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Abstract
This paper investigates the finite sample performance of a range of parametric, 
semi-parametric, and non-parametric instrumental variable estimators when control-
ling for a fixed set of covariates to evaluate the local average treatment effect. Our 
simulation designs are based on empirical labor market data from the US and vary 
in several dimensions, including effect heterogeneity, instrument selectivity, instru-
ment strength, outcome distribution, and sample size. Among the estimators and 
simulations considered, non-parametric estimation based on the random forest (a 
machine learner controlling for covariates in a data-driven way) performs competi-
tive in terms of the average coverage rates of the (bootstrap-based) 95% confidence 
intervals, while also being relatively precise. Non-parametric kernel regression as 
well as certain versions of semi-parametric radius matching on the propensity score, 
pair matching on the covariates, and inverse probability weighting also have a decent 
coverage, but are less precise than the random forest-based method. In terms of the 
average root mean squared error of LATE estimation, kernel regression performs 
best, closely followed by the random forest method, which has the lowest average 
absolute bias.

Keywords  Instrumental variables · Local average treatment effects · Empirical 
Monte Carlo study

JEL Classification  C21 · C26

1  Introduction

The evaluation of the causal effect of a treatment (e.g., fertility) on an outcome (e.g., 
labor supply) is frequently complicated by endogeneity, implying that the treatment 
is associated with unobserved characteristics affecting the outcome (e.g. personal-
ity traits, preferences, and values concerning family and working life). One may 
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nevertheless assess treatment effects in the presence of an instrumental variable (IV) 
which affects the treatment of (at least) some subjects in a monotonic way, does not 
directly affect the outcome (other than through treatment) and is as good as ran-
domly assigned. Under these conditions, the local average treatment effect (LATE) 
on the compliers, the subpopulation whose treatment state reacts positively to the 
instrument, is identified, as discussed in Imbens and Angrist (1994), Angrist et al. 
(1996). In many empirical contexts, it may seem unlikely that the IV assumptions 
hold unconditionally, in particular when the treatment evaluation relies on obser-
vational data in which the instrument is not explicitly randomized like in an experi-
ment. Depending on the application, it might, however, appear plausible that the IV 
assumptions hold conditional on covariates observed in the data. In this case, the 
LATE is identified and can be consistently estimated under certain conditions, see 
the discussions in Abadie (2003), Tan (2006), and Frölich (2007).

This paper assesses the finite sample performance of various parametric, semi-
parametric, and non-parametric IV estimators when controlling for a fixed (i.e., 
pre-defined and low-dimensional) set of covariates by Monte Carlo simulations that 
are based on empirical labor market data from Angrist and Evans (1998). The latter 
study assesses the effect of fertility, defined as having at least three vs. two chil-
dren, on mother’s labor supply (for instance, a binary employment status or weeks 
employed per year), using twins at the second birth as instrument. The intuition for 
this IV strategy is that if a mother with one child get twins at the second birth, then 
fertility immediately increases to three rather than two children, implying a first 
stage effect of the twins instrument on the treatment. In the spirit of Huber et  al. 
(2013), our empirical Monte Carlo simulation makes to a certain extent use of the 
empirical associations in the labour market data when assessing the various IV esti-
mators, with the aim that our analysis is more closely linked to real world applica-
tions. We vary the simulation designs with respect to several dimensions, includ-
ing treatment effect heterogeneity, instrument selectivity across observed covariates 
(namely age, race, and quarter of birth), instrument strength, the outcome distribu-
tion, and sample size. We analyse the performance of a range of estimators com-
monly considered in treatment and policy evaluation based on instruments, includ-
ing two stage least squares, inverse probability weighting (IPW), matching, doubly 
robust estimation, and parametric as well as non-parametric regression based on the 
so-called Wald formula for LATE estimation.

We find that overall, non-parametric estimation based on the random forest, a 
machine learning algorithm controlling for covariates in a data-driven way, performs 
best in terms of coverage rates, which are defined as the share of simulations in 
which the true LATE is included in the 95% confidence interval of a LATE estima-
tor. We note that the estimators’ standard errors required for constructing confidence 
intervals are obtained by the non-parametric bootstrap, which naturally accounts for 
heteroscedasticity as well as uncertainty e.g. related to the first-step estimation of 
the instrument propensity scores and has performed very well in a simulation study 
by Bodory et  al. (2020) on the variance estimation of treatment effect estimators. 
Furthermore, the random forest-based estimator is relatively precise, implying that 
the confidence interval is comparably short, which (conditional on having a decent 
coverage) appears desirable from the perspective of statistical power. The highest 
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overall precision has parametric regression based on the Wald formula, which has an 
acceptable coverage rate, too (albeit somewhat worse than the random forest-based 
estimator). Non-parametric kernel regression as well as certain versions of semi-
parametric radius matching on the propensity score, pair matching on the covariates, 
and inverse probability weighting also have a decent coverage, but are less precise 
than the random forest-based method. Concerning the average root mean squared 
error of LATE estimation, kernel regression performs best (and also has the smallest 
average standard deviations), closely followed by the random forest method, which 
has the lowest average absolute bias. Overall, the random forest approach appears to 
be the (or among the) most favorable method(s) in terms of a combined assessment 
of coverage, precision, and model flexibility.

Our study contributes to a growing literature of simulation studies investigating 
the finite sample behavior of treatment effect estimators (such as IPW, matching, 
or doubly robust methods), see for instance (Frölich, 2004; Zhao, 2004; Lunceford 
& Davidian, 2004; Busso et  al., 2014; Huber et  al., 2013; Frölich et  al., 2017). 
However, these previous studies focus on the selection-on-observables framework, 
implying that the treatment is exogenous (i.e., as good as random) conditional on 
covariates. The main contribution of the current study is that it appears to be the 
first empirical Monte Carlo simulation that offers a comprehensive analysis of the 
finite sample performance of a range of instrument-based estimators of the LATE, 
under the assumption that the instrument (rather than the treatment) is conditionally 
exogenous.

The remainder of this paper is organized as follows. Section  2 discusses the 
identifying assumptions for IV-based LATE evaluation in the presence of covari-
ates. Section 3 introduces various parametric, semi-parametric, and non-parametric 
LATE estimators, as well as a bootstrap procedure for computing standard errors. 
Section  4 presents our empirical Monte Carlo simulation approach, namely the 
empirical data and the simulation designs. Section 5 presents the results on the finite 
sample performance of the LATE estimators. Section 6 concludes.

2 � Identification of the LATE

In this section, we present the assumptions underlying the identification of the Local 
Average Treatment Effect (LATE) when controlling for covariates. To formalize the 
discussion, let us denote by Di a possibly endogenous treatment received by unit i, 
and by Yi the outcome variable based on which the treatment effect is to be eval-
uated. In their seminal paper, Imbens and Angrist (1994) define the LATE as the 
mean effect of Yi in response to a change in Di among the compliers, a subgroup 
whose Di reacts to an exogenous shift in the instrumental variable, which is denoted 
by Zi . To discuss the identification of the LATE, we make use of the potential out-
comes framework introduced by Rubin (1974), which expresses causal effects as dif-
ferences between potential outcomes under treatment and non-treatment. We adapt 
this concept to our instrumental variable setting with binary indicators Di and Zi , 
and define potential outcome and treatment variables for unit i in the following way:
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with di, zi ∈ {0, 1} . Using this framework, Angrist et al. (1996) show that units can 
be divided into two subgroups, compliers and noncompliers. Compliers are those 
induced to take the treatment when being assigned to it. Formally, this type of units 
is characterized by Di,1 − Di,0 = 1 . The subgroup of noncompliers may consist of 
three further types, namely always-takers with Di,1 = Di,0 = 1 , never-takers with 
Di,1 = Di,0 = 0 , and defiers with Di,1 − Di,0 = −1 . Note that the type of a single unit 
cannot be identified because the counterfactual potential treatment (that would have 
occurred under the alternative, rather than the factual instrument assignment) is not 
observed.

Abadie (2003), Tan (2006), and Frölich (2007) consider non-parametric LATE 
identification and estimation when controlling for observed covariates, denoted by 
Xi . We subsequently present the identifying assumptions in this context, which con-
sist of (i) a monotonicity restriction on the treatment, (ii) the existence of compli-
ers, (iii) conditional independence of the instrument and the share of compliance 
types, (iv) conditional mean independence of the outcome and the instrument, and 
(v) common support.

Assumption 1  (Monotonicity)   P(Di,0 > Di,1) = 0.

Assumption 2  (Existence of compliers)   P(Di,0 < Di,1) > 0.

Assumption 3  (Unconfounded type)    P(�i = t|Xi = xi, Zi = 0) = P(�i = t|Xi = xi, Zi = 1) for 
t ∈ {a, n, c} .  

The types � include always-takers a, never-takers n, and compliers c.

Assumption 4  (Conditional mean independence of the outcome)    E[Y0
i,Zi
|Xi = xi,

Zi = 0, �i = t] = E[Y0
i,Zi
|Xi = xi, Zi = 1, �i = t] for t ∈ {n, c} ,  

E[Y1
i,Zi
|Xi = xi, Zi = 0, �i = t] = E[Y1

i,Zi
|Xi = xi, Zi = 1, �i = t] for t ∈ {a, c}.

Assumption 5  (Common support)   Supp(Xi|Zi = 1) = Supp(Xi|Zi = 0).

Assumption  1 rules out the presence of defiers, a type whose treatment never 
complies with the instrument. Assumption 2 implies that the subgroup of compliers 
exists. Due to the conditional independence of the instrument and the shares of com-
pliers, always-takers, and never-takers stated in Assumption 3, the first stage effect 
of the instrument on the treatment is identified conditional on covariates, such that 
any variables affecting both the instrument and the treatment are controlled for. The 
conditional mean independence in Assumption 4 rules out a direct average effect of 
the instrument on the outcome (exclusion restriction) and unobservables that jointly 
affect the instrument and the outcome when controlling for covariates. Finally, 

(1)Yd
i,z
=Yi(Di = di, Zi = zi)

(2)Di,z =Di(Zi = zi),
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Assumption 5 ensures that for all covariate values occurring in the population, either 
instrument value Zi ∈ {0, 1} exists such that the instrument is not deterministic in 
the covariates.

Under Assumptions 1 to 5, the LATE, denoted as � = E[Y1i,Zi
− Y0i,Zi

|Di,1 − Di,0 = 1] , is iden-
tified by

Based on the insights of Rosenbaum and Rubin (1983), Frölich (2007) shows that 
identification is also obtained by conditioning on the instrument propensity score 
p(x) ∶= P(Zi = 1|Xi = x) rather than the covariates, because it possesses the so-
called ‘balancing property’. That is, conditioning on the one-dimensional propensity 
score balances the distribution of the covariates across the states of the instrument. 
For this reason, the LATE is alternatively identified by

3 � Estimation and inference

In this section, we present parametric, semi-parametric, and non-parametric meth-
ods for estimating the LATE parameter � introduced in Sect. 2. We also discuss a 
trimming rule that tackles limited common support in covariate values across instru-
ment states, based on dropping observations which would obtain large weights in 
the estimator because their covariate values occur (almost) exclusively in only one 
of the instrument states. Finally, we provide an bootstrap procedure for estimating 
the standard errors of the LATE estimators.

3.1 � Estimation

One method for the estimation of � frequently applied in empirical work is two-stage 
least-squares (2SLS), which is easy to implement and computationally fast. How-
ever, the linearity assumption of the 2SLS estimator implies effect homogeneity, a 
restriction that may not hold in empirical studies. We consider 2SLS as a benchmark 
method, but also include more general LATE estimators that allow for effect hetero-
geneity of the LATE across values of the covariates.

Equations  3 and 4 imply that � can be expressed as the ratio of two treatment 
effect estimators that account for covariate differences in the presence and absence 
of the instrument. The numerator gives the reduced form effect of Zi on Yi and the 
denominator the first stage effect of Zi on Di . Thus, a natural choice for the con-
struction of estimators for � is to substitute the expressions in the numerators and 
denominators of Eqs. 3 and 4 by estimators standardly applied in treatment or policy 

(3)� =
EX[E[Yi|Zi = 1,Xi] − E[Yi|Zi = 0,Xi]]

EX[E[Di|Zi = 1,Xi] − E[Di|Zi = 0,Xi]]
.

(4)� =
EX[E[Yi|Zi = 1, p(Xi)] − E[Yi|Zi = 0, p(Xi)]]

EX[E[Di|Zi = 1, p(Xi)] − E[Di|Zi = 0, p(Xi)]]
.
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evaluation, see for instance the surveys by Imbens (2004) and Imbens and Wool-
dridge (2009). Many treatment effect estimators are semi-parametric in the sense 
that (parametric) propensity score estimation is combined with non-parametric treat-
ment effect estimation, using weighting, matching, or doubly robust methods. We 
consider such methods to estimate the LATE based on estimates of the instrument 
propensity score. We also vary the degree of flexibility of the estimators and imple-
ment parametric, semi-parametric, and non-parametric approaches to compute the 
reduced form and first stage effects in the numerators and denominators of Eqs. 3 
and 4.

Smith and Todd (2005), among others, regard treatment effect estimators as 
weighted differences in outcomes. We apply this definition to the Wald formula and 
express the LATE as:

n denotes the size of an i.i.d. sample of realizations of {Yi,Di, Zi,Xi} with obser-
vation i ∈ 1, ..., n . n1 =

∑n

i=1
Zi is the size of the subsample of those with Zi = 1 , 

n0 = n − n1 , and ŵi are weights that may depend on Xi or p̂(x) , an estimate of the 
propensity score p(x). Next, we discuss different methods of estimating p̂(x) and ŵi.

3.2 � Instrument propensity scores

We consider two different approaches to balance the covariates across groups for 
units with Zi = 0 and Zi = 1 . One is to directly control for covariates Xi , but some 
LATE estimators alternatively control for estimates of p(x), which is motivated by 
the propensity score’s balancing properties discussed in Rosenbaum and Rubin 
(1983). Their results imply that p(x) is capable of equalizing the covariate distribu-
tions across instrument states, such that the instrument is conditionally independent 
of potential outcomes and treatments given the propensity score whenever independ-
ence holds conditional on the covariates. A practical advantage of controlling for the 
propensity score (rather than a vector of covariates) is that it is one-dimensional and 
thus, avoids the curse of dimensionality.

We compute p̂(x) in three different ways. Firstly, we specify a probit model to 
estimate the conditional probability P(Zi = 1|Xi = xi) by

where 𝛽ML denotes the estimated probit coefficients based on maximum likelihood 
and Φ(xT

i
𝛽ML) is the cumulative distribution function of the standard normal distri-

bution evaluated at XT
i
𝛽ML.

Secondly, we apply the covariate balancing propensity score (CBPS) method by 
Imai and Ratkovic (2014) to compute p̂(x) . This methodology maximizes covari-
ate balancing when predicting treatment assignment using the generalized method-
of-moments (GMM) framework. Imai and Ratkovic (2014) show that the CBPS 

(5)𝜃̂ =

1

n1

∑n

i=1
ziŵiyi −

1

n0

∑n

j=1
(1 − zj)ŵjyj

1

n1

∑n

i=1
ziŵidi −

1

n0

∑n

j=1
(1 − zj)ŵjdj

.

(6)p̂(x)probit = Φ(xT
i
𝛽ML),
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method is robust to mild misspecifications of the propensity score model, which is 
estimated by the following expression:

where 𝛽GMM are coefficients estimated by GMM and Λ(xT
i
𝛽GMM) is the cumulative 

distribution function of the standard logistic distribution evaluated at xT
i
𝛽GMM . We 

use the overidentified version of CBPS, with more moment conditions (based on the 
covariate balancing condition and the score of a logit model) than coefficients �GMM , 
which are estimated by continuously updated GMM estimation:

ḡ𝛽(Z,X) is the sample mean of the moment conditions and Σ�(Z,X) is a consistent 
variance estimator, described in more detail in Chapter  2.2 of Imai and Ratkovic 
(2014). See Heiler (2022) for a more detailed discussionof LATE estimation based 
on the CBPS.

Our third estimator of the instrument propensity score is fully non-parametric 
and based on kernel regression:

Equation  9 corresponds to the Nadaraya-Watson (local constant) kernel estima-
tor, where K denotes the Epanechnikov kernel and bandwidth h is chosen by least-
squares cross-validation, i.e., by minimizing the least squares cross validation error 
w.r.t. h, see Li and Racine (2006). As an alternative to using p̂(x)lc as weighting 
function, we also apply the Nadaraya-Watson estimator for estimating the outcome 
and treatment models in Eq.  3, see our discussion on non-parametric estimation 
methods in Chapter 3.7.

A practically relevant issue of treatment effect methods is thin or lacking com-
mon support (or overlap) in the propensity score, which may compromise esti-
mation due to a non-comparability across groups, see the discussions in Imbens 
(2004), Imbens and Wooldridge (2009), and Lechner and Strittmatter (2019). If 
specific propensity score values among one group are either very rare (thin com-
mon support) or absent (lack of common support) among the opposite group, 
as it may occur close to the boundaries of the propensity score, some units may 
receive a very large weight ŵi in LATE estimation as provided in Eq.  5. In the 
case of thin common support, these observations could dominate the estimator 
of the LATE which may potentially entail an explosion of the variance. In the 
case of lacking common support, this even introduces asymptotic bias by giving a 
large weight to observations that are not comparable to observations in the oppo-
site group in terms of the propensity score.

Huber et al. (2013) and Bodory et al. (2020) consider a trimming procedure to 
tackle common support issues in the sample also discussed in Imbens (2004), which 

(7)p̂(x)CBPS = Λ(xT
i
𝛽GMM),

(8)𝛽GMM = argmin
𝛽

ḡ𝛽(Z,X)
TΣ𝛽(Z,X)

−1ḡ𝛽(Z,X).

(9)p̂(x)lc =

∑n

i=1
ziK

�
xi−x

h

�

∑n

i=1
K
�

xi−x

h

� .
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is asymptotically unbiased if common support holds asymptotically. It is based on 
setting the weights of those observations to zero whose relative share of all weights 
within either instrument state in Eq.  5 exceeds a particular threshold value in % 
(denoted by t):

We set the threshold t to 5% and trim observations based on the weights of normal-
ized IPW, see (3.3), irrespective of the LATE estimator considered. This changes 
(in finite samples) the target parameter due to discarding observations with extreme 
weights, but ensures common support prior to estimation. Note that our bootstrap 
variance estimators discussed in Sect.  3.8 account for the stochastic nature of 
trimming.

3.3 � Inverse probability weighting (IPW)

Inverse probability weighting (IPW) reweighs (instrument) group-specific outcomes 
such that the distribution of the covariates in the total population is matched, see 
Hirano et al. (2003) for a more detailed discussion. We consider a normalized IPW 
estimator in our simulations, which performed well in several simulation studies on 
conditionally exogenous treatments, see for instance (Huber et al., 2013) and Busso 
et al. (2014). The IPW-based LATE estimator corresponds to

The normalizations 
∑n

j=1

zj

p̂(xj)
 and 

∑n

j=1

1−zj

1−p̂(xj)
 ensure that the weights in curly brack-

ets add up to one. It is easy to see that (11) corresponds to (5) when setting ŵi in the 

latter to zin1

�
1

p̂(xi )∑n

j=1

zj

p̂(xj )

�
+ (1 − zi)n0

�
1

1−p̂(xi )∑n

j=1

1−zj

1−p̂(xj)

�
 . IPW possesses the desirable 

property that it can attain the semiparametric efficiency bound (implying the small-
est possible asymptotic variance) derived by Hahn (1998), if the propensity score is 
estimated non-parametrically (while this is generally not the case for parametric pro-
pensity scores). Furthermore, it is computationally inexpensive and easy to imple-
ment. However, evidence in the treatment effect literature suggests that IPW also has 
an important drawback: at the boundaries of the support of the propensity score, 
estimation may be unstable and the variance may explode in finite samples, see 
Frölich (2004) and Khan and Tamer (2010).

(10)ŵi = ŵi�

�
zi∕p̂(x)

lc

∑n

j=1
zj∕p̂(x)

lc
+

(1 − zi)∕(1 − p̂(x)lc)∑n

j=1
(1 − zj)∕(1 − p̂(x)lc)

≤ t%

�
.

(11)𝜃̂IPW =

∑n

i=1
ziyi

�
1

p̂(xi )∑n

j=1

zj

p̂(xj )

�
−
∑n

i=1
(1 − zi)yi

�
1

1−p̂(xi )∑n

j=1

1−zj

1−p̂(xj )

�

∑n

i=1
zidi

�
1

p̂(xi )∑n

j=1

zj

p̂(xj )

�
−
∑n

i=1
(1 − zi)di

�
1

1−p̂(xi )∑n

j=1

1−zj

1−p̂(xj)

� .
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3.4 � Doubly robust estimation

Doubly robust (DR) estimation combines IPW with outcome regression. It reweighs 
outcome models for different instrument states by the inverse of the propensity 
scores. Denoting the conditional mean outcomes in the presence and absence of the 
instrument by �y

z (x) ∶= E[Yi|Z = zi,Xi = xi] and �d
z
(x) ∶= E[Di|Zi = zi,Xi = xi] , the 

DR LATE estimator corresponds to

For non-binary outcomes, we run OLS regression to compute 𝜇̂y
z (x) = xT

i
𝛽z,OLS . 

For binary outcome and treatment variables, we apply probit regression to com-
pute 𝜇̂z(x) = Φ(xT

i
𝛽z,ML) . The coefficients �z are estimated in the subgroups with 

Zi ∈ {0, 1} . Differently to IPW, which exclusively relies on reweighing by the pro-
pensity score, the DR estimator remains consistent even if either p̂(x) or 𝜇̂z(x) is 
misspecified, as it makes use of both, the treatment and outcome models. If both are 
correctly specified, the DR estimator is semi-parametrically efficient, as discussed in 
Robins et al. (1994).

3.5 � Matching

Matching is based on assigning (matching) to each observation in one instrument 
state one or more units in the other instrument state with comparable covariates, in 
order to estimate the LATE based on the ratio of average differences in the outcome 
and the treatment across units with and without instrument in the matched sample. 
We implement multiple variants of two types of matching methods, pair and radius 
matching, to estimate �.

Pair (or one-to-one) matching with replacement (implying that an observation 
may be matched several times) as discussed in Rubin (1973) matches to each ref-
erence observation exactly the observation with the most similar covariates in the 
opposite instrument state. This implies the following weights in Eq. 5:

�i,j is the weight of the outcome (or treatment) of observation j in one instrument 
group (e.g., Zj = 0 ) when matched to unit i in the opposite group (e.g., Zi = 1 ), with 
Zk = 1 − Zi . �{⋅} is the indicator function, which is one if its argument is true and 
zero otherwise. f̂ (⋅) is a function of the difference in covariates between observa-
tions i and j. For example, the function could be defined as the difference in propen-
sity score estimates of observations i and j in the case of propensity score matching 
or as a distance metric w.r.t. the covariate values of i and j like the Euclidean dis-
tance in the case of matching directly on the covariates. In pair matching, all weights 
are zero except for the observation j with the smallest difference with reference 

(12)𝜃̂DR =

1

n

∑n

i=1

�
𝜇̂
y

1
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(13)𝜛i,j = �

{
|f̂ (xi, xj)| = min

k∶Zk∈{0,1}
|f̂ (xi, xk)|

}
.
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unit i, which receives a weight of one. For propensity score matching, we base the 
weights on the distance of the one-dimensional propensity score, while for direct 
matching, we use a normalized Euclidean distance metric, where differences in 
the covariates are weighed by the inverse of the variances of Xi . Because only one 
observation is matched to each unit irrespective of the sample size and the potential 
availability of several suitable matches with similar covariates, pair matching is not 
efficient (i.e., does not attain the smallest possible variance asymptotically). On the 
other hand, it is likely more robust to propensity score misspecification than IPW, in 
particular if the misspecified propensity score model is only a monotone transforma-
tion of the true model, see for instance Zhao (2008), Millimet and Tchernis (2009), 
Waernbaum (2012), and Huber et al. (2013).

Radius matching as discussed in Rosenbaum and Rubin (1985) and Dehejia 
and Wahba (1999) uses all matches with propensity scores within a predefined 
radius around the reference unit, which trades off some bias in order to increase 
efficiency (or precision). This approach expectedly works relatively well if sev-
eral comparable potential matches are available for a reference unit. In the sim-
ulations, we consider the radius matching algorithm of Lechner et  al. (2011), 
which performed well in Huber et  al. (2013), who also provide details on the 
radius matching-related weighting function ŵi in Eq. 5. The estimator combines 
distance-weighted radius matching, where units within the radius are weighted 
proportionally to the inverse of their distance to the reference unit, with a regres-
sion-based bias correction, see Rubin (1979) and Abadie and Imbens (2011). For 
the bias correction, we apply an OLS regression adjustment for Y and a probit 
regression adjustment for D to remove small and large sample bias due to mis-
matches. Horowitz et  al. (2014) provide a detailed description of the estimator. 
As in Lechner et  al. (2011), the radius size in our simulations is defined as a 
function of the distribution of distances between reference units and matches in 
pair matching. Namely, it is set to 3 times the maximum pair matching distance. 
Note that we include radius matching both with and without conditioning on the 
covariate ‘age at first birth’ in addition to the propensity score to account for this 
influential confounder.

3.6 � Parametric regression estimators

In our simulations, IPW, DR estimation, and matching are implemented with var-
ious degrees of flexibility in terms of parametric assumptions. We consider both 
semi-parametric versions based on parametric propensity score models, p̂(x)probit 
and p̂(x)CBPS , as well as fully non-parametric estimators using the non-paramet-
ric propensity scores p̂(x)lc (based on a local constant kernel regression) or when 
directly conditioning on Xi . For non-parametric DR estimation, also the condi-
tional means of the binary treatment and binary (or non-binary) outcome 𝜇̂z(x) are 
estimated by local constant (or local linear) kernel regressions.

In addition, we also consider several parametric treatment effect estima-
tors. The first parametric approach computes the LATE by differences in the 
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conditional mean functions 𝜇̂z(x) , which are estimated by OLS regressions for 
non-binary outcomes and by probit regressions for the treatment and binary out-
come variables (see Sect.  3.4). Formally, this regression-based LATE estimator 
corresponds to the following expression:

Furthermore, we apply two-stage least-squares (2SLS) estimation, which was also 
applied by Angrist and Evans (1998) for analysing the data our simulations are 
based on. 2SLS may be regarded as a benchmark method for instrumental variable 
estimation under the assumption of homogeneous treatment effects. Formally, the 
2SLS estimator is given by

where x̃i ∶= (1, xi,1,⋯ , xi,K) , z̃i ∶= (x̃i, zi) , and K denotes the number of covariates 
Xi . Note that in our just-identified settings with one treatment and one instrumen-
tal variable, the 2SLS estimator is numerically identical to the limited information 
maximum likelihood (LIML) estimator.

3.7 � Further non‑parametric estimators

We analyze the performance of three further non-parametric estimation methods 
that do not impose any functional form assumptions on the regression functions of 
the outcome or the treatment.

Firstly, we apply the generalized random forest (GRF) method, a non-parametric 
estimator introduced by Athey et al. (2019). GRF is a variant of random forest algo-
rithms, a machine learning approach, see for instance the discussion in Lee et  al. 
(2020) and citations therein. As described in Breiman (2001), random forests consist 
of averaging the predictions of many decision trees applied to different subsamples 
that are repeatedly drawn from the original data. In each of these samples, a decision 
tree partitions the space of Xi into a set of rectangles and computes the fitted value 
of Yi as the average outcome in each of the rectangles. The partitions are chosen in 
a data-driven way such that the predictive performance is maximized (e.g. by mini-
mizing the squared residuals based on the fitted values in each rectangle). A popular 
estimation algorithm for decision trees is CART (classification and regression tree), 
see for instance Chapter 9.2 in the textbook of Hastie et al. (2001).

GRF shares the core features of ‘traditional’ random forest algorithms like 
recursive partitioning, subsampling from the original data, and the random 
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selection of a subset of covariates at each partitioning step. However, as a meth-
odological twist, GRF uses a gradient-based partitioning scheme and a par-
ticular (so-called ‘honest’) sample splitting technique (within any of the drawn 
sub-samples) that avoids overfitting the predictive models to the specificities of 
the data, see Wager and Athey (2018). Using the conditional expectation func-
tion �z(Xi) in Sect. 3.4 and applying the GRF to estimate the latter for the out-
come and the treatment to obtain 𝜇̂Y

z,RF
(x) and 𝜇̂D

z,RF
(x) for z ∈ {0, 1} (where the 

subscript RF indicates the random forest approach), we compute the LATE as 
follows:

Algorithm 1 in Athey et al. (2019) provides more details on the GRF method. We 
estimate the conditional expectations in Eq.  16 using the default options of the 
causal_forest function of the grf package for the statistical software R, see (Tib-
shirani et al., 2020). Alternatively, we could have estimated the predictions 𝜇̂z,RF(x) 
by standard Breiman-type random forests (Breiman, 2001), which do, however, not 
safeguard against overfitting. In any case, it is important to note that our random 
forest approach making use of the Wald equation (16) is different to the IV-based 
causal forest suggested in Athey et al. (2019). The latter approach consists of first 
running random forests to obtain predictive models for the outcome, treatment, and 
instrument, respectively, as functions of covariates X and then residualizing the out-
come, treatment, and instrument, i.e., purging their associations with the covariates 
based on the predictive models. Finally, the residualized variables are used in an IV 
regression to estimate the LATE. This approach is particularly attractive in high-
dimensional contexts with many potential control variables in X, while our simula-
tion study considers a low-dimensional setting with a fixed number of covariates.

In addition to the random forest, we consider non-parametric kernel regres-
sion for estimating the conditional mean functions 𝜇̂z(x) defined in Sect. 3.4, see 
the subscript NP in the respective estimates in Eq. 17. For non-binary outcomes, 
𝜇̂
y

z,NP
(x) is estimated by local linear kernel regression, for the binary outcome 

and treatment variables, 𝜇̂y

z,NP
(x) and 𝜇̂d

z,NP
(x) are estimated by local constant ker-

nel regression.

Finally, we consider a (naive) LATE estimator that is based on the mean differ-
ences of the outcome and treatment variables, respectively, across instrument states, 
which in contrast to the other methods does not control for the covariates. Therefore, 
the consistency of this approach provided in Eq. 18 generally requires that the IV 
assumptions hold unconditionally, i.e., without conditioning on X.
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Table  1 summarizes the LATE estimators analysed in our simulation study along 
with the corresponding conditioning sets.

3.8 � Inference

Treatment effect estimation frequently relies on the non-parametric bootstrap for sta-
tistical inference (Efron, 1979; Horowitz, 2001). In an extensive simulation study 
with a conditionally exogenous treatment, Bodory et  al. (2020) find evidence that 
variance estimation of treatment effect estimators based on bootstrap procedures 
outperforms asymptotic variance approximations in terms of rejection and cover-
age probabilities in finite samples. These results even hold for matching estimators 
in small samples, despite the inconsistency of the non-parametric bootstrap for the 
(non-smooth) pair matching estimator, see the discussion in Abadie and Imbens 
(2008).

For this reason, we apply the non-parametric bootstrap to estimate the standard 
errors of all LATE estimators. This algorithm randomly draws B bootstrap samples 
of size n (the size of a simulation sample) with replacement out of each simulation 
sample and estimates the LATE in every draw. Denoting the B bootstrapped LATE 
estimators by 𝜃̂b , with b ∈ {1, 2,… ,B} , we estimate the standard error � of a LATE 
estimator by

(18)𝜃̂MEANS =

1
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.

Table 1   Point estimators

Estimators Conditioning sets

Propensity scores Covariates None

Probit cbps Local 
constant

Inverse probability weighting ipwprobit ipwcbps ipwlc

Doubly robust drprobit drcbps drlc

Pair matching pairmatchprobit pairmatchcbps pairmatchlc pairmatchx

Radius matching on propensity score radmatchprobit radmatchcbps radmatchlc

Radius matching on propensity score 
+ covariate

radmatchxprobit radmatchxcbps radmatchxlc

Parametric regressions reg
2SLS 2sls
Random forests randforest
Non-parametric regressions regkernel

Mean differences (ignoring covari-
ates)

means
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In line with Bodory et al. (2020), we set B = 199 . Bootstrapping naturally accounts 
for heteroscedasticity as well as uncertainty due to trimming of influential observa-
tions and propensity score estimation.

4 � Simulation design with empirical data

Simulations often rely on randomly generated data drawn from a probability dis-
tribution that is selected by the researcher. However, the data generating processes 
(DGPs) of such simulations may appear somewhat arbitrary in the sense that they 
might be far from reflecting typical associations between variables in empirical 
data. To improve upon this caveat, Huber et al. (2013) suggest a simulation design 
based on empirical data, also called Empirical Monte Carlo Study (EMCS), an idea 
that has been subsequently applied in several papers, see for instance Frölich et al. 
(2017), Huber et al. (2016), and Bodory et al. (2020), among others. Briefly, the idea 
of an EMCS is to randomly draw small samples from large real data sets while rely-
ing as much as possible on the empirical associations between the variables when 
generating the simulation designs.

Our study follows this EMCS approach to evaluate the properties of various IV 
estimators of the LATE, with the aim that the simulation designs are more closely 
linked to real world data. However, we point out that also in an EMCS, several 
important choices about the simulation features are to be made by the researcher 
such that the DGPs are not fully determined by the data, see the caveats raised by 
Advani and Sloczyński (2013). The remainder of this section describes the imple-
mentation of our EMCS. We first present the empirical labor market data underly-
ing our simulations and then provide the steps for generating the various simulation 
designs.

4.1 � Database

Our simulations are based on empirical data analysed in Angrist and Evans (1998), 
who aim at exploiting exogenous variation in family size to evaluate the treatment 
effect of fertility, defined as having at least three vs. two children, on female labor 
supply. This database is well suited to analyze the finite sample properties of IV 
estimators by means of an EMCS for several reasons. First, the data set is large, as 
it comprises 394840 observations and therefore easily allows one to draw many dif-
ferent random subsamples. Furthermore, the data contains a strong instrument that 
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.
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importantly affects fertility, namely twins at second birth.1 Finally, it provides demo-
graphic information on the mothers, which may be used as covariates to control for 
potential confounders of the instrument and the outcome.

Coming from the 1980 Census Public Use Micro Samples (PUMS), the data set 
contains information on young mothers aged 21 to 35, all of which gave birth to at 
least two children. Our analysis considers two different outcomes, the number of 
weeks worked within one year (with 43% zeros) and an indicator for being employed 
at all in that year. The binary treatment variable indicates if a mother has more than 
two kids (treatment is one) or two kids (treatment is zero). The binary instrumental 
variable is one if a mother gave birth to twins at second birth and zero otherwise. 
The covariates considered in our simulation include mother’s age, mother’s age at 
first birth, race, and quarter of birth.

Table 2 reports descriptive statistics of the database, by treatment indicator (more 
than two kids) and the instrument (twins at second birth). The upper part presents 
descriptives for the two labor market outcomes ‘weeks worked’ (in weeks) and 
‘worked for pay’ (binary). There are large differences between the outcomes of 
the treated and non-treated in terms of the standardized difference statistic as sug-
gested by Rosenbaum and Rubin (1985) (the literature considers values around 20 
and above as severely unbalanced). The line underneath the outcomes in Table  2 
gives details on the treatment variable. Not surprisingly, the treatment fully com-
plies with the instrument if the latter equals one, because all mothers with twins at 
second birth ( Zi = 1 ) necessarily have more than two children ( Di = 1 ). The subse-
quent row of Table 2 provides information on the instrument. It reveals that 2% of 
women with at least three children have twins at their second birth. Considering the 
covariates, the standardized differences show that mothers’ characteristics are partly 
unbalanced across treatment states, whereas they are well balanced across instru-
ment states, in line with a randomly assigned instrument. The randomness of the 
instrument is also supported by the pseudo-R2 statistic with a value of 0.2% when 
regressing the instrument on the covariates.

4.2 � Simulation designs

Data generating processes (DGPs) may differ in (infinitely) many dimensions. 
We select ten practically relevant dimensions for varying the specifications of our 
simulation models. These dimensions include: effect homogeneity vs. heterogene-
ity, randomness vs. non-randomness of the instrument, varying levels of instrument 
strength, binary vs. non-binary outcome distributions, and different sample sizes. 
Summary statistics of all DPGs are presented in Table 3.

We start by assuming homogeneous treatment effects with a randomly assigned 
instrument and the empirically observed instrument strength. To evaluate the per-
formance of the estimators under these conditions, we define a new population 

1  There may be cases where the randomness of twin births is violated, see Farbmacher et al. (2018) for 
a discussion on dizygotic twinning. In our simulation study, we artificially generate random and non-
random instrument assignments.
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for which the true LATE is equal to zero. To this end, we drop all 3380 observa-
tions from the database who receive the instrument ( Zi = 1 ). Among the remaining 
391460 observations with instrument state Zi = 0 (no twins at second birth), there is 
no reduced form effect of the instrument on the outcome or first stage effect of the 
instrument on the treatment, such that there exists no LATE. After that, we create a 
pseudo-instrument and artificially assign Zi = 1 to those who are similar to the 3380 
discarded observations in terms of observed characteristics. This similarity is deter-
mined by 1 : M matching on the covariates without replacement. By setting M = 58 , 
we assign Zi = 1 to approximately half of the observations, see column 4 of Table 3. 
In addition, we set the treatment state of everyone with Zi = 1 to Di = 1 (as in the 
original database) to maintain the empirically observed instrument strength. Finally, 
we draw small samples from our new population to compare the finite sample prop-
erties of alternative LATE estimators.

To simulate specifications with a weaker instrument, we reduce the first stage 
effect by lowering the impact of Zi on Di . Instead of setting all observations with 
Zi = 1 to Di = 1 , we change the treatment status from zero to one only for those with 
Zi = 1 for which the condition Di = 1(ui > 1.25) holds. 1(⋅) denotes the indicator 
function which is one if its argument is true, otherwise it is zero, and ui is a standard 
normally distributed random variable. Column 7 of Table 3 displays the first stage 
coefficients for the different DGPs.

The randomness of the instrument implies that the covariates are balanced across 
groups. To mimic a non-random assignment of the instrument, we increase the mag-
nitude of instrument selectivity in the following way. We first estimate the propen-
sity score p̂(1.5Xi)

probit (see Eq.  6) using the original database. Then, we change 
the instrument status Zi from zero to one for observations with characteristics simi-
lar to the 3380 observations dropped from the original database (with Zi = 1 ). We 
obtain such similar matches by 1  : M matching on the estimated propensity score 
p̂(1.5Xi)

probit , with M = 22 . Next, we assign Di = 1 to all observations with Zi = 1 . 
Based on this modified data set, we increase the selection into the instrument by 
discarding the best matches for the newly created observations with Zi = 1 among 
observation with Zi = 0 . To find the best matches to be discarded, we apply 1 : M 
matching on a newly estimated propensity score p̂(Xi)

probit (with the modified instru-
ment assignments), where M = 3 . The selectivity of the instrument is provided in 
columns 5 and 6 in Table 3.

To model a scenario with non-constant treatment effects, we introduce effect 
heterogeneity with respect to age and race as follows. We add to the existing con-
trol variables squared and cubic terms of both age variables (‘age’ and ‘age at first 
birth’) and interact the unmodified age variables with the indicator variable for Afri-
can Americans. This new set of control variables for settings with effect heterogene-
ity is denoted by Xhet

i
 for each unit i. We generate Yi and Di in each simulation sam-

ple according to the rules Yi = Yd
i,1
Zi + Yd

i,0
(1 − Zi) and Di = Di,1Zi + Di,1(1 − Zi) . 

To this end, we compute the non-binary potential outcomes based on the equation 
Ydi,z = Xhet

i �̂OLS + �̂vi , where vi is a standard normally distributed random variable. 𝛽OLS and 
�̂ are the coefficients and residual standard deviation of OLS regressions in subsam-
ples by instrument state Zi ∈ {0, 1} of our new population. The binary potential 
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outcomes are computed based on Yd
i,z
= 1(Xhet

i
𝛽probit + vi > 0) , where 1(⋅) is the indi-

cator function and 𝛽probit are the coefficients estimated from probit models in sub-
samples by instrument state of our new population. The potential treatments Di,1 are 
set to one, whereas Di,0 is computed analogously to Yd

i,z
 in the binary outcome case.

We combine these variations in the DGPs with respect to effect heterogeneity, 
instrument strength, and instrument selectivity with smaller and larger sample sizes 
of 1000 and 2000, respectively, and with binary and non-binary outcome distribu-
tions. We run 2000 simulations for the smaller and 1000 simulations for the larger 
samples. Table 3 presents summary statistics of the DGPs considered in our simula-
tion study.

5 � Results

This section presents results about the finite sample performance of various LATE 
estimators across different DGPs. We rank the estimators by their coverage rates, 
which are defined as the share of simulations in which the true LATE is included 
in the 95% confidence interval of the respective LATE estimator. We recall that the 
standard errors for computing those confidence intervals come from the non-para-
metric bootstrap, as discussed in Sect. 3.8. For the sake of brevity, we subsequently 
only discuss a selection of our results, which conveys the main message of our find-
ings. In the Appendix, we include more detailed results.

Table 4 provides the average coverage rates and lengths of confidence intervals 
across all DGPs of any parametric, semi-parametric, or non-parametric LATE esti-
mator which performs best (in terms of coverage) in at least one of the ten DGPs 
discussed in Sect.  4.2. We find that only the non-parametric random forest-based 
LATE estimator described in Eq.  16 attains exactly the nominal coverage size of 

Table 4   Coverage rates and 
intervals

Notes: ‘diff’ indicates the difference to the left best performer in per-
centage points (pp) or in percent (%)

Point estimators Coverage rates diff
(pp)

Confidence 
intervals

diff
(%)

randforest 95.0 0.0 228.8 8.0
radmatchprobit 95.1 0.1 356.5 68.3

regkernel 94.8 0.2 329.4 55.5
pairmatchx 94.6 0.4 265.6 25.4
ipwcbps 95.5 0.5 290.4 37.1

radmatchxcbps 94.4 0.6 284.5 34.3

radmatchxprobit 94.1 0.9 265.6 25.4
reg 96.0 1.0 211.8 0.0
2sls 96.0 1.0 260.9 23.2
drprobit 96.0 1.0 257.5 21.6
means 90.5 4.5 234.5 10.7
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95% on average. Furthermore, its average length of confidence intervals is the sec-
ond shortest among the estimators analyzed in Table 4, 8% larger than the average 
interval of the parametric regression estimator, the nominal size of which is 96%. 
Conditional on obtaining a decent coverage, a short confidence interval is desirable 
in terms of precision, as it implies a lower estimation uncertainty. Three out of the 
four LATE estimators whose average coverage rates come closest to 95% are non-
parametric, with those of non-parametric kernel regression (94.8%) and pair match-
ing on the covariates (94.6%) having a minor under-coverage. Also semi-parametric 
radius matching on the propensity score performs decent in terms of coverage rates, 
with the probit-based version attaining an average rate of 95.1%, and two further 
versions achieving 94.4% and 94.1%, respectively. Furthermore, IPW using the 
CBPS method for propensity score estimation reaches a satisfactory average cover-
age rate, too, namely 95.5%.

In terms of average coverage, one might argue that all estimators in Table 4 but 
the mean differences estimator (which ignores covariates) perform decently, with 
coverage distortions amounting to at most one percentage point among methods 
controlling for covariates. In terms of the average length of the confidence intervals, 
however, parametric regression and the random forest clearly outperform radius 
matching, kernel regression, pair matching, IPW, 2SLS, and DR estimation, whose 
intervals are substantially longer (by 22–68%). According to the results in Table 4, 
the random forest-based LATE estimator is the preferred choice when paying rela-
tively more attention to coverage (and sacrificing some precision compared to para-
metric regression), while parametric regression is the preferred choice for maximiz-
ing precision (when accepting average coverage distortions of 1 percentage point).

The coverage accuracy of the different estimation methods is related to the bias 
and variance of the LATE estimators, as well as the bias of the bootstrap-based 

Table 5   Average absolute biases, standard deviations, and root mean square errors

Notes: ‘bias effect’ denotes the absolute bias from the true treatment effect, ‘sd’ is the standard deviation 
of the estimator, ‘rmse’ stands for root mean squared error, and ‘bias se’ indicates the median bias of the 
estimated bootstrap standard error. ‘diff’ indicates the difference to the left best performer in percent (%)

Point
estimators

Bias
effect

diff
(%)

sd diff
(%)

rmse diff
(%)

Bias
se

diff
(%)

randforest 0.6 0.0 8.0 14.1 8.0 11.9 1.7 0.0
radmatchprobit 1.3 100.1 12.0 70.0 12.0 67.3 10.8 540.7

regkernel 1.4 124.8 7.0 0.0 7.2 0.0 4.2 149.3
pairmatchx 0.8 21.4 9.9 40.3 9.9 37.6 5.8 247.4
ipwcbps 1.2 85.4 7.4 5.4 7.5 4.7 4.4 162.4

radmatchxcbps 1.1 76.9 8.6 22.9 8.7 21.5 4.1 142.8

radmatchxprobit 1.2 86.4 9.7 38.1 9.8 36.4 3.4 100.1
reg 0.7 10.1 7.3 3.7 7.3 1.9 4.0 140.0
2sls 0.7 11.3 7.9 12.7 7.9 10.6 3.8 124.0
drprobit 0.8 31.9 7.6 8.6 7.7 6.9 3.9 133.3
means 3.4 440.1 7.9 11.7 8.8 21.9 5.6 235.3
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standard error. Table 5 provides details on these statistics. We find that two non-par-
ametric methods perform best when considering the bias of LATE estimation, the 
standard deviation, and the mean squared error (i.e., the sum of the squared bias and 
the variance), as well as the bias of the standard error (relative to a LATE estima-
tor’s true standard deviation). The random forest-based LATE estimator has on aver-
age the smallest deviation from the true LATE, with its absolute bias amounting to 
0.6. The non-parametric kernel regression estimator has the smallest average stand-
ard deviation among the estimators in Table 5, amounting to 7.0. It also performs 
best in terms of root mean squared errors across DGPs with an average value of 7.2. 
When considering the median bias of the bootstrap standard errors relative to the 
true standard deviations of the respective LATE estimators, the inference method 
of the random forest-based LATE estimator performs best, with an average median 
bias of 1.7. The averages of the median biases of its competitors are on average at 
least 100% larger.

Our findings suggest that the coverage accuracy is mainly driven by a LATE 
estimator’s bias. This is for instance the reason why the mean differences estima-
tor (which ignores covariates), whose bias exceeds that of the random forest-based 
LATE estimator by 440.1%, shows a relatively poor coverage in Table 4. Also the 
OLS estimator performs poorly in terms of coverage, due to its high bias, while 
its variance is small (results not presented but available on request). The perfor-
mance of all LATE estimators by DGP is presented in Section A.3 of the Appendix. 
Tables 18–49 provide details on the coverage rates, biases, standard deviations, and 
root mean squared errors.

Table 6 lists the best performing LATE estimators in terms of average coverage, 
separately for each of the ten DGP features (see the rows) as well as for parametric, 
semi-parametric, and non-parametric methods (see the columns). The in terms of 
average coverage best performing LATE estimator given a specific DGP feature is 

Table 6   Best performing estimators in terms of coverage rates

Notes: The in terms of average coverage best performing LATE estimator given a specific DGP feature is 
shown in bold print and its average coverage is reported in the last column

DGP feature Point estimator Coverage
(best est.)

Parametric Semi-parametric Non-parametric

Effect homogeneity 2sls radmatchxprobit means 96.0

Effect heterogeneity 2sls drprobit randforest 94.9
Standard selection reg radmatchxcbps randforest 95.0
Strong selection 2sls ipwcbps randforest 95.1
Weaker first stage reg drprobit randforest 94.8

Strong first stage reg radmatchxprobit pairmatchx 95.9

Non-binary outcome reg radmatchprobit randforest 95.0

Binary outcome 2sls radmatchprobit randforest 95.1

Small sample size reg radmatchprobit regkernel 94.8
Larger sample size 2sls radmatchprobit regkernel 94.9
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shown in bold print and its average coverage is reported in the last column of the 
table. The results suggest that semi-parametric and non-parametric estimators come 
closest to the nominal coverage rate of 95% and for any of these best performing 
estimators, the size distortion is at most one percentage point. The radius match-
ing algorithm of Lechner et al. (2011) (with or without controlling for a covariate 
in addition to the propensity score) most frequently performs best both among the 
semi-parametric LATE estimators (in 70% of cases) and overall (in 50% of cases). 
Radius matching achieves the best average coverage in settings with effect homo-
geneity, a strong instrument, non-binary and binary outcomes, and under a larger 
sample size. For specifications with standard and strong selection into the instru-
ment, the non-parametric random forest-based estimator is closest to the nominal 
size. Considering scenarios with effect heterogeneity, a weaker instrument, and a 
small sample size, the best performers are LATE estimators based on 2SLS, DR, 
and non-parametric regression, respectively.

The performance of the best performing LATE estimators across the ten DGP 
features is presented in Section A.2 of the Appendix. Tables  8–17 provide infor-
mation on the average coverage rates, biases, standard deviations, and root mean 
squared errors. When taking precision into account, the random forest-based 
approach appears very competitive relative to other semi- or non-parametric meth-
ods like radius matching or IPW, as it tends to have substantially shorter confidence 
intervals while still attaining very decent coverage rates (even under DGP features 
where other estimators slightly dominate in terms of coverage).

6 � Conclusion

This paper presented a simulation study based on empirical labor market data to 
investigate the finite sample properties of a range of point estimators of the local 
average treatment effect (LATE) when controlling for a fixed (and low-dimensional) 
set of covariates. The structure of these estimators is inspired by the Wald estimator, 
consisting of the ratio of the estimated reduced form effect of the instrument on the 
outcome and the estimated first stage effect of the instrument on the treatment. Fur-
thermore, we applied the non-parametric bootstrap to estimate the standard errors 
and the 95% confidence intervals of the LATE estimators. We find that among the 
LATE estimators considered, non-parametric kernel regression has the smallest 
average root mean squared error across the different simulations, closely followed 
by the random forest-based approach, which has the lowest average absolute bias. 
The random forest method also performs very competitive in terms of average cov-
erage rates, while at the same time having relatively narrow confidence intervals, 
which is attractive in terms of precision. Specific versions of semi-parametric radius 
matching on the propensity score, nonparametric kernel regression, inverse prob-
ability weighting, and pair matching on the covariates perform decently in terms of 
coverage, too, but have substantially wider confidence intervals. Parametric regres-
sion based on the Wald estimator is most precise, while also having decent cover-
age (albeit less so than the random forest method). Overall, the random forest-based 
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estimator seems to be the (or among the) most attractive method(s) in terms of a 
combined assessment of coverage, precision, and model flexibility.

While our Monte Carlo study is quite comprehensive in terms of simulation 
designs considered (with varying treatment effect heterogeneity, instrument selec-
tivity and strength, outcome distributions, and sample sizes), we point out that our 
results do not necessarily generalize to simulation or empirical frameworks that are 
very different from the scenarios considered in this study. One interesting domain 
future simulation studies might want to consider are high-dimensional settings or 
‘big data’ contexts in which many potential covariates are available as control vari-
ables. Such simulation designs would facilitate the assessment of LATE estima-
tors that are particularly tailored to such high-dimensional scenarios, by combin-
ing instrument-based causal analysis with machine learning methods for selecting 
(important) control variables in a data-driven way. This concerns in particular so-
called (Neyman, 1959)-orthogonal estimators, which are robust to moderate biases 
in the estimation of instrument propensity scores and conditional mean outcomes. 
Examples for such methods are double/debiased machine learning (Chernozhukov 
et al., 2018), causal forest algorithms as suggested by Athey et al. (2019) and Lech-
ner and Mareckova (2022), or R-learning (Nie & Wager, 2020), which have not been 
considered in the low-dimensional context of this study.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s10614-​023-​10507-y.

Author Contributions  All authors contributed to the conception and design of this simulation study.

Funding  Open access funding provided by University of St.Gallen. The authors declare that no funds, 
grants, or other support were received during the preparation of this manuscript.

Data availability   The research idea was developed by Michael Lechner. Data processing and the imple-
mentation of the simulations were performed by Hugo Bodory and Martin Huber.

Declarations 

Conflict of interest  The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval   The first draft of the manuscript was written by Hugo Bodory and all authors contributed 
to and approved the final version of the manuscript.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

https://doi.org/10.1007/s10614-023-10507-y
https://doi.org/10.1007/s10614-023-10507-y
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2076	 H. Bodory et al.

References

Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. Jour-
nal of Econometrics, 113, 231–263.

Abadie, A., & Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators. Economet-
rica, 76, 1537–1557.

Abadie, A., & Imbens, G. W. (2011). Bias-corrected matching estimators for average treatment effects. 
Journal of Business and Economic Statistics, 29, 1–11.

Advani, A., & Sloczyński, T. (2013). Mostly harmless simulations? On the internal validity of empirical 
Monte Carlo studies. IZA Discussion Paper No. 7874.

Angrist, J., & Evans, W. (1998). Children and their parents labor supply: Evidence from exogeneous vari-
ation in family size. American Economic Review, 88, 450–477.

Angrist, J., Imbens, G., & Rubin, D. (1996). Identification of causal effects using instrumental variables. 
Journal of American Statistical Association, 91, 444–472.

Athey, S., Tibshirani, J., & Wager, S. (2019). Generalized random forests. The Annals of Statistics, 47(2), 
1148–1178.

Bodory, H., Camponovo, L., Huber, M., & Lechner, M. (2020). The finite sample performance of infer-
ence methods for propensity score matching and weighting estimators. Journal of Business & Eco-
nomic Statistics, 38(1), 183–200.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Busso, M., DiNardo, J., & McCrary, J. (2014). New evidence on the finite sample properties of propen-

sity score matching and reweighting estimators. Review of Economics and Statistics, 96, 885–897.
Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). 

Double/debiased machine learning for treatment and structural parameters. The Econometrics Jour-
nal, 21(1), C1–C68.

Dehejia, R. H., & Wahba, S. (1999). Causal effects in non-experimental studies: Reevaluating the evalua-
tion of training programmes. Journal of American Statistical Association, 94, 1053–1062.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1–26.
Farbmacher, H., Guber, R., & Vikström, J. (2018). Increasing the credibility of the Twin birth instrument. 

Journal of Applied Econometrics, 33(3), 457–472.
Frölich, M. (2004). Finite sample properties of propensity-score matching and weighting estimators. The 

Review of Economics and Statistics, 86, 77–90.
Frölich, M. (2007). Nonparametric IV estimation of local average treatment effects with covariates. Jour-

nal of Econometrics, 139(1), 35–75.
Frölich, M., Huber, M., & Wiesenfarth, M. (2017). The finite sample performance of semi- and non-

parametric estimators for treatment effects and policy evaluation. Computational Statistics and Data 
Analysis, 115, 91–102.

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average 
treatment effects. Econometrica, 66(2), 315–331.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning. Springer Series in 
Statistics. Springer New York Inc.,.

Heiler, P. (2022). Efficient covariate balancing for the local average treatment effect. Journal of Business 
& Economic Statistics, 40(4), 1569–1582. https://​doi.​org/​10.​1080/​07350​015.​2021.​19460​67

Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average treatment effects using 
the estimated propensity score. Econometrica, 71, 1161–1189.

Horowitz, J. L. (2001). The Bootstrap. In J. J. Heckman & E. Learer (Eds.), Handbook of Econometrics 
(pp. 3159–3228). North-Holland.

Huber, M., Lechner, M., & Mellace, G. (2016). The finite sample performance of estimators for media-
tion analysis under sequential conditional independence. Journal of Business & Economic Statistics, 
34(1), 139–160.

Huber, M., Lechner, M., Steinmayr, A. (2014). Radius matching on the propensity score with bias adjust-
ment: Tuning parameters and finite sample behaviour. forthcoming in Empirical Economics.

Huber, M., Lechner, M., & Wunsch, C. (2013). The performance of estimators based on the propensity 
score. Journal of Econometrics, 175, 1–21.

Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), 76, 243–263.

https://doi.org/10.1080/07350015.2021.1946067


2077The Finite Sample Performance of Instrumental Variable‑Based…

Imbens, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review. 
The Review of Economics and Statistics, 86, 4–29.

Imbens, G. W., & Angrist, J. (1994). Identification and estimation of local average treatment effects. 
Econometrica, 62, 467–475.

Imbens, G. W., & Wooldridge, J. M. (2009). Recent developments in the econometrics of program evalu-
ation. Journal of Economic Literature, 47, 5–86.

Khan, S., & Tamer, E. (2010). Irregular identification, support conditions, and inverse weight estimation. 
Econometrica, 78, 2021–2042.

Lechner, M., & Mareckova, J. (2022). “Modified Causal Forest,” working paper, University of St. Gallen, 
School of Economics and Political Science.

Lechner, M., Miquel, R., & Wunsch, C. (2011). Long-run effects of public sector sponsored training in 
West Germany. Journal of the European Economic Association, 9, 742–784.

Lechner, M., & Strittmatter, A. (2019). Practical procedures to deal with common support problems in 
matching estimation. Econometric Reviews, 38(2), 193–207.

Lee, T.-H., Ullah, A., & Wang, R. (2020). Bootstrap aggregating and random forest (pp. 389–429). 
Springer.

Li, Q., & Racine, J. S. (2006). Nonparametric econometrics: Theory and practice, no. 8355 in economics 
books. Princeton University Press.

Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity score in estima-
tion of causal treatment effects: a comparative study. Statistics in Medicine, 23, 2937–2960.

Millimet, D., & Tchernis, R. (2009). On the specification of propensity scores, with applications to the 
analysis of trade policies. Journal of Business & Economic Statistics, 27, 297–315.

Neyman, J. (1959). Optimal asymptotic tests of composite statistical hypotheses (pp. 416–444). Wiley.
Nie, X., & Wager, S. (2020). Quasi-oracle estimation of heterogeneous treatment effects. Biometrika, 

108, 299–319.
Robins, J. M., Rotnitzky, A., & Zhao, L. P. (1994). Estimation of regression coefficients when some 

regressors are not always observed. Journal of the American Statistical Association, 89, 846–866.
Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in observational stud-

ies for causal effects. Biometrika, 70(1), 41–55.
Rosenbaum, P. R., & Rubin, D. B. (1985). Constructing a control group using multivariate matched sam-

pling methods that incorporate the propensity score. The American Statistician, 39, 33–38.
Rubin, D. B. (1973). Matching to remove bias in observational studies. Biometrics, 29, 159–183.
Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. 

Journal of Educational Psychology, 66, 688–701.
Rubin, D. B. (1979). Using multivariate matched sampling and regression adjustment to control bias in 

observational studies. Journal of the American Statistical Association, 74, 318–328.
Smith, J., & Todd, P. (2005). Does matching overcome LaLonde’s critique of nonexperimental estima-

tors? Journal of Econometrics, 125, 305–353.
Tan, Z. (2006). Regression and weighting methods for causal inference using instrumental variables. 

Journal of the American Statistical Association, 101, 1607–1618.
Tibshirani, J., Athey, S., Friedberg, R., Hadad, V., Hirshberg, D., Miner, L., Sverdrup, E., Wager, S., & 

Wright, M. (2020). GRF: Generalized Random ForestsR package version 4.0.2.
Waernbaum, I. (2012). Model misspecification and robustness in causal inference: Comparing matching 

with doubly robust estimation. Statistics in Medicine, 31, 1572–1581.
Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random 

forests. Journal of the American Statistical Association, 113(523), 1228–1242.
Zhao, Z. (2004). Using matching to estimate treatment effects: Data requirements, matching metrics, and 

Monte Carlo evidence. Review of Economics and Statistics, 86, 91–107.
Zhao, Z. (2008). Sensitivity of propensity score methods to the specifications. Economics Letters, 98, 

309–319.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.



2078	 H. Bodory et al.

Authors and Affiliations

Hugo Bodory1 · Martin Huber2   · Michael Lechner3,4,5,6,7

 *	 Martin Huber 
	 martin.huber@unifr.ch

	 Hugo Bodory 
	 hugo.bodory@unisg.ch

	 Michael Lechner 
	 michael.lechner@unisg.ch

1	 Vice-President’s Board (Research & Faculty), University of St. Gallen, Varnbüelstrasse 14, 
9000 St. Gallen, Switzerland

2	 Department of Economics, University of Fribourg, Bd. de Pérolles 90, 1700 Fribourg, 
Switzerland

3	 Department of Economics, University of St. Gallen, Varnbüelstrasse 14, 9000 St. Gallen, 
Switzerland

4	 CEPR and PSI, London, UK
5	 CESIfo, Munich, Germany
6	 IAB, Nuremberg, Germany
7	 IZA, Bonn, Germany

http://orcid.org/0000-0002-8590-9402

	The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates
	Abstract
	1 Introduction
	2 Identification of the LATE
	3 Estimation and inference
	3.1 Estimation
	3.2 Instrument propensity scores
	3.3 Inverse probability weighting (IPW)
	3.4 Doubly robust estimation
	3.5 Matching
	3.6 Parametric regression estimators
	3.7 Further non-parametric estimators
	3.8 Inference

	4 Simulation design with empirical data
	4.1 Database
	4.2 Simulation designs

	5 Results
	6 Conclusion
	References




