. 3.4 and applying the GRF to estimate the latter for the out-
come and the treatment to obtain i ..(x) and i RF(x) for z € {0, 1} (where the
subscript RF indicates the random forest approach) we compute the LATE as
follows:

A () = Y ()
Ore = T, . (16)
T (AP () = A ()

Algorithm 1 in Athey et al. (2019) provides more details on the GRF method. We
estimate the conditional expectations in Eq. 16 using the default options of the
causal_forest function of the grf package for the statistical software R, see (Tib-
shirani et al., 2020). Alternatively, we could have estimated the predictions fi_ zr(x)
by standard Breiman-type random forests (Breiman, 2001), which do, however, not
safeguard against overfitting. In any case, it is important to note that our random
forest approach making use of the Wald equation (16) is different to the IV-based
causal forest suggested in Athey et al. (2019). The latter approach consists of first
running random forests to obtain predictive models for the outcome, treatment, and
instrument, respectively, as functions of covariates X and then residualizing the out-
come, treatment, and instrument, i.e., purging their associations with the covariates
based on the predictive models. Finally, the residualized variables are used in an IV
regression to estimate the LATE. This approach is particularly attractive in high-
dimensional contexts with many potential control variables in X, while our simula-
tion study considers a low-dimensional setting with a fixed number of covariates.

In addition to the random forest, we consider non-parametric kernel regres-
sion for estimating the conditional mean functions /i (x) defined in Sect. 3.4, see
the subscript NP in the respective estimates in Eq. 17. For non-binary outcomes,

i, NP(x) is estimated by local linear kernel regression, for the binary outcome
and treatment variables, ji NP(x) and ¢ NP(x) are estimated by local constant ker-
nel regression.

LT () = ()
Onp = . a7
p Zz 1(/‘1NP ”ONP(X))

Finally, we consider a (naive) LATE estimator that is based on the mean differ-
ences of the outcome and treatment variables, respectively, across instrument states,
which in contrast to the other methods does not control for the covariates. Therefore,
the consistency of this approach provided in Eq. 18 generally requires that the IV
assumptions hold unconditionally, i.e., without conditioning on X.
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Table 1 Point estimators

Estimators Conditioning sets
Propensity scores Covariates None
Probit cbps Local
constant
Inverse probability weighting ipwProbit ipwebps ipw'
Doubly robust drProbit drebrs drl
Pair matching pairmatch?’**  pairmatch®  pairmatch'  pairmatch®

Radius matching on propensity score  radmatch”*"®  radmatch®®  radmatch®

Radius matching on propensity score  radmatchx’™%"  radmatchx®” radmatchx'
+ covariate

Parametric regressions reg
2SLS 2sls
Random forests randforest
Non-parametric regressions regkemel
Mean differences (ignoring covari- means
ates)
R i Z:;l YiZi — i Z?zl yil =z)
OnMEANS = (18)

L Z?:l diz; — - Z?zl di(l - Zi).
n ngy

Table 1 summarizes the LATE estimators analysed in our simulation study along
with the corresponding conditioning sets.

3.8 Inference

Treatment effect estimation frequently relies on the non-parametric bootstrap for sta-
tistical inference (Efron, 1979; Horowitz, 2001). In an extensive simulation study
with a conditionally exogenous treatment, Bodory et al. (2020) find evidence that
variance estimation of treatment effect estimators based on bootstrap procedures
outperforms asymptotic variance approximations in terms of rejection and cover-
age probabilities in finite samples. These results even hold for matching estimators
in small samples, despite the inconsistency of the non-parametric bootstrap for the
(non-smooth) pair matching estimator, see the discussion in Abadie and Imbens
(2008).

For this reason, we apply the non-parametric bootstrap to estimate the standard
errors of all LATE estimators. This algorithm randomly draws B bootstrap samples
of size n (the size of a simulation sample) with replacement out of each simulation
sample and estimates the LATE in every draw. Denoting the B bootstrapped LATE
estimators by éb, with b € {1,2,..., B}, we estimate the standard error ¢ of a LATE
estimator by
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| B | B 2
A __ Nb Ob 19
o= 1};1(9 hE}B). (19)

In line with Bodory et al. (2020), we set B = 199. Bootstrapping naturally accounts
for heteroscedasticity as well as uncertainty due to trimming of influential observa-
tions and propensity score estimation.

4 Simulation design with empirical data

Simulations often rely on randomly generated data drawn from a probability dis-
tribution that is selected by the researcher. However, the data generating processes
(DGPs) of such simulations may appear somewhat arbitrary in the sense that they
might be far from reflecting typical associations between variables in empirical
data. To improve upon this caveat, Huber et al. (2013) suggest a simulation design
based on empirical data, also called Empirical Monte Carlo Study (EMCS), an idea
that has been subsequently applied in several papers, see for instance Frolich et al.
(2017), Huber et al. (2016), and Bodory et al. (2020), among others. Briefly, the idea
of an EMCS is to randomly draw small samples from large real data sets while rely-
ing as much as possible on the empirical associations between the variables when
generating the simulation designs.

Our study follows this EMCS approach to evaluate the properties of various IV
estimators of the LATE, with the aim that the simulation designs are more closely
linked to real world data. However, we point out that also in an EMCS, several
important choices about the simulation features are to be made by the researcher
such that the DGPs are not fully determined by the data, see the caveats raised by
Advani and Sloczyrski (2013). The remainder of this section describes the imple-
mentation of our EMCS. We first present the empirical labor market data underly-
ing our simulations and then provide the steps for generating the various simulation
designs.

4.1 Database

Our simulations are based on empirical data analysed in Angrist and Evans (1998),
who aim at exploiting exogenous variation in family size to evaluate the treatment
effect of fertility, defined as having at least three vs. two children, on female labor
supply. This database is well suited to analyze the finite sample properties of IV
estimators by means of an EMCS for several reasons. First, the data set is large, as
it comprises 394840 observations and therefore easily allows one to draw many dif-
ferent random subsamples. Furthermore, the data contains a strong instrument that
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importantly affects fertility, namely twins at second birth.! Finally, it provides demo-
graphic information on the mothers, which may be used as covariates to control for
potential confounders of the instrument and the outcome.

Coming from the 1980 Census Public Use Micro Samples (PUMS), the data set
contains information on young mothers aged 21 to 35, all of which gave birth to at
least two children. Our analysis considers two different outcomes, the number of
weeks worked within one year (with 43% zeros) and an indicator for being employed
at all in that year. The binary treatment variable indicates if a mother has more than
two kids (treatment is one) or two kids (treatment is zero). The binary instrumental
variable is one if a mother gave birth to twins at second birth and zero otherwise.
The covariates considered in our simulation include mother’s age, mother’s age at
first birth, race, and quarter of birth.

Table 2 reports descriptive statistics of the database, by treatment indicator (more
than two kids) and the instrument (twins at second birth). The upper part presents
descriptives for the two labor market outcomes ‘weeks worked’ (in weeks) and
‘worked for pay’ (binary). There are large differences between the outcomes of
the treated and non-treated in terms of the standardized difference statistic as sug-
gested by Rosenbaum and Rubin (1985) (the literature considers values around 20
and above as severely unbalanced). The line underneath the outcomes in Table 2
gives details on the treatment variable. Not surprisingly, the treatment fully com-
plies with the instrument if the latter equals one, because all mothers with twins at
second birth (Z; = 1) necessarily have more than two children (D; = 1). The subse-
quent row of Table 2 provides information on the instrument. It reveals that 2% of
women with at least three children have twins at their second birth. Considering the
covariates, the standardized differences show that mothers’ characteristics are partly
unbalanced across treatment states, whereas they are well balanced across instru-
ment states, in line with a randomly assigned instrument. The randomness of the
instrument is also supported by the pseudo-R2 statistic with a value of 0.2% when
regressing the instrument on the covariates.

4.2 Simulation designs

Data generating processes (DGPs) may differ in (infinitely) many dimensions.
We select ten practically relevant dimensions for varying the specifications of our
simulation models. These dimensions include: effect homogeneity vs. heterogene-
ity, randomness vs. non-randomness of the instrument, varying levels of instrument
strength, binary vs. non-binary outcome distributions, and different sample sizes.
Summary statistics of all DPGs are presented in Table 3.

We start by assuming homogeneous treatment effects with a randomly assigned
instrument and the empirically observed instrument strength. To evaluate the per-
formance of the estimators under these conditions, we define a new population

! There may be cases where the randomness of twin births is violated, see Farbmacher et al. (2018) for
a discussion on dizygotic twinning. In our simulation study, we artificially generate random and non-
random instrument assignments.
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for which the true LATE is equal to zero. To this end, we drop all 3380 observa-
tions from the database who receive the instrument (Z; = 1). Among the remaining
391460 observations with instrument state Z; = 0 (no twins at second birth), there is
no reduced form effect of the instrument on the outcome or first stage effect of the
instrument on the treatment, such that there exists no LATE. After that, we create a
pseudo-instrument and artificially assign Z; = 1 to those who are similar to the 3380
discarded observations in terms of observed characteristics. This similarity is deter-
mined by 1 : M matching on the covariates without replacement. By setting M = 58,
we assign Z; = 1 to approximately half of the observations, see column 4 of Table 3.
In addition, we set the treatment state of everyone with Z;, = 1to D; = 1 (as in the
original database) to maintain the empirically observed instrument strength. Finally,
we draw small samples from our new population to compare the finite sample prop-
erties of alternative LATE estimators.

To simulate specifications with a weaker instrument, we reduce the first stage
effect by lowering the impact of Z; on D;. Instead of setting all observations with
Z; = 1to D; = 1, we change the treatment status from zero to one only for those with
Z; =1 for which the condition D; = 1(u; > 1.25) holds. 1(-) denotes the indicator
function which is one if its argument is true, otherwise it is zero, and u; is a standard
normally distributed random variable. Column 7 of Table 3 displays the first stage
coefficients for the different DGPs.

The randomness of the instrument implies that the covariates are balanced across
groups. To mimic a non-random assignment of the instrument, we increase the mag-
nitude of instrument selectivity in the following way. We first estimate the propen-
sity score p(1.5X,)P"°" (see Eq. 6) using the original database. Then, we change
the instrument status Z; from zero to one for observations with characteristics simi-
lar to the 3380 observations dropped from the original database (with Z; = 1). We
obtain such similar matches by 1 : M matching on the estimated propensity score
P(1.5X,)Prebit with M = 22. Next, we assign D; = 1 to all observations with Z, = 1.
Based on this modified data set, we increase the selection into the instrument by
discarding the best matches for the newly created observations with Z; = 1 among
observation with Z; = 0. To find the best matches to be discarded, we apply 1 : M
matching on a newly estimated propensity score p(X;)""*?"" (with the modified instru-
ment assignments), where M = 3. The selectivity of the instrument is provided in
columns 5 and 6 in Table 3.

To model a scenario with non-constant treatment effects, we introduce effect
heterogeneity with respect to age and race as follows. We add to the existing con-
trol variables squared and cubic terms of both age variables (‘age’ and ‘age at first
birth’) and interact the unmodified age variables with the indicator variable for Afri-
can Americans. This new set of control variables for settings with effect heterogene-
ity is denoted by Xf’” for each unit i. We generate Y; and D; in each simulation sam-
ple according to the rules Y; = ¥, Z; + Y/ (1 - Z) and D; = D;,Z; + D;;(1 - Z,).
To this end, we compute the non-binary potential outcomes based on the equation
¥e =Xl oy + vy where v; is a standard normally distributed random variable. ﬁOLS and

¢ are the coefficients and residual standard deviation of OLS regressions in subsam-
ples by instrument state Z; € {0,1} of our new population. The binary potential
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Table 4 Coverage rates and

. Point estimators Coverage rates diff Confidence  diff
intervals

(pp)  intervals (%)

randforest 95.0 0.0 228.8 8.0
radmatch?’o?" 95.1 0.1 356.5 68.3
regkerme! 94.8 0.2 329.4 55.5
pairmatch* 94.6 0.4 265.6 25.4
ipweps 95.5 0.5 290.4 37.1
radmatchxetrs 94.4 0.6 284.5 34.3
radmatchx?™"* 94.1 0.9 265.6 25.4
reg 96.0 1.0 211.8 0.0
2sls 96.0 1.0 260.9 232
drProbit 96.0 1.0 257.5 21.6
means 90.5 4.5 234.5 10.7

Notes: ‘diff” indicates the difference to the left best performer in per-
centage points (pp) or in percent (%)

outcomes are computed based on Yd = IL(X"” Bpropis +v; > 0), where 1(-) is the indi-
cator function and ﬁ obir ar€ the coefficients estimated from probit models in sub-
samples by instrument state of our new population. The potential treatments D, ; are
set to one, whereas D;, is computed analogously to Y d 1n the binary outcome case.

We combine these variations in the DGPs with respect to effect heterogeneity,
instrument strength, and instrument selectivity with smaller and larger sample sizes
of 1000 and 2000, respectively, and with binary and non-binary outcome distribu-
tions. We run 2000 simulations for the smaller and 1000 simulations for the larger
samples. Table 3 presents summary statistics of the DGPs considered in our simula-
tion study.

5 Results

This section presents results about the finite sample performance of various LATE
estimators across different DGPs. We rank the estimators by their coverage rates,
which are defined as the share of simulations in which the true LATE is included
in the 95% confidence interval of the respective LATE estimator. We recall that the
standard errors for computing those confidence intervals come from the non-para-
metric bootstrap, as discussed in Sect. 3.8. For the sake of brevity, we subsequently
only discuss a selection of our results, which conveys the main message of our find-
ings. In the Appendix, we include more detailed results.

Table 4 provides the average coverage rates and lengths of confidence intervals
across all DGPs of any parametric, semi-parametric, or non-parametric LATE esti-
mator which performs best (in terms of coverage) in at least one of the ten DGPs
discussed in Sect. 4.2. We find that only the non-parametric random forest-based
LATE estimator described in Eq. 16 attains exactly the nominal coverage size of
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Table 5 Average absolute biases, standard deviations, and root mean square errors

Point Bias diff sd diff rmse diff Bias diff

estimators effect (%) (%) (%) se (%)

randforest 0.6 0.0 8.0 14.1 8.0 11.9 1.7 0.0
radmatch?"b" 1.3 100.1 12.0 70.0 12.0 67.3 10.8 540.7
regkermet 1.4 124.8 7.0 0.0 7.2 0.0 4.2 149.3
pairmatch® 0.8 214 9.9 40.3 9.9 37.6 5.8 2474
ipwers 1.2 85.4 7.4 54 7.5 4.7 4.4 162.4
radmatchxcbrs 1.1 76.9 8.6 229 8.7 21.5 4.1 142.8
radmatchxProbit 1.2 86.4 9.7 38.1 9.8 36.4 34 100.1
reg 0.7 10.1 7.3 3.7 73 1.9 4.0 140.0
2sls 0.7 11.3 7.9 12.7 7.9 10.6 3.8 124.0
drProbit 0.8 31.9 7.6 8.6 7.7 6.9 39 1333
means 34 440.1 7.9 11.7 8.8 21.9 5.6 235.3

Notes: ‘bias effect’ denotes the absolute bias from the true treatment effect, ‘sd’ is the standard deviation
of the estimator, ‘rmse’ stands for root mean squared error, and ‘bias se’ indicates the median bias of the
estimated bootstrap standard error. ‘diff” indicates the difference to the left best performer in percent (%)

95% on average. Furthermore, its average length of confidence intervals is the sec-
ond shortest among the estimators analyzed in Table 4, 8% larger than the average
interval of the parametric regression estimator, the nominal size of which is 96%.
Conditional on obtaining a decent coverage, a short confidence interval is desirable
in terms of precision, as it implies a lower estimation uncertainty. Three out of the
four LATE estimators whose average coverage rates come closest to 95% are non-
parametric, with those of non-parametric kernel regression (94.8%) and pair match-
ing on the covariates (94.6%) having a minor under-coverage. Also semi-parametric
radius matching on the propensity score performs decent in terms of coverage rates,
with the probit-based version attaining an average rate of 95.1%, and two further
versions achieving 94.4% and 94.1%, respectively. Furthermore, IPW using the
CBPS method for propensity score estimation reaches a satisfactory average cover-
age rate, too, namely 95.5%.

In terms of average coverage, one might argue that all estimators in Table 4 but
the mean differences estimator (which ignores covariates) perform decently, with
coverage distortions amounting to at most one percentage point among methods
controlling for covariates. In terms of the average length of the confidence intervals,
however, parametric regression and the random forest clearly outperform radius
matching, kernel regression, pair matching, IPW, 2SLS, and DR estimation, whose
intervals are substantially longer (by 22-68%). According to the results in Table 4,
the random forest-based LATE estimator is the preferred choice when paying rela-
tively more attention to coverage (and sacrificing some precision compared to para-
metric regression), while parametric regression is the preferred choice for maximiz-
ing precision (when accepting average coverage distortions of 1 percentage point).

The coverage accuracy of the different estimation methods is related to the bias
and variance of the LATE estimators, as well as the bias of the bootstrap-based
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Table 6 Best performing estimators in terms of coverage rates

DGP feature Point estimator Coverage
Parametric Semi-parametric Non-parametric (best est.)
Effect homogeneity 2sls radmatchxProPit means 96.0
Effect heterogeneity 2sls drprobit randforest 94.9
Standard selection reg radmatchx<brs randforest 95.0
Strong selection 2sls ipwebrs randforest 95.1
Weaker first stage reg dyProbit randforest 94.8
Strong first stage reg radmatchxPrPit pairmatch® 95.9
Non-binary outcome reg radmatchPrPit randforest 95.0
Binary outcome 2sls radmatchPbit randforest 95.1
Small sample size reg radmatch?"b regkernel 94.8
Larger sample size 2sls radmatchProbit regkernel 94.9

Notes: The in terms of average coverage best performing LATE estimator given a specific DGP feature is
shown in bold print and its average coverage is reported in the last column

standard error. Table 5 provides details on these statistics. We find that two non-par-
ametric methods perform best when considering the bias of LATE estimation, the
standard deviation, and the mean squared error (i.e., the sum of the squared bias and
the variance), as well as the bias of the standard error (relative to a LATE estima-
tor’s true standard deviation). The random forest-based LATE estimator has on aver-
age the smallest deviation from the true LATE, with its absolute bias amounting to
0.6. The non-parametric kernel regression estimator has the smallest average stand-
ard deviation among the estimators in Table 5, amounting to 7.0. It also performs
best in terms of root mean squared errors across DGPs with an average value of 7.2.
When considering the median bias of the bootstrap standard errors relative to the
true standard deviations of the respective LATE estimators, the inference method
of the random forest-based LATE estimator performs best, with an average median
bias of 1.7. The averages of the median biases of its competitors are on average at
least 100% larger.

Our findings suggest that the coverage accuracy is mainly driven by a LATE
estimator’s bias. This is for instance the reason why the mean differences estima-
tor (which ignores covariates), whose bias exceeds that of the random forest-based
LATE estimator by 440.1%, shows a relatively poor coverage in Table 4. Also the
OLS estimator performs poorly in terms of coverage, due to its high bias, while
its variance is small (results not presented but available on request). The perfor-
mance of all LATE estimators by DGP is presented in Section A.3 of the Appendix.
Tables 18—49 provide details on the coverage rates, biases, standard deviations, and
root mean squared errors.

Table 6 lists the best performing LATE estimators in terms of average coverage,
separately for each of the ten DGP features (see the rows) as well as for parametric,
semi-parametric, and non-parametric methods (see the columns). The in terms of
average coverage best performing LATE estimator given a specific DGP feature is
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shown in bold print and its average coverage is reported in the last column of the
table. The results suggest that semi-parametric and non-parametric estimators come
closest to the nominal coverage rate of 95% and for any of these best performing
estimators, the size distortion is at most one percentage point. The radius match-
ing algorithm of Lechner et al. (2011) (with or without controlling for a covariate
in addition to the propensity score) most frequently performs best both among the
semi-parametric LATE estimators (in 70% of cases) and overall (in 50% of cases).
Radius matching achieves the best average coverage in settings with effect homo-
geneity, a strong instrument, non-binary and binary outcomes, and under a larger
sample size. For specifications with standard and strong selection into the instru-
ment, the non-parametric random forest-based estimator is closest to the nominal
size. Considering scenarios with effect heterogeneity, a weaker instrument, and a
small sample size, the best performers are LATE estimators based on 2SLS, DR,
and non-parametric regression, respectively.

The performance of the best performing LATE estimators across the ten DGP
features is presented in Section A.2 of the Appendix. Tables 8—17 provide infor-
mation on the average coverage rates, biases, standard deviations, and root mean
squared errors. When taking precision into account, the random forest-based
approach appears very competitive relative to other semi- or non-parametric meth-
ods like radius matching or IPW, as it tends to have substantially shorter confidence
intervals while still attaining very decent coverage rates (even under DGP features
where other estimators slightly dominate in terms of coverage).

6 Conclusion

This paper presented a simulation study based on empirical labor market data to
investigate the finite sample properties of a range of point estimators of the local
average treatment effect (LATE) when controlling for a fixed (and low-dimensional)
set of covariates. The structure of these estimators is inspired by the Wald estimator,
consisting of the ratio of the estimated reduced form effect of the instrument on the
outcome and the estimated first stage effect of the instrument on the treatment. Fur-
thermore, we applied the non-parametric bootstrap to estimate the standard errors
and the 95% confidence intervals of the LATE estimators. We find that among the
LATE estimators considered, non-parametric kernel regression has the smallest
average root mean squared error across the different simulations, closely followed
by the random forest-based approach, which has the lowest average absolute bias.
The random forest method also performs very competitive in terms of average cov-
erage rates, while at the same time having relatively narrow confidence intervals,
which is attractive in terms of precision. Specific versions of semi-parametric radius
matching on the propensity score, nonparametric kernel regression, inverse prob-
ability weighting, and pair matching on the covariates perform decently in terms of
coverage, too, but have substantially wider confidence intervals. Parametric regres-
sion based on the Wald estimator is most precise, while also having decent cover-
age (albeit less so than the random forest method). Overall, the random forest-based
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estimator seems to be the (or among the) most attractive method(s) in terms of a
combined assessment of coverage, precision, and model flexibility.

While our Monte Carlo study is quite comprehensive in terms of simulation
designs considered (with varying treatment effect heterogeneity, instrument selec-
tivity and strength, outcome distributions, and sample sizes), we point out that our
results do not necessarily generalize to simulation or empirical frameworks that are
very different from the scenarios considered in this study. One interesting domain
future simulation studies might want to consider are high-dimensional settings or
‘big data’ contexts in which many potential covariates are available as control vari-
ables. Such simulation designs would facilitate the assessment of LATE estima-
tors that are particularly tailored to such high-dimensional scenarios, by combin-
ing instrument-based causal analysis with machine learning methods for selecting
(important) control variables in a data-driven way. This concerns in particular so-
called (Neyman, 1959)-orthogonal estimators, which are robust to moderate biases
in the estimation of instrument propensity scores and conditional mean outcomes.
Examples for such methods are double/debiased machine learning (Chernozhukov
et al., 2018), causal forest algorithms as suggested by Athey et al. (2019) and Lech-
ner and Mareckova (2022), or R-learning (Nie & Wager, 2020), which have not been
considered in the low-dimensional context of this study.
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