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Abstract
We prove a-posteriori error-estimates for reduced-order modeling of quasilinear par-
abolic PDEs with non-monotone nonlinearity. We consider the solution of a semi-
discrete in space equation as reference, and therefore incorporate reduced basis-, 
empirical interpolation-, and time-discretization-errors in our consideration. Numer-
ical experiments illustrate our results.

Keywords Quasilinear parabolic partial differential equation · Reduced basis · 
Proper Orthogonal Decomposition · A-posteriori error

Mathematics Subject Classification 35K59 · 65M15

1 Introduction

In the present paper we are concerned with a-posteriori error estimation for model 
order reduction applied to a semi-discrete in space quasilinear parabolic partial dif-
ferential equation (PDE) with non-monotone nonlinearity. The PDE appears for 
instance as state equation in the optimal control problems from [9, 35], and is used 
in the modeling of heat conduction, when the thermal conductivity of the material 
under consideration is temperature-dependent, cf. e.g. [48, 49, 58].

The numerical treatment of evolution equations and related problems is challeng-
ing. For instance, the discretization of associated optimal control problems leads to 
large-scale optimization problems that are highly expensive to solve. This is espe-
cially true for nonlinear equations. Therefore, model order reduction-techniques 
(MOR) play an important role in this context and other many-query scenarios, i.e. 
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in situations where the same equation has to be solved repeatedly for different right 
hand sides or parameters. The aim of MOR is to replace the high-dimensional origi-
nal model by a suitable model with less degrees of freedom, the so-called reduced-
order model. A prominent method of MOR for parabolic PDEs is the so-called 
Proper Orthogonal Decomposition (POD) method, [64]. This approach uses so-
called snapshots of the dynamical system to construct a low-dimensional subspace 
of e.g. a high-dimensional finite-element space. More generally speaking, projection 
of a high-dimensional dynamical or parametric system onto smaller dimensional 
spaces leads to so-called reduced basis methods (RB), see e.g. [31]. These subspaces 
need to be in some sense capable of expressing the original trajectory of the system 
sufficiently well. The question of estimating the model order reduction error arises 
naturally and has been subject to intensive research. We refer e.g. to [52] and the 
references therein for RB-methods in PDE-constrained optimization in general, and 
to [53] or the survey [29] for POD in particular.

Since there is a huge amount of literature about POD/RB-MOR, not just for 
uncontrolled equations but even in the context of PDE-constrained optimization, we 
have to restrict ourselves to an incomplete literature overview. POD-error-estimates 
have been obtained in the a-priori regime for linear parabolic equations in [39], and 
for certain nonlinear equations e.g. in [12, 40, 59]. For recently obtained RB-a-pos-
teriori error-estimates for quasilinear equations with monotone nonlinearity related 
to magneto(quasi)statics, both elliptic and parabolic, we refer to [33, 34]. For a gen-
eral nonlinear parabolic PDE including a-posteriori error estimation on the time-dis-
crete level we exemplarily cite [19], and refer to its introduction for an overview over 
further literature. Moreover, let us mention some results related to optimal control: 
A-posteriori POD-errors for linear-quadratic optimal control problems have been 
derived in [63]. The technique has been extended to nonlinear problems in [38] and 
problems with mixed control-state constraints in [28]. POD-a-posteriori error-esti-
mates for an optimal control problem with semilinear state equation with monotone 
nonlinearity have been discussed in [53]. Appropriate coupling between numerical 
optimization and MOR is an active area of research, see e.g. [26]. For approaches 
based on a-posteriori error estimation and trust-region type-algorithms, respectively, 
we refer to [7, 57], and in particular [52, 53]. A different method, so-called optimal-
ity system POD, has been proposed in [41]. A related aspect, the interplay between 
POD and discretization, is under consideration in e.g. [21–23]. Balancing of dis-
cretization- and POD-errors for an optimal control problem is addressed in [27]. 
Finally, we exemplarily cite [2] and [37] for RB/POD-MOR applied to robust and 
multiobjective optimization, respectively.

For quasilinear parabolic PDEs or related optimal control problems, even the 
analysis of the full-order model is less complete. We mention [30, 50] for the analy-
sis of the equation itself based on the functional analytic tool of nonautonomous 
maximal parabolic regularity [5], and refer to [9, 10] for first- and second-order 
optimality conditions of related optimal control problems. For additional state con-
straints we refer to [36]. A quasilinear version of the so-called thermistor problem 
has been addressed in [48, 49], and convergence of the SQP method applied to the 
model problem from [9] has been proven in [35]. For earlier literature on quasilin-
ear parabolic optimal control problems, and optimal control of quasilinear elliptic 
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PDEs with refer to the introductions of [9, 10]. Finite element discretization error-
estimates for the state equation from [10] are obtained in [11]. Having in mind a 
possible coupling of numerical optimization and MOR à la [52, 53], we start in the 
present paper with deriving a-posteriori reduced basis errors for the correspond-
ing state equation. Herein, the presence of a non-monotone nonlinearity is the main 
difference to earlier publications concerned with RB-a-posteriori error-estimates 
for nonlinear PDEs [33, 34, 53], and also poses the main difficulty in our analysis. 
Moreover, compared to [19, 33, 52] also time-discretization errors are included in 
our estimates which may prevent the choice of unnecessarily accurate reduced-mod-
els below the time-discretization-error in practice. Nevertheless, our reference solu-
tion is semi-discrete (in space), i.e. we fix a spatial discretization and do not address 
errors arising from this.

The paper is organized as follows: We start by introducing the model problem 
and the underlying assumptions in Sect. 2. Further, we provide a short overview over 
the results obtained on this equation so far, and introduce its semi-discretization (in 
space), and the reduced-order counterpart thereof. Moreover, we provide a sketchy 
outlook how the results subsequently obtained might be applied in the context of 
PDE-constrained optimization. In Sect. 3 we prove RB-a-posteriori error-estimates 
for a reduced-order trajectory with certain time regularity. Depending on how much 
regularity of the semi-discrete (in space) solution we are willing to exploit, we pre-
sent two different approaches to obtain a-posteriori error-estimates. In case that 
hyperreduction of the nonlinearity is done by empirical interpolation (EIM) we pro-
vide estimates that also include the additional EIM-error in Sect. 4. Finally, we illus-
trate our results by numerical experiments in Sect. 5.

Notation Throughout the paper we follow the conventions of [9] and use standard 
notation for (Bochner-)Lebesgue, (Bochner-)Sobolev-, and Hölder-spaces. By sub-
script D we denote incorporation of certain homogeneous Dirichlet boundary condi-
tions. If the underlying spatial domain becomes clear from the context we will omit 
it, i.e. we write H1

D
 instead of H1

D
(Ω) for instance.

2  Model problem, assumptions, and RB‑MOR

In this section we first introduce the continuous model equation with non-monotone 
nonlinearity, and recall some regularity results under appropriate assumptions. Sec-
ond, we state the semi-discrete (in space) version and its RB-reduction. Finally, we 
briefly explain how the results obtained in this paper might be applied to an optimal 
control problem associated to the model equation.

2.1  Model problem, assumptions, and regularity results

Let us start with defining the setting for the following quasilinear parabolic PDE:
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The nonlinear operator A  is defined by

whenever u∶ I × Ω → ℝ is measurable. Boundary conditions are incorporated in 
the right hand side f and the respective function spaces. The precise assumptions 
required for obtaining a well-posed problem are stated below.

Before going into the detailed assumptions, we would like to comment briefly on 
the non-monotone structure of the nonlinearity in (Eq). The main difficulty as well 
as the main novelty of this paper arise from this fact. Recall that a nonlinear operator 
N∶ X → X∗ on a Banach space X is called monotone if

and strongly monotone if there exists a constant c > 0 such that

cf. e.g. [56, 65] for this notion and its application in the theory of nonlinear PDEs. It 
has turned out that exploitation of strong monotonicity of the nonlinear terms is also 
an important step in the derivation of RB-a-posteriori error-estimates for semilinear 
parabolic [53], quasilinear elliptic [34], and quasilinear parabolic [33] PDEs, respec-
tively. Note that the quasilinear nonlinearities in [33, 34] refer to problems from 
magneto(quasi)statics and depend on the gradient of the solution. The nonlinear 
operator H1

D
→ H−1

D
 under consideration in the present paper, however, is given by 

the map u ↦ A(u)u , and hence it depends on the solution u and not on its gradient 
∇u . The counterexample [20, Example 8.18] shows that this essentially changes the 
structure of the nonlinearity: It cannot be expected to be monotone, and therefore it 
is essentially different to those considered in [33, 34, 53]. In fact, the main difficulty 
in the derivation of RB-a-posteriori error-estimates will be to find a workaround for 
the missing strong monotonicity of our nonlinearity.

For the rest of this paper, we rely on the following minimal assumptions:

Assumption 2.1 

1. Ω ⊂ ℝ
d , d ∈ {1, 2, 3} , is a bounded domain with boundary �Ω . ΓN ⊂ 𝜕Ω is rela-

tively open and denotes the Neumann boundary part, whereas ΓD = �Ω ⧵ ΓN is 
the part of the boundary equipped with homogeneous Dirichlet conditions. By 
subscript D we denote that a space of functions on Ω incorporates such homogene-
ous Dirichlet boundary conditions on ΓD . We assume that Ω ∪ ΓN is Gröger regular 
[25] such that all chart-maps in the definition of Gröger regularity can be chosen 
volume-preserving. For some T > 0 we define the time interval I = [0, T].

�tu +A(u)u = f on I × Ω,

u(0) = u0 on Ω.

}
(Eq)

⟨A(u)�,�⟩H−1
D
,H1

D
∶= ∫

Ω

�(u)�∇�∇�dxdt, �,� ∈ L2(I,H1
D
),

⟨N(x) −N(y), x − y⟩X∗,X ≥ 0 ∀x, y ∈ X,

⟨N(x) −N(y), x − y⟩X∗,X ≥ c‖x − y‖2
X

∀x, y ∈ X,
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2. The function � ∶ ℝ → ℝ is differentiable with bounded derivative, and 
�∶ Ω → ℝ

d×d is measurable, uniformly bounded, and coercive in the following 
sense: 

 We assume a coercivity condition 0 < 𝜉∙ ≤ 𝜉 ≤ 𝜉∙ for � as well. With this we 
define as above 

 whenever u is a measurable function on Ω.
3. We assume that there is some p ∈ (d, 4) such that 

 is a topological isomorphism. For s > 2 such that 1
s
<

1

2

(
1 −

d

p

)
 we choose 

It has been shown in [50, Theorem 5.3] that under these assumptions (Eq) is well-
posed: There exists a unique solution u with regularity

In fact, this is even true for � being locally instead of globally Lipschitz-continuous. 
In the present paper we focus on a semi-discrete formulation of (Eq) and its solu-
tion. For globally Lipschitz-continuous � , existence and sufficient regularity of such 
a semi-discrete solution is automatically ensured due to space-discretization, even 
without Gröger regularity of the domain or the isomorphism property in Assump-
tion 2.1.3, see Proposition 2.2 and the introduction of Sect. 3.2 for details. There-
fore, we keep the summary of results concerning (Eq) on the continuous level rather 
short: We refer for instance to [9, 36, 50] for a discussion of Assumption 2.1 and 
only recall two regularity results from the literature that might be seen as motivation 
for exploiting the respective regularity of the semi-discrete in space solution lateron: 
Regularity in case of right hand sides in the slightly more regular Bessel potential-
spaces H−� ,p and appropriate initial regularity has been addressed in [9, section 3.2]. 
In particular, C�(I,W

1,p

D
)-regularity of the solution with some 𝛼 > 0 and p ∈ (d, 4) 

is obtained under fairly general regularity assumptions that admit certain constel-
lations of non-smooth domains and coefficients, mixed boundary conditions, and 
distributional right-hand sides f. An equation similar to the one in the present paper 
has been considered in [10, Theorem 2.3] for C1,1-smooth domains and coefficients, 
homogeneous Dirichlet boundary conditions, integrable right-hand sides, and a pos-
sibly unbounded nonlinearity, including a semilinear term. The authors obtain W2

0 < 𝜇∙ ∶= inf
x∈Ω

inf
z∈ℝd⧵{0}

zT𝜇(x)z

zTz
, 𝜇∙ ∶= sup

x∈Ω

sup
1≤i,j≤d

|𝜇i,j(x)| < ∞.

⟨A(u)�,�⟩L2(I,W1,2

D
) ∶= ∫

I

∫
Ω

�(u)�∇�∇�dxdt, �,� ∈ L2(I,W1,2

D
),

−∇ ⋅ �∇ + 1∶ W
1,p

D
→ W

−1,p

D

f ∈ Ls(I,W
−1,p

D
), u0 ∈ (W

−1,p

D
,W

1,p

D
)1∕s�,s.

u ∈ W1,s(I,W
−1,p

D
) ∩ Ls(I,W

1,p

D
).
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-regularity results that enable the derivation of finite element error-estimates [11]. 
Applying their setting to (Eq) yields C0,�(I,W1,∞)-regularity of the solutions with 
some 𝛼 > 0 , cf. also [36, Corollary 5.4].

2.2  Semi‑discretization in space and RB‑MOR

We now introduce the semi-discrete (in space) counterpart of (Eq). Its solution will 
serve as the so-called truth-solution, i.e. the reference solution to which the a-pos-
teriori error-estimates will refer to. In particular, this means that we do not address 
spatial discretization errors in this paper. Moreover, we also introduce the RB-
reduced counterpart of the semi-discrete (in space) equation.

Let Vh be an H1
D
-conforming finite element space on Ω and Ih ∶ H1

D
→ Vh be an 

appropriate interpolation operator. We may introduce the semi-discrete (in space) 
counterpart of (Eq) as follows: Find uh ∈ W1,2(I,V∗

h
) ∩ L2(I,Vh) such that

Due to finite-dimensionality of Vh , ( Eqh ) results in a system of ordinary differential 
equations (ODEs) for the coefficients of uh w.r.t. some basis of Vh . This allows to dis-
cuss existence of solutions to ( Eqh ), even without using all parts of Assumption 2.1.

Proposition 2.2 Assume that Vh is a subspace of C(Ω) . For any right-hand side 
f ∈ L2(I,H−1

D
) and initial value Ihu0 ∈ Vh there exists a unique solution uh ∶ I → Vh 

of ( Eqh ) such that

with a constant C > 0 independent of Vh , f and Ihu0.

For the rest of the paper we will refer to uh as the semi-discrete (in space) solution 
to (Eq), or, shorter, the truth-solution. By u we will denote the continuous in space 
and time solution to (Eq), short: the true solution. To our best knowledge, a finite 
element error analysis for uh in the setting of Assumption 2.1 without additional sup-
positions has not been carried out in the existing literature. We refer to the references 
in [11] or to the introduction of [16] for an overview of results under additional 
assumptions. Let us only mention two results: A L∞(I, L2) ∩ L2(I,H1)-quasi- 
bestapproximation result has been derived in [17] with a technique slightly related to 
the one applied in Sect. 3.2. In [16] for instance pointwise error-estimates have been 
obtained.

Proof Let (�i)i=1,…,Nh
 , Nh = dimVh , be a basis for Vh . Writing uh(t) =

∑Nh

i=1
�i(t)�i , 

the coefficient vector �(t) ∈ ℝ
Nh fulfills

⟨�tuh(t),�h⟩H−1
D
,H1

D
+ ⟨A(uh(t))uh(t),�h⟩H−1

D
,H1

D
= ⟨f (t),�h⟩H−1

D
,H1

D

∀t ∈ I,�h ∈ Vh,

uh(0) = Ihu0.

⎫⎪⎬⎪⎭
(Eqh)

‖uh‖L∞(I,L2)∩L2(I,H1
D
) + ‖uh‖W1,2(I,V∗

h
)∩L2(I,Vh)

≤ C
�
‖f‖L2(I,H−1

D
) + ‖Ihu0‖L2

�
,
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with

and �0 being the coefficient vector of Ihu0 . Using continuity of the basis functions, 
as well as global Lipschitz-continuity and boundedness of � , one easily verifies that 
(1) satisfies the assumptions of [61, Lemma 5.7]. Therefore, existence and unique-
ness of a solution � ∈ W1,2(I,ℝNh ) to (1) follows, which implies existence and 
uniqueness of a solution uh ∈ W1,2(I,Vh) to ( Eqh ). The estimate follows by standard 
techniques: Testing ( Eqh ) with �h = uh and integrating by parts yields the first sum-
mand of the estimate. The second summand is obtained by testing with an arbitray 
�h ∈ L2(I,Vh) .   ◻

Note that the embedding Vh ↪ C(Ω) is crucial in the previous argument: It 
ensures Lipschitz continuity of �(⋅) and therefore existence of a solution to (1) via 
a generalized Picard-Lindelöf principle. If Vh is a classical Lagrange finite element 
space on a polygonal (polyhedral) domain Ω equipped with a triangular (tetrahe-
dral) mesh, this assumption is obviously fulfilled. However, we would like to point 
out that except for the assumptions from Proposition 2.2 we do not rely on further 
details of spatial discretization.

Performing expensive computations in the high-dimensional space Vh can be 
avoided by application of the reduced basis approach: We replace the finite element 
space Vh by a much smaller n-dimensional subspace Vn

h
⊂ Vh that is related to the 

physical properties of the system and might be determined by the well-known POD 
approach [39, 64], for instance. Although our arguments do not rely on the particu-
lar choice of Vn

h
 and therefore also cover general RB-methods, we clearly have in 

mind Vn
h
 ’s obtained by POD and also restrict our numerical experiments in Sect. 5 

to this case. Having at hand a reduced ansatz-space Vn
h
⊂ Vh and a suitable projec-

tion Pn ∶ Vh → Vn
h
 , usually the L2 - or H1-orthogonal projection, we introduce the 

reduced-order counterpart of ( Eqh ) as follows: Find un
h
∈ W1,2(I, (Vn

h
)∗) ∩ L2(I,Vn

h
) 

such that

A reader familiar with ROM-techniques may already have noticed that the nonlinear 
term in (1) does not allow for efficient evaluation within the reduced-order model. 

(1)��t�(t) + �(�(t))�(t) = �(t), �(0) = �0,

� ∶=
�⟨�i,�j⟩L2

�
i,j
,

�(�) ∶=

⎛
⎜⎜⎝∫Ω

�

�
Nh�
n=1

�n�n

�
�∇�i∇�jdx

⎞
⎟⎟⎠i,j

,

� (t) ∶=
�
⟨f (t),�i⟩H−1

D
,H1

D

�
i
,

⟨�tunh(t),�n
h
⟩H−1

D
,H1

D
+ ⟨A(un

h
(t))un

h
(t),�n

h
⟩H−1

D
,H1

D
= ⟨f (t),�n

h
⟩H−1

D
,H1

D

∀t ∈ I,�n
h
∈ Vn

h
,

un
h
(0) = PnIhu0.

⎫⎪⎬⎪⎭
(Eqh-RBn)
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We can overcome this issue by so-called hyperreduction techniques, e.g. the empiri-
cal interpolation method (EIM), which will be addressed in Sect. 4.

2.3  Outlook towards optimal control

In [9, Example 2.5] and [35] the following optimal control problem governed by 
(Eq) has been addressed:

Hereby, ud ∈ L2(I × Ω) denotes the desired state, 𝛾 > 0 is a Tikhonov-parame-
ter, bi ∈ H

−𝜁 ,p

D
⊂ H1

D
 , i = 1,… , k , are some fixed spatial control functions, and 

qa, qb ∈ L∞(I,ℝk) define box-constraints for the control. The special structure of the 
right hand side f is commonly referred to as purely time-dependent control in the 
literature [44]. Fixing a space-discretization for (Eq) as described earlier in this sec-
tion results in a semi-discrete (in space) counterpart (OCPh ) of (OCP), which we 
may consider again as reference object. Proposition 2.2 shows that this problem is 
well-defined.

At this point, let us make some short remarks about discretization of optimal 
control problems: Besides the discretization of the state variable and the state equa-
tion one also has to decide how to treat the control variable. There are several well-
established concepts addressing the latter issue, e.g. variational discretization [14, 
32], piecewise linear [54, 55], and piecewise constant [6] control discretization. For 
respective a-priori finite element discretization error-estimates we refer e.g. to [46, 
47] for linear-quadratic parabolic optimal control, or to [51] for a semilinear para-
bolic state equation, also including discussion of the purely time-dependent control 
setting. Due to the purely time-dependent control structure of (OCP), the semi-dis-
crete (in space) problem (OCPh ) may be regarded as variational discretization of 
(OCP) when only space is discretized. We mention e.g. [53] for the same semi-dis-
crete (in space) approach to a-posteriori POD-errors for an optimal control problem 
governed by a semilinear parabolic PDE, or [15] for semi-discrete (in space) finite 
element error-estimates for optimal control of the instationary Navier-Stokes equa-
tion. There are different possibilities to choose an appropriate time-discretization. 
Our estimates in particular apply to CG1 time-discretization, but an extension to e.g. 
DG0 (implicit Euler) discretization can be easily stated, see Remark 4.4.

In numerical algorithms for the solution of (OCPh ), we may have to evalu-
ate the semi-discrete reduced functional j(q) ∶= J(uh(q), q) where uh(q) denotes 
the solution of ( Eqh ) associated with several control functions q. Since repeated 
evaluation of jh is costly, RB-MOR can be applied to ( Eqh ). Therefore, and due 
to additional time-discretization, we only have the possibility to compute an 

min
u,q

J(u, q) ∶=
1

2
‖u − ud‖2L2(I×Ω) +

�

2
‖q‖2

L2(I,ℝk)

s.t. q ∈ Qad ∶=
�
q ∈ L2(I,ℝk)∶ qa ≤ q ≤ qb a.e. on I

�
,

and (Eq) with right-hand side f =

k�
i=1

qibi.

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(OCP)
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approximate solution un,m
h

= u
n,m

h
(q) instead of uh(q) . A short computation shows 

that the resulting error in the reduced functional can be estimated as follows:

Consequently, we immediately obtain an a-posteriori error for the reduced func-
tional of (OCPh ) if we have an L2(I, L2)-estimate for solutions of ( Eqh ) at hand. This 
may be regarded as motivation for the results in the present paper. Note that the 
above estimate for the functional error differs from the estimates obtained in [52, 
Theorems 4 and 9] because we do not utilize adjoint information. Deriving a-poste-
riori reduced modeling errors for the adjoint equation of (OCPh ), and consequently 
for the gradient of the reduced functional, is beyond the scope of the present paper. 
We refer to [52, 53] for such estimates in case of different model problems.

3  A‑posteriori RB‑error‑estimates

In this section we state and prove our first main results: A-posteriori error-esti-
mates for ( Eqh ) including both reduced-order and time-discretization errors. For 
the reason of clarity we exclude hyperreduction for the nonlinearity at this point, 
and address this issue in the following section.

We roughly follow the ansatz of [53], where a semilinear equation with monotone 
nonlinearity has been discussed. To overcome the difficulties arising from the fact 
that our nonlinearity is not monotone we present two different approaches: The first 
approach, see Sect. 3.2, relies on exploiting L∞(I,W1,∞)-regularity of the truth-solu-
tion uh and allows to obtain explicit estimates of “classical” structure in terms of the 
error in the initial condition and the V∗

h
-residual of the discrete solution under con-

sideration. As a semi-discrete in space solution, uh obviously exhibits the required 
regularity for any fixed (spatial) discretization level. However, since the error-esti-
mates will depend on the value of the L∞(I,W1,∞)-norm of uh it is desirable to have 
uniform bounds for this norm for all sufficiently fine spatial discretization levels. 
We believe that we can only expect such a uniform bound if the continuous in space 
and time solution of (Eq) exhibits L∞(I,W1,∞)-regularity, which is guaranteed in the 
setting of [10]. However, in the less regular setting of [9] we cannot expect such a 
result. Therefore, the second approach, see Sect. 3.3, is motivated by the intention to 
exploit less regularity of the truth-solution, more precisely: L∞(I,W1,p)-regularity 
for some p > d . For continuous in space and time solutions of (Eq) this regularity is 
guaranteed in the setting of [9]. The price to pay for exploiting less regularity of uh 
is that we do not obtain an explicit formula for the error-estimate; instead the evalua-
tion of the estimate requires the solution of an ODE. Moreover, for technical reasons 
we require additional assumptions on time regularity of the residual and the size of 
the initial error. We start by fixing the following notation and assumptions:

�J(un,m
h

, q) − J(uh, q)� ≤
�
1

2
‖un,m

h
− uh‖L2(I,L2) + ‖un,m

h
− ud‖L2(I,L2)

�
‖un,m

h
− uh‖L2(I,L2).
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Assumption 3.1 

1. Assume that Vh ⊂ H1
D
∩ C(Ω)∩W1,∞(Ω) is an Nh-dimensional conform-

ing finite element space, and Vn
h
 a n-dimensional subspace of Vh . By 

uh ∈ W1,2(I,V∗
h
) ∩ L2(I,Vh) we denote the truth-solution, i.e. the unique solution 

to ( Eqh).
2. Moreover, let un

h
∈ W1,2(I, (Vn

h
)∗) ∩ L2(I,Vn

h
) be arbitrary. By en

h
∶= un

h
− uh we 

denote the error with respect to the truth-solution.
3. We denote the global Lipschitz-constant of � by |��|∞.

We have in mind the following situation: un
h
 is the solution of a time-discrete 

counterpart of (Eqh-RBn ), and we want to estimate how good un
h
 approximates the 

truth-solution uh . Note that in order to ensure that un
h
 meets the regularity require-

ments of Assumption 3.1 we have to choose a time-discretization for (Eqh-RBn ) that 
results in sufficiently regular solutions, e.g. the Crank-Nicolson scheme in its CG1-
DG0 Petrov-Galerkin form. Time-discrete solutions of (Eqh-RBn ) obtained by Dis-
continuous Galerkin time-discretization, e.g. backward Euler, do not fulfill Assump-
tion 3.1. Since discontinuous time-discretization might be of particular interest in 
the context of PDE-constrained optimization we outline an approach to overcome 
this restriction in Remark 4.4.

3.1  Some preliminary calculations

In this subsection we follow the residual-based ansatz of [53] as far as possible with-
out modification, i.e. up to the point where strong monotonicity of the nonlinearity 
would be required. From that point on we develop two different approaches that will 
be discussed in the following subsections.

First, we introduce the residual of un
h
 by

To keep notation short we will omit the argument “t” in the following. A short com-
putation utilizing ( Eqh ) shows that

holds for all �h ∈ Vh . We consider Vh as a vector space canonically equipped with 
the H1

D
-norm. Therefore, its dual V∗

h
 is canonically equipped with the following 

norm:

Note that this norm is not equal to the H−1
D

-norm, because we only test with elements 
�h from Vh in (4). For later use we state the following observation:

(2)rn
h
(t) ∶= �tu

n
h
(t) +A(un

h
(t))un

h
(t) − f (t) ∈ (Vn

h
)∗ ↪ H−1

D
, t ∈ I.

(3)⟨rn
h
,�h⟩H−1

D
,H1

D
= ⟨�tenh,�h⟩H−1

D
,H1

D
+ ⟨A(un

h
)un

h
−A(uh)uh,�h⟩H−1

D
,H1

D

(4)‖�h‖V∗
h
∶= sup

0≠�h∈Vh

⟨�h,�h⟩H−1
D
,H1

D

‖�h‖H1
D

= sup
0≠�h∈Vh

�h(�h)

‖�h‖H1
D

.
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Lemma 3.2 Let Assumption  3.1 hold. Then the function I → ℝ , t ↦ ‖rn
h
(t)‖2

V∗
h

 is 
well-defined a.e. and L2-integrable.

Proof This follows from the definition of rn
h
 and the regularity assumed for un

h
 .   ◻

Plugging in �h = en
h
(t) for every fixed t in (3), and using the classical integration by 

parts formula from [56, Remark 7.5] we obtain

Note that the second summand on the left-hand side of (5) causes problems in our 
case: If the nonlinearity u ↦ A(u)u was strongly monotone, we could proceed as 
done in [53] for a semilinear term and estimate as follows:

However, as pointed out in Sect. 2.1 such an estimate cannot be expected to hold 
true. We cannot even bound the term under consideration from below by zero. 
Therefore, we have to proceed in a different way and split the problematic term into 
a coercive part and a remainder as follows:

Plugging this into (5) yields

i.e. except for the remainder term that we have shifted to the right-hand-side we have 
preserved a similar structure as in [53]. Formula (6) will serve as the common basis 
for our two different approaches in the following subsections. The main challenge in 
both cases is to estimate the second summand on the right-hand side in (6) in such a 
way that Gronwall’s Lemma or a similar comparison principle can be applied to the 
resulting inequality.

(5)
d

dt

1

2
‖en

h
‖2
L2
+ ⟨A(un

h
)un

h
−A(uh)uh, e

n
h
⟩H−1

D
,H1

D
= ⟨rn

h
, en

h
⟩H−1

D
,H1

D
.

⟨A(un
h
)un

h
−A(uh)uh, e

n
h
⟩H−1

D
,H1

D
≥ c�en

h
�2
H1

D

.

⟨A(un
h
)un

h
−A(uh)uh, u

n
h
− uh⟩H−1

D
,H1

D

= �
Ω

(�(un
h
)�∇un

h
− �(uh)�∇uh)∇(u

n
h
− uh)dx

= �
Ω

�(un
h
)�∇en

h
∇en

h
dx + �

Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx

≥ �∙�∙�enh�2H1
D

+ �
Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx.

(6)

d

dt

1

2
‖en

h
‖2
L2
+ �∙�∙�enh�H1

D

≤ ⟨rn
h
, en

h
⟩H−1

D
,H1

D
− �

Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx,
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3.2  A‑posteriori estimates—Approach I

The approach of this subsection is closer to [53] than the second one, and relies 
on L∞(I,W1,∞)-regularity of the truth-solution. An analogous regularity assump-
tion on the true solution u and a similar estimate of the nonlinear term as below 
have been used in [17] in the context of finite element errors.

Theorem 3.3 Let Assumptions 2.1 and 3.1 hold, and let cLip > 0 be such that

Moreover, let 𝜀, 𝜂 > 0 be chosen such that

and define � ∶= 2
(

1

2�
|��|∞�∙cLip + �∙�∙

)
 . Then, the following a-posteriori error-

estimates for un
h
 hold:

Proof We proceed with the argument from the previous subsection. Starting with the 
estimate (6) we bound the remaining term of the nonlinearity in the following way:

Using W1,∞-regularity for uh we can estimate one of the en
h
-factors in the L2-norm, 

which would not be possible assuming only W1,p-regularity for uh with some finite p. 
With the help of Young’s inequality we arrive at

|uh(t)|W1,∞ ≤ cLip ∀t ∈ I.

� + �|��|∞�∙cLip = �∙�∙

(7)‖en
h
(t)‖2

L2
≤ e�t‖un

h
(0) − uh(0)‖2L2 + �−1

t

�
0

e�(t−s)‖rn
h
(s)‖2

V∗
h

ds,

(8)

‖en
h
‖2
L2(I,L2)

≤ �−1
�
e�T − 1

�‖un
h
(0) − uh(0)‖2L2

+ �−1�−1

T

�
0

(e�(T−t) − 1)‖rn
h
(t)‖2

V∗
h

dt.

(9)

‖en
h
‖2
L2(I,H1

D
)
≤ �−1

∙
�−1
∙
e�T‖un

h
(0) − uh(0)‖2L2

+ �−1
∙
�−1
∙
�−1

T

�
0

e�(T−t)‖rn
h
(t)‖2

V∗
h

dt.

(10)

�������
�
Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx

�������
≤ ����∞�∙cLip‖enh‖L2‖enh‖H1

D
.
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with some 𝜀 > 0 . Another application of Young’s inequality yields

with 𝜂 > 0 . Now, choose �, � as in the statement of the theorem and obtain

where we will use from now on the abbreviation � = 2
(

1

2�
|��|∞�∙cLip + �∙�∙

)
 to 

enhance readability. With the help of Gronwall’s Lemma [18, Corollary 2] we obtain 
an a-posteriori estimate for the L∞(I, L2)-error from this:

The second summand thereof is integrated using integration by parts, i.e.

and together with the first summand we obtain the L2(I, L2)-estimate (8). As in [53] 
the L2(I,H1)-estimate (9) is obtained from (11) by integrating with respect to time 
over I and using (8).   ◻

It is possible to exploit less regularity of uh as we will outline in the following. 
The price to pay is that the constants in the modified estimates cannot be com-
puted explicitely, in general. In fact, if d = 2 and uh ∈ L∞(I,W1,4) , estimate (10) 
can be replaced by

In order to apply Gronwall’s Lemma as before, one has to observe

d

dt

1

2
‖en

h
‖2
L2
+ �∙�∙‖enh‖2H1

D

≤ �∙�∙‖enh‖2L2 + ⟨rn
h
, en

h
⟩H−1

D
,H1

D

+ ����∞�∙cLip

�
1

2�
‖en

h
‖2
L2
+

�

2
‖en

h
‖2
H1

D

�

d

dt

1

2
‖en

h
‖2
L2
+ �∙�∙‖enh‖2H1

D

≤ �
1

2�
����∞�∙cLip + �∙�∙

�
‖en

h
‖2
L2
+

1

2�
‖rn

h
‖2
V∗
h

+
�
�

2
+

�

2
����∞�∙cLip

�
‖en

h
‖2
H1

D

(11)
d

dt

1

2
‖en

h
‖2
L2
+

1

2
�∙�∙‖enh‖2H1

D

≤ � ⋅
1

2
‖en

h
‖2
L2
+

1

2�
‖rn

h
‖2
V∗
h

,

‖en
h
(t)‖2

L2
≤ ‖PnIhu0 − Ihu0‖2L2e�t + �−1

t

�
0

‖rn
h
(s)‖2

V∗
h

e�(t−s)ds.

T

∫
0

e�t
⎛⎜⎜⎝

t

∫
0

e−�s‖rn
h
(s)‖2

V∗
h

ds

⎞⎟⎟⎠
dt = �−1

T

∫
0

(e�(T−t) − 1)‖rn
h
(t)‖2

V∗
h

dt,

�������
�
Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx

�������
≤ ����∞�∙‖en

h
‖L4 �uh�W1,4 �enh�H1 .
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where Young’s inequality with parameter 𝜖 > 0 has been used in the first, and the 
2D-Ladyzhenskaya-Gagliardo-Nirenberg interpolation inequality

in the second step. Finally, a second application of Young’s inequality, again with 
parameter � , allows to obtain

In dimension d = 3 one has to apply

and Young’s inequality with exponents 4 and 4
3
 to arrive at

In both cases one can proceed similarly as in the proof before in order to prove esti-
mates for en

h
 of structure analogous to those in Theorem 3.3. The main difference is 

that the constants CLGN,2,CLGN,3 > 0 , whose exact values are unknown in general, 
enter the estimates. For upper bounds of these constants we refer e.g. to [1, Theo-
rem 7.3] and the references therein.

3.3  A‑posteriori estimates—Approach II

We derive a-posteriori error-estimates that rely on L∞(I,W1,p

D
)-regularity for the 

truth-solution uh with some p > d , only. For technical reasons we will have to 
impose an additional assumption on time-regularity of the residual and the size of 
the initial error. We start with the following auxiliary result:

Lemma 3.4 Let Assumptions 2.1 and 3.1 hold, and let 𝜀, 𝜂 > 0 satisfy

The error-function t ↦ ‖en
h
(t)‖2

L2
 satisfies the differential inequality

‖en
h
‖L4 �uh�W1,4 �enh�H1 ≤ 1

2�
‖en

h
‖2
L4
�uh�2W1,4 +

�

2
�en

h
�2
H1

≤ C2
LGN,2

2�
�uh�2W1,4‖enh‖L2 �enh�H1 +

�

2
�en

h
�2
H1 ,

‖�‖L4 ≤ CLGN,2‖�‖
1

2

L2
‖���

1

2

W1,4
, � ∈ W1,4,

‖en
h
‖L4 �uh�W1,4 �enh�H1 ≤ C4

LGN,2

8�3
�uh�4W1,4‖enh‖2L2 + ��en

h
�2
H1 .

‖�‖L4 ≤ CLGN,3‖�‖
1

4

L2
���

3

4

W1,4
, � ∈ W1,4,

‖en
h
‖L4 �uh�W1,4 �enh�H1 ≤ C8

LGN,3

64�8
�uh�8W1,4‖enh‖2L2 +

�
�

2
+

3�
4

3

4

�
�en

h
�2
H1 .

�∙�∙ = � + � ⋅ �∙(2�∙)
1−

2

q |��|
2

q

∞cp.

(12)��(t) ≤ ��(t) + ��(t)r + �(t), t ∈ I,
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with the constants � = 2�∙�∙ , � = �−1�∙(2�∙)
1−

2

q |��|
2

q

∞cp , the function 
� = �(t) = �−1‖rn

h
(t)‖2

V∗
h

 , and the exponent r = 2

q
= 1 −

2

p
∈ (0, 1).

As already for the discussion of the equation on the continuous level, cf. [9, 50], 
boundedness of � is essential in our argument below.

Proof We pick up the argument from Sect. 3.1. We start by estimating the second 
summand on the right-hand side of (6) as follows:

with p−1 + q−1 +
1

2
= 1 , i.e. q =

2p

p−2
 . Note that we define the W1,p-semi-norm as 

follows:

Next, we apply the well-known Riesz-Thorin interpolation-inequality

to f = �(un
h
) − �(uh) , use ‖f‖L∞ ≤ 2�∙ and the Lipschitz-estimate 

‖�(un
h
) − �(uh)‖L2 ≤ ����∞‖enh‖L2 , and arrive at

Note that this is the point where uniform boundedness of the nonlinearity � enters. 
As before, we will estimate the product of the last two factors by Young’s inequal-
ity and move the H1-semi-norm term to the left-hand side of (6) in order to obtain 
an ODE for the L2-error. This is why we are not able to convert the ‖en

h
‖2∕q
L2

-term to 
an ‖en

h
‖2
L2

-term by application of Young’s inequality, because we need to generate an 
|en

h
|2
H1

-term from the second factor, such that this term can be canceled by the left-
hand side of (6).

Plugging (13) into (6) and using Young’s inequality twice we obtain:

�������
�
Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx

�������
≤ �∙‖�(un

h
) − �(uh)‖Lq �uh�W1,p �enh�H1

|�|p
W1,p

∶= ∫
Ω

|∇�|p
2
dx = ∫

Ω

(
d∑
i=1

(
��

�xi

)2
)p∕2

dx.

‖f‖Lq ≤ ‖f‖1−
2

q

L∞
‖f‖

2

q

L2
, f ∈ L∞, q ∈ (2,∞),

(13)

�������
�
Ω

(�(un
h
) − �(uh))�∇uh∇e

n
h
dx

�������
≤ �∙(2�∙)

1−
2

q ����
2

q

∞�uh�W1,p‖enh‖
2

q

L2
�en

h
�H1 .



770 F. Hoppe, I. Neitzel 

1 3

Here, 𝜀, 𝜂 > 0 are the parameters appearing in Young’s inequality. Choosing them as 
in the statement of the lemma yields

from which the claim follows.   ◻

Let us briefly comment on the rather challenging structure of (12): First, note 
that r ∈ (0, 1) , i.e. the right-hand side in (12) only depends Lipschitz-continuously 
on �(t) , if �(t) stays uniformly away from zero, which can be ensured for 𝜑(0) > 0 
only. Moreover, the Lipschitz-constant on sets bounded uniformly away from zero 
increases, if r gets smaller. The latter, however, is the case if p > d gets smaller, i.e. 
if we exploit less regularity of the truth-solution. In other words: The smaller the 
initial error, and the less regularity of the truth-solution we use, the more ill-posed 
(12) becomes.

Theorem 3.5 Let Assumptions 2.1 and 3.1 hold, and let p > d and cp > 0 such that

Moreover, we assume that the initial error does not vanish, i.e. ‖en
h
(0)‖L2 > 0 , and 

that t ↦ ‖rn
h
(t)‖2

V∗
h

 is piecewise continuous on I. Let 𝜀, 𝜂 > 0 be chosen such that

holds. Given the constants � = 2�∙�∙ , � = �−1�∙(2�∙)
1−

2

q |��|
2

q

∞cp , and r = 1 −
2

p
 , let 

�∶ I → [0,∞) be the solution to

Then the following a-posteriori error-estimates hold true:

d

dt

1

2
‖en

h
‖2
L2
+ �∙�∙‖enh‖H1

D
≤�

2
‖en

h
‖2
H1

D

+
1

2�
‖rn

h
‖2
V∗
h

+ �∙�∙‖enh‖2L2

+ �∙(2�∙)
1−

2

q ����
2

q

∞�uh�W1,p

⋅

�
�

2
‖en

h
‖2
H1 +

1

2�
‖en

h
‖

4

q

L2

�
.

(14)

d

dt
‖en

h
‖2
L2
+ �∙�∙‖enh‖2H1

≤ �−1‖rn
h
‖2
V∗
h

+ 2�∙�∙‖enh‖2L2 + �−1�∙(2�∙)
1−

2

q ����
2

q

∞cp‖enh‖4∕qL2
,

|uh(t)|W1,p ≤ cp ∀t ∈ I.

�∙�∙ = � + � ⋅ �∙(2�∙)
1−

2

q |��|
2

q

∞cp

��(t) = ��(t) + ��(t)r + �−1‖rn
h
(t)‖2

V∗
h

, t ∈ I,

�(0) = ‖un
h
(0) − uh(0)‖2L2 .

(15)‖en
h
(t)‖2

L2
≤ �(t), ∀t ∈ I, ‖en

h
‖2
L2(I,L2)

≤
T

�
0

�(s)ds,
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Proof In order to apply [18, Theorem  44] to Lemma 3.4 we have to verify that 
f (t, z) = �z + �zr + �−1‖rn

h
(t)‖2

V∗
h

 satisfies the required assumption, i.e. that given 
𝜑0 > 0 there is 𝜀 > 0 such that the initial value problem

has a solution on the time interval I as long as � ∈ [0, �] . Existence of a local solu-
tion on some time interval [0, Tmax) with Tmax ∈ (0, T] is clear due to Peano’s exist-
ence-theorem, since t ↦ ‖rn

h
(t)‖2

V∗
h

 is piecewise continuous on I and u ↦ �u + �ur 
even admits a continuous extension ℝ → ℝ , u ↦ �u + �sign(u)|u|r . Further, due to 
𝛼 > 0, 𝛽 > 0 , and ‖rn

h
(t)‖2

V∗
h

≥ 0 it is clear that � is monotone increasing for 𝜑0 > 0 . 
The theory of ODEs shows that either Tmax = T  or Tmax < T  and �(t) → ∞ as 
t → Tmax . We argue by contradiction that Tmax < T  is impossible and therefore 
assume that Tmax < T  . Then, because of �(t) → ∞ as t → Tmax , there is t0 ∈ (0, T) 
such that 𝜑(t) > 1 for t ≥ t0 . For t ≥ t0 it holds due to r ∈ (0, 1) that

By Gronwall’s Lemma [18, Corollary 2] we conclude that �(t) stays bounded on I, 
which contradicts the assumption Tmax < T  . Therefore, all solutions � have to exist 
on the whole time interval I. Thus, we have shown the estimate for the L∞(I, L2)- 
error, from which we immediately obtain the L2(I, L2)-error by integration. Follow-
ing again [53] we integrate (12) to obtain (16).   ◻

Note that the additional assumption on the residual is fulfilled, if e.g. un
h
 is piece-

wise C1 w.r.t. time on I. An explicit comparison principle for (12) as in [18, Corol-
lary 2] would allow to obtain also explicit formulas in the estimates of Theorem 3.5. 
Unfortunately, we only found such results in the literature for the special cases � ≡ 0 
or � = 0 [18, Theorems 21 and 23], that are not of interest in the present context.

4  A‑posteriori RB‑ and EIM‑error‑estimates

It is a well-known issue in RB-methods that the evaluation of nonlinear terms such 
as �(u) requires access to the full number of degrees of freedom. Since the reasoning 
behind MOR is to avoid such computations within the full model, alternatives have 
to be found. In order to allow for an efficient offline-online splitting, the evaluation 
of nonlinearities in the reduced-order model for (Eq) needs to be done by meth-
ods of hyperreduction, e.g. the Empirical Interpolation Method (EIM, [8]). In this 

(16)

‖en
h
‖2
L2(I,H1

D
)
≤ 1

�∙�∙

�
‖un

h
(0) − uh(0)‖2L2 + �−1‖rn

h
‖2
L2(I,V∗

h
)

�

T

�
0

�(s)ds + �

T

�
0

�(s)2∕qds

⎞⎟⎟⎠
.

��(t) = f (t,�(t)), �(0) = �0 + �,

��(t) = ��(t) + ��(t)r + �−1‖rn
h
(t)‖2

V∗
h

≤ (� + �)�(t) + �−1‖rn
h
(t)‖2

V∗
h

.
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section we describe a very basic version of the latter technique applied to our model 
problem, and show how the additional errors can be incorporated in the a-posteriori 
error-estimates of Theorems 3.3 and 3.5 using the same technique as in [33, 34].

4.1  Empirical interpolation of A

First, we introduce EIM as far as required for our purpose and as concise as possible. 
For details see e.g. [8, 64]. In order to present the main idea as clearly as possible, 
we stick to the continuous setting and omit space-discretization; the generalization 
to finite element spaces with a nodal basis is straightforward. Given so-called snap-
shots y1,… , yN ∈ C(Ω) , and a tolerance tolEIM > 0 , determine via a Greedy pro-
cedure some functions Ξ1,… ,Ξm ∈ C(Ω) , and interpolation points x1,… , xm ∈ Ω 
such that

implies ���(y�) −
∑m

k=1
c
�,kΞk

��L∞ ≤ tolEIM . For some w ∈ C(Ω) we define the EIM-
approximation of �(w) as

where c ∈ ℝ
m solves the m × m-system �(w(xj)) =

∑m

k=1
ckΞk(xj) , j = 1,… ,m . With 

this we may introduce a RB-EIM-reduced counterpart of (Eq) as

where AEIM
m

 denotes the EIM-reduced version of the nonlinear differential operator 
defined by

Note that there is an efficient online evaluation of AEIM
m

 , because the stiffness-matri-
ces associated to the operators −∇ ⋅ Ξk�∇ can be precomputed in the offline-phase. 
Therefore, we only have to deal with m and n degrees of freedom, respectively, when 
dealing with AEIM

m
 . In the following we will denote the EIM-error by

Results addressing a-priori convergence of EIM can be found e.g. in [8, 24, 45]. For 
sophisticated algorithmic coupling of model order reduction and hyperreduction we 

�(y
�
(xj)) =

m∑
k=1

c
�,kΞk(xj), � = 1,… ,N, j = 1,… ,m.

�EIM
m

(w) =

m∑
k=1

ckΞk

⟨�tun,mh (t),�n
h
⟩H−1

D
,H1

D
+ ⟨AEIM

m
(un,m

h
(t))un,m

h
(t),�n

h
⟩H−1

D
,H1

D
= ⟨f (t),�n

h
⟩H−1

D
,H1

D

∀t ∈ I,�n
h
∈ Vn

h
,

u
n,m

h
(0) = PnIhu0,

⎫⎪⎪⎬⎪⎪⎭

(Eqh-RBn-EIMm)

⟨AEIM
m

(u)�,�⟩H−1
D
,H1

D
∶= ∫

Ω

�EIM
m

(u)�∇u∇�dx, �,� ∈ H1
D
.

ΔEIM
m

(u) ∶= ‖�(u) − �EIM
m

(u)‖L∞ .



773

1 3

A‑posteriori reduced basis error‑estimates for a semi‑discrete…

refer to [19, 60] for instance. Other kinds of hyperreduction include e.g. discrete 
empirical interpolation (DEIM, [13]), or dynamic mode decomposition (DMD, [3]).

4.2  A‑posteriori RB‑error‑estimates including the EIM‑error

In this section we extend the results from Sect. 3 by incorporating also EIM-errors: 
It is clear that A(un

h
)un

h
 , and therefore rn

h
 , cannot be computed efficiently during 

the online-phase due to the fact that the assembly of the stiffness-matrix for A(un
h
) 

requires us to use the full number of degrees of freedom. Hence, the estimates of 
Theorems  3.3 and  3.5 cannot be evaluated efficiently in the online-phase. Conse-
quently, evaluation of rn

h
 has to be avoided. Instead, given an arbitrary un,m

h
 fulfilling 

Assumption 3.1, we introduce the EIM-reduced residual rn,m
h

 of un,m
h

 as

It is obvious, that rn,m
h

 allows an efficient online evaluation. It remains to show how 
the error un,m

h
− uh to the truth-solution can be estimated in terms of rn,m

h
 instead of 

rn
h
 . Since all changes in the arguments already known from Sect. 3 are straightfor-

ward utilizing the estimates (18) and (19) below, we omit the details and only state 
the results. As before, we will we omit the argument “t” in the following. A short 
computation as in Sect. 3.1 shows that the RB-EIM-error en,m

h
∶= u

n,m

h
− uh fulfills

As before it follows:

The second summand on the right-hand side can be estimated as in Sects. 3.2 and 
3.3. The third summand is estimated as follows:

where 𝛿 > 0 is the parameter in Young’s inequality. With this, we are ready to state 
the modified versions of the two main results from Sect. 3, beginning with the modi-
fied version of Theorem 3.3:

(17)r
n,m

h
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n,m

h
(t) +A
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m
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h

(t))un,m
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Theorem 4.1 Let Assumptions 2.1 and 3.1 hold, and let cLip > 0 such that

Given un,m
h

 , choose 𝜀, 𝜂, 𝛿 > 0 such that

is satisfied with the EIM-error ΔEIM
m

∶= supt∈I Δ
EIM
m

(un,m
h

(t)) . Moreover, we intro-
duce the constant � ∶= 2

(
1

2�
|��|∞�∙cLip + �∙�∙

)
 . Then the following a-posteriori 

error-estimates for un,m
h

 hold true:

We also fix the following simplified estimates, that are less sharp but exhibit a 
favorable structure: They are weighted sums of the initial L2-error, the L2-V∗

h
-norm of 

the residual, and the EIM-error. This allows to determine the optimal choice of the 
parameters �, �, � for these simpler estimates.

Corollary 4.2 Under the assumptions of the previous theorem it holds:

|uh(t)|W1,∞ ≤ cLip ∀t ∈ I.

� + �|��|∞�∙cLip + �ΔEIM
m

�∙ = �∙�∙,
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The same technique as in Sect. 3.3 yields the following result:

Theorem 4.3 Let Assumptions 2.1 and 3.1 hold, and let p > d and cp > 0 such that

Moreover, we assume that the initial error does not vanish, i.e. ‖en,m
h

(0)‖L2 > 0 , and 
that t ↦ ‖rn

h
(t)‖2

V∗
h

 is piecewise continuous on I. Choose 𝜀, 𝜂, 𝛿 > 0 such that

is satisfied for the EIM-error ΔEIM
m

= supt∈I Δ
EIM
M

(un,m
h

(t)) . Given the constants 

� = 2�∙�∙ , � = �−1�∙(2�∙)
1−

2

q |��|
2
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∞cp , and r = 1 −
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p
 , let �∶ I → [0,∞) be the solu-

tion to

Then the following a-posteriori error-estimates hold true:
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Note that the error-estimates in the results above hold true without additional 
assumptions on the size of residuals and EIM-errors. In practice, however, in 
order to obtain an accurate reduced-order model and corresponding small error-
estimates, it will be necessary to construct RB- and EIM-bases in such a way that 
the size of residuals and EIM-errors is balanced appropriately. We do not address 
this issue here and refer for instance to [19, 60].

Moreover, let us point out that the EIM-error ΔEIM
m

(un,m
h

) at un,m
h

 cannot be com-
puted without referring to the full number of degrees of freedom; however, com-
putation of ‖�(un,m

h
) − �EIM

m
(un,m

h
)‖L∞ in the full degrees of freedom is still much 

cheaper than computation of the respective full stiffness-matrices associated with 
the nonlinear elliptic operator that would be required for the computation of rn

h
 . 

In contrast, note that the H1-semi-norm of un,m
h

 required in Theorems 4.1 and 4.3 
admits efficient online evaluation, because it is induced by a bilinear form whose 
matrix w.r.t. the basis of Vn

h
 can be precomputed and saved. Similarly, also the 

weight-matrices for the evaluation of the EIM-reduced residual can be precom-
puted and saved in the offline-phase.

To conclude this section, we shortly outline a possibility to relax Assump-
tion  3.1 (2) in order to allow error estimation also for a discontinuous in time 
trajectory.

Remark 4.4 Let un,m
h

 e.g. be given as

for a partition 0 = t0 < t1 < ⋯ < tNt−1
< tNt

= T  . Such un,m
h

 might be obtained by 
applying the backward Euler method in its DG0-formulation to (Eqh-RBn-EIMm ). 
Since our error-estimates do not apply directly to un,m

h
 due to discontinuity w.r.t. 

time, we replace un,m
h

 by its piecewise linear and continuous w.r.t time interpolation 
û
n,m

h
 w.r.t. the same partition defined by ûn,m

h
(t
�
) ∶= u

n,m

h
(t
�
) = U

n,m

h,�
 for � = 0,… ,Nt . 

Obviously, Theorems  4.1 and  4.3 apply to ûn,m
h

 , and to obtain an estimate for the 
overall error we need to add the interpolation error ûn,m

h
− u

n,m

h
 . The latter can be 

computed explicitely:

The appearance of such jump-terms is what we may expect for an a-posteriori error 
for a discontinuous-in-time trajectory. Note that compared to classical a-posteriori 
error-estimates for discontinuous-in-time methods, see [42, 62] for instance, we do 
not assume that un,m

h
 is the solution to a discrete-in-time analogue to (Eqh-RBn).
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5  Numerical illustration for POD‑MOR

In this final section of the paper we illustrate and compare the quality of our RB-
EIM-a-posteriori error-estimates numerically for three prototypical test problems. 
Although the results of this paper apply to general RB-methods, our particular 
focus is on POD-MOR. Therefore, we restrict ourselves to reduced ansatz-spaces Vn

h
 

spanned by a POD-basis of rank n in our numerical tests.

5.1  Test problems and technical details

The two-dimensional domain Ω = [0, 1]2 and the time interval I = [0, 1] are the 
same in all three test problems. We fix two discs C1 = B 1

5

(
1

4
,
1

4

)
 and C2 = B 1

5

(
3

4
,
3

4

)
 , 

and the three boundary parts Γ1 = {x ∈ �Ω∶ x2 = 1} , 
Γ2 = {x ∈ 𝜕Ω∶ x1 = 0, x2 <

1

2
} , Γ3 = {x ∈ 𝜕Ω∶ x1 = 1, x2 <

1

2
} . The nonlinearity 

is given by

We introduce the three test problems P1-P3 by equipping the equation

with the following boundary and initial conditions, respectively:
(P1) Pure homogeneous Dirichlet boundary conditions and zero initial condition.
(P2) Pure homogeneous Neumann boundary conditions and zero initial condition.
(P3) Mixed boundary conditions:  homogeneous Dirichlet boundary condi-

tion u = 0 on I × Γ1 , non-homogeneous Neumann conditions �(u)�nu = sin(2�t) 
on I × Γ2 , and �(u)�nu = − cos(2�t) on I × Γ3 , and natural boundary condi-
tion �nu = 0 on the remaining part of the boundary. The initial condition is 
[u(0)](x1, x2) ∶=

1

10
(1 − x1).

Space- and time-discretization All computations are done utilizing FEniCS [4, 
43] and piecewise linear finite elements on a mesh generated by mshr, the mesh-
generation tool of FEniCS, with Nh = 5769 degrees of freedom and maximum cell 
diameter hmax ≈ 2.1 ⋅ 10−2 . The POD-basis is generated with snapshots coming from 
an (implicit) Crank-Nicolson solution of the equation with Nt = 2500 timesteps 
(“reference solution”). Hereby, the appearing nonlinear equations are solved by the 
built-in nonlinear solver of FEniCS. The same set of snapshots is also used to gen-
erate the EIM-approximation of the nonlinearity in a standard greedy procedure with 
L∞-tolerance 10−6 independent of the number of POD-basis functions, i.e. we do not 
balance accuracy of POD- and EIM-approximation. The POD-EIM-reduced equa-
tion is again solved utilizing the (implicit) Crank-Nicolson scheme with Nt = 2500 
timesteps, whereby the nonlinear algebraic equations appearing in every timestep 
are solved by a standard Newton-method that is initialized with a semi-implicit 
Euler step as first guess (“reduced solution”). Approximate true L2(I, L2) -, L∞(I, L2) , 
and L2(I,H1)-errors are computed with respect to a further numerical solution that is 

�(u) =
3

4
+

1

2(1 + e5u)
.

�tu − ∇ ⋅ �(u)∇u = 10 sin(2�t)�C1
− 10 cos(2�t)�C2

,
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computed on the same finite element mesh, but with a four times higher number of 
timesteps than for the snapshot generation (“truth-solution”). Finally, to ensure com-
parability between the different test problems and norms, all errors and estimates are 
relative errors, i.e. the absolute error or error-estimate is divided by the correspond-
ing norm of the truth-solution.

Estimation of the required parameters Parameters like �∙,�∙, |��|∞ etc. are known 
from the problem data. The solution-dependent parameters are found as follows: 
The norms of uh are computed exactly based on the truth-solution in order to give 
the possibility to determine whether our estimates are sharp or not under the exact 
data. In real applications we would have to estimates those norms appropriately. The 
quality of the error-estimates –as absolute values– can heavily deteriorate in case of 
“safe” (i.e. large) estimates for the parameters. The same might happen in case of 
just inconvenient problem data due to the exponential terms in the estimates. How-
ever, we would like to point out that one might still hope in such a case that the 
relative behavior of the estimates, i.e. whether they decrease/increase by some fac-
tor, provides some information on the quality of the reduced model. Although we 
compute the EIM-error ΔEIM

m
 as defined in Sect. 4.1 by accessing the full number of 

degrees of freedom, we did not observe significant time consumption for this. We 
believe that this is due to the fact that evaluation of �(un,m

h
) in the full model is much 

cheaper than assembling the corresponding stiffness-matrices in the full model.
Choice of the exponent p In order to obtain meaningful results we had to use rela-

tively large values for p, e.g. p = 16 . Therefore, choosing p according to the require-
ments of [9], i.e. only slightly larger than d in general, seems to be difficult.

Estimates for Approach I (Theorem 4.1) For Approach I we determine the param-
eters �, �, � in such a way that the simpler estimates for the L2(I,H1)-error in Corol-
lary 4.2 become optimal, and plug in the same parameters into the estimates from 
Theorem 4.1. Integrals with respect to time (residuals or weighted residuals in the 
formulas of Theorem 4.1) are evaluated using Gauss-quadrature of order 2 on every 
subinterval given by the timesteps.

Estimates for Approach II (Theorem 4.3) The following parameters turned out to 
be a good choice:

Note that optimization of the parameters as in Approach I is not possible because 
we do not have an explicit formula at hand. The ODE for the evaluation of � is 
solved utilizing the backward difference formulae solver (BDF) within the solve_
ivp-routine from scipy.integrate, with relative tolerance rtol=10−6 , and 
absolute tolerance atol=10−3 ⋅ ‖uh(0) − un

h
(0)‖2

L2
 . The maximal allowed step size is 

the same as the size of timesteps in the reduced model. We found that among other 
methods (Runge-Kutte with 2/3 and 4/5 stages, Radau) this choice delivered the best 
results. However, it is clear that the numerical approximation of � is challenging (in 
particular for small p or small initial values), which might influence the reliability of 
the results.
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5.2  Discussion of the results

Figures  1, 2, 3 and 4 show the results of our experiments. It can be seen that 
Approach I yields better results the smoother the truth-solution is: Test problems 
P1 and P2 (homogeneous boundary conditions, Figs. 1 and 2) perform better than 
the problem with mixed boundary conditions (Test problem P3, Fig. 3). Moreover, 
we observe that the a-posteriori error-estimates of both approaches start stagnating 

(a) (b)

Fig. 1  Test problem P1 (homogeneous Dirichlet boundary conditions): a) Estimates from Approach I ( ∙ : 
Theorem 4.1 with optimized parameters, dashed lines: Corollary 4.2). b) Estimates from Approach II ( ▴ : 
p = 6 , ▪ : p = 16 , ⧫ , p = 32 ). L∞(I,L2) -, L2(I,L2) -, and L2(I,H1)-errors are displayed in black, blue, and 
red, respectively. Approximate true errors w.r.t. the truth-solution are included in dotted lines

(a) (b)

Fig. 2  Example P2 (homogeneous Neumann boundary conditions): a) Estimates from Approach I ( ∙ : 
Theorem  4.1 with optimized parameters, dashed lines: Corollary  4.2). b) Estimates from Approach II 
for p = 16 . L∞(I,L2) -, L2(I,L2) -, and L2(I,H1)-errors are displayed in black, blue, and red, respectively. 
Approximate true errors w.r.t. the truth-solution are included in dotted lines
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at about the same point at which also the true errors stagnate due to time-discretiza-
tion. Indeed, in Fig. 4 it can be seen that this stagnation comes from stagnation of 
the residual norm at roughly the same magnitude as the size of time-steps. This indi-
cates that from that point on the overall accuracy of the reduced-order model can-
not be improved further by increasing the number of basis functions. See also e.g. 
[28] for balancing of POD-MOR- and time-discretization-errors for linear-quadratic 
parabolic optimal control problems.

How much Approach II depends on the choice of the exponent p can be seen 
in Fig. 2b. The estimates stagnate very early for small p, i.e. Approach II unfor-
tunately does not yield reasonable results in that case. For large p the estimates 
seem to get closer to the values of Approach I. In this sense one might interpret 
Approach II as a modification of Approach I that trades strength of the required 

(a) (b)

Fig. 3  Example P3 (mixed boundary conditions): a Estimates from Approach I ( ∙ : Theorem  4.1 with 
optimized parameters, dashed lines: Corollary 4.2). b Estimates from Approach II for p = 16 . L∞(I,L2) -, 
L2(I,L2) -, and L2(I,H1)-errors are displayed in black, blue, and red, respectively. Approximate true 
errors w.r.t. the truth-solution are included in dotted lines

Fig. 4  Error contributions in 
Example P3 (mixed boundary 
conditions): blue ▪ : residual 
norms ‖rn

h
‖L2(I,V∗

h
) , black ∙ : 

initial errors ‖en
h
(0)‖L2 , red ⧫ : 

EIM-errors ΔEIM for un
h
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assumption (bigger p means stronger assumption) against quality of results 
(smaller p means less meaningful results and numerical instability).

For the computing times observed in our numerical experiments we refer to 
Table 1: The evaluation of the POD-EIM-reduced model is about 25- to 100-times 
faster than the evaluation of the full model. We believe that even higher speedups 
might be possible in case of finer finite element discretization. Compared to the 
computing time for the full model, evaluation of the a-posteriori error-estimates 
from Approach I is quite cheap: Evaluation of the POD-EIM-reduced model 
together with computation of an error-estimate still yields a speedup of factor at 
least 10. As expected, evaluation of the estimates from Approach II needs slightly 
more time.

Acknowledgements The authors thank the unknown referee for suggesting the alternative estimates in 
Sect. 3.2 based on the Ladyzhenskaya-Gagliardo-Nirenberg inequality.

Funding Open Access funding enabled and organized by Projekt DEAL. Funded by the Deutsche 
Forschungsgemeinschaft (DFG, German Research Foundation)—Projektnummer 211504053—SFB 
1060.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

 1. Ahmad Ali, A., Deckelnick, K., Hinze, M.: Global minima for semilinear optimal control problems. 
Comput. Optim. Appl. 65(1), 261–288 (2016). https:// doi. org/ 10. 1007/ s10589- 016- 9833-1

Table 1  Computing times for the setup of the EIM-reduction of the nonlinearity, the evaluation of the 
POD-EIM-reduced model, and the error-estimates, respectively

100% correspond to the time that is required to compute the snapshots (“reference solution”). We show 
the range of times observed in the experiments from Figs. 1, 2 and 3, and in brackets we give the time 
observed for n = 13 POD-basis functions

Computing times for Example P1 Example P2 Example P3

number of EIM-basis functions 28 36 49
Setup EIM-reduced model 50–57% 70% 99–157%
POD-EIM-reduced model 1% (0.9%) 1% (1.1%) 1–4% (1.6%)
Approach I 2–3% (3%) 2–4% (4%) 3–6% (5%)
Approach I optimized 3–6% (6%) 3–9% (8%) 5–12% (10%)
Approach II 3–15% (9–15%) 4–22% (18%) 6–15% (11%)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10589-016-9833-1


782 F. Hoppe, I. Neitzel 

1 3

 2. Alla, A., Hinze, M., Kolvenbach, P., Lass, O., Ulbrich, S.: A certified model reduction approach for 
robust parameter optimization with PDE constraints. Adv. Comput. Math. 45(3), 1221–1250 (2019). 
https:// doi. org/ 10. 1007/ s10444- 018- 9653-1

 3. Alla, A., Kutz, J.N.: Nonlinear model order reduction via dynamic mode decomposition. SIAM J. 
Sci. Comput. 39(5), B778–B796 (2017). https:// doi. org/ 10. 1137/ 16M10 59308

 4. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., 
Rognes, M.E., Wells, G.N.: The fenics project version 1.5. Arch. Num. Softw. 3(100) (2015). https:// 
doi. org/ 10. 11588/ ans. 2015. 100. 20553

 5. Amann, H.: Maximal regularity for nonautonomous evolution equations. Adv. Nonlinear Stud. 4(4), 
417–430 (2004). https:// doi. org/ 10. 1515/ ans- 2004- 0404

 6. Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear 
elliptic control problem. Comput. Optim. Appl. 23(2), 201–229 (2002). https:// doi. org/ 10. 1023/A: 
10205 76801 966

 7. Aria, E., Fahl, M., Sachs, E.: Trust-region proper orthogonal decomposition for flow control (2000)
 8. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: appli-

cation to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. 
Sci. Paris 339(9), 667–672 (2004). https:// doi. org/ 10. 1016/j. crma. 2004. 08. 006

 9. Bonifacius, L., Neitzel, I.: Second order optimality conditions for optimal control of quasilinear 
parabolic equations. Math. Control Relat. Fields 8(1), 1–34 (2018). https:// doi. org/ 10. 3934/ mcrf. 
20180 01

 10. Casas, E., Chrysafinos, K.: Analysis and optimal control of some quasilinear parabolic equa-
tions. Math. Control Relat. Fields 8(3–4), 607–623 (2018). https:// doi. org/ 10. 3934/ mcrf. 20180 25

 11. Casas, E., Chrysafinos, K.: Numerical analysis of quasilinear parabolic equations under low 
regularity assumptions. Numer. Math. 143(4), 749–780 (2019). https:// doi. org/ 10. 1007/ 
s00211- 019- 01071-5

 12. Chapelle, D., Gariah, A., Sainte-Marie, J.: Galerkin approximation with proper orthogonal 
decomposition: new error estimates and illustrative examples. ESAIM Math. Model. Numer. 
Anal. 46(4), 731–757 (2012). https:// doi. org/ 10. 1051/ m2an/ 20110 53

 13. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpola-
tion. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). https:// doi. org/ 10. 1137/ 09076 6498

 14. von Daniels, N., Hinze, M., Vierling, M.: Crank-Nicolson time stepping and variational dis-
cretization of control-constrained parabolic optimal control problems. SIAM J. Control Optim. 
53(3), 1182–1198 (2015). https:// doi. org/ 10. 1137/ 14099 680X

 15. Deckelnick, K., Hinze, M.: Semidiscretization and error estimates for distributed control of the 
instationary Navier-Stokes equations. Numer. Math. 97(2), 297–320 (2004). https:// doi. org/ 10. 
1007/ s00211- 003- 0507-4

 16. Dobrowolski, M.: L∞-convergence of linear finite element approximation to nonlinear parabolic 
problems. SIAM J. Numer. Anal. 17(5), 663–674 (1980). https:// doi. org/ 10. 1137/ 07170 56

 17. Douglas, J., Jr., Dupont, T.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7, 
575–626 (1970). https:// doi. org/ 10. 1137/ 07070 48

 18. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers 
Inc, Hauppauge, NY (2003)

 19. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear para-
metrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 
34(2), A937–A969 (2012). https:// doi. org/ 10. 1137/ 10081 157X

 20. Francu, J.: Monotone operators. A survey directed to applications to differential equations. Apl. 
Mat. 35(4), 257–301 (1990)

 21. Gräßle, C., Hinze, M.: POD reduced-order modeling for evolution equations utilizing arbitrary 
finite element discretizations. Adv. Comput. Math. 44(6), 1941–1978 (2018). https:// doi. org/ 10. 
1007/ s10444- 018- 9620-x

 22. Gräßle, C., Hinze, M., Lang, J., Ullmann, S.: POD model order reduction with space-adapted 
snapshots for incompressible flows. Adv. Comput. Math. 45(5–6), 2401–2428 (2019). https:// doi. 
org/ 10. 1007/ s10444- 019- 09716-7

 23. Gräßle, C., Hinze, M., Scharmacher, N.: POD for optimal control of the Cahn-Hilliard system 
using spatially adapted snapshots. In: Numerical Mathematics and Advanced Applications—
ENUMATH2017. Lecture Notes Computer Science and Engineering, vol. 126, pp. 703–711. 
Springer, Cham (2019). https:// doi. org/ 10. 1007/ 978-3- 319- 96415-7- 65

https://doi.org/10.1007/s10444-018-9653-1
https://doi.org/10.1137/16M1059308
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1515/ans-2004-0404
https://doi.org/10.1023/A:1020576801966
https://doi.org/10.1023/A:1020576801966
https://doi.org/10.1016/j.crma.2004.08.006
https://doi.org/10.3934/mcrf.2018001
https://doi.org/10.3934/mcrf.2018001
https://doi.org/10.3934/mcrf.2018025
https://doi.org/10.1007/s00211-019-01071-5
https://doi.org/10.1007/s00211-019-01071-5
https://doi.org/10.1051/m2an/2011053
https://doi.org/10.1137/090766498
https://doi.org/10.1137/14099680X
https://doi.org/10.1007/s00211-003-0507-4
https://doi.org/10.1007/s00211-003-0507-4
https://doi.org/10.1137/0717056
https://doi.org/10.1137/0707048
https://doi.org/10.1137/10081157X
https://doi.org/10.1007/s10444-018-9620-x
https://doi.org/10.1007/s10444-018-9620-x
https://doi.org/10.1007/s10444-019-09716-7
https://doi.org/10.1007/s10444-019-09716-7
https://doi.org/10.1007/978-3-319-96415-7-65


783

1 3

A‑posteriori reduced basis error‑estimates for a semi‑discrete…

 24. Grepl, M..A., Maday, Y., Nguyen, N..C., Patera, A..T.: Efficient reduced-basis treatment of non-
affine and nonlinear partial differential equations. M2AN Math. Model. Numer. Anal. 41(3), 
575–605 (2007). https:// doi. org/ 10. 1051/ m2an: 20070 31

 25. Gröger, K.: A W1,p-estimate for solutions to mixed boundary value problems for second order 
elliptic differential equations. Math. Ann. 283(4), 679–687 (1989). https:// doi. org/ 10. 1007/ 
BF014 42860

 26. Gräßle, C., Gubisch, M., Metzdorf, S., Rogg, S., Volkwein, S.: POD basis updates for nonlin-
ear PDE control. Automatisierungstechnik 65(5), 298 – 307 (2017). https:// doi. org/ 10. 1515/ 
auto- 2016- 0100

 27. Gubisch, M., Neitzel, I., Volkwein, S.: A-posteriori error estimation of discrete POD models for 
PDE-constrained optimal control. In: Model Reduction of Parametrized Systems. MS&A. Model. 
Simul. Appl, vol. 17, pp. 213–234. Springer, Cham (2017)

 28. Gubisch, M., Volkwein, S.: POD a-posteriori error analysis for optimal control problems with mixed 
control-state constraints. Comput. Optim. Appl. 58(3), 619–644 (2014). https:// doi. org/ 10. 1007/ 
s10589- 014- 9636-1

 29. Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. 
In: Model Reduction and Approximation. Computational Science and Engineering, vol.  15, pp. 
3–63. SIAM, Philadelphia, PA (2017). https:// doi. org/ 10. 1137/1. 97816 11974 829. ch1

 30. Haller-Dintelmann, R., Rehberg, J.: Maximal parabolic regularity for divergence operators including 
mixed boundary conditions. J. Differ. Equ. 247(5), 1354–1396 (2009). https:// doi. org/ 10. 1016/j. jde. 
2009. 06. 001

 31. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified reduced basis methods for parametrized partial 
differential equations. SpringerBriefs in Mathematics. Springer, Cham (BCAM Basque Center 
for Applied Mathematics, Bilbao) (2016). https:// doi. org/ 10. 1007/ 978-3- 319- 22470-1. BCAM 
SpringerBriefs

 32. Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quad-
ratic case. Comput. Optim. Appl. 30(1), 45–61 (2005). https:// doi. org/ 10. 1007/ s10589- 005- 4559-5

 33. Hinze, M., Korolev, D.: A space-time certified reduced basis method for quasilinear parabolic 
partial differential equations. Adv. Comput. Math. 47(3), 36 (2021). https:// doi. org/ 10. 1007/ 
s10444- 021- 09860-z

 34. Hinze, M., Korolev, D.: Reduced basis methods for quasilinear elliptic PDEs with applications to 
permanent magnet synchronous motors. Preprint. arXiv: 2002. 04288 v1 (2020)

 35. Hoppe, F., Neitzel, I.: Convergence of the SQP method for quasilinear parabolic optimal control 
problems. Optim. Eng. (2020). https:// doi. org/ 10. 1007/ s11081- 020- 09547-2

 36. Hoppe, F., Neitzel, I.: Optimal control of quasilinear parabolic PDEs with state constraints (2020) 
(Available as INS Preprint No. 2004)

 37. Iapichino, L., Ulbrich, S., Volkwein, S.: Multiobjective PDE-constrained optimization using 
the reduced-basis method. Adv. Comput. Math. 43(5), 945–972 (2017). https:// doi. org/ 10. 1007/ 
s10444- 016- 9512-x

 38. Kammann, E., Tröltzsch, F., Volkwein, S.: A posteriori error estimation for semilinear parabolic 
optimal control problems with application to model reduction by POD. ESAIM Math. Model. 
Numer. Anal. 47(2), 555–581 (2013). https:// doi. org/ 10. 1051/ m2an/ 20120 37

 39. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic prob-
lems. Numer. Math. 90(1), 117–148 (2001). https:// doi. org/ 10. 1007/ s0021 10100 282

 40. Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for a general equa-
tion in fluid dynamics. SIAM J. Numer. Anal. 40(2), 492–515 (2002). https:// doi. org/ 10. 1137/ S0036 
14290 03826 12

 41. Kunisch, K., Volkwein, S.: Proper orthogonal decomposition for optimality systems. M2AN Math. 
Model. Numer. Anal. 42(1), 1–23 (2008). https:// doi. org/ 10. 1051/ m2an: 20070 54

 42. Liu, W., Ma, H., Tang, T., Yan, N.: A posteriori error estimates for discontinuous Galerkin time-
stepping method for optimal control problems governed by parabolic equations. SIAM J. Numer. 
Anal. 42(3), 1032–1061 (2004). https:// doi. org/ 10. 1137/ S0036 14290 23970 90

 43. Logg, A., Mardal, K.A., Wells, G.N., et al.: Automated Solution of Differential Equations by the 
Finite Element Method. Springer (2012). https:// doi. org/ 10. 1007/ 978-3- 642- 23099-8

 44. de Los Reyes, J.C., Merino, P., Rehberg, J., Tröltzsch, F.: Optimality conditions for state-constrained 
PDE control problems with time-dependent controls. Control Cybernet. 37(1), 5–38 (2008)

 45. Maday, Y., Mula, O., Turinici, G.: Convergence analysis of the generalized empirical interpolation 
method. SIAM J. Numer. Anal. 54(3), 1713–1731 (2016). https:// doi. org/ 10. 1137/ 14097 8843

https://doi.org/10.1051/m2an:2007031
https://doi.org/10.1007/BF01442860
https://doi.org/10.1007/BF01442860
https://doi.org/10.1515/auto-2016-0100
https://doi.org/10.1515/auto-2016-0100
https://doi.org/10.1007/s10589-014-9636-1
https://doi.org/10.1007/s10589-014-9636-1
https://doi.org/10.1137/1.9781611974829.ch1
https://doi.org/10.1016/j.jde.2009.06.001
https://doi.org/10.1016/j.jde.2009.06.001
https://doi.org/10.1007/978-3-319-22470-1
https://doi.org/10.1007/s10589-005-4559-5
https://doi.org/10.1007/s10444-021-09860-z
https://doi.org/10.1007/s10444-021-09860-z
http://arxiv.org/abs/2002.04288v1
https://doi.org/10.1007/s11081-020-09547-2
https://doi.org/10.1007/s10444-016-9512-x
https://doi.org/10.1007/s10444-016-9512-x
https://doi.org/10.1051/m2an/2012037
https://doi.org/10.1007/s002110100282
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1051/m2an:2007054
https://doi.org/10.1137/S0036142902397090
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1137/140978843


784 F. Hoppe, I. Neitzel 

1 3

 46. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of para-
bolic optimal control problems. I. Problems without control constraints. SIAM J. Control Optim. 
47(3), 1150–1177 (2008). https:// doi. org/ 10. 1137/ 07069 4016

 47. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of 
parabolic optimal control problems. II. Problems with control constraints. SIAM J. Control Optim. 
47(3), 1301–1329 (2008). https:// doi. org/ 10. 1137/ 07069 4028

 48. Meinlschmidt, H., Meyer, C., Rehberg, J.: Optimal control of the thermistor problem in three spa-
tial dimensions, Part 1: existence of optimal solutions. SIAM J. Control Optim. 55(5), 2876–2904 
(2017). https:// doi. org/ 10. 1137/ 16M10 72644

 49. Meinlschmidt, H., Meyer, C., Rehberg, J.: Optimal control of the thermistor problem in three spa-
tial dimensions, Part 2: optimality conditions. SIAM J. Control Optim. 55(4), 2368–2392 (2017). 
https:// doi. org/ 10. 1137/ 16M10 72656

 50. Meinlschmidt, H., Rehberg, J.: Hölder-estimates for non-autonomous parabolic problems with 
rough data. Evol. Equ. Control Theory 5(1), 147–184 (2016). https:// doi. org/ 10. 3934/ eect. 2016.5. 
147

 51. Neitzel, I., Vexler, B.: A priori error estimates for space-time finite element discretization of semi-
linear parabolic optimal control problems. Numer. Math. 120(2), 345–386 (2012). https:// doi. org/ 10. 
1007/ s00211- 011- 0409-9

 52. Qian, E., Grepl, M., Veroy, K., Willcox, K.: A certified trust region reduced basis approach to PDE-
constrained optimization. SIAM J. Sci. Comput. 39(5), S434–S460 (2017). https:// doi. org/ 10. 1137/ 
16M10 81981

 53. Rogg, S., Trenz, S., Volkwein, S.: Trust-region POD using a-posteriori error estimation for semilin-
ear parabolic optimal control problems, vol. 359. Technical Report (2017)

 54. Rösch, A.: Error estimates for parabolic optimal control problems with control constraints. Z. Anal. 
Anwendungen 23(2), 353–376 (2004). https:// doi. org/ 10. 4171/ ZAA/ 1203

 55. Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Optim. 
Methods Softw. 21(1), 121–134 (2006). https:// doi. org/ 10. 1080/ 10556 78050 00949 45

 56. Roubicek, T.: Nonlinear Partial Differential Equations with Applications, International Series of 
Numerical Mathematics, vol. 153. Birkhäuser Verlag, Basel (2005)

 57. Schuh, M.: Adaptive Trust-Region POD Methods and Their Applications in Finance. Ph.D. thesis, 
University of Trier (2012)

 58. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer-Verlag (1984)
 59. Singler, J.R.: New POD error expressions, error bounds, and asymptotic results for reduced order 

models of parabolic PDEs. SIAM J. Numer. Anal. 52(2), 852–876 (2014). https:// doi. org/ 10. 1137/ 
12088 6947

 60. Smetana, K., Ohlberger, M.: Hierarchical model reduction of nonlinear partial differential equations 
based on the adaptive empirical projection method and reduced basis techniques. ESAIM Math. 
Model. Numer. Anal. 51(2), 641–677 (2017). https:// doi. org/ 10. 1051/ m2an/ 20160 31

 61. Susu, L.M.: Analysis and Optimal Control of a Damage Model with Penalty. Ph.D. thesis, Fakultät 
für Mathematik der Technischen Universität Dortmund (2017)

 62. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer Series in Computa-
tional Mathematics, vol. 25, 2nd edn. Springer-Verlag, Berlin (2006)

 63. Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimates for linear-quadratic optimal control 
problems. Comput. Optim. Appl. 44(1), 83–115 (2009). https:// doi. org/ 10. 1007/ s10589- 008- 9224-3

 64. Volkwein, S.: Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling. Univer-
sity of Konstanz, Lecture Notes (2012)

 65. Zeidler, E.: Nonlinear functional analysis and its applications. II/B. Springer-Verlag, New York 
(1990). https:// doi. org/ 10. 1007/ 978-1- 4612- 0985-0 (Nonlinear monotone operators, Translated from 
the German by the author and Leo F. Boron)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

https://doi.org/10.1137/070694016
https://doi.org/10.1137/070694028
https://doi.org/10.1137/16M1072644
https://doi.org/10.1137/16M1072656
https://doi.org/10.3934/eect.2016.5.147
https://doi.org/10.3934/eect.2016.5.147
https://doi.org/10.1007/s00211-011-0409-9
https://doi.org/10.1007/s00211-011-0409-9
https://doi.org/10.1137/16M1081981
https://doi.org/10.1137/16M1081981
https://doi.org/10.4171/ZAA/1203
https://doi.org/10.1080/10556780500094945
https://doi.org/10.1137/120886947
https://doi.org/10.1137/120886947
https://doi.org/10.1051/m2an/2016031
https://doi.org/10.1007/s10589-008-9224-3
https://doi.org/10.1007/978-1-4612-0985-0

	A-posteriori reduced basis error-estimates for a semi-discrete in space quasilinear parabolic PDE
	Abstract
	1 Introduction
	2 Model problem, assumptions, and RB-MOR
	2.1 Model problem, assumptions, and regularity results
	2.2 Semi-discretization in space and RB-MOR
	2.3 Outlook towards optimal control

	3 A-posteriori RB-error-estimates
	3.1 Some preliminary calculations
	3.2 A-posteriori estimates—Approach I
	3.3 A-posteriori estimates—Approach II

	4 A-posteriori RB- and EIM-error-estimates
	4.1 Empirical interpolation of 
	4.2 A-posteriori RB-error-estimates including the EIM-error

	5 Numerical illustration for POD-MOR
	5.1 Test problems and technical details
	5.2 Discussion of the results

	Acknowledgements 
	References




