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Abstract
Abstract The precise bending of sheet metal structures is crucial in various industrial and scientific applications, whether
to modify deformation in an existing component or to achieve specific shapes. Laser peen forming (LPF) is proven as an
innovative forming process for sheet metal applications. LPF involves inducing mechanical shock waves into a specimen that
deforms the affected region to a certain desired curvature. The degree of deformation induced after LPF depends on numerous
experimental factors such as laser energy, the number of peening sequences, and the thickness of the specimen. Consequently,
comprehending the complex dependencies and selecting the appropriate set of LPF process parameters for application as a
forming or correction process is crucial. The main objective of the present work is the development of a data-driven approach
to predict the deformation obtained from LPF for various process parameters. Artificial neural network (ANN) was trained,
validated, and tested based on experimental data. The deformation obtained from LPF is successfully predicted by the trained
ANN. A novel process planning approach is developed to demonstrate the usability of ANN predictions to obtain the desired
deformation in a treated region. The successful application of this approach is demonstrated on three benchmark cases for
thin Ti-6Al-4V sheets, such as deformation in one direction, bi-directional deformation, and modification of an existing
deformation in pre-bent specimens via LPF.
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Graphical abstract
Data-driven approach to deform and modify thin sheets by laser peen forming (LPF)
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Introduction

Sheet metal forming is of primary importance in the automo-
tive and aerospace industries due to its inherent flexibility,
production rate, affordability, and energy efficiency, as well
as the ability to make structural components with compli-
cated geometries and high dimensional accuracy. Sheetmetal
bending and stamping are someof themostwidelyused form-
ingmethods for aluminum alloys as described by Zheng et al.
(2018). These technologies have been developed to meet the
ever-growing demands of the industry to produce sustainable
structural sheet metal components that are compliant with
dimensional tolerances as discussed in the work of Thimm
et al. (2007). The applicability of these traditional forming
technologies is yet limited by the mechanical properties of
the material such as high yield strength and Young’s mod-
ulus as observed in titanium alloys by Beal et al. (2006).
General formability is significantly affected by springback
behavior, which is studied extensively for aluminum alloys
and titanium alloys in the works of Laurent et al. (2011)
and Badr et al. (2018), respectively. In contrast to traditional
sheet metal forming processes, advanced forming technolo-
gies such as shot-peening (Kopp & Schulz, 2002), water jet
incremental forming (Li &Yang, 2014), laser heating (Safari
et al., 2020), and laser peen forming (LPF) whose advances
are summarized by Yocom et al. (2018) evolved during the
recent times which are capable of dealing with springback to

certain extent. The extensive reviewof peen formingmethods
by Gariépy et al. (2014b) indicates that they can be applied to
aluminum alloys, steel, and titanium alloys. To fully utilize
these innovative technologies, a thorough comprehension of
how processing parameters affect deformation is necessary.
Additionally, effective process planning strategies that take
into account the material’s characteristics must be employed.

LPF is a complex cold working process which involves
the use of laser-induced mechanical shockwaves that pro-
duce plastic deformation at the top surface of the specimen.
LPF can be performed by applying an ablative layer (com-
monly black tape, aluminum or stainless steel foil, or paints)
on the treated region to absorb the short energy pulses from
the focused laser beam. The short energy pulse from the laser
irradiated on the treated region is absorbed by the ablative
layer, thereby burning it to generate plasma. A transparent
confining medium (generally water or glass) is necessary to
prevent the plasma from expandingwhich results in directing
the shockwaves into the specimen (Peyre & Fabbro, 1995).
The specimen at focus of the laser is moved relative to the
position of the beam which creates a peening sequence or
pattern. The plastic deformation due to the peening in the
treated region produce plastic strains which vary along the
thickness of the specimen. This distribution of plastic strain
is responsible for the deformation direction in the treated
region as described in the work of Hu et al. (2010b). LPF is
successfully applied to a wide range ofmaterials such as pure
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aluminum (Sagisaka et al., 2009;Hu et al., 2010b), aluminum
alloy 2024-T351 (Zhou et al., 2018), titanium alloy Ti-6Al-
4V (Su et al., 2020; Sala et al., 2022), and glass-reinforced
epoxy laminate aluminum composites (Hu et al., 2016). A
major advantage of LPF in comparison to traditional form-
ing processes is that the compressive stresses induced at the
surface reduce the risk of tensile cracks during the forming
process.

LPF is ideal for forming large sheet metal structures with
reasonably large bend radii without sudden changes in con-
tour, such as wing skins, as described by Baughman (1984)
and Ramati et al. (1999). LPF is best suited for forming
geometries, such as planar or cylindrical shapes. It is less
effective for forming complex shapes with tight curvatures
or sharp corners. A study by Hu et al. (2010a) highlights that
as the energy used in the peening process increases, the defor-
mation in the treated region also increases. Furthermore,
when peening is performed excessively at higher energies or
through repeated sequences, it can result in a change in the
direction of deformation. LPF can be performed for a wide
range of metallic materials to obtain a desired arc radius or
to correct deformations in an existing component. It is cru-
cial to determine the appropriate LPF process parameters to
achieve the desired arc radius. When required, peening can
be performed on both sides of the specimen, which produces
complex, saddle-shaped geometries, as demonstrated in the
work of Hu et al. (2019). Other possibilities include peening
parallel to the edges of the specimen by clamping one edge to
produce significant bending along the span of the specimen
due to the introduced bending moment. Compound arc radii
can also be achieved for pre-bent plates processed with LPF
on the surfaces by implementing a process planning approach
as reported by Hu et al. (2020). The utilization of LPF as a
forming or correction technology can be achieved through
themanipulation of peening energy and sequences in specific
regions, thus enabling the deformation of components to con-
form to a desired arc radii. This can be accomplished through
the implementation of a multi-step cyclical approach, con-
sisting of iterative peening and measurement until the target
geometry is attained. However, the successful execution of
these steps necessitates precise identification of LPF process
parameters and the regions that require peening.

The majority of studies investigating the LPF process
frequently resort to numerical simulation techniques and
experimental validation to establish the impact of process
variables on the deformation of peened specimens. How-
ever, it should be noted that these numerical techniques are
dependent on various assumptions and often entail a signif-
icant utilization of computational resources. This is a result
of the intricacy of the LPF process, which poses challenges
in identifying the physical connections between the process
variables and the resulting deformation. Thus, it is imperative
to effectively exploit the data obtained from experiments to

establish the optimal set of LPF process variables for achiev-
ing a desired bend radius or to execute a correction step
utilizing LPF. One of the key advantages of utilizingmachine
learning (ML) techniques in comparison to numerical simu-
lation methods is the ability to make predictions or decisions
without a comprehensive understanding of the underlying
system. ML algorithms are able to identify patterns and cor-
relations within data sets, even when such relationships are
not explicitly programmed into a numerical simulation. This
capability allows for predictions or decisions that are more
precise or efficient in nature. Furthermore, MLmethods pos-
sess the ability to adapt and evolve as new data becomes
available, whereas numerical simulations often necessitate
explicit updates to the model. In recent times, there has
been a rapid progression in computational power and ML
tools, which has facilitated the applicability of these tools to
the development of manufacturing processes and continuum
material mechanics, as highlighted in the works of Weichert
et al. (2019) and Bock et al. (2019). The creation of a robust
model for such studies necessitates a substantial amount
of training data, and the generation of this data through
experiments or numerical computational methods entails a
considerable effort; nonetheless,Kumar et al. (2018) reported
the development of an ML approach utilizing bootstrapped
gradient descent constrained by dimensional analysis utiliz-
ing the Buckingham’s Pi theorem and this approach enables
the formation of robust predictiveMLmodels from relatively
small datasets.

Applications of ML algorithms to traditional sheet metal
forming processes are primarily used for process planning
and prediction of non-linear relationships between the design
parameters, as summarized in the work of Kashid and Kumar
(2013). For sheet metal forming, a frequent use of supervised
machine learning schemes such as support vector machines
(SVM’s), decision trees, Naive Bayes classification, and K-
nearest neighbors (KNN’s) is observed. Thework of Liu et al.
(2019) demonstrated the application of SVM’s to accurately
predict and control springback in case of micro W-bending
also known as back bending used to form deep ‘U’-shaped
profiles. Dib et al. (2019) evaluated the performance of sev-
eral ML approaches to predict the springback and thinning
during sheet metal forming, where multi-layer perceptron
(MLP) models were the best in identifying springback. The
works of Cheng and Lin (2000) as well as Fetene et al. (2016)
report implementation of MLP models to predict the bend-
ing in case of laser-assisted forming of 304 stainless steel and
aluminum alloy 5052-H2. It was observed that MLP models
were able to predict the bending angle accurately for dif-
ferent processing conditions. In case of forming thin sheets
of aluminum alloy AA 6082, Guarino et al. (2007) demon-
strated the application of artificial neural networks (ANNs)
to study the influence of laser process parameters to predict
the residual inflection during laser forming. Yet, very few
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researches take into account the impacts of material proper-
ties paired with process parameters when defining inputs and
outputs for ANNs that can generalize the model; hence, this
is investigated in the present work.

LPF is an emerging technology that can be applied to
a wide range of materials to shape complex profiles, cor-
rect geometries, and produce small components with distinct
features. Nevertheless, the implementation of LPF at an
industrial level presents difficulties in terms of LPF process
control,which to date has been restricted by the availability of
limited robust analytical modeling techniques and complex
simulation methodologies. In this context, the present work
aims to effectively utilize experimental and material data for
creating a data-driven framework to effectively modify and
deform thin sheet structures with reasonably large bend radii,
maintaining uniform bending throughout the span, without
sudden changes in contour. The objective of this work is to
develop an ANN-based model to predict the deformation in
the peened region after LPF, in case of Ti-6Al-4V sheets of
1mmand 2mm in thickness. LPF experiments are performed
by varying process parameters such as laser energy, number
of peening sequences, and thickness of the specimen. The
deformation obtained in the peened region for a particular set
of process parameters is measured accordingly. A dataset is
to be formulated with LPF process parameters and their cor-
responding deformations in the peened region respectively.
The purpose of this dataset is to be used to train an ANN to
make predictions of the deformations in the peened region.
Following the collection of experimental data, the physical
quantities associated with process parameters and deforma-
tions must be transformed into dimensionless Pi-terms using
Buckingham’s Pi theorem,whichwill serve as inputs and out-
puts for the ANN, potentially enhancing the generalization
of the model. Once the prediction metrics computed from
the output of the ANN model suggest sufficient precision
and generalization, the model can used for the prediction of
bending in the LPF-treated region of thin sheets.

In order to effectively correct a pre-deformed shape to a
desired target shape, it is essential to possess a thorough com-
prehension of the LPF process parameters that will generate
the necessary deformation. This constitutes an inverse prob-
lem, the resolution of which leads to multiple solutions as
there can be various permutations of LPF process parameters
that could yield identical deformation. To achieve this objec-
tive of correction via LPF, a cyclic peen-and-measure process
planning methodology is formulated by taking into account
all potential combinations of LPF process parameters within
the defined parameter space, utilizing the deformation pre-
dictions of the trained ANN and certain process constrains.
This proposed approach is experimentally validated on test
specimens. These test case samples encompass challenges
such as bending profiles with varying arc radii, creating
‘S’-shaped profiles, modification and complete flattening of

curved regions to achieve a target profile. The experimen-
tally obtained deformation profiles are compared with the
target profiles, after being peened with the process parame-
ters obtained from the process planning methodology. This
process is repeated until the desired deformation is reached
within the tolerance limits corresponding to the target defor-
mation.

Materials andmethods

LPF experimental setup

Theexperimental setupused for the presentwork (see process
video in Sala (2023)) is shown in Fig. 1. LPF was performed
using anNd:YAG laser producing a beamwith a square cross-
section of 1mm2 at focus. The energy distribution of the
laser is constant over the region of the laser shot. The laser
energy can be varied from 0.1 J to a maximum of 5.0 J.
The shape of the laser pulse is a Gaussian profile with a
full-width at half maximum (FWHM) of 20 ns. The speci-
men is rotated around the X -axis to an angle of 25◦ to avoid
damage to the optical system of the laser due to back reflec-
tion. The spot size of each laser spot is thus 1.1 × 1mm2.
Sheets of 1mmand 2mm thick commercial gradeAMS4911
Ti-6Al-4V were used in this study. The size of the LPF spec-
imens is 80 × 20mm2 and the peened region measures 20 ×
20mm2. A stainless steel foil of 50 µm thickness was used
as a sacrificial overlay. A stream of water jet is employed
to produce a laminar water flow over the specimen which
acts as a transparent overlay. The specimen is moved relative
to the laser beam to produce the peening pattern as shown
in Fig. 1. The varied process parameters considered in this
study are summarized in Table 1. A total of 52 experiments
(ref. Fig. 12) were performed with various process parameter
combinations respectively. A set of 32 experimental process
parameter combinations were obtained by considering a gen-
eral full factorial design encompassing the entire parameter
space. The remaining experiments are chosen randomly such
that they lie within the defined parameter space.

The deformation in the peened region obtained after
LPF was measured using a non-contact linear displacement
optical laser triangulation sensor (optoNCDT2300).Adefor-
mation profile is defined as a curve that appears on the section
plane vertical to the surface of the sample along the width
(see Fig. 2) and obtained by averagingmeasurements over the
span of the specimen at five equidistant positions along the
width. The observed standard deviation of averaged defor-
mation values is diminutive (as seen in the error bars of the
exemplary specimen in Fig. 2) indicating a uniform bending
across the width of the specimen. The margin of error in
measured deformation is reduced by fitting a second-order
polynomial to the measured data and using the deformation
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Fig. 1 Experimental setup of LPF process where the LPF specimen is covered with a sacrificial overlay and with a laminar flow of water as a
transparent overlay. One edge of the specimen is clamped and the specimen moves relative to the laser beam generating, a zig-zag peening pattern
(Color figure online)

values from the fitted function. The obtained deformation
profile is rotated by applying a coordinate transformation to
ensure that the fixed end remains horizontal (see Fig. 2).

Artificial neural networks

ANNs are emerging abstract computational tools inspired by
replicating the functionality of biological neurons.ANNs can
be implemented to develop anunderstandingof various forms
of complex data to map containing trends and patterns. The
simplest form of an ANN is known as a perceptron, which
contains a single input layer and an output node as described
by McCulloch and Pitts (1943). In the present work, a fully
connected, feed-forward neural network is used that consists
of a multiple-layer perceptron model with an input layer,
one or more hidden layers,1 and an output layer. In a feed-
forward network, the outputs of one layer are fed as inputs
into another layer in the forward direction from inputs to
outputs. Amathematical formulation of a feed-forwardANN
is described below.

Assuming there are n number of inputs represented by a
vector I (Eq. 1). Hence, the input layer is:

I = [i1, i2, i3, . . . , in]. (1)

If this neural network comprises p1, p2, . . . , pk units within
each of its k hidden layers, the vector representations of these
outputs, as denoted by h1, h2, . . . , hk , possess dimensional-
ity that alignswith p1 through pk . Consequently, the quantity

1 The number of hidden layers were determined during hyperparameter
tuning of the ANN.

Table 1 LPF process parameters varied in this study

Process parameter Range Unit

1 Laser energy 1.8–3.1 J

2 Number of peening sequences 1–4 –

3 Specimen thickness 1, 2 mm

of units within each layer is referred to as the dimensional-
ity of that specific layer. Then, the weights of connections
from the input layer to the 1st hidden layer (h1, in Eq.2) are
represented by matrix W1 whose size is n × p1 in the form
of:

h1 = f
(
WT

1 I
)

, (2)

where, f is a non-linear activation function. Similarly, the
weights between the r th hidden layer and the (r + 1)th hid-
den layer are denoted by the matrix denoted by Wr with
the dimensionality of pr × pr+1. The recursive equation of
input from r th hidden layer to (r + 1)th hidden layer can be
formulated as:

h p+1 = f
(
WT

p+1h p

)
∀p ∈ {1, 2, . . . , k − 1}. (3)

If the number of outputs (m) are denoted by a vector Y,
then the corresponding output layer contains m nodes and
the final matrixWk+1 has a dimension of pk ×m which can
be represented as:

Y = [y1, y2, y3, . . . , ym] = g
(
WT

k+1hk
)

. (4)
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Fig. 2 Measuring the
deformation after LPF for an
exemplary specimen: The graph
shows the measured and
averaged deformation profile
(D) over the length of the
specimen. A coordinate
transformation is applied to
rotate the profile such that the
fixed end is parallel to the
X -axis. The standard deviation
of the averaged deformation
profile in the peened region
(x = 30.0 to 50.0 mm) is
represented by the error bars in
red (Color figure online)

where, g is a linear activation function of the output layer in
case of regression tasks.

ANNs can be trained to predict any non-linear relation-
ships between inputs and outputs by adjusting the weights
to minimize an error function using the back propagation
algorithm described by Rumelhart et al. (1986). Initially,
a training instance, or also known as batch size, which is
the number of samples from the training dataset, is fed into
the neural network which results in forward computations
across the layers using an initial set of weights. Then, the
back propagation algorithm uses the chain rule of differen-
tials to compute the error gradients as sum of local gradient
products of different connections from a node to the output.
Finally, the weights corresponding to individual neurons of
the ANN are adjusted in such a way that the computed error
is minimized. This can be done by controlling the learning
rate of the ANN, which is a crucial tuning parameter that
controls the step size at each iteration when moving towards
a minimum in the loss function. An adaptive learning rate
is implemented using available optimizer’s such as Adam
from a popular open-source Python implementation from
Chollet (2015). Finally, the ANN is trained with all the avail-
able instances from the training dataset. The weights at each
neurons are iteratively adjusted to minimize the error in pre-
diction and a model with best weights is retained at the end
of the training process.

The performance of the ANN largely depends on the
amount and quality of data on which it is trained, validated,
and tested. Nevertheless, it is crucial that the ANN does not
overfit the data. A widely used method called Early Stopping
is elaborately discussed in the work of Yao et al. (2007),
which controls the number of iterations based on a speci-
fied performance criterion (i.e. mean squared error (MSE)).
During each training iteration, the resulting prediction per-

formance is evaluated using a validation dataset (strictly
unknown to the ANN). Early stopping is triggered when the
performance criterion is fulfilled on the validation dataset,
which stops the training process and restores the best weights
obtained. In addition to this, it is important to understand the
influence of variables or hyperparameters that determine the
architecture of the ANN on performance and generalization.
In this work, hyperparameters such as number of hidden lay-
ers, number of neurons in each hidden layer, learning rate,
and type of activation function were varied simultaneously
with the aid of random-search-based Python implementa-
tions from O’Malley et al. (2019).

Model performance was assessed by the mean squared
error (MSE) and the determination coefficient (R2) which
are defined as:

MSE = 1

n

{
N∑
i=1

(
yi − ŷi

)2
}

, (5)

R2 = 1 −
∑N

i=1

(
yi − ŷi

)2
∑N

i=1 (yi − ȳ)2
, (6)

where, yi represents the true value, ŷi is the predicted value
and ȳ is themeanof true values. Theparameter N is the size of
the dataset. These statistical indicators were computed based
on model predictions versus the true values corresponding to
training, validation, and testing datasets.

Data preparation

Data preparation is an important requirement and represents a
mandatory pre-processing step. This step helps in the reduc-
tion of modeling errors, enhances prediction performance,
and leads to overall simplification of the ANN. Koval (2018)
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highlighted the importance of a data preparation step and
discussed different approaches of dealing with numerical,
ordinal, and categorical datatypes. Yet, it is still challenging
to select the appropriate input features that efficiently encap-
sulate the entire properties of interestwith limited availability
of experimental and physics-based numerical data. Naren-
dra et al. (2019) addressed the challenges of choosing the
right set of input parameters for building physically mean-
ingful machine learning models. The work of Huber et al.
(2002) demonstrated a hybrid scheme by making use of
Buckingham’s Pi theorem and by empirically scaling rela-
tions between inputs and outputs to predict the material
properties of thin film substrates. The studies of Huber and
Tsakmakis (2001) as well as Bock et al. (2021) demonstrated
that physical normalization of inputs and outputs according
to Buckingham’s Pi theorem can enhance ANN predictions
by reducing prediction errors and increasing the generaliza-
tion of the model. As a result, for developing a data-driven
model, physical quantities involved in LPF, such as process
parameters, material constants, and derived variables from
material constants are identified and used to achieve physi-
cal normalization of inputs and outputs (see. Fig. 3).

Considered LPF process-related parameters that are pri-
marily varied are laser energy (EL ), number of peening
sequences (n), and thickness of the LPF specimen (T ) since
they have a higher influence on the deformation in the treated
region (Sala et al. (2022)) as well as other experimental pro-
cess parameters (however not varied) such as the area of
cross-section of the focused laser beam (A f ) and duration
of the laser pulse (τ ). Material parameters, namely Young’s
modulus (E), density (ρ), and the wave speed (C = √

E/ρ,
which is a measure of the speed of transverse propagation
of shockwaves through the thickness of the specimen dur-
ing LPF) are considered to encapsulate the material related
effects into the developed ANN model. The output obtained
by varying the process parameters is the deformation profile
D(x) in the peened region. Incorporating other process vari-
ables and material properties is essential, as they may exert a
greater influence on deformation when processing different
materials. This comprehensive approach takes into account
all factors that impact deformation within the treated area,
enhancing the model’s robustness and generalizability. By
considering these additional variables, the model becomes
capable of generating predictions across a wide spectrum of
materials and processing conditions, provided it is appropri-
ately trained with relevant data.

After defining these inputs and outputs for the LPF pro-
cess, one can proceed with developing an ANNmodel; how-
ever, this technique is not particularly an efficient approach
because the correlations between the processing parameters,
material constants, andother derivedparameters are not taken
into account. This is clearly evident from the work of Bock
et al. (2021). Based on the physical quantities and material

constants, a dimensional analysis is performed with the cor-
responding input–output parameters to create dimensionless
inputs and outputs.

Dimensional analysis can be performedbyusingBucking-
ham’s Pi theoremwhich states that if a physicallymeaningful
relationship k1 involving n number of variables (such as
P1, P2, ..., Pn) exists in the form:

k1(P1, P2, . . . , Pn) = 0, (7)

with a minimum number of fundamental dimensions m to
describe those variables, then they can be grouped into (n −
m) dimensionless groups referred as π groups in a relation
k2 such that,

k2(π1, π2, . . . , π(n−m)) = 0. (8)

The dimensionless terms can be formulated as products of
parameters (Pi ) governing the physical model. A simple for-
mulation of a π -term can be written in the form of:

πi j =
(n−m)∏
i=1

P
α j
i , (9)

with αi in N0, where N0 is a set of natural numbers. The
application of Buckingham’s Pi theorem for the experimental
process parameters results in the formulation of π -terms as
described below:

h

(
ET 3

EL
, n,

D

T
,
T 5ρ

ELτ 2
,
A f

T 2 ,
Cτ

T

)
= 0, (10)

and it reflects fundamental physical relationships between
experimental process parameters, material properties and
deformation after peening. The deformation in the peened
region after LPF is measured as profile (see Fig. 2); hence,
the nature of the deformation data is a continuous function
D(x) over the span of the peened region. It is discretized into
41 points starting from D(30.0) to D(50.0) at equal intervals
of 0.5 mm as described as:

D = [
d(x j )

] ∀ j ∈ [0, 40], (11)

where d(x j ) is the deformation at j th position along the
length of the peened region. For predicting each deformation
value in a deformation profile D, the ANN is provided with
information regarding the position j , corresponding to the
deformation value d(x j ) and i is the total number of experi-
ments in the parameter space. The formulated dimensionless
input space of the ANNmodel consisting of the experimental
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Fig. 3 Schematic representation of the LPF process and a list of governing experimental process parameters and material constants. The material
constants and derived quantities are additional features that provide relevant physical information to the model (Color figure online)

data is described as follows:

Xi j :=
{
ET 3

i

Ei
L

, ni ,
T 5
i ρ

Ei
Lτ 2

,
Ai

f

T 2
i

,
Cτ

Ti
,

j

41

}
, (12)

whereas the output is defined as:

Y i j :=
{
di (x j )

Ti

}
. (13)

Similar approaches of considering an index or positional
parameter as an input to ANN were employed in the works
of Bock et al. (2021) for predicting induced residual stress
profiles after laser shock peening as well as Huber and
Tsakmakis (2001) for solving an inverse problem to iden-
tify material parameters assessing the viscoplastic behavior,
which resulted in good prediction performance.

Overall, the dimensionless input space from experimen-
tal data consisted of 52 experiments, with a discretization of
41; therefore, the total number of unique input/output tuples
for the ANN are 2132 (i.e. 52 × 41) which correspond to
the global dataset. This data is split into training, validation,
and testing datasets with a ratio of 70/15/15. The ANN was
trained using 1476 data tuples corresponding to 36 experi-
ments that span across the design space. The validation and
testing datasets comprise 328 data tuples each corresponding
to 16 experiments within the experimental design space.

To maintain the shape of the original data distribution
while setting a specific value range, which is beneficial when
the data contains outliers or differs in scale, min-max scal-
ing was applied to both inputs and outputs, scaling them to
fall within the range of [−1, 1]. This normalization process
helps theANN to effectively learn from the data andmaintain
numerical stability during training. This scaling procedure
was achieved using the following equations:

Vstd =
{

V − vmin

vmax − vmin

}
, (14a)

Vs = Vstd(Vmax − Vmin) + Vmin, (14b)

where Vs represents the scaled value of the input or output,
V is the original value, vmin and vmax are the minimum and
maximum values in the scaled entity, Vmax and Vmin are the
maximum and minimum values in the feature range. (avail-
able in scikit-learn library ref. Pedregosa et al. (2011) as
MinMaxScaler ).

Hyperparameter tuning of ANN

The typical hyperparameters of an ANN are the number of
neurons, the number of hidden layers, the learning rate, batch
size, and the number of epochs aswell as the typeof activation
functions and the kind of optimizer. In this work, the ANN
is trained with experimental data and comprises two hidden
layers with a sigmoid activation function1 and six neurons
in each layer. The output layer of the ANN is activated by a
linear activation function since the predicted output is a con-
tinuous value (Eq.13). Themean squared error (MSE) is used
as the loss function and considered as a metric to evaluate the
performance of the model during training. The MSE is min-
imized gradually by adapting the weights of the ANN using
the gradient descent optimization approach which iteratively
calculates the localminimumof a differentiable convex func-
tion and is one of the most widely used black-box optimizers
as described in the work of Ruder (2016). An adaptive learn-
ing rate is used to improve the training performance by using
the Adam optimizer with a learning rate set to 0.001, while
other parameters of the optimizer are set to default values
(Kingma & Ba, 2014). Since the dataset is small, the batch
size is set to 1; thus, weight updating is performed after each
sample is presented to the ANN. The number of epochs is set
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to 1000. Over-fitting of the model is prevented by setting up
an early stopping trigger to monitor the model performance
during training with a patience value of 250 epochs and with
a minimum tolerable improvement (δ) of 10−3. Patience is
the number of epochs without improvement of prediction
metric on the validation set after which the training process
gets terminated and δ is the minimum change in MSE to
be accounted for improvement of the model i.e. an absolute
value of MSE for two consecutive epochs less than δ will
count as no improvement. In the present study, ANN imple-
mentation is achieved in a Python framework with the aid
of open-source libraries Scikit-learn and Keras (Pedregosa
et al., 2011; Chollet, 2015).

Data-driven approach for LPF process planning

The process planning of LPF requires solving an inverse
problem to find the process parameters that are required
to achieve the desired deformation in the peened region.
An inverse problem leads to multiple solutions as there can
be multiple combinations of LPF process parameters which
could result in producing identical deformation. The work
of Hu et al. (2020) proposed a combined numerical and
experimental process planning strategy by utilizing eigenmo-
ment as an intermediate variable that correlates LPF process
parameters to describe deformation obtained after LPF. The
proposed strategy was applied to form a saddle-shaped target
geometry. The goal of this study is to develop a process plan-
ning strategy based on predictions from the trained ANN
and apply it to accomplish one-dimensional bending and
correction for thin sheets using LPF; thereby, eliminating
the need for additional numerical simulations. The multiple
solutions can be minimized by defining a set of reason-
able process conditions that are influenced by experimental
process parameters such as laser energy and the number
of peening sequences in the peened regions. For instance,
depending on the application, it might be required to limit the
number of peening sequences to preserve the surface integrity
of the specimen.On the other hand, it could be desired to con-
duct a peening operation with lower laser energy to achieve
precise correction. In these cases, it is required to adapt the
process planning of LPF to recognize the importance of such
physical constraints.

In this work, a data-driven process planning approach is
demonstrated (see Fig. 4) to a number of applications where
it is required to achieve a target profile from flat specimens
or from specimens already possessing a certain shape. The
main objective of this approach is to utilize the predicted
deformation values by the trained ANN while considering
certain process constraints. The proposed workflow consists
of an initial profile, a target profile, a trained ANN, an opti-
mizer and input process constraints, respectively, and their
functionalities are described below.

AnANNis trained to predict the deformation in the peened
region with certain combinations of experimental parame-
ters within the process parameter space. The trained ANN
is validated using a validation dataset and tested against
a strictly unknown test dataset. This resulted in a trained
ANN that can predict the deformation in the peened region
given a combination of process and material parameters i.e.
laser energy, number of peening sequences, and thickness of
the specimen. A database of all possible process parameter
combinations is formulated within the limits of the parame-
ter space corresponding to the training dataset. As a result,
a deformation profile corresponding to each unique pro-
cess parameter combination is predicted by the ANN, and
a database of deformation profiles for all possible parameter
combinations is generated.

The initial profile (Di ) and target profile (Dt ) measured
over the span of the specimen (x) to be processed are obtained
as shown in Fig. 4. The deviation in deformation between
the initial and target profiles is computed as �D(x) =
Di (x) − Dt (x) representing the difference that should be
corrected by LPF to achieve the target profile. The �D(x)
profile is then discretized into smaller units along the span
of the specimen which is essential to identify existing local
deformations or curvatures. The length of the discretization
step (Ds) is chosen depending on the nature of�D(x) profile
and; hence, depends on the complexity of the peened profile.
Intuitively, the discretization step size is not constrained to
be a constant value and must be adjusted accordingly.

When peening specimens with compound curvatures, a
constant value of Ds is suitable; however, peening structures
with complex curvatures require varying discretization step
sizes over the span. After discretization of the �D profile
into ‘k’ parts, each discretized part of size Ds.k (see Fig. 5)
can be represented mathematically as shown below:

�Dk(x) := {x,�D(x)} ,∀x ∈ [Ds,(k−1), Ds,k). (15)

Each discretized part �Dk(x) of the �D profile repre-
sents the local difference of deformation between the initial
and target deformation profiles that should be corrected by
LPF. For each discretized unit ‘k’, the �Dk(x) profile is
approximated with a circular fitting function to obtain the
arc radius (Rk) as shown in Fig. 5.

This is accomplished by implementing the least
squares fitting method of circles to the discretized data (i.e.
{x,�D(x)}) for ‘k’ discretized units, as outlined in the work
of Chernov and Lesort (2003). A circular fit is selected as
it has been observed that all predicted deformation profiles
can be effectively approximated by a circular arc. Fitting a
circular arc for the discretized �Dk(x) profiles yields corre-
sponding arc radii Rk , as illustrated in Fig. 5. The arc radius
(Rk) is used to construct a deformation profile (Dk(x j )) as
shown below:
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Fig. 4 Flowchart of the
data-driven LPF process
planning, showing the
integration of ANN-based
predictions for peening complex
profiles to obtain the target
profile geometry. The first step
is to obtain the deformation
profiles of the initial specimen
shape and of the target
deformation. The �D profile,
which is the difference of the
two profiles, is calculated. The
�D profile is discretized into
different parts and the
corresponding arc radius of each
part is computed. Using the arc
radius as a key, the optimizer is
able to find the process
parameters that result in the
relevant deformation profiles by
taking into account external
process restrictions. A
peen-and-measure cycle is
performed to reduce �D to
obtain the required target
deformation within the desired
tolerance level (Color figure
online)

Initial and target profiles

ΔD profile

Discretization of
ΔD profile

Discretization step
size (DS = f(ΔD))

Data processing for each
discretized profile ’k’
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Fig. 5 Discretization of the �D
profile i.e. (�D(x) = Di (x)
− Dt (x)), where, Di is the
initial profile and Dt is the target
profile, Ds.k is the discretization
step size of the kth part of the
profile (Color figure online)
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√
R2
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(16)

where x j is the position along the length of the peened region,
and is comparable to the predicted output by theANN trained
in this study. As a result, the discretized �Dk(x) profiles are
transformed into interpretable deformation profiles.

Reasonably chosen, the discretization of the �D(x) pro-
file allows for peening realistic target shapes without further
optimization. However, employing an excessively small dis-

cretization step size can introduce deviations from the desired
profile due to accumulated errors, and it tends to esca-
late the number of processing steps required (ref. Fig. 8b).
Conversely, opting for an excessively large discretization
step size may lead to erroneous interpretations, particu-
larly when approximating by means of a circular fit. Ideally,
the discretization step size (Ds) should be adaptable to the
characteristics of the �D(x) profile, as it tends to vary
depending on the specific profile under consideration. The
current approach for process planning utilizes an iterative
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Fig. 6 Performance of the ANN based on the experimental dataset. a
Performance metric (MSE) during training on both training and valida-
tion datasets. b visualization of predicted deformation values over true
deformation values from the trained ANN corresponding to training,

validation, and test datasets. The dashed line signifies that the predicted
value is equal to the true value. The conical shaded region represents
a relative error of ±10% deviation from the true value (Color figure
online)

method, where the number and the length of discretization
are strategically determined based on the characteristics of
the �D(x) profile, with the goal of minimizing the num-
ber of segments and maximizing the length of each segment.
The general context for selecting the size Ds,k of the kth dis-
cretized part of the�D profile, aims for larger discretization
step sizes whenever feasible. This recommendation ensures
optimal processing due to a combination of factors, most
notably its ability to significantly reduce processing time by
minimizing the required peening cycles. In doing so, it not
only enhances operational efficiency but also contributes sub-
stantially to conserving energy resources.

During the first iteration, each discretized part of the defor-
mation profile is approximated by a circular fitting function
as explained above. The discretization step size for a part of
the deformation profile is assessed depending on the quality
of fit using the R2 value (set to be greater than 0.99) and
the arc radius of the fit. The arc radius of the fit correspond-
ing to each discretized unit should lie within the minimum
and maximum achievable arc radii in the defined process
parameter space. A large value of arc radius indicates that
the region is flat and does not require any LPF treatment;
however, it could also mean that the discretization step size
is too small and the deformation profile should be analyzed
again by increasing the size of the discretization step. In these
circumstances, the discretization step size for each segment
is manually modified in small increments until a satisfactory
fit is obtained and the arc radius remains within the desired
limits. This iterative approach is beneficial as the number of
discretizations and length corresponding to each unit can be
adjusted to reduce the processing steps. The processed defor-
mation data and corresponding fit data is fed as input to the
optimizer on successful discretization of the �D(x) profile.

The optimizer, based on the two-sample Kolmogorov-
Smirnov (KS) test as outlined by Simard and L’Ecuyer
(2011) and implemented using the Scipy library (Virtanen et
al., 2020), is utilized to evaluate whether the approximated
Dk(x) profiles align with the ANN predicted deformation
profiles within the database. A two-sample KS test is per-
formed for each discretized profile and deformation profile
from the predicted database. It is possible that the KS test
may yieldmultiplematches of the Dk(x) from the database of
predicted deformation profiles, as various process parameter
combinations may lead to the same deformation. Neverthe-
less, such cases can be avoided by constraining the search
criterion based on physical and process constraints. For
instance, a physical constraint can be formulated from the
database of deformation profiles (D(x)) that can be filtered
depending on the input process parameter such as the thick-
ness (T ) of the material peened. In the present work, LPF
process constraints refer to limitations or boundaries that
must be adhered to, in order for the process to function cor-
rectly and produce reliable deformation in the treated region.
The current study has certain limitations for the process,
namely, the laser energy must not exceed 3.0 J and the num-
ber of peening sequences must be limited to four. This is
because using more laser energy causes damage to the sac-
rificial overlay, and increasing the peening sequences over
four does not result in significant additional deformation in
Ti-6Al-4Vsheets, as reported in theworkof Sala et al. (2022).
For practical applications, it could be desired to have opera-
tional process parameter constraints such as the laser energy
(EL ) and the number of sequences (n), which can further
reduce the occurrence of multiple matches of Dk(x). The
optimizer returns an index of the deformation profile from
the database that matches with the formulated deformation
profile (Dk(x)). The index is used as a key to identify the
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Table 2 Performance metrics of the trained ANN on experimental
datasets

Dataset Performance metrics
R2 in % MSE (mm2)

Train 97.95 0.04758

Validation 93.95 0.07101

Test 88.99 0.08183

corresponding process parameters. Through this methodol-
ogy, a suggested set of LPF process parameters is obtained
for each discretized profile as an output from the optimizer.

LPF treatment is performed with the output process
parameters from the optimizer corresponding to each dis-
cretized unit k of the �D profile. The deformation profile of
the LPF-treated specimen is compared with the target defor-
mation profile. The target profile is successfully achieved by
LPF treatment if the deformation profile of the treated spec-
imen lies within a defined tolerance limit of ± 10% of the
desired target deformation.

Results and discussion

Performance of ANN trained on experimental data

The findings from the ANN trained with the experimental
data are discussed in this section. During training, the perfor-
mance metric (i.e. MSE) was computed on both the training
and validation datasets after each epoch. The graph obtained
by plotting the performance metric from training data and
validation data over the number of epochs is known as the
learning curve. The learning curves are extensively used to
understand the evolution of the model during training and
model behaviors namely an underfit or overfit as well as
the representative suitability of the training and validation
datasets can be diagnosed using the shape and dynamics of a
learning curve. The resulting learning curve of this ANN is
shown in Fig. 6a. It can be observed that theMSE reduces and
converges as the training progresses, signifying that further
training is no longer required.

The training is terminated at 409 epochs and because of
the patience of 250 epochs, the optimal weights of the model
from epoch 159 are restored due to the early stopping trig-
ger. The performance of the ANN after training is shown
in Fig. 6b. It can be observed that the majority of predicted
deformation values from the training, validation, and test
datasets lie within the ±10% range. Yet, a few outlier values
are found in predicting the test data. Overall, the values of R2

and theMSE, as shown in Table. 2, indicate acceptable agree-
ment between predicted and true deformations on training,
validation, and test datasets.

The scatter plot shown in Fig. 6b indicates true versus
predicted data from the ANN. The ability of the ANN to
generalize can be evaluated based on its performance on the
test dataset. The achieved coefficient of determination for
the test dataset is 88.9 %. The true deformation profile in the
peened region is compared with the predicted deformation
from the trained ANN. A reasonable agreement between the
true and predicted deformation profile can be observed for
the exemplary cases from the test dataset as shown in Fig. 7a–
d. In cases where the deformation after LPF is below 1mm
(as in Fig. 7b), it was observed that the predicted deforma-
tion from the ANN is higher than the measured deformation.
Nevertheless, for significant deformations greater than 1mm,
the predicted profiles show insignificant deviations from the
true deformation observed in the experiments.

From the results above, it can be observed that ANN can
effectively predict the deformation in the peened region. Yet,
these resultsmust be effectively implemented in solving com-
plex use cases. Typical use case applications of LPF involve
introducing deformations in a flat specimen or correction of
deformations in specimens which might occur due to differ-
ent processing conditions (Gariépy et al., 2014b). For this
reason, a data-driven planning framework is proposed in the
present work to demonstrate the application of deformation
predictions after LPF, using an ANN trained on experimental
data, to modify and deform thin Ti-6Al-4V sheets to obtain
desired target shapes.

Application of process planning approach to deform
andmodify thin sheets

LPF can be performed on large structures with challenging
geometries having different curvatures. The desired target
deformation can be achieved by usingmultiple laser energies
over different regions of the specimen. In the present work,
the proposed data-driven process planningmethodology uses
the deformation predictions from the trained ANN and aims
to modify deformation via LPF without solving an inverse
problem. The iterative discretization, optimizer defined by
physical and process constraints together presents the flexi-
bility to tailor the process planning strategy to applications
with different initial deformation profiles. Additionally, a
peen-and-measure cycle reduces the need for redundant LPF
treatments.

Hence, the presented process planning approach is tested
for four different use cases. The first two use cases demon-
strate the applicability of LPF on flat sheets to produce
desired target deformation whereas the latter use cases show
the modification of a pre-bent structure. In all cases, the
process control constraints of the optimizer were set to the
possible maximum laser energy (EL ≤ 3.0 J) and the num-
ber of sequences (n) was less than four due to the process
constraints (ref. Sect.. 2.3). The thickness (T ) of the sheet
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Fig. 7 Comparison of exemplary true vs. predicted deformation values
in the peened region generated for various process parameters corre-
sponding to the test dataset which is strictly unknown to the trained
ANN. The process parameters EL is the laser energy, n is the number

of sequences and T is the thickness of the specimen. The true profile is
obtained from real experiments and the predicted profile is the output
of the ANN (Color figure online)

material was changed according to the specimen thicknesses
used.

Deformation in flat sheets via LPF

The first use case demonstrates the direct application of LPF
treatment at different locations on the flat specimen to reach a
desired target deformation for a Ti-6Al-4V sheet that is 1mm
in thickness and 80mm in length. The�D curve correspond-
ing to the initial specimen before peening and target profile
was computed. As seen in Fig. 8a, a discretization step size
of 10mm is chosen. The discretized parts �D1(x), �D2(x),
�D3(x) and �D8(x) were not treated as they remained flat,
i.e. they correspond to a radius beyond the upper limit of the
prediction database of the ANN. The regions of the speci-
men corresponding to the remaining discretized units were
peened with LPF process parameters (EL , n) suggested by
the optimizer (ref. Table 3 in Appendix A) based on the fit
with the ANN predicted profiles. A cyclic peen-and-measure
cycle as described in Fig. 4 was implemented. The compar-

ison of the deformation profile after the LPF with the target
profile (see Fig. 8b) indicates that, a good agreement between
the treated and desired profiles achieved using the proposed
process planning strategy.

After performing four peen and measure cycles over all
discretized units, a maximum deviation of 0.40 mm from the
target deformation value was observed on the specimen at a
distance of 50mm from the left edge of the specimen, which
arises from the predicted deformation values of the ANN.
The treated region of the specimen, as shown in Fig. 8, indi-
cate deviations varying from 0.15mm to 0.4mm. It is evident
from the performance curves of theANN(depicted inFig. 6b)
that, the expected error in prediction of deformation can reach
a maximum of ± 0.5 mm. As the optimizer compares the
�Dk(x) profiles after discretization with predicted deforma-
tion profiles from the ANN, it results in the mapping of LPF
process parameters accordingly. Nevertheless, there could be
differences in the predicted deformation and experimentally
obtained deformation after LPF treatment which is the poten-
tial cause of the observed deviation. Further treatment was
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Fig. 8 Use case 1:
demonstration of process
planning for peening a 1mm
thick flat Ti-6Al-4V specimen to
a target profile using the
predictions from the trained
ANN. a Discretization of �D
profile with a step size of
10mm. The circular fit data of
each discretization is used to
reconstruct the deformation
profile and is then compared
with the database of predicted
deformation profiles to obtain
the corresponding LPF process
parameters. b Comparison of
the achieved deformation profile
and the target profile after LPF
treatment at various regions. The
grey shaded region indicates a
relative error of ±10% deviation
from the target deformation
(Color figure online)

not performed since the difference of the profile after LPF
treatment and the target profile resulted in �D(x) profile
that upon fitting resulted in an arc radius which is larger than
the arc radii corresponding to the deformation profiles of the
parameter space. This use case specimen proves that LPF can
be applied, to deform thin sheet structures precisely to target
shapes with varying curvatures along the span.

True flexibility offered by LPF can be seen when peen-
ing both sides of the specimen. As observed in the work of
Takeshi et al. (2002) in the case of shot peening, when both
sides of a panel are peened with the same energy, thematerial
merely elongates because the bending moments counterbal-
ance each other. Nevertheless, the direction of bending can
be changed from convex to concave, i.e. as a saddle or twisted
shape, by peening on both sides in different regions by vary-
ing LPF process parameters, as demonstrated in the work of
Hu et al. (2016). In this regard, another crucial application is,
therefore, to be able to obtain more complex shapes via LPF
such as ‘S’-shaped curved specimens as shown in Fig. 9a. For
demonstrating such an application, a target profile similar to
such geometry was considered. In this case, a 2mm thick flat

Ti-6Al-4V specimen was used and it was peened with ANN-
predicted process parameters to obtain a target (‘S’-shaped)
deformation profile.

A variable discretization step size (Ds) is chosen to effec-
tively account for the changes in curvature of the target
deformation profile. Relying on the fact that the �D(x)
profile consists of flat regions and regions with changes in
direction of bending from convex to concave, a minimum of
four discretizations�D1(x),�D2(x),�D3(x), and�D4(x)
are considered, respectively. To obtain a change in curvature,
the specimen was peened on both sides with the predicted
process parameters from the trained ANN in the regions cor-
responding to �D2(x) and �D3(x). In the regions �D1(x)
and �D4(x), was observed that the circular approximation
yielded very high values of the arc radii which lie outside
the bounds of deformation profiles predicted by the ANN
therefore, no LPF treatment was performed. In this case, ini-
tially, the region �D4(x) was peened on one side and the
region �D3(x) was peened on the other side as indicated
in Fig. 9a. The deformation profile after LPF treatment is
compared with the target profile and it was observed that the

123



Journal of Intelligent Manufacturing (2025) 36:639–659 653

Fig. 9 Use case 2: LPF to
obtain an ‘S’-shaped target
geometry from a 2mm thick flat
Ti-6Al-4V specimen. a A varied
discretization step size (Ds ) is
assumed to effectively peen the
specimen. The specimen was
peened on both sides at
appropriate positions with the
LPF process parameters
predicted by the ANN. b The
deformation profile of the
LPF-treated specimen is
compared with the target profile.
A relative error of ± 10%
deviation from the target shape
is shown by the shaded region
(Color figure online)

deformation profile D(x) lies within 10% tolerance levels
of the desired target profile. The obtained profile after peen-
ing precisely agrees with the target profile up to a length of
60mm (Fig. 9b) and a maximum deviation of 0.11 mm was
observed at a length of 67.5 mm. A correction beyond this
was not possible since the measured deviation is within the
limits of the relative error from the ANN predictions.

In both the cases of LPF on flat specimens, a convex
bending relative to the peening direction was obtained, as
the near-surface of the treated region is plastically deformed,
and the treated region is bent due to the strain incompatibility
between the surface and the remaining region of the speci-
men (as reported in the work of Hu and Grandhi (2012)). In
summary, it can be inferred that the process planningmethod-
ology proposed in this study can be utilized tomanipulate flat
specimens and transform them to attain a predetermined tar-
get geometry. To accomplish complex shapes that exhibit a
transition in deformation from convex to concave, it is nec-
essary to apply LPF treatment to both sides of the specimen.

Modification of deformation in pre-bent sheets

In addition to being able to form a flat specimen, LPF can
also be utilized to precisely correct deformations in pre-bent
specimens. This is often necessary for a variety of struc-
tural components, as distortions may occur as a result of
thermal interactions associated with different manufacturing
processes. One example of reshaping with LPF is docu-
mented in the work of Friese et al. (2002) in which reshaping
was necessary for a laser-welded fuselage of an Airbus A380
aircraft. O’Hara et al. (2002) also reported on the applica-
tion of peen forming in the case of thin sheets, highlighting
the capability of the process to correct deformations. This is
particularly appealing for recovering large structural compo-
nents, as they often represent significant expenses. Therefore,
in this work, two use cases were tested to signify the mod-
ification of the radius of curvature in pre-bent specimens
to a desired target shape by applying the process planning
methodology.

To demonstrate a use case of creating a flat specimen by
LPF from a bent one, a 1mm thick Ti-6Al-4V specimen is
hand-rolled to obtain a radius of 140mm that represents the
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Fig. 10 Use case 3: flattening of
a 1mm thick Ti-6Al-4V curved
specimen of radius 140mm by
LPF treatment using the process
parameters derived from the
optimizer. a Discretization of
the �D profile into two parts
�D1(x) of 10mm for the flat
region and �D2(x) of 70mm in
length for the bent region of the
specimen. b Deviation of the
deformation profile from the
desired target after LPF
treatment over the length of the
specimen (Color figure online)

initial deformation of the specimen. This pre-bent specimen
is treated locally by LPF using process parameters predicted
by the ANN corresponding to each discretized unit. Since
�D(x) profile is equal to Di (x) (as Di (x) = 0 for a flat sam-
ple), a discretization step size (Ds) of 65mm is considered
(see Fig. 10a), due to the fact that the arc radius is constant
over the entire span of the pre-bent specimen, except the
region at the beginning which remained flat. LPF treatment
to correct the curvature was applied on the concave region of
the specimen to reduce the radius of curvature and to obtain
a flat specimen. It was observed that deviations of about 0.10
mm occur in the specimen in between 20 and 50mm mea-
sured from the left edge as shown in Fig. 10b,which liewithin
the ± 10 % tolerance level. Yet, larger deviations from the
target deformation profile (about −0.18 mm) were observed
at both ends of the specimen which might be due to foil de-
lamination during peening (as reported by Sala et al. (2022)).
As a result,it can be inferred that pre-bent specimens with
constant arc radius can be made entirely flat by successfully

applying LPF; however, a maximum deviation of ± 0.2 mm
can occur due to the limitations of the ANN prediction.

LPF can be effectively used to correct small local devi-
ations or errors that may happen during the manufacturing
process of curved components. An example of this is when
slight adjustments to the arc radius is needed in pre-formed
structures or correction of springback during uniform incre-
mental forming of sheet metal structures. Such correction
application is demonstrated by considering a 1mm thick Ti-
6Al-4V sheet of 80mm length that was bent by hand rolling
to a radius of curvature of 75mm; however, a deviation of
about 5mm occurred during the rolling process. A length of
approximately 10mm at the beginning of the specimen was
not bent to facilitate clamping.

It was aimed to reduce the radius of curvature to 100mm
by LPF over the span of the specimen except the flat region.
Due to the deviation at the right edge of the specimen, during
the discretization, it was identified that multiple discretiza-
tions are required to correct the curvature of the specimen.
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Fig. 11 Use case 4: Application
of LPF to correct a curved
Ti-6Al-4V sheet with an arc
radius of 75mm to a radius of
100mm. a Computed �D
profile of the specimen
discretized into three parts
�D1(x), �D2(x) and �D3(x).
The LPF treatment is applied on
the concave region of the
specimen to reduce the radius of
curvature. b Comparison of the
deformation profile after
application of LPF treatment to
region �D2(x) with the target
deformation profile. It can be
observed that the desired target
profile was reached after
peening in the region �D2(x)
and; hence, further processing
was redundant (Color figure
online)

According to the described procedure for discretization, a
�D(x) was computed and it was discretized into three parts
(see Fig. 11a): �D1(x) of 10mm, �D2(x) of 40mm and
�D3(x) of 30mm, respectively. The region �D1(x) was
not treated while �D2(x) was peened with process parame-
ters returned by the optimizer. The specimen was measured
and compared with the target profile. As this is a correction
process to reduce the curvature, the discretized unit �D2(x)
from the fixed endwas peened first because even small defor-
mations in this region can significantly reduce the deviation at
the right edge of the specimen.Besides, peening�D3(x)first
would be counterproductive since it would further decrease
the deformation at the edge while treating �D2(x). After
one peen and measure cycle, it was observed that the target
deformation profile was achieved, and hence, the region cor-
responding to �D3(x) was not peened. The curved region
of the specimen with an initial arc radius of 75mm could be
corrected to reach an arc radius of 108mm after LPF treat-
ment, while the target radius was 110mm (Fig. 11b). This
corresponds to a maximum deviation of 0.51 mm at the free
end of the specimen.

Using the database created by the trained ANN, the sug-
gested LPF process planning method can enable successful

deformation of flat and pre-bent specimens by inducing
deformations in 1mm and 2mm thick sheets, as demon-
strated in the use cases above. A cyclic peen-and-measure
technique ensures a wide range of process variability, effi-
ciency, and eliminates the need for excessive peening treat-
ments. From the use cases, it was observed that a maximum
deviation within ±10% from the desired target might occur
and the minimum deformation which can be corrected by
LPF is limited by the prediction accuracy of the trainedANN.
By taking process control inputs into account, the suggested
process planning workflow leads to successful recommenda-
tions ofLPFprocess parameters.Nevertheless, it does require
critical pre-processing input i.e., discretization step size (Ds)
that controls the number of processing steps. As observed in
use case 1 (see Fig. 8), very small discretization can result
in increased deviations in critical regions. The discretization
step size must be selected in such a way that the fitted arc
radii (Rk) are not large, which indicate that the discretized
unit is flat and does not require LPF treatment. The use cases
1 and 2 demonstrated the applicability of the LPF process
to obtain parts with uniform arc radius as well as parts with
change in arc radius from convex to concave. On the other
hand, the use cases 3 and 4 demonstrated the successful mod-
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ification of pre-bent specimens. In these use cases, when the
needed�D(x) profile values are less than 0.5 mm, this tech-
nique exhibits limitations in suggesting appropriate process
parameters as the deformation profile tends to be linear. This
might lead to inaccurate conclusions in some instances due to
extremely large values of arc radius (Rk) when approximated
by a circular fitting function. Nevertheless, significant defor-
mations in thin sheets that are over 0.5 mm can be very pre-
cisely corrected or modified to reach a desired target profile.

Conclusions

The current work demonstrates how to precisely form thin
Ti-6Al-4V sheets to achieve a certain radius of curvature or
to change curvature in pre-bent specimens by LPF utilizing
an ANN-based experimental process planning approach. On
conducting LPF experiments by varying the process param-
eters and the material thickness, different deformations in
the peened region were observed. For each set of LPF pro-
cess parameters, the deformation in the peened region was
measured along the specimen’s length. Yet, the data obtained
from the experimental trials could not be used directly; there-
fore, a data preparation step using Buckingham’s Pi theorem
was utilized to define the appropriate inputs and outputs to the
ANN, improving the generalization of the model and reduc-
ing prediction inaccuracies. Various performance measures
were used to assess the prediction model’s accuracy. The
predicted and measured deformations in the peened region
of the specimens showed very good agreement, indicating
that an ANN model can represent the complicated relation-
ships between the deformation in the peened region and the
relevant LPF process parameters without the construction
of explicit formulas. As a result, the target deformation is
predicted as a part of an LPF planning process by selecting
appropriate values for the laser energy and number of peen-
ing sequences, which is provided by immediately applying
the ANN predictions.

The inverse problem of predicting the LPF process param-
eters leads to multiple solutions; however, it was observed
that by defining a set of physical process constraints, the
number of multiple solutions can be limited. A data-driven
process planning methodology, utilizing the deformation
predictions from the ANN is shown in this study for vari-
ous applications, where it was necessary to reach a target
deformation byLPF. The demonstrated applications involved
forming specimens to a desired profile, an ‘S’-shaped profile,
flattening, and reducing the arc radii of pre-bent specimens.
A peen-and-measure cycle was implemented and the ini-
tial deformation profile as well as the deformation profile
after LPF treatments were compared. The target profile was
achieved after repeating the cycle throughout the specimen.
This process revealed the importance of choosing appropri-

ate discretization step sizes of the deformation profile. It was
observed that for most of the cases, it is required to vary
the discretization step size depending on the target deforma-
tion. In all cases, upon LPF treatment, the specimens were
deformed to reach the target profile within a tolerance level
of ±10%. The proposed methodology serves as a reliable
method for determining the optimal LPF process parameters
from a database generated using the predictions of the trained
ANN.
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Appendix

The data corresponding to all the LPF experiments to train,
test and validate the ANN’s is illustrated in Fig. 12 below.
The varied LPF process parameters are laser energy, num-
ber of sequences and the thickness of the specimen. LPF
experiments at these data points were performed and their
corresponding deformation profiles in the peened region
were measured, respectively.

The LPF process parameters corresponding to every dis-
cretized unit in each use case returned by the optimizer are
tabulated below (Table 3).
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Fig. 12 LPF process parameters considered in this study (Color figure
online)

Table 3 List of LPF process parameters suggested by the optimizer for each discretized unit in the use case specimens

Use case Number of
discretized units

Discretized unit Length of each dis-
cretization (mm)

Predicted process parame-
ters by the trained ANN

1 8

�D1(x),�D2(x),�D3(x)
�D4(x)
�D5(x)
�D6(x)
�D7(x)
�D8(x)

10
10
10
10
10
10

Unpeened region
EL = 1.9J , n = 2
EL = 2.4J , n = 4
EL = 2.2J , n = 3
EL = 2.1J , n = 3
Unpeened region

2 4

�D1(x)
�D2(x)
�D3(x)
�D4(x)

30
20
20
10

Unpeened region
EL = 2.0J , n = 4
EL = 1.8J , n = 3
Unpeened region

3 2
�D1(x)
�D2(x)

10
66

Unpeened region
EL = 2.0J , n = 3

4 3
�D1(x)
�D2(x)
�D3(x)

10
40
25

Unpeened region
EL = 2.2J , n = 1
EL = 2.0J , n = 4
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