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Abstract
Rolling is a well-established forming process employed in many industrial sectors. Although highly optimized, process
disruptions can still lead to undesired final mechanical properties. This paper demonstrates advances in pass schedule design
based on reinforcement learning and analytical rolling models to guarantee sound product quality. Integrating an established
physical strengthening model into an analytical rolling model allows tracking the microstructure evolution throughout the
process, and furthermore the prediction of the yield strength and ultimate tensile strength of the rolled sheet. The trained
reinforcement learning algorithm Deep Deterministic Policy Gradient (DDPG) automatically proposes pass schedules by
drawing upon established scheduling rules combined with novel rule sets to maximize the final mechanical properties. The
designed pass schedule is trialed using a laboratory rollingmill while the predicted properties are confirmed usingmicrographs
andmaterials testing.Due to its fast calculation time, prospectively this technique can be extended to also account for significant
process disruptions such as longer inter-pass times by adapting the pass schedule online to still reach the desired mechanical
properties and avoid scrapping of the material.

Keywords Hot rolling · Pass schedule design · Reinforcement learning · Fast rolling models · Properties control

Introduction

Rolling is a widely-used and established forming process
employed in process chains for different metallic compo-
nents and several industrial sectors, e.g., the construction and
automotive industry. Allwood et al. (2012) showed that about
95% of steel products and over 60% of aluminum products
undergo at least one rolling process during their production.
Therefore, even relatively small optimizations of the already
highly optimized rolling process have a significant effect on
a global scale regarding energy and material consumption.

Nowadays,mostly two factors affect the process efficiency
in the (hot) rolling process. One of these factors is the pro-
cess design, more specifically the pass schedule generation
(Spuzic et al., 2017). The pass schedule defines the height
reduction or draft in each pass, the rolling velocity and the
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inter-pass time. The design of the pass schedule has to con-
sider several constraints, e.g., maximum allowable rolling
force and torque, economic aspects, e.g., the overall process
duration, and ecological aspects, e.g., the energy consump-
tion. At the same time, the schedule has to guarantee product
properties, e.g., ultimate tensile strength, within customer
specified tolerances (Li et al., 2012; Liu et al., 2019).

Typically, pass schedules are generated by specialized
heuristics designed by experts based on their knowledge,
experiences and with the support of fast analytical rolling
models or complex finite elementmethod (FEM) simulations
(Özgür et al., 2021; Pandey et al., 2020). Optimization pro-
cedures are less prevalent, as in reverse rolling the number of
passes required is unknown and additionally different objec-
tives with complex interdependencies need to be satisfied.
Simultaneously, novel product specifications cause more
restrictive process windows (Peng et al., 2021; Schmidtchen
& Kawalla, 2016; Shen et al., 2022), leading to even higher
demands on the pass schedules design. Novel approaches to
finding optimal schedules that improve on established heuris-
tics are being sought here.
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The second relevant factor that might lead to inefficiency
is irregularities, such as deviations in material properties and
process disruptions like elongated inter-pass times due to
scheduling problems. These irregularities can lead to prop-
erties outside the specified tolerances. This is why rolled
material is sometimes scrapped or downgraded in industry
(Allwood et al., 2012). Therefore, the aim is to design pass
schedules that on the one hand satisfy all above-mentioned
requirements and on the other hand are robust with respect
to common process disruptions and deviations in material
properties.

Anovel approach to this is to combinemethods of artificial
intelligence (AI) with physical models and rolling mill pro-
cess data (Rath et al., 2019). An early example presented by
Larkiola et al. (1998), shows that the data-driven calibration
of a neural network based roll force model for a tandem cold
rolling mill can improve efficiency by 1.8% due to higher
rolling speeds enabled by the gained precision in roll force.
Recently, Scheiderer et al. (2020) demonstrated that rein-
forcement learning (a subset of AI), can use stored model
data to generate pass schedules while accounting formultiple
objectives. Furthermore, combining AI and big data might
help to explore unconventional pass schedules, revealing hid-
den relationships in the process and thus extend knowledge.
However, a direct coupling between a process model and a
reinforcement learning algorithm in order to ensure product
specifications has not been trialed, yet.

Therefore, the goal of this paper is to couple reinforcement
learning (RL) with a fast analytical rolling model (FRM)
to design pass schedules that yield properties within speci-
fied tolerances and simultaneously satisfy the conventional
objectives, e.g., maximize productivity as well as consider
typical limitations, e.g., allowable rolling forces. FRM are
chosen since they provide the required results within sec-
onds compared to minutes when using FEM. In contrast to
using stored data as done by Scheiderer et al. (2020), FRM
can also provide results for process parameters that would
exceed machine limits thus enabling the algorithm to learn
these limits quicker. In the future, transfer learning could be
used to quickly create not just a single but several pass sched-
ules for different conditions using a model that only needs to
be calibrated once.

In this paper first, an overview of analytical FRMs, pass
schedule generation and machine learning applications in
metal forming is given in the state of the art. Afterwards, an
existing rolling model is extended to predict yield strength
(YS) and ultimate tensile strength (UTS). Next, the extended
rolling model and a reinforcement learning algorithm are
coupled,where the reward function adheres to specified toler-
ances (height, grain size), final mechanical properties (UTS),
machine limits and total energy consumption. Thereafter, the
results of training the reinforcement learning algorithm are
presented to demonstrate the suitability of the coupling for

optimized pass schedules. Finally, experimental validation
trials on a laboratory scale rolling mill with consecutive ten-
sile tests to determine the YS and UTS are presented.

State of the art

In this section FRM to calculate pass schedules and there
most relevant features are introduced first. Next, established
approaches to generate pass schedules and the relevant objec-
tives are presented. Afterwards, an introduction to artificial
intelligence and reinforcement learning in particular is given.
Finally, the state of the art is assessed with regards to oppor-
tunity for improved pass schedule generation.

Fast rollingmodels

FRMs are typically based on simplified mechanical assump-
tions also known as slab method combined with mostly
semi-empirical material equations. In dependence of specific
use cases, several FRMs were developed and are still used
today—especially in industry.

The development of these FRMs goes back to the 1920 s
of the last century, where Kármán (1925) and Siebel (1925)
used basic mechanics to describe and analyze the rolling pro-
cess. Based on their fundamental findings, known as the
slab method, Sims (1954) published simplified equations
to predict roll forces and roll torques. The description of
the microstructure and product properties requires a basic
understanding of the physical metallurgy, which was pio-
neered by, Johnson and Mehl (1939), Avrami (1939) and
Kolmogorov (1937). The authors developed an equation,
today known as the JMAK-equation, to describe the kinetics
of crystallization. Based on this fundamental knowledge the
understanding of dynamic and static recrystallization and its
effect on microstructure during hot deformation processes
were extended for instance by Sellars and Tegart (1966) and
Jonas et al. (1969) in the 1960 s. Later a concept to capture the
microstructural changes also during partial recrystallization
was put forward by Beynon and Sellars (1992). To calibrate
these semi-empiricalmodels,material-dependent parameters
are required. Sellars (1979) demonstrated how to obtain these
parameters for C-Mn and low-alloy steels from laboratory
experiments while Hodgson and Gibbs (1992) focused on
micro-alloyed steels.

Based on this knowledge, numerous FRMs were devel-
oped. One well-known model named SLIMMER was devel-
oped by Beynon and Sellars (1992). The authors coupled a
thermal and a microstructure model with Sims’ rolling the-
ory in order to predict roll forces and torques and describe
the microstructure evolution during multi-pass hot rolling.
For the thermal model an explicit finite difference tech-
nique was used, which subdivided a transverse section of

123



Journal of Intelligent Manufacturing (2024) 35:1469–1490 1471

the rolled material into quadrilateral elements. Seuren et al.
(2014), showed that such a model can be extended to incor-
porate shear strain determined in FE simulations and in
turn improved the microstructure prediction over roll stock
thickness. Furthermore, Lohmar et al. (2014a) combined
inverse modeling and fast rolling models to determine semi-
empirical material model parameters based on industrial
rolling data.

The extension of FRMs, most significant for the present
study, is the prediction of mechanical properties of the rolled
product like YS and UTS. There is a plentitude of models
to describe mechanical properties associated with differ-
ent steel grades, like bainitic steels (Edmonds & Cochrane,
1990) or dual-phase steels (Lanzillotto & Pickering, 2013).
The following survey is restricted to the ferritic-pearlitic
microstructure of C-Mn steels—relevant to the S355 steel
considered in this study. A comprehensive literature review
about different modelling approaches for final ferrite grain
size, YS and UTS was given by Lenard et al. (1999).

An important early contribution related to mechanical
properties was made by Hall (1951) and Petch (1953) in
the 1950s who discovered the inverse correlation between
the increase of YS and the ferrite grain size. Today, this
phenomenon is known as Hall–Petch effect. Gladman et al.
(1972) extended the Hall–Petch effect for ferritic-pearlitic
microstructures by considering the influence of the volume
fraction of pearlite and adding a solid solution term to the
relationship which considers the effects of Si and N on the
mechanical properties. In a similar fashion, Choquet et al.
(1990) modelled the final ferrite grain size based on the
austenite grain size, retained strain, cooling rate and chemical
composition and proposed a YS and UTS prediction equa-
tion for a range of C-Mn steels (0.01 < C < 0.3, 0.1 < Mn <
1.6). In a related study Hodgson and Gibbs (1992) extended
a modelling approach for the ferrite grain size first proposed
by Sellars and Beynon (1985) to incorporate the influence
of carbon and manganese. To enable a simpler prediction of
YS and UTS compared to Choquet et al. (1990), the pearlite
fraction influence was omitted while a precipitation hard-
ening term was added. Still today, model improvements to
predict YS and UTS are put forward. A recent example is
work by Singh et al. (2013) that adds a dislocation strength-
ening term based on a dislocation density model presented
by Wang and Tseng (1996).

Finally, in recent years, industrial data has been increas-
ingly used for data-driven modelling of final properties.
The complexity of the models ranges from relatively sim-
ple examples, e.g., by Saravanakumar et al. (2012) where
five inputs like coiling temperature and carbon equivalent
are used for the YS and UTS prediction to more complex
approaches that enable a predictions for different steel grades.
In a model developed by Xie et al. (2021) for example a deep

neural network trained using 27 inputs is used to predict inter
alia YS and UTS for four steel grades.

Pass schedule generation

The aim of pass schedule generation first and foremost is to
lay out a sequence of rolling passes that transfers the ini-
tial slab geometry into the final strip geometry. To optimize
productivity, the draft in each pass should be maximized
in accordance with the relevant constraints, i.e., maximum
allowable draft, roll torque and force, bite condition, strip
shape and flatness. Historically pass schedules where laid
out by iterative approaches where maximum allowable draft
passes where stringed together until the desired thickness
was reached. Then the draft was reduced to comply with
the aforementioned constraints adding passes in this pro-
cess if necessary and also calculating the slab temperature
evolution to ensure a suitable delivery temperature. When
developing one of the first such iterative scheduling pro-
cedure Fujii and Saito (1975) noted that roll schedules for
reversing mills are restricted by maximum design draft or
torque in the first passes, followed by force constraints once
the material hardens. The draft in the finishing passes is lim-
ited by the necessity to control strip crown and shape.

Maintaining a constant relative crown, i.e., the thickness
difference between strip edge and center with respect to the
current strip thickness requires less roll bending and thus
linearly reducing roll force with decreasing strip thickness
as already pointed out by Shohet and Townsend (1968) and
Okamoto et al. (1975). Building on this insight Jonsson and
Mäntylä (1985) proposed a backwards calculation scheme
for plate schedules that derived the required roll force from
the final desired plate crown and the bending characteristics
of the mill. In a second step, the height reduction leading
to this roll force is determined and the process is repeated.
In subsequent research Nakajima et al. (1984) were able to
improve on the constant relative crown principle by devising
the shape vector method for crown control in hot tandem
rolling. In this method a shape vector is determined that
balances longitudinal and normal material flow differences
between edge and center to prevent shape defects. The shape
vector method was adopted for plate mill pass schedules by
Mäntylä et al. (1989). Nakajima et al. (1985) instead used
experimental data collected during rolling to propose regres-
sion models for crown control in plate rolling schedules.
Apart for the advances in crown control, the aforementioned
scheduling procedures are largely comparable to those of
Fujii and Saito (1975).

A strategy to obtain different draft distributions through-
out all passes of a schedulewas proposed by Szerenyi (1984).
For a given number of passes n, a known initial and final
cross-section or height h0 and hn as well as a factor q the
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resulting relative height λ is based on a geometric series and
defined as

λi � λi−1 · q wi th λ1 � n

√
hn
h0

/q
n
2 ·(n−1) (1)

The factor q controls if the draft distribution is descend-
ing (q > 1), constant (q � 1) or ascending (q < 1). In a more
recent publication, Moon and Lee (2009) proposed a concept
for plate rolling where first the target thickness is intention-
ally undercut by schedulingmaximum allowable draft passes
and adhering to common constraint. The draft of all passes
is then reduced and redistributed in either of two specific
ways to hit the target: The thickness ratio correction (TRC)
approach aims to maintain a uniform microstructure over
thickness by applying large drafts while the reduction ratio
correction (RRC) approach applies an even distribution of
drafts to reduce surface defects.

With the advent of computers with greater capabilities
research focused on determining the optimal solution for
all passes of a schedule at once. Pietrzyk et al. (1990) pro-
posed a system of equations that fully facilitates the available
torque of the mill motors via setting the rolling velocity and
devised an iteration scheme to satisfy the most relevant con-
straints in rolling: maximum allowable reduction, maximum
roll torque and force. The solution scheme linearizes the gov-
erning equations and uses the Gauss method to solve them.
If constraints are violated the rolling velocity or load factor
are reduced and the calculation is repeated multiple times
if need be. While the number of rolling passes is a pri-
ori known in tandem rolling, in reverse rolling Pietrzyk’s
approached requires an additional procedure to determine
the passes beforehand, as they need to be known to construct
the system of equations. Moreover, Pietrzyk et al. (1990)
proposed that in cold rolling, necessary reheating should be
taken into account in the roll schedule generation in order to
increase formability if required.

Apart from the challenges of crown control discussed
already by Nakajima et al. (1984), generating pass sched-
ules for tandem rollingmills imposes additional requirements
due to the tight coupling between successive roll stands.
According to Buchholz (1976) the range of possible draft
distributions in between the stands is identified by a com-
bined forwards and backwards analysis based on maximum
and minimum design draft per stand. Combining the for-
wards and backwards analysis gives a “tube” of thicknesses
attributed to each stand that is widest for the intermediate
stands. The actual schedule then needs to be chosen within
this “tube” typically by determining the schedule that max-
imizes the throughput of the mill while not violating any
constraint.

When scheduling for tandem mills the number of passes
is always known a priori as it coincides with the number of
roll stands. Wang et al. (2000) used this knowledge about
the problems dimensions to devise an heuristic procedure
for a tandem cold rolling mills where the search is initialized
using an empirical rolling schedule as start point. The objec-
tive function considers equal power distribution between
stands, interstand tensions and strip shape. The procedure
used genetic algorithm, a metaheuristic method to find and
optimize solutions in high dimensional problems. Genetic
algorithms are inspired by the biologically process of natural
selection applying concepts ofmutation, crossover and selec-
tion. Drawing upon the same basic idea, Qi et al. (2012) and
Li et al. (2012) developed optimization procedures to obtain
pass schedules for seven-stand hot tandemmills. Their works
differ with regards to the optimization procedure and the
objective function.WhileQi et al. (2012) used a conventional
procedure to obtain the maximum of an objective function
that combines equal relative motor power and roll force for
shape control via weighting factors, Li et al. (2012) used a
proprietary multi-objective optimization procedure that can
account for power distribution, roll force distribution and
strip crown and shape simultaneously. Recently, evolutionary
algorithms such as the genetic algorithm have been increas-
ingly used for pass schedule design and optimization. Wu
et al. (2018) trained ANNs to predict inter alia YS and UTS
and coupled the ANNs with genetic algorithm to design hot
rolling processes for Q345B steel. Another recent example of
pass schedule generation for a six-stand hot tandem mill via
genetic algorithmswas presented byHernandez et al. (2019).
The authors defined multiple objectives, i.e., reduced overall
rolling time as well as roll bending, crown and wear while
considering typical limitations such as the maximum allow-
able force. Besides that, nonlinear programming is also used
to optimize the process parameters, as the work by Ozsoy
et al. (2013) shows. The authors used nonlinear program-
ming and a hill-climb algorithm to optimize pass schedule in
order to reduce the process time and the energy consumption.

A comprehensive literature review based on 90 hot rolling
mill scheduling publications from 1989 to 2020 carried out
by Özgür et al. (2021) show the relevance of the hot rolling
design optimization all over the world. The authors show that
different methods are used for the design and optimization.
More than half of the publications (62%) studied use heuris-
tics. However, the vast majority of methods presented only
consider single-objective optimization (80%). The authors
conclude, among other things, that the different approaches
are often specialized for specific use cases and use differ-
ent metrics and datasets, making comparison between them
impossible. This makes a transfer from one use case to the
next usually difficult or impossible.
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Machine learning and its applications in metal
forming

ML as a subset of AI focuses on learning patterns and infer-
ences. One of the early key contributions by Rosenblatt
(1958) is a probabilistic model, named perceptron, that aims
to replicate the functions of biological neurons in human
brains. These artificial neurons transform an input vector
into a scalar output by calculating a weighted sum of all
the input elements and then feeding them through an activa-
tion or transfer function. The output depends on the weights
and the used function. Thus, multiple layers of these artificial
neurons, called Artificial Neural Networks (ANN), can learn
non-linear interrelations. In order to learn these non-linear
interrelations different techniques were developed. These
techniques can be subdivided into three categories, super-
vised learning, unsupervised and reinforcement learning.
Supervised learning needs a training set of labeled data and
is used for classification, prediction and regression (Sutton&
Barto, 2018)while the goal of unsupervised learning is to find
hidden structures in unlabeled data (Sutton & Barto, 2018)
by visualization, clustering, outlier detection and dimension
reduction (Larkiola et al., 1998). Finally, in reinforcement
learning the algorithm learns bymapping situations to actions
in order to maximize a numerical reward (Sutton & Barto,
2018). In the following, some exemplary applications of each
machine learning category in the context of metal forming
are given.

There are several examples of supervised learning in the
realm of metal forming. One of the first applications was pre-
sented by Korczak et al. (1998) in the 1990 s. The authors
aimed to improve the prediction of the non-linear relation-
ship between chemical composition, microstructure and final
mechanical properties for low carbon steels after hot rolling
based on anANN. Their ANN is able to predict Vickers hard-
ness, YS and UTS. A validation using measured properties
showed a good agreement. Besides that, ANNs were often
used to predict rolling forces either stand-alone as discussed
by Lee and Choi (2004) or in combination with analyti-
cal models (hybrid model) as demonstrated by Moussaoui
et al. (2006). Later, Zhang et al. (2016) improved this hybrid
model concept to meet stricter quality requirements, e.g.,
with regards to final thickness, which requires an even more
accurate prediction of the roll force. They combined a con-
ventional rolling force model, based on the equation by Sims
andWright (1963) with anANN,which was trained based on
online process data. Notably, this online learning increased
the robustness and simultaneously the roll force prediction.
Nevertheless, there is continued work in this area as Shen
et al. (2022) showed. The authors trained several ANNs with
industrial data to predict the roll force for a complete 7-stand
hot strip mill based on the chemical composition and process
parameters. In addition to these elaborate ANNs, there is a

growing amount of work that combines ANNs with physi-
cal models. For example, Hwang et al. (2020) used ANNs,
decision trees and a classical physical model (Sims, 1954) to
predict robustly the roll force and temperature taking advan-
tages of classical rolling models and data-driven approaches.
In addition to that, ANNs are used successfully to detect
anomaly in industrial hot rolling data as Jakubowski et al.,
(2021).

As shown, supervised learning was commonly used in hot
rolling to predict certain properties, sometimes also in com-
bination with unsupervised learning. For instance, Lieber
et al. (2013) used unsupervised learning for clustering and
dimensionality reduction of different surface features and
supervised learning for classification of surface defects. This
served to avoid the further processing of material that would
be scrapped later. Still, the applications of unsupervised
learning in hot rolling process is relatively rare. In general,
unsupervised learning methods are mainly used for image
processing. Recent examples are microstructure cluster anal-
ysis (Kitahara & Holm, 2018), surface defect classification.
(Di et al., 2019) and defect segmentation of hot-rolled steel
strip surface (Youkachen et al., 2019).

In recent years, reinforcement learning achieved promi-
nence by defeating humans in playing games like Go (Silver
et al., 2017). However, one of the first approaches to using
reinforcement learning for optimization in manufacturing
dates back to 1998 by Mahadevan and Theocharous (1998).
A detailed overview of the current state of the art of rein-
forcement learning algorithms was giving by Sutton and
Barto (2018). In their reviewWuest et al. (2016) specifically
touched upon current applications of reinforcement learning
in the context of manufacturing. According to the authors,
in 2016 reinforcement learning was not widely applied in
manufacturing. However, a few examples are described in
the following: Günter et al. (2014) published a self-learning
approach for laser welding to increase the performance by
enabling a rapid setup process. The presented approach
includes deep neural networks, which extract features and a
trained reinforcement leaning algorithm that uses these fea-
tures as an input to control the process in real-time. In the
realm of metal forming Dornheim et al. (Dornheim & Link,
2018; Dornheim et al., 2019) coupled a deep reinforcement
learning algorithm with an FE simulation model to enable
multi-objective optimization of a deep drawing process. The
presented approach controls the blank holder force over the
process in such a way that the product was manufactured
as material-efficiently as possible and with as little resid-
ual stresses as possible while ensuring the desired product
geometry. Following on from this, Guo and Yu (2019) tri-
aled different reinforcement learning algorithms to improve
the blank holder force control. The authors concluded that
more advanced reinforcement learning algorithm, e.g., Twin
Delayed Deep Deterministic Policy Gradient (TD3) lead to
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further improvements. Moreover, there are first activities in
forging as well. Zhang et al. (2021) used RL to identify opti-
mal parameter of a mechanism model in real-time without
historical data. This allows an accurate online simulation of
the forging process. Reinisch et al. (2021) coupled a forg-
ing model with a RL algorithm to design pass schedules for
open-die forging. The authors coupled a fast process model
was coupled with Double Deep Q-Learning to design and
optimize the process in terms of final ingot geometry, press
force and process duration. The designed processes led to
executable processes and show the enormous potential of the
methodology.

A first example of reinforcement learning for pass sched-
ule generation was presented by Scheiderer et al. (2020)
based on collaborative work involving some authors of the
present paper. Therein a simulation as a service architec-
ture for the application of reinforcement learning to protect
intellectual properties of different stakeholders, e.g., pro-
cess experts and AI experts was proposed. To demonstrate
the capabilities, pass schedules for reverse hot rolling were
generated via a RL-algorithm that was coupled to data pre-
calculated using an FRM and provided via a web interface.
The results show that such a coupled approach is gener-
ally capable of generating pass schedules. However, a direct
coupling of RL and FRM could eliminate the need for inter-
polation of data and provide results that are even more
reliable. Moreover, Gamal et al. (2021) demonstrated that
RL in combinationwith process data identifies optimalmodel
parameters and thus improve predictions for bar and wire hot
rolling processes.

Literature assessment

When reviewing the relevant literature, it becomes appar-
ent that a plentitude of different approaches to generate and
optimize pass schedules have been trialed. Most of them rely
on some experience and process knowledge to lay out the
underlying heuristics. Approaches that are based on opti-
mization instead, mostly do not unlock the full potential of
optimization as they only account for one or two objectives.
In addition, genetic algorithms have been applied with some
success. Due to the used meta-heuristics these sit some-
where between heuristics and optimization. However, all
approaches share the same shortcoming: Results are gen-
erally not transferable to a different problem, e.g., a different
final geometry. Therefore, the procedures must be run for
each rolling schedule individually,which is particularly time-
consuming for optimization and genetic algorithms. When
extending the training data to cover many different condi-
tions the combination of RL and FRM in contrast might be
able to generate several different pass schedules based on the
same training.

There are different reinforcement learning algorithms
available. However, most of them can only handle discrete
spaces, which is not expedient for designing pass schedules.
An algorithm compatible with continuous space is the Deep
Deterministic Policy Gradient (DDPG), developed by Silver
et al. (2014). Besides, the DDPG algorithm is particularly
interesting for application in pass schedule design due its
successful applications in solving 20 different continuous
physical problems (Lillicrap et al., 2016) amongothers a deep
drawing process (Guo & Yu, 2019). The DDPG algorithm
uses a specialized concept called the actor-critic principle.
This reinforcement learning architecture using twoANNs for
optimization was developed by Konda and Tsitsiklis (2001).
One ANN, called the actor, represents the agent’s policy,
while the other ANN, the critic, models the Q function. The
Q function describes how rewarding it is to perform a certain
action in a defined state. In the training process, the actor on
the one hand is trained using the critic’s evaluation of the cur-
rent policy, allowing for updating the actor towards choosing
better action. The critic on the other hand is trained using
the observed experience in order to model the Q-function
accurately.

A pass schedule generation procedure that pursues multi-
optimization objectives and takes into account the final
product properties has not yet been presented. Therefore, the
goal of this paper is to trial a pass schedule generation via a
direct coupling of the FRM and a DDPG algorithm leading
to an efficient pass schedule and the desired final UTS.

Methodology: coupling fast models
andmachine learning for pass schedule
design

The combination of ML and a FRM can enable the design
of optimized pass schedule, regarding multiple objectives
and an explicit inclusion of product properties. To achieve
this, three steps regarding the FRM and the reinforcement
learning algorithm are necessary. As mentioned before, an
existing rolling model (Lohmar et al., 2014b) is used for
the coupling with a reinforcement learning algorithm. The
model is able to calculate inter alia the roll force and the
austenite grain size, but it is not capable of predicting final
properties after the hot rolling process. Therefore, the first
step is to extend the FRM to predict product properties. Here
YS and UTS are used as industrially relevant representatives
to demonstrate the idea. In the second step, theML algorithm
needs to be set up. Since reinforcement learning algorithms
can interact with the FRM without any limits in combining
process parameters, they look the most promising and are
therefore chosen.Consequently, the second step also includes
the definition of the reward function. The third step is to
couple the FRM and the reinforcement learning algorithm.
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All three steps are detailed in the following in individual
subsections.

Material, microstructure and properties modelling

The material considered in this paper is a S355 structural
steel. A structural steel is taken because it is used in var-
ious areas and has a microstructural behavior that can be
well described with existing material models. This makes
the structural steel S355 ideal for testing the coupling of RL
and FRM for the pass schedule design. The chemical compo-
sition is given in Table 1 and was determined using an optical
emission spectrometer.

To model hot rolling of this particular steel using a FRM
flow stress, static recrystallization kinetics and grain size
evolution during and after deformation need to be known.
Furthermore, to predict mechanical properties additional
equations are needed to infer yield strength (YS) and ulti-
mate tensile strength (UTS) from chemical composition and
microstructure.

The semi-empirical equations to describe material behav-
ior are briefly introduced in the following. The flow stress
calculation is based on an equation put forward by Hensel

and Spittel (1978),

(2)

σ f � 3750 ∗ ϕ̇(−0.11+0.00024∗T )
eq ∗ exp (−0.003∗T )

∗ ϕ0.28
eq ∗ exp

(−0.41 ∗ ϕeq
)

whereϕeq. is the equivalent strain,ϕeq , is the equivalent strain
rate and T is the temperature.

The material dependent constants where determined from
isothermal compression tests carried out on a servo-hydraulic
testing machine. Figure 1 shows both the experimental flow
curves (red) determined from 900 to 1200 °C and for strain
rates between 0.1 and 10 s−1 and the flow curve fit (black)
based on the previous introduced equation. Apart from the
lacking ability to reproduce the dynamic recrystallization
(DRX) visible in some curves the flow curves are captured
well. DRX does not typically occur during conventional hot
rolling of steels and thus is intentionally neglected.

The static recrystallization kinetics is modelled based on
the well-known JMAK equation. The Eqs. 3, 4 and the mate-
rial parameter are adopted from Hodgson and Gibbs (1992).

XSRX � 1 − e
log(0.5)∗

(t/t50
)1

with (3)

Table 1 Chemical composition
of the used S355 in weight % C Si Mn P S N Cu Al

Weight % 0.1 0.3 1.6 0.012 0.001 – 0.2 0.02

Fig. 1 Flow Stress for S355 determined by compression tests at Institute of Metal Forming (in red the measured and in black the calculated one)
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t50 � 6.31 ∗ 10−18 ∗ d−2.38
γ , 0 ∗ exp(2) ∗ exp

(
330000/

8.31 ∗ T

)
(4)

where dγ , 0 is the austenite grain size and t is the inter-pass
time.

As mentioned before, the used FRM considers static
recrystallization and grain growth by simple semi-empirical
equations introduced by Beynon and Sellars (1992).

The grain size after full static recrystallization dsrx is cal-
culated using an Eq. 5 with parameter that were also put
forward by Hodgson and Gibbs (1992)

dsrx � 1 ∗ d0.4γ , 0 ∗ ϕ−0.5
acc. ∗ exp

(−45000/
8.31 ∗ Tm

)
(5)

where ϕacc. is the accumulated equivalent strain, and Tm is
the average temperature.

In order to describe the final average austenite grain size
dγ , 1, a case distinction is necessary. Depending on whether
thematerial is fully recrystallized or not, other formulasmust
be used to describe dγ , 1. If the material is not fully recrystal-
lized, a law ofmixtures based onwork by Beynon and Sellars
(1992) is used to determine the final austenite grain dγ , 1 size
based on the statically recrystallized fraction (XSRX ), the
grain size after full static recrystallization (dγ , sr x ) and the
initial grain size (dγ , 0)

dγ , 1 � XSRX ∗ dγ , sr x + (1 − XSRX )2 ∗ dγ , 0 (6)

If the material is fully recrystallized, grain growth can
occur. Grain growth is modelled based on Eq. 7 and its mate-
rial parameter were originally suggested by Hodgson and
Gibbs (1992)

dγ , 1 �
(
d4.5γ , sr x + 4.1 ∗ 1023 ∗ tgg ∗ exp

(−435000/
8.31 ∗ T

))1/4.5
(7)

where tgg is the time available for grain growth. Typically,
this time is calculated by subtracting the time for full recrys-
tallization from the inter-pass time.

To enable the prediction of the finalmechanical properties,
i.e., YS and UTS, two established physical models put for-
ward by Hodgson and Gibbs (1992) and Singh et al. (2013)
are implemented. Precipitation strengthening is excluded due
to its small contribution.

σY S � σSSY S + σDI SY S + KY S ∗ d−0.5
α (8)

σUT S � σSSUT S + KUT S ∗ d−0.5
α (9)

Here, σY S is the YS, σUT S is the UTS,σSSY S , σSSUT S ,
σDI SY S and K ∗ d−0, 5

α are the contributions from solid

solution strengthening, dislocation strengthening and the
grain-boundary (Hall–Petch) relationship, respectively. All
parameters despite the chemical composition for a struc-
tural steel S355 are taken from literature and detailed below.
For the calculation of solid solution strengthening σSSY S and
σSSUT S despite nitrogen content (N) the actual measured
chemical composition, see Table 1, was used. Because the
nitrogen content (N) was not measured, but has a very impor-
tant influence on σSSUT S , see Eq. 11.

σSSY S � 15.4 ∗ (3.5 + 2.1 ∗ Mn + 5.4 ∗ Si) � 130.592MPa
(10)

(11)
σSSUT S � 165 + 54 ∗ Mn + 100 ∗ Si + 652 ∗ P

+ 635 ∗ C + 3339 ∗ N � 386.11MPa

σDI SY S � 1.44 ∗ 10−3 ∗ √
ρ (12)

ρ � ρn(1 − X) + ρs X (13)

ρn � C
(
1 − e−Bε

)
B

+ ρ0e
−Bε (14)

ρs � 3.82 ∗ 109 ∗ ε0.2 · [(1613 − T )/290]2 (15)

C � 8.5 ∗ 1010
(
1 + D0.5

0

)
(16)

B � 6227ε−0.28 ∗ e−7500/T (17)

dα � dα, 0 ∗ (
1 − 0.45 ∗ √

εr
)

(18)

dα, 0 � dγ , cool (19)

For the calculation of the grain boundary dependency KY S

and KUT S are set to 19.7 MPa μm and 11 MPa μm respec-
tively, as proposed by Hodgson and Gibbs. (1992). The solid
solution strengthening σSSY S , σSSUT S (see Eqs. 10 and 11) is
material-dependent and calculated using the chemical com-
position, shown in Table 1. The dislocation strengthening
σDI SY S (see Eq. 12) is calculated as suggested by Singh et al.
(2013). In order to calculate the dislocation density ρ (see
Eq. 13), first the dislocation densities of the dynamically
recovered ρn (see Eq. 14) and dynamically recrystallized
ρs (see Eq. 15) regions are required. For ρn the constants
C(Eq. 16) and B (Eq. 17) have to be calculated. In order
to calculate the strengthening through grain-boundaries, the
ferrite grain size dα is calculated based on the initial ferrite
grain size dα, 0 and the retained strain εr at the beginning of
the transformationusingEq. 18presentedbyBeynonandSel-
lars (1992).The authors presented an equation to calculate the
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Table 2 Thermal boundary
conditions for hot rolling of S355 ρ

[
kg/m3

]
αconv

[
W/

(
m2 ∗ K

)]
αroll

[
W/

(
m2 ∗ K

)]
εrad [−] εdiss [−]

7600 15 35000 0.8 0.9

ρ represents the average density for the temperature range (800–1200 °C); αconv is the heat transfer coefficient
to the air during the inter-pass time;αroll is the heat transfer coefficient to the rolls; εrad is radiation coefficient;
εdiss is the dissipation factor

Fig. 2 Schematic structure of the FRM presented in (Lohmar et al., 2014a)

initial ferrite grain size based on the austenite grain size at the
transformation (dγ , cool ), carbon equivalent and cooling rate
after the last pass and the transformation. Here, it is assumed
that the initial average ferrite grain size dα, 0 is the same as
the final austenite grain size (dγ , cool ), before the austenite
transforms to ferrite due to the small deviation between the
assumption and the more complex equation. The equations
presented here allow the calculation of product properties
after hot rolling. However, you need an FRM to supply the
quantities required here, such as dγ , cool and εr . Next, the
used FRM is described in detail.

Integrating properties prediction into the FRM

In this paper, a FRMdeveloped at the Institute ofMetal Form-
ing is used (Lohmar et al., 2014a) for convenience. Themodel
consists of severalmodules, predicting the deformation in the
roll gap, the temperature evolution, thematerial behavior, the
microstructure evolution and the resulting rolling force and
torque. It is based on the slab method put forward by Siebel
(1925) and Karman (1925). Hence simple equations are used
to calculate the equivalent strain εeq , see Eq. 20, and the strain
rateε.

eq., see Eq. 21.

εeq � 2√
3

∗ ln

(
h0
h1

)
(20)

ε.
eq. � vroll

ld
∗ ε (21)

Here, h0 and h1 are the entry and the exit height of the
rolling stock, respectively and vroll represents the rolling
velocity. The evolution of the temperature T during the time t

is calculated by a one-dimensional finite-differences method
considering heat conduction inside the rolling stock, radia-
tion and convection on the surface, heat transfer to the rolls
and dissipation Q̇ due to the applied deformation, see Eq. 22.
To capture the thermal behavior of the S355 steel grade, the
material density ρ, the specific heat capacity cp and the ther-
mal conductivity λ discussed in the materials subsection are
required.

ρ ∗ cp ∗ ∂T

∂t
� λ ∗

(
∂2T

∂2y2

)
+ Q̇ (22)

The used thermal boundary conditions are listed in Table 2
and are is accordancewith values typically found in technical
literature or were determined experimentally earlier.

The roll force F is calculated by a simple equation devel-
oped by Sims and Wright (1963), see Eq. 23. F depends
on the contact length ld , the width of the rolling stock b,
the mean flow stress σm and the geometric factor Qp that
compensates for inaccuracies due to friction and shear as dis-
cussed by Seuren et al. (2010) and Lohmar et al. (2014b). For
the calculation of flow stress, recrystallization and grain size
evolution, the simple semi-empirical equations introduced
earlier are used. Figure 2 schematically shows the structure
of the FRM together with the relevant input and output.

F � ld ∗ b ∗ σm ∗ Qp (23)

An extension of the FRM is required to also predict the
mechanical properties of the sheets after hot rolling and cool-
ing. In this paper, the YS andUTS of the structural steel S355
is predicted. For this steel grate, mostly conventional air-
cooling to room temperature is applied after hot rolling. Thus,
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Fig. 3 Schematic structure of the extended FRM developed in this paper

during cooling the microstructure transforms from austenitic
to ferritic-pearlitic. Therefore, a cooling and a transforma-
tion module are added to the existing FRM. The temperature
evolution of the workpiece up until the onset of the austenite
to ferrite transformation, e.g., 830 °C, is calculated in the
cooling module based on the temperature profile after the
last pass. Using this information, the retained strain, recrys-
tallized volume fraction and austenite grain size prior to
transformation are calculated in the cooling module. Finally,
the transformation module is triggered, calculating the YS
and UTS based on the ferrite grain size based on Eqs. 8, 9
and 18 discussed in detail in the materials subsection. The
extended FRM with additional outputs in shown in Fig. 3.

Setting up the DDPG algorithm for automated pass
schedule design

There are numerous RL algorithms that can be used for
process optimization. However, Deep Q-Learning (DQN)
(Dornheim et al., 2019; Reinisch et al., 2021) or DDPG
(Gamal et al., 2021; Lillicrap et al., 2016) aremost commonly
used to optimize processes. Both have proven themselves and
are already implemented in many frameworks like Tensor-
flow or Matlab. Therefore, an established algorithm is used
here in order to provide a proof-of-concept for hot rolling.
The biggest difference between them is that DQN has only
one ANN whereas DDPG has two ANNs, which enables
it to propose continuous actions or process parameters. The
ANNs used are initialized using common initializationmeth-
ods which are explained later in chapter 4. In the future,
physics-based ANNs or other pre-trained ANNs could be
used for this purpose.

As mentioned before, the DDPG algorithm is the rein-
forcement learning approach of choice due to its ability to
suggest continuous instead of discrete values. Setting up the
DDPG algorithm (Silver et al., 2014) includes the definition
of the state, the possible actions and the reward function as
well as assignment of the hyperparameters. The set up will

be detailed below following an introduction of the general
DDPG algorithm structure.

As mentioned above the DDPG uses a Critic and an Actor
Network as well as states, actions and rewards to learn a
given task. As Fig. 4 shows, in pass schedule generation the
Critic Network uses the state, action and reward information
of the previous rolling pass and tries to estimate the expected
reward for each possible new state (i.e., the next rolling pass)
based on the current state and possible actions. It then pro-
vides the state-action pairs and its estimated rewards to the
Actor Network, which uses this information to choose the
action with maximum reward. In both cases, the backpropa-
gation method is used to train the Critic and Actor Network.
The backpropagation method developed by Rumelhart et al.
(1986) in 1986, computes the gradient of the loss function,
difference between actual ANN output and desirable output,
with respect to each weight of the ANN. It computes the gra-
dient one layer at a time, iterating backward from the last
layer. This method allows to train ANNs efficiently.

The state, is defined by the rolling stock height, accu-
mulated strain, temperature at the surface and core, the
recrystallized volume fraction and average austenite grain
size prior to a given rolling pass. A unique state definition is
very important for the DDPG algorithm. A non-converging
training process is likely, if for example the same current
height and grain size leads to several possible grain sizes in
the next pass. To circumvent this temperature and accumu-
lated strain are also considered within the state.

The action defines the next pass in terms of height reduc-
tion and inter-pass time within the allowed ranges. The range
of the height reduction (
h) and the inter-pass time is depen-
dent on the current state. For example, the maximum 
h is
dynamically set to 40%of the rolling stocks height unless this
violates the bite condition, in which case the bite condition
defines the maximum
h. This leads to drafts between 15.68
and 5 mm whereas the inter-pass time ranges from 5 s (min-
imum reversing time) to 15 s. The reward function used to
assess the state is problem specific and steers the algorithmby
giving numerical feedback on the goodness of the new state.

123



Journal of Intelligent Manufacturing (2024) 35:1469–1490 1479

Fig. 4 Schematic structure of the Deep Deterministic Policy Gradient (DDPG) algorithm (Silver et al., 2014)

The reward function used to design an optimal pass schedule
must consider several desired optimization objectives.

In this paper, the total reward (rt ) given to the DDPG is the
sumof each collected reward riduring one pass schedule. The
reward function is evaluated after each step of the training
process that corresponds to a single rolling pass. It can also be
considered as an evaluation benchmark for later analysis. The
reward for one pass consists of five optimization objectives,
see Eq. 24. Four of them are considered for each pass, namely
height (rH ), average austenite grain size (rD), rolling force
(rF ) and the thermal and mechanical energy consumption
(rE ). The fifth optimization objective the final UTS, (rM ) is
only considered in the final pass because the final mechanical
properties rMare offset by the schedule as a whole.

rt �
n∑
i

ri � rHn + rDn + rFn + rEn + rMn

+
n−1∑
i

rHi + rDi + rFi + rEi (24)

Designing a pass schedule is a twofold problem. The dif-
ficulty lies within optimizing each pass, e.g., maximizing the
draft, while also optimizing the pass schedule as a whole in
terms of reaching all targets as quickly as possible. Those two
goals do not always go hand in hand,which is the reasonmost
classical optimization techniques fail. To tackle this chal-
lenge, the total reward is divided into several intermediate
rewards and an additional completion reward that can substi-
tute the last intermediate reward. The intermediate rewards,
cover the optimization of each pass individually, while the
completion reward assesses the entire pass schedule.

The intermediate rewards (see Table 3) apply as long as
the height after the current pass (h prev) has not reached the
target height (htarget ) and thus the pass schedule cannot be

considered complete. In this case the mechanical properties
(rM ) are not assessed. In order to promote reaching the spe-
cific targets as fast as possible, the rewards for the height
(rH ) and grain size (rD) are the bigger the closer they are
to their target (htarget , dy, target ) and the bigger the change
(
h, 
dy) compared to the previous pass (h prev , dprev) is.
In contrast, high energy consumption (E) and roll force (F)
exceeding machine limits are penalized. Once the height is
within the target tolerance or below it, the pass schedule is
considered complete and thus the intermediate reward in the
last pass is replaced by the completion reward.

The completion reward function is split as follows (also
see Table 3). If the final height (h f inal ) is achieved within
the target tolerance (htarget ,max , htarget ,min), the mechani-
cal properties (rM ), in terms of the UTS, are accounted for in
addition to the previously mentioned rewards. The comple-
tion reward for height and grain size decreases symmetrically
the further away from the target their value is. The comple-
tion reward for the UTS rewards higher values. In order to
obtain an optimal schedule considering multiple objectives,
weights have to be assigned to the individual contributions.
Achieving the final height has the highest priority and thus
the highest weight of 10. The next priorities are reaching
the final austenite grain size (dγ , roll ) within the tolerance
(weight of 6) and then maximizing the UTS (weight of 2). If
the final height (h f inal ) is below the tolerance, the rewards
for grain size and mechanical properties are negated and the
reward for the height is the more negative the further away
from the target it is.

In a nutshell, the three goals (height, grain size, mechan-
ical properties) should be encouraged and thus provide a
positive reward if they meet the target. In contrast, more con-
sumed energy and the force exceeding the machine limits are
punished and therefore give a negative reward. This negative
reward is important so that the DDPG algorithm does not add
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Table 3 Definition of the reward function consisting of the intermediate and the completion components

Reward objective Intermediate reward
i � 1 . . .n − 1

Completion reward
i � n

Target height not reached(
h prev > htarget

) Target height within tolerance(
htarget ,max ≥ h f inal ≥ htarget ,min

) Target height below the tolerance(
h f inal < htarget ,min

)

Height rH � 
h
h prev−htarget

rH � 10 − (
h f inal − htarget

)2
rH � −10 − (

h f inal − htarget
)2

Grain size rD � 
dγ

dγ , prev−dγ , target rD � 6 − 4∗(dγ , roll−dγ , target )
2

d2y, target

rD � 0

Mechanical
properties

rM � 0
rM � 2 +

(
σUT S−σSSUT S

)2
σ 2
SSUT S

rM � 0

Energy consumption rE � −0.2 ∗ E

Rolling force
rF �

{
−10 − (maxForce−F)2

maxForce2
, i f F > max Force

0, else

Table 4 Hyperparameters of the two neural networks used in the DDPG
algorithm

Network Number of
hidden layers

Neurons per
hidden layer

Learning
rate

Critic
network

2 256 0.0005

Actor
network

1 24 0.0001

additional passes just to increase the reward. Therefore, the
intermediate reward is designed in such a way that it gener-
ates negative rewards when the applied height reductions are
small.

The DDPG uses ANNs that consist of multiple layer of
neurons, an input and output layer and hidden (intermedi-
ate) layers. The number of hidden layers and neurons per
layer increases the complexity that the network can learn,
but requires more data for training. The learning rate repre-
sents the amount that the weights of the ANN are updated in
order to minimize the error of the training. Typically, due to
the high complexity of the reward function, the number of
hidden layers and neurons per layer in the critic network is
bigger than in the actor. Figure 4 shows a simplified structure
of the DDPG algorithm. The key hyperparameters of both
neural networks are given in Table 4. The determination of
the hyperparameters was based on typical published param-
eters like from Gamal et al. (2021). First, the ANNs were
chosen and tested with relatively small number of neurons
per hidden layer. After that, the other hyperparameters were
determined via trail-and-error. In future works, it is planned
to usemore advancedmethods such asBayesian optimization
to tune the hyperparameters.

Coupling of the FRM and the DDPG algorithm
and ANN training

As a third step illustrated in Fig. 5, the FRM and DDPG
algorithm are coupled to train the algorithm to design pass
schedules. This training is necessary to adjust the weights
inside the ANNs in order to obtain proper results. After a
successful training, the DDPG algorithm is able to solve the
trained task within seconds. Additionally, the trained ANNs
can be used to solve similar tasks by applying transfer learn-
ing as described by Taylor (2009).

The training can be divided into iterations and steps, in
each iteration the algorithm starts at an initial state and takes
steps until a condition or goal is reached. In our case an
iteration represents an entire pass schedule and is completed
when the height is within or below the specified tolerance.
These iterations are repeated until either the average total
reward limit or the number of allowed iterations are exceeded.

Each iteration starts by setting the initial state, which in
our case represents the roll stock properties when leaving the
furnace in terms of height, strain, temperature and austen-
ite grain size as well as by initializing the iteration complete
flag associatedwith reaching or undercutting the target height
(htarget ). The DDPG algorithm then designs an initial pass
schedule in steps on a pass-by-pass basis starting from the
initial state. In each step an action (a combination of draft and
inter-pass time) that adds a new pass is chosen by the Actor
Network based on the network’s weights and biases, the cur-
rent state as well as artificial exploration noise. This noise
helps to initialize the training process by introducing addi-
tional variance into the data sets and reduces during training
to allow for exploitation of experience gained. The concept
of exploration noise is detailed in the Appendix. Never the
less, as long as no experience was collected by the DDPG
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Fig. 5 Flowchart of the coupling between the FRM and the DDPG algorithm. The intermediate reward is given after each pass if the height > target
height, otherwise the completion reward is given

algorithm in a so-called replay buffer the initial actions cho-
sen by the Actor Network strongly depend on the weight
and bias initialization. After a pass was added the incom-
plete pass schedule is passed to the FRM, which calculates
the roll stock properties after the pass, thus defining a new
state. To aid convergence of the DDPG algorithm, interme-
diate rewards based on the height, and grain size after each
pass are provided already for the incomplete pass schedule
using the reward function (see Table 3). Next, if the final
height is not reached, an additional step is taken and a pass
is added until the final height is reached or undercut and the
pass schedule is thus complete.

As soon as the final height is reached, the previously men-
tioned complete flag is set to true and the completion reward
(see Eq. (24)) is calculated using the state after the final
pass and saved along with the pass schedule instead of the
intermediate reward calculated for any other pass. The total
reward (rt ) for the iteration is then given as the sum of the
intermediate rewards and the completion reward. As a final
step, state-action-pairs together with the rewards from the
completed iteration and thus the complete pass schedule are
stored to the replay buffer. The weights and biases of the two
used ANNs, the Actor and Critic Network are then updated
based on the data in the replay buffer. Further details on the
replay buffer are given in the Appendix. The update of the
Actor and Critic Network concludes each iteration.

Prior to starting the next iteration, a termination check
is conduced. In this paper, 10.000 iterations were chosen as
termination criterion because through many training runs no
increases in the total reward (rt ) beyond 10.000 iterations
was detected. If the termination criterion is exceeded, the
training stops and the weights and biases of the ANNs are

frozen. Otherwise, the state is reset to the initial state and the
described iteration starts over.

Results: design of an optimized pass
schedule

The goal of this section is to provide a proof of concept for
a pass schedule designed via the coupling of a FRM and a
DDPG algorithm. For demonstration, the initialization of the
DDPG algorithms, the initial and final pass schedule and the
corresponding reward evolution are shown.

The overall benchmark for designing an optimized pass
schedule is maximizing the reward function for a given ini-
tial state. For faster convergence, the variable target values in
the reward function and their specified tolerances were cho-
sen wider than typically used in industry: The target height
(htarget ) is 25 mm ± 1 mm and the target austenite grain
size dγ , target is 35 μm ± 5 μm after rolling prior to cool-
ing. Additionally, the reward function maximizes the UTS,
minimizes the energy consumption and considers the force
limitations of the laboratory rolling mill at the IBF to enable
rolling the optimized scheduled on this mill later. Therefore,
the initial geometry differs from typical industrial applica-
tion. It is defined by a height of 140 mm, a width of 180 mm
and a length of 500 mm. Furthermore, the initial distribution
of the austenite grains is assumed to be homogenous and its
size is set to 200 μm. As mentioned before, neither the ini-
tial temperature nor rolling velocity are currently considered
to reduce complexity and improve convergence. Instead, a
homogeneous initial temperature of 1200 °C is used and the
rolling velocity for all passes was 250 mm/s.
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After setting up reward function and initial state (initial
height and grain size) an initialization of the Actor and Critic
ANNs is required, as their replay buffer is empty at the start
of training. Thus, no data regarding the relationship between
state, action and reward is available at first. As detailed earlier
the replay buffer is filled based on actions (draft and inter-
pass time) according to the initialization method leading to
an initial complete pass schedule. This initial pass schedule
can have a significant impact on the training process with
regards to both quality and performance, because it defines
the parameter space, in which the DDPG algorithm starts its
search based on the data collected in the replay buffer. Most
importantly for rolling, the initialization implicitly defines
the number of passes in the initial schedule. For example,
if the height reduction were minimized during initiation for
the conditions defined above, the resulting number of passes
would be 23 compared to eight if the reduction were maxi-
mized.

To obtain a suitable pass schedule initialization with ran-
dom, minimum and maximum actions (draft and inter-pass
time) was trialed. As mentioned earlier the possible height
reduction (
h) is between 15.68 and 5.0 mm, the possible
inter-pass time ranges from 5 to 15 s. The results and required
computation times for the training (on an Intel Xenon CPU
E3-1270) based on 10,000 iterations are summarized in Table
5. The best final rewardwas obtained for the training based on
the max. initialization method and this training furthermore
required the least time to complete. Thus in the following
only the results obtained using the max. initialization will be
discussed.

Figure 6 summarizes the height and strain (left) as well
as the temperature and grain size evolution (right) of the
initial (Initial iteration, top) and the final (10,000 iterations,
bottom) pass schedules. The figures on the left, a) and c),
display accumulated strain in blue (left axis) and the height
of the rolling stock in black (right axis) over the process time.
Moreover, the final YS and UTS as well as the total energy
consumption (E) are shown. The figures on the right, b) and
d), visualize the temperature distribution over the roll stock
height in red (left axis) and the average austenite grain size in
black (right axis). Furthermore, the average temperature (ØT)
and average austenite grain size right after rolling (dγ , roll ) as
well as the average austenite grain size after cooling (dγ , cool )
and the final ferrite grain size (dα) are depicted.

Acomparisonof the initial andfinal schedules reveals both
similarities and differences. Starting with the similarities,
both pass schedules consist of eight passes that correspond
to the minimum number of passes possible. This is favored
by both the initialization of the actor network and the reward
function, introduced above (see Table 3). The process dura-
tion, i.e., rolling and cooling is about 300 s and almost
identical in both cases. Moreover, the austenite grain size
(dγ , roll ) after rolling is near identical (40.0 vs. 39.0 μm) and Ta
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Fig. 6 Training results after initial iteration (top) and 10,000 iterations (bottom). On the left hand side, the strain (left axis) and height (right axis)
evolution is shown (a) + c)). On the right hand side, the temperature (left axis) and grain size (right axis) evolution are displayed b) + d)

close to the upper limit of the set tolerance (dγ , target � 35
± 5 μm).

On the other hand, some differences are noticeable. End-
ing at 15 mm the initial pass schedule does not fulfill the set
height tolerance (25± 1mm)whereas the final pass schedule
ends at 24.3 mm and thus does. As both schedules have iden-
tical initial height, this requires a lower total height reduction
and consequently a smaller average draft per pass in the final
schedule. When comparing the mechanical properties, it is
noticeable that the difference in YS is slightly bigger (393
vs. 415MPa) than the UTS difference (465 vs. 464MPa) due
to the dependence of YS on dislocation density, see Eq. 8.
Furthermore although dγ , roll is almost identical in both cases
(40.0 vs. 39.0 μm), the difference in the austenite grain size
after cooling (dγ , cool ) is greater (19.6 vs. 21.5 μm) due to
slower static recrystallization in the final pass schedule. Thus,
a higher retained strain at the beginning of the transformation
results in a smaller ferrite grain size (dα), see Eq. 18. This
results in almost the same dα (19.3 vs. 19.6 μm). While the
initial temperature is fixed to 1200 °C in both schedules, the
inter-pass times and thus the total rolling time (190.51 vs.

141.82 s) is much shorter in the final pass schedule than in
the initial one. This results in an average temperature differ-
ence after rolling (∅T ) of greater than 40 °C (930 vs 972 °C).
Consequently, the cooling time up until transformation is a
bit longer for the final pass schedule. Besides that, the tem-
perature difference between the two pass schedules is too
small for it to have a significant effect on the microstructure
evolution.

To sum up, during training the DDPG algorithm learned
to adjust the drafts and the inter-pass times in such a way that
the desired final height and grain size are reached. Especially,
the reduction of the inter-pass time results in an increased
average temperature during rolling and in combination with
the reduced total and average height reduction the rolling
forces and the energy consumption are reduced, too. The
differences in YS and UTS can be explained by the fact that
only the YS calculation considers dislocation density, see
Eqs. 8 and 9. The dislocation density is correlated with the
retained strain εr prior to the transformation from austenite
to ferrite (see Eq. 18). The retained strain is greater for the
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Fig. 7 Evolution of the reward constituents after each iteration; the left
axis displays the total and height reward, the right axis displays the grain
size, force, energy consumption and mechanical properties reward. The
red marker at 7700 iterations highlights that the final height reached the
tolerance for the first time. In a red rectangle the reward distribution of
the last two stored reward distributions (9900 and 10.000 iterations) is
detailed

final pass schedule and therefore the dislocation density and
the YS increase.

The reward evolution is shown in Fig. 7. As presented
before, the reward ri is evaluated for each pass and consists
of five optimization objectives, see Table 3, height rH (left
axis), average austenite grain size rG , final UTS, rM , rolling
force rF and the thermal and mechanical energy consump-
tion rE (all right axis). The total reward rt is the sum of the
rewards ri in all passes and thus considered as evaluation
metric. Remember, the intermediate reward only considers
rH ,rG ,rF , rE as the final mechanical properties rM are con-
sidered only in the last pass and thus in the completion
reward. The total reward rt (left axis, also see Eq. 24) is
the sum of the intermediate rewards of pass 1...n− 1 and the
completion rewards of the final pass n.

Three stages of development can be identified from the
reward evolution, the first one due to DDPG’s need of train-
ing samples (0–4500 iterations), in the second stage learning
occurs resulting in an optimization (4600–7700 iterations)
and in the final stage (7800–10.000 iterations) a (local) max-
imum is reached. As there are two stages—the first and
the final—with constant rewards, only the evolution of the
rewards in the second stage is described in more detail:

In the second stage between 4600 and 7700 iterations,
all the active rewards increase. The mechanical properties
reward rM is still inactive (as the target height is not reached)
and thus zero. The active rewards show a distinctly differ-
ent increase behavior. While the height reward rH gradually
increases over time, the reward for the force rF abruptly
jumps from −10 to zero at about 5300 iterations when the

machine limits are no longer exceeded. At the same time the
reward for the energy consumption rE increases constantly
but much slower. Finally, the grain size reward increase
slightly, then decreases to shortly below zero and finally
increases again whilst reaching its absolute maximum. In
consequently also the total reward rt increases in the sec-
ond state from −126 to 11. The second stage is completed
as soon as the target height is reached after 7700 iterations,
recognizable by a positive height reward rH . This is due to
the activation of the reward for themechanical properties rM ,
see reward definition in Table 3.

A detailed distribution of the rewards in the final stage is
shown in the red rectangle in Fig. 7. However, after achieving
the target height, no further improvement is achieved within
the next 2300 iterations, which is probably due to a local
minimum. This local minimum is most likely caused by the
current reward function that is discontinuous (see Table 3)
and thus can cause erratic gradients. Apart from improving
the reward function,more iterations and/or a higherweight on
the exploration behavior of the algorithmmight helpmitigate
this problem. The exploitation versus exploration problem is
detailed in the Appendix.

In summary, a FRM and a DDPG algorithm where suc-
cessfully coupled and the DDPG algorithm’s ANNs were
trained based on an automatically generated, non-ideal pass
schedule whose overall height reduction was too large. After
training the DDPG is able to design a pass schedule that
accounts for five different optimization objectives simulta-
neously in ~ 3 s (using an Intel Xenon CPU E3-1270). While
a further optimization of the reward function which is the
evaluation metric here and hyperparameters is required to
better prevent local minima and associated training stalls,
the presented concept clearly is worth further investigation.
An important focus here will be the influence of the differ-
ent reward components on the training process and final pass
schedules. For this, a comprehensive study with different use
cases is planned.

Validation and discussion of the exemplary
designed pass schedule

Finally, the resulting properties of the designed pass sched-
ule, i.e., the austenite grain size after hot rolling dγ , roll ,
the final ferrite grain size dα , as well as YS and UTS are
compared to a rolling experiment. This shows firstly if the
designed pass schedule can guarantee properties within spec-
ified tolerances and secondly if the predictive accuracy of
the FRM is high enough. The validation rolling trial carried
out based on the designed pass schedule is described first
and after that, the experimentally determined properties are
shown, compared to the FRM predictions and analyzed.
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Table 6 Process parameters of
the designed and experimental
pass schedule

Pass No Height after pass in mm 
h in% Designed start time in s Exp. start time in s

1 124.3 11.2 65.0 60.0

2 108.6 12.6 72.3 71.5

3 93.0 14.4 79.8 82.4

4 77.3 16.9 87.8 121.0

5 61.6 20.3 96.5 138.3

6 46.2 25.0 106.0 152.0

7 33.3 27.9 117.0 163.9

8 24.9 25.3 130.3 176.5

Fig. 8 FRM simulation of the experimental pass schedule shown in Table 6. On the left, the strain (left axis) and height (right axis) evolution is
shown (a). On the right, the temperature (left axis) and grain size (right axis) evolution are displayed (b)

Validation rolling trial based on the designed pass
schedule

The pass schedule was hot rolled on a laboratory rolling mill
at the IBF. Due to themanual operation of the rollingmill, the
desired starting times were not met for each pass. A signif-
icant process disturbance occurs after the third pass, which
results in an extended inter-pass time of about 30 s. Thus, the
actual rolled pass schedule was recalculated using the FRM.
Calculations for both schedules the originally designed and
the actual rolled one are compared first to analyze in how far
the pass schedule designed via DDPG is robust with respect
to process disturbances and retains similar final properties.
In Table 6 the process parameters of the designed and the
experimental pass schedule are summarized; n.b. apart from
the start times of the individual passes also the final thickness
differs slightly.

InFig. 8 theFRMresults of the experimental pass schedule
are presented. The figure on the left, (a), displays accumu-
lated strain in blue (left axis) and the height of the rolling
stock in black (right axis) over the process time. Moreover,
the final YS and UTS as well as the total energy consump-
tion (E) are shown. The figure on the right, (b), visualizes

the temperature distribution over the roll stock height in red
(left axis) and the average austenite grain size in black (right
axis). Furthermore, the average temperature (ØT) and aver-
age austenite grain size right after rolling (dγ , roll ) as well as
after cooling (dγ , cool ) and the final ferrite grain size (dα) are
depicted.

Looking at Fig. 6 bottom and Fig. 8a comparison between
the designed and the experimental pass schedule can be
drawn: As mentioned above, the process time of the experi-
mental pass schedule is larger due to the large inter-pass time
in between passes three and four. This deviation causes a tem-
perature difference of 11 °C (970 vs. 959 °C) at the end of the
rolling process that in turn has an influence on themicrostruc-
ture evolution during rolling. The larger inter-pass time lead
to significant grain growth and a different austenite grain size
dγ after pass three. However, the grain size difference mostly
vanishes throughout the rest of the schedule leading to a final
austenite grain size dγ , roll of 33.7 μm in the experiment vs.
a dγ , roll of 39 μm in the designed schedule. Both grain sizes
are within the required tolerance of 35 ± 5 μm after rolling.
Similarly, the final ferrite grain sizes dα differ only by a few
μm (17.8 vs. 19.8 μm) and thus lead to very similar YS
(422 vs. 415 MPa) and UTS (470 vs. 464 MPa). The slightly
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Fig. 9 Microstructure in the center of the hot-rolled material once quenched (left) and once normalized after quenching (right)

Fig. 10 Comparison between the
measurements and
FRM-predicted values

smaller grain size of the experimental pass schedule leads to
a slightly bigger YS and UTS purely due to the Hall–Petch
effect as the solid solution strengthening is identical in both
schedules.

Comparison of predicted and experimental
properties

In order to determine the average former austenite grain
size, the hot-rolled material was quenched in water via
a cooling line. Afterwards, samples were taken from the
quenched roll stock to analyze the microstructure. However,
for determining the YS and UTS the microstructure has to
be ferritic-perlitic for this steel grade to comply with the typ-
ical delivery conditions to customers in industry. Therefore,
the samples were annealed for 40 min at 900 °C. In Fig. 9
the microstructure of the quenched and annealed samples is
presented. While the microstructure of the quenched sample
is either bainitic or martensitic with an average hardness of
314 HV 10, the annealed material sample shows a distinct
ferritic-perlitic microstructure with an average hardness of
190 HV 10. The hardness tests were carried out in the cen-
ter of the specimen according to ISO 6507 using a Zwick
ZHV10 hardness tester.

In Fig. 10 the average former austenite dγ , roll and fer-
rite grain size dα from the experiment are compared to the
FRM prediction for the experimental pass schedule and for
the pass schedule originally designed via RL. The average
measured dγ , roll is 36.6μmwhile the FRMpredicts 33.7μm
for the experimental schedule, demonstrating that dγ , roll can
be predicted within a few μm. The measured average dα of
the annealed sample is 16.0 μm also showing good agree-
ment with the FRM prediction for the experimental schedule
of 17.8 μm.

Finally, tensile tests of the annealed samples according
to ISO 6895 are carried out using a Zwick Z100 testing
machine. The annealed material has a YS of 313 MPa and
a UTS of 542 MPa. In contrast, the FRM predicts a YS of
422 MPa and UTS of 470 MPa. Thus, the predicted mechan-
ical properties are 35% higher for YS and 13% lower for
UTS. The noticeable difference in YS might be related to
the simplified modelling of the dislocation density that is
not currently based on an internal state variable model. Fur-
thermore, a dedicated calibration of the microstructure, YS
andUTS parameters for S355 structural steel should improve
the accuracy of the FRM. Never the less, the microstructure,
YS and UTS results show that the schedule laid out by the
DDPG algorithm is quite robust in regards to extended inter-
pass times, at least in the rolled geometry range considered.
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Rolling trials with intentional irregularities have to be car-
ried out to fully assess the robustness of the pass schedules
generated via the DDPG algorithm.

6 Summary and outlook

In this paper, a novel concept was presented that shows the
feasibility of coupling a FRM and DDPG algorithm for pass
schedule generation. First, an existing FRM was extended
to predict YS and UTS. Next, a complex reward function
was developed for the DDPG algorithm in order to design
pass schedules. By coupling the FRM and the DDPG algo-
rithm a pass schedule that satisfied the target height and
grain size while also maximizing the mechanical properties
of the sheet, minimizing the energy consumption and adher-
ing to the machine limits was laid out. When hot rolling this
pass schedule on a laboratory scale rolling mill the predicted
austenite and ferrite grain sizes where met within a few μm.
Adversely, the resulting YS was predicted with an accuracy
of 35%while the deviation in UTS was only about 13%. The
deviations, especially in YS, likely stem from using com-
mon material-dependent parameters from literature and the
uncertainties in the cooling rate after hot rolling. In the future
carefully calibrating the material and property model param-
eters should improve the accuracy.

In summary, the presented coupling of FRM and RL can,
for the first time, provide pass schedules that consider mul-
tiple objectives including final mechanical properties. It can
therefore assist process experts from academia and industry
in designing better pass schedules. Especially where current,
mostly manual approaches have reached their limits. While
further improvements to the reward function and hyperpa-
rameters are needed to increase efficiency, this proof of
concept successfully demonstrates the potential of coupling
conventional engineering models and reinforcement learn-
ing methods to tackle complex problems in metal forming.
In this respect, this work could lead to further developments
and applications of RL in engineering fields. Prospectively
the presented approach could enable the real-time adaption
of pass schedules to unforeseen process disturbances also in
the context of properties controlled hot rolling.
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Appendix

This appendix gives further details on the exploration behav-
ior and the replay buffer of the DDPG algorithm.

Exploration behavior

In order to find an optimal solution for a given task, theDDPG
algorithm needs to weight exploitation versus exploration
behavior. Exploitation means choosing actions that are best
according to current knowledge, while exploration means
choosing actions that will increase knowledge and poten-
tially enable higher rewards in the future. In other words,
while exploration is necessary for the DDPG algorithm in
order to learn, exploitation is necessary for the agent’s per-
formance and for convergence. Several implementations of
different exploration behavior are available, one well-known
example is the ε-greedy method. Here, the algorithm selects
the currently best action with probability 1− ε and a random
action with probability 0 ≤ ε ≤ 1 instead. Later Lillicrap
et al. (2016) presented an alternative noise-base exploration
which results in a more efficient exploration process. For
sampling noise, the authors used the Ornstein–Uhlenbeck
process, developed by Uhlenbeck and Ornstein (1930) and
afterwards added the noise directly to the actions. Since this
method gave good results in physical control problems, it is
also used in the present study.

Replay buffer

The concept of a replay or experience buffer was introduced
in 1992 by Lin (1992). One prominent application of a replay
buffer was presented by Minh et al. (2013) who used a Deep
Q-Learning algorithm to successfully play Atari games. In
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the replay buffer, the experience ormore specifically the state
action pairs and the corresponding reward observed during
the training, collected by the DDPG algorithm is stored. This
is necessary as using ANNs in the concept of Reinforcement
Learning causes two problems: The first problem is that the
data needed to train the Actor and Critic Network is highly
dynamic, i.e., the data changes during the training as the
algorithm learns new relationships and behavior. For proper
training of ANNs on the other hand, it is necessary that data
is static and independent. Here, the second problem occurs.
Data used to train the ANNs are typically highly correlated,
i.e., the current state usually depends on the previous state
action pair (Sutton & Barto, 2018). For example, the height
within each pass schedule is strictly monotonously decreas-
ing due to the pass by pass design but is reset to its initial
value for the next pass schedule and the pattern repeats. Such
correlated data might result in bad performance of the ANN
because it will simply memorize the pattern during learning.
The replay buffer serves to overcome the problem by chang-
ing the data distribution and breaking up the correlation in
the training data. For this, the replay buffer has a fixed size
and for each new state action pair, the oldest pair is replaced
(Lillicrap et al., 2016). To train the ANNs batches from the
replay buffer drawn at random are used. This ensures that, the
training data available to the ANNs is as independent as pos-
sible. In addition to that, the replay buffer enables multiple
replays of the same interaction, so the gained experience can
be used in several updates of the Actor and Critic Network
and is not lost. Furthermore, this greatly improves the data
efficiency.
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